[media] mceusb: add support for Conexant Hybrid TV RDU253S
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-timers.c
blob9ca4973f736d53b04bf4eea9373ce635cf7098c3
1 /*
2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
69 * Lets keep our timers in a slab cache :-)
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
120 * fields are not modified by timer code.
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_clock posix_clocks[MAX_CLOCKS];
137 * These ones are defined below.
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 spin_unlock_irqrestore(&timr->it_lock, flags);
156 * Call the k_clock hook function if non-null, or the default function.
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
180 * Get real time for posix timers
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 ktime_get_real_ts(tp);
185 return 0;
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
191 return do_sys_settimeofday(tp, NULL);
194 static int common_timer_create(struct k_itimer *new_timer)
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
200 static int no_timer_create(struct k_itimer *new_timer)
202 return -EOPNOTSUPP;
205 static int no_nsleep(const clockid_t which_clock, int flags,
206 struct timespec *tsave, struct timespec __user *rmtp)
208 return -EOPNOTSUPP;
212 * Return nonzero if we know a priori this clockid_t value is bogus.
214 static inline int invalid_clockid(const clockid_t which_clock)
216 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
217 return 0;
218 if ((unsigned) which_clock >= MAX_CLOCKS)
219 return 1;
220 if (posix_clocks[which_clock].clock_getres != NULL)
221 return 0;
222 if (posix_clocks[which_clock].res != 0)
223 return 0;
224 return 1;
228 * Get monotonic time for posix timers
230 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
232 ktime_get_ts(tp);
233 return 0;
237 * Get monotonic time for posix timers
239 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
241 getrawmonotonic(tp);
242 return 0;
246 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
248 *tp = current_kernel_time();
249 return 0;
252 static int posix_get_monotonic_coarse(clockid_t which_clock,
253 struct timespec *tp)
255 *tp = get_monotonic_coarse();
256 return 0;
259 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
261 *tp = ktime_to_timespec(KTIME_LOW_RES);
262 return 0;
265 * Initialize everything, well, just everything in Posix clocks/timers ;)
267 static __init int init_posix_timers(void)
269 struct k_clock clock_realtime = {
270 .clock_getres = hrtimer_get_res,
272 struct k_clock clock_monotonic = {
273 .clock_getres = hrtimer_get_res,
274 .clock_get = posix_ktime_get_ts,
275 .clock_set = do_posix_clock_nosettime,
277 struct k_clock clock_monotonic_raw = {
278 .clock_getres = hrtimer_get_res,
279 .clock_get = posix_get_monotonic_raw,
280 .clock_set = do_posix_clock_nosettime,
281 .timer_create = no_timer_create,
282 .nsleep = no_nsleep,
284 struct k_clock clock_realtime_coarse = {
285 .clock_getres = posix_get_coarse_res,
286 .clock_get = posix_get_realtime_coarse,
287 .clock_set = do_posix_clock_nosettime,
288 .timer_create = no_timer_create,
289 .nsleep = no_nsleep,
291 struct k_clock clock_monotonic_coarse = {
292 .clock_getres = posix_get_coarse_res,
293 .clock_get = posix_get_monotonic_coarse,
294 .clock_set = do_posix_clock_nosettime,
295 .timer_create = no_timer_create,
296 .nsleep = no_nsleep,
299 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
300 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
301 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
302 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
303 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
305 posix_timers_cache = kmem_cache_create("posix_timers_cache",
306 sizeof (struct k_itimer), 0, SLAB_PANIC,
307 NULL);
308 idr_init(&posix_timers_id);
309 return 0;
312 __initcall(init_posix_timers);
314 static void schedule_next_timer(struct k_itimer *timr)
316 struct hrtimer *timer = &timr->it.real.timer;
318 if (timr->it.real.interval.tv64 == 0)
319 return;
321 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
322 timer->base->get_time(),
323 timr->it.real.interval);
325 timr->it_overrun_last = timr->it_overrun;
326 timr->it_overrun = -1;
327 ++timr->it_requeue_pending;
328 hrtimer_restart(timer);
332 * This function is exported for use by the signal deliver code. It is
333 * called just prior to the info block being released and passes that
334 * block to us. It's function is to update the overrun entry AND to
335 * restart the timer. It should only be called if the timer is to be
336 * restarted (i.e. we have flagged this in the sys_private entry of the
337 * info block).
339 * To protect aginst the timer going away while the interrupt is queued,
340 * we require that the it_requeue_pending flag be set.
342 void do_schedule_next_timer(struct siginfo *info)
344 struct k_itimer *timr;
345 unsigned long flags;
347 timr = lock_timer(info->si_tid, &flags);
349 if (timr && timr->it_requeue_pending == info->si_sys_private) {
350 if (timr->it_clock < 0)
351 posix_cpu_timer_schedule(timr);
352 else
353 schedule_next_timer(timr);
355 info->si_overrun += timr->it_overrun_last;
358 if (timr)
359 unlock_timer(timr, flags);
362 int posix_timer_event(struct k_itimer *timr, int si_private)
364 struct task_struct *task;
365 int shared, ret = -1;
367 * FIXME: if ->sigq is queued we can race with
368 * dequeue_signal()->do_schedule_next_timer().
370 * If dequeue_signal() sees the "right" value of
371 * si_sys_private it calls do_schedule_next_timer().
372 * We re-queue ->sigq and drop ->it_lock().
373 * do_schedule_next_timer() locks the timer
374 * and re-schedules it while ->sigq is pending.
375 * Not really bad, but not that we want.
377 timr->sigq->info.si_sys_private = si_private;
379 rcu_read_lock();
380 task = pid_task(timr->it_pid, PIDTYPE_PID);
381 if (task) {
382 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
383 ret = send_sigqueue(timr->sigq, task, shared);
385 rcu_read_unlock();
386 /* If we failed to send the signal the timer stops. */
387 return ret > 0;
389 EXPORT_SYMBOL_GPL(posix_timer_event);
392 * This function gets called when a POSIX.1b interval timer expires. It
393 * is used as a callback from the kernel internal timer. The
394 * run_timer_list code ALWAYS calls with interrupts on.
396 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
398 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
400 struct k_itimer *timr;
401 unsigned long flags;
402 int si_private = 0;
403 enum hrtimer_restart ret = HRTIMER_NORESTART;
405 timr = container_of(timer, struct k_itimer, it.real.timer);
406 spin_lock_irqsave(&timr->it_lock, flags);
408 if (timr->it.real.interval.tv64 != 0)
409 si_private = ++timr->it_requeue_pending;
411 if (posix_timer_event(timr, si_private)) {
413 * signal was not sent because of sig_ignor
414 * we will not get a call back to restart it AND
415 * it should be restarted.
417 if (timr->it.real.interval.tv64 != 0) {
418 ktime_t now = hrtimer_cb_get_time(timer);
421 * FIXME: What we really want, is to stop this
422 * timer completely and restart it in case the
423 * SIG_IGN is removed. This is a non trivial
424 * change which involves sighand locking
425 * (sigh !), which we don't want to do late in
426 * the release cycle.
428 * For now we just let timers with an interval
429 * less than a jiffie expire every jiffie to
430 * avoid softirq starvation in case of SIG_IGN
431 * and a very small interval, which would put
432 * the timer right back on the softirq pending
433 * list. By moving now ahead of time we trick
434 * hrtimer_forward() to expire the timer
435 * later, while we still maintain the overrun
436 * accuracy, but have some inconsistency in
437 * the timer_gettime() case. This is at least
438 * better than a starved softirq. A more
439 * complex fix which solves also another related
440 * inconsistency is already in the pipeline.
442 #ifdef CONFIG_HIGH_RES_TIMERS
444 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
446 if (timr->it.real.interval.tv64 < kj.tv64)
447 now = ktime_add(now, kj);
449 #endif
450 timr->it_overrun += (unsigned int)
451 hrtimer_forward(timer, now,
452 timr->it.real.interval);
453 ret = HRTIMER_RESTART;
454 ++timr->it_requeue_pending;
458 unlock_timer(timr, flags);
459 return ret;
462 static struct pid *good_sigevent(sigevent_t * event)
464 struct task_struct *rtn = current->group_leader;
466 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
467 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
468 !same_thread_group(rtn, current) ||
469 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
470 return NULL;
472 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
473 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
474 return NULL;
476 return task_pid(rtn);
479 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
481 if ((unsigned) clock_id >= MAX_CLOCKS) {
482 printk("POSIX clock register failed for clock_id %d\n",
483 clock_id);
484 return;
487 posix_clocks[clock_id] = *new_clock;
489 EXPORT_SYMBOL_GPL(register_posix_clock);
491 static struct k_itimer * alloc_posix_timer(void)
493 struct k_itimer *tmr;
494 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
495 if (!tmr)
496 return tmr;
497 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
498 kmem_cache_free(posix_timers_cache, tmr);
499 return NULL;
501 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
502 return tmr;
505 #define IT_ID_SET 1
506 #define IT_ID_NOT_SET 0
507 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
509 if (it_id_set) {
510 unsigned long flags;
511 spin_lock_irqsave(&idr_lock, flags);
512 idr_remove(&posix_timers_id, tmr->it_id);
513 spin_unlock_irqrestore(&idr_lock, flags);
515 put_pid(tmr->it_pid);
516 sigqueue_free(tmr->sigq);
517 kmem_cache_free(posix_timers_cache, tmr);
520 /* Create a POSIX.1b interval timer. */
522 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
523 struct sigevent __user *, timer_event_spec,
524 timer_t __user *, created_timer_id)
526 struct k_itimer *new_timer;
527 int error, new_timer_id;
528 sigevent_t event;
529 int it_id_set = IT_ID_NOT_SET;
531 if (invalid_clockid(which_clock))
532 return -EINVAL;
534 new_timer = alloc_posix_timer();
535 if (unlikely(!new_timer))
536 return -EAGAIN;
538 spin_lock_init(&new_timer->it_lock);
539 retry:
540 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
541 error = -EAGAIN;
542 goto out;
544 spin_lock_irq(&idr_lock);
545 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
546 spin_unlock_irq(&idr_lock);
547 if (error) {
548 if (error == -EAGAIN)
549 goto retry;
551 * Weird looking, but we return EAGAIN if the IDR is
552 * full (proper POSIX return value for this)
554 error = -EAGAIN;
555 goto out;
558 it_id_set = IT_ID_SET;
559 new_timer->it_id = (timer_t) new_timer_id;
560 new_timer->it_clock = which_clock;
561 new_timer->it_overrun = -1;
563 if (timer_event_spec) {
564 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
565 error = -EFAULT;
566 goto out;
568 rcu_read_lock();
569 new_timer->it_pid = get_pid(good_sigevent(&event));
570 rcu_read_unlock();
571 if (!new_timer->it_pid) {
572 error = -EINVAL;
573 goto out;
575 } else {
576 event.sigev_notify = SIGEV_SIGNAL;
577 event.sigev_signo = SIGALRM;
578 event.sigev_value.sival_int = new_timer->it_id;
579 new_timer->it_pid = get_pid(task_tgid(current));
582 new_timer->it_sigev_notify = event.sigev_notify;
583 new_timer->sigq->info.si_signo = event.sigev_signo;
584 new_timer->sigq->info.si_value = event.sigev_value;
585 new_timer->sigq->info.si_tid = new_timer->it_id;
586 new_timer->sigq->info.si_code = SI_TIMER;
588 if (copy_to_user(created_timer_id,
589 &new_timer_id, sizeof (new_timer_id))) {
590 error = -EFAULT;
591 goto out;
594 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
595 if (error)
596 goto out;
598 spin_lock_irq(&current->sighand->siglock);
599 new_timer->it_signal = current->signal;
600 list_add(&new_timer->list, &current->signal->posix_timers);
601 spin_unlock_irq(&current->sighand->siglock);
603 return 0;
605 * In the case of the timer belonging to another task, after
606 * the task is unlocked, the timer is owned by the other task
607 * and may cease to exist at any time. Don't use or modify
608 * new_timer after the unlock call.
610 out:
611 release_posix_timer(new_timer, it_id_set);
612 return error;
616 * Locking issues: We need to protect the result of the id look up until
617 * we get the timer locked down so it is not deleted under us. The
618 * removal is done under the idr spinlock so we use that here to bridge
619 * the find to the timer lock. To avoid a dead lock, the timer id MUST
620 * be release with out holding the timer lock.
622 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
624 struct k_itimer *timr;
626 * Watch out here. We do a irqsave on the idr_lock and pass the
627 * flags part over to the timer lock. Must not let interrupts in
628 * while we are moving the lock.
630 spin_lock_irqsave(&idr_lock, *flags);
631 timr = idr_find(&posix_timers_id, (int)timer_id);
632 if (timr) {
633 spin_lock(&timr->it_lock);
634 if (timr->it_signal == current->signal) {
635 spin_unlock(&idr_lock);
636 return timr;
638 spin_unlock(&timr->it_lock);
640 spin_unlock_irqrestore(&idr_lock, *flags);
642 return NULL;
646 * Get the time remaining on a POSIX.1b interval timer. This function
647 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
648 * mess with irq.
650 * We have a couple of messes to clean up here. First there is the case
651 * of a timer that has a requeue pending. These timers should appear to
652 * be in the timer list with an expiry as if we were to requeue them
653 * now.
655 * The second issue is the SIGEV_NONE timer which may be active but is
656 * not really ever put in the timer list (to save system resources).
657 * This timer may be expired, and if so, we will do it here. Otherwise
658 * it is the same as a requeue pending timer WRT to what we should
659 * report.
661 static void
662 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
664 ktime_t now, remaining, iv;
665 struct hrtimer *timer = &timr->it.real.timer;
667 memset(cur_setting, 0, sizeof(struct itimerspec));
669 iv = timr->it.real.interval;
671 /* interval timer ? */
672 if (iv.tv64)
673 cur_setting->it_interval = ktime_to_timespec(iv);
674 else if (!hrtimer_active(timer) &&
675 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
676 return;
678 now = timer->base->get_time();
681 * When a requeue is pending or this is a SIGEV_NONE
682 * timer move the expiry time forward by intervals, so
683 * expiry is > now.
685 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
686 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
687 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
689 remaining = ktime_sub(hrtimer_get_expires(timer), now);
690 /* Return 0 only, when the timer is expired and not pending */
691 if (remaining.tv64 <= 0) {
693 * A single shot SIGEV_NONE timer must return 0, when
694 * it is expired !
696 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
697 cur_setting->it_value.tv_nsec = 1;
698 } else
699 cur_setting->it_value = ktime_to_timespec(remaining);
702 /* Get the time remaining on a POSIX.1b interval timer. */
703 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
704 struct itimerspec __user *, setting)
706 struct k_itimer *timr;
707 struct itimerspec cur_setting;
708 unsigned long flags;
710 timr = lock_timer(timer_id, &flags);
711 if (!timr)
712 return -EINVAL;
714 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
716 unlock_timer(timr, flags);
718 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
719 return -EFAULT;
721 return 0;
725 * Get the number of overruns of a POSIX.1b interval timer. This is to
726 * be the overrun of the timer last delivered. At the same time we are
727 * accumulating overruns on the next timer. The overrun is frozen when
728 * the signal is delivered, either at the notify time (if the info block
729 * is not queued) or at the actual delivery time (as we are informed by
730 * the call back to do_schedule_next_timer(). So all we need to do is
731 * to pick up the frozen overrun.
733 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
735 struct k_itimer *timr;
736 int overrun;
737 unsigned long flags;
739 timr = lock_timer(timer_id, &flags);
740 if (!timr)
741 return -EINVAL;
743 overrun = timr->it_overrun_last;
744 unlock_timer(timr, flags);
746 return overrun;
749 /* Set a POSIX.1b interval timer. */
750 /* timr->it_lock is taken. */
751 static int
752 common_timer_set(struct k_itimer *timr, int flags,
753 struct itimerspec *new_setting, struct itimerspec *old_setting)
755 struct hrtimer *timer = &timr->it.real.timer;
756 enum hrtimer_mode mode;
758 if (old_setting)
759 common_timer_get(timr, old_setting);
761 /* disable the timer */
762 timr->it.real.interval.tv64 = 0;
764 * careful here. If smp we could be in the "fire" routine which will
765 * be spinning as we hold the lock. But this is ONLY an SMP issue.
767 if (hrtimer_try_to_cancel(timer) < 0)
768 return TIMER_RETRY;
770 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
771 ~REQUEUE_PENDING;
772 timr->it_overrun_last = 0;
774 /* switch off the timer when it_value is zero */
775 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
776 return 0;
778 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
779 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
780 timr->it.real.timer.function = posix_timer_fn;
782 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
784 /* Convert interval */
785 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
787 /* SIGEV_NONE timers are not queued ! See common_timer_get */
788 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
789 /* Setup correct expiry time for relative timers */
790 if (mode == HRTIMER_MODE_REL) {
791 hrtimer_add_expires(timer, timer->base->get_time());
793 return 0;
796 hrtimer_start_expires(timer, mode);
797 return 0;
800 /* Set a POSIX.1b interval timer */
801 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
802 const struct itimerspec __user *, new_setting,
803 struct itimerspec __user *, old_setting)
805 struct k_itimer *timr;
806 struct itimerspec new_spec, old_spec;
807 int error = 0;
808 unsigned long flag;
809 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
811 if (!new_setting)
812 return -EINVAL;
814 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
815 return -EFAULT;
817 if (!timespec_valid(&new_spec.it_interval) ||
818 !timespec_valid(&new_spec.it_value))
819 return -EINVAL;
820 retry:
821 timr = lock_timer(timer_id, &flag);
822 if (!timr)
823 return -EINVAL;
825 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
826 (timr, flags, &new_spec, rtn));
828 unlock_timer(timr, flag);
829 if (error == TIMER_RETRY) {
830 rtn = NULL; // We already got the old time...
831 goto retry;
834 if (old_setting && !error &&
835 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
836 error = -EFAULT;
838 return error;
841 static inline int common_timer_del(struct k_itimer *timer)
843 timer->it.real.interval.tv64 = 0;
845 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
846 return TIMER_RETRY;
847 return 0;
850 static inline int timer_delete_hook(struct k_itimer *timer)
852 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
855 /* Delete a POSIX.1b interval timer. */
856 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
858 struct k_itimer *timer;
859 unsigned long flags;
861 retry_delete:
862 timer = lock_timer(timer_id, &flags);
863 if (!timer)
864 return -EINVAL;
866 if (timer_delete_hook(timer) == TIMER_RETRY) {
867 unlock_timer(timer, flags);
868 goto retry_delete;
871 spin_lock(&current->sighand->siglock);
872 list_del(&timer->list);
873 spin_unlock(&current->sighand->siglock);
875 * This keeps any tasks waiting on the spin lock from thinking
876 * they got something (see the lock code above).
878 timer->it_signal = NULL;
880 unlock_timer(timer, flags);
881 release_posix_timer(timer, IT_ID_SET);
882 return 0;
886 * return timer owned by the process, used by exit_itimers
888 static void itimer_delete(struct k_itimer *timer)
890 unsigned long flags;
892 retry_delete:
893 spin_lock_irqsave(&timer->it_lock, flags);
895 if (timer_delete_hook(timer) == TIMER_RETRY) {
896 unlock_timer(timer, flags);
897 goto retry_delete;
899 list_del(&timer->list);
901 * This keeps any tasks waiting on the spin lock from thinking
902 * they got something (see the lock code above).
904 timer->it_signal = NULL;
906 unlock_timer(timer, flags);
907 release_posix_timer(timer, IT_ID_SET);
911 * This is called by do_exit or de_thread, only when there are no more
912 * references to the shared signal_struct.
914 void exit_itimers(struct signal_struct *sig)
916 struct k_itimer *tmr;
918 while (!list_empty(&sig->posix_timers)) {
919 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
920 itimer_delete(tmr);
924 /* Not available / possible... functions */
925 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
927 return -EINVAL;
929 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
931 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
932 struct timespec *t, struct timespec __user *r)
934 #ifndef ENOTSUP
935 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
936 #else /* parisc does define it separately. */
937 return -ENOTSUP;
938 #endif
940 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
942 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
943 const struct timespec __user *, tp)
945 struct timespec new_tp;
947 if (invalid_clockid(which_clock))
948 return -EINVAL;
949 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
950 return -EFAULT;
952 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
955 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
956 struct timespec __user *,tp)
958 struct timespec kernel_tp;
959 int error;
961 if (invalid_clockid(which_clock))
962 return -EINVAL;
963 error = CLOCK_DISPATCH(which_clock, clock_get,
964 (which_clock, &kernel_tp));
965 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
966 error = -EFAULT;
968 return error;
972 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
973 struct timespec __user *, tp)
975 struct timespec rtn_tp;
976 int error;
978 if (invalid_clockid(which_clock))
979 return -EINVAL;
981 error = CLOCK_DISPATCH(which_clock, clock_getres,
982 (which_clock, &rtn_tp));
984 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
985 error = -EFAULT;
988 return error;
992 * nanosleep for monotonic and realtime clocks
994 static int common_nsleep(const clockid_t which_clock, int flags,
995 struct timespec *tsave, struct timespec __user *rmtp)
997 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
998 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
999 which_clock);
1002 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1003 const struct timespec __user *, rqtp,
1004 struct timespec __user *, rmtp)
1006 struct timespec t;
1008 if (invalid_clockid(which_clock))
1009 return -EINVAL;
1011 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1012 return -EFAULT;
1014 if (!timespec_valid(&t))
1015 return -EINVAL;
1017 return CLOCK_DISPATCH(which_clock, nsleep,
1018 (which_clock, flags, &t, rmtp));
1022 * nanosleep_restart for monotonic and realtime clocks
1024 static int common_nsleep_restart(struct restart_block *restart_block)
1026 return hrtimer_nanosleep_restart(restart_block);
1030 * This will restart clock_nanosleep. This is required only by
1031 * compat_clock_nanosleep_restart for now.
1033 long
1034 clock_nanosleep_restart(struct restart_block *restart_block)
1036 clockid_t which_clock = restart_block->arg0;
1038 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1039 (restart_block));