serial: core, remove uart_update_termios
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / tty / tty_io.c
blob55bb456e8f1c6a1aebae19e8232baddcd0c96f64
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 /* Spinlock to protect the tty->tty_files list */
140 DEFINE_SPINLOCK(tty_files_lock);
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
162 * alloc_tty_struct - allocate a tty object
164 * Return a new empty tty structure. The data fields have not
165 * been initialized in any way but has been zeroed
167 * Locking: none
170 struct tty_struct *alloc_tty_struct(void)
172 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
179 * Free the write buffers, tty queue and tty memory itself.
181 * Locking: none. Must be called after tty is definitely unused
184 void free_tty_struct(struct tty_struct *tty)
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty_buffer_free_all(tty);
190 kfree(tty);
193 static inline struct tty_struct *file_tty(struct file *file)
195 return ((struct tty_file_private *)file->private_data)->tty;
198 /* Associate a new file with the tty structure */
199 int tty_add_file(struct tty_struct *tty, struct file *file)
201 struct tty_file_private *priv;
203 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204 if (!priv)
205 return -ENOMEM;
207 priv->tty = tty;
208 priv->file = file;
209 file->private_data = priv;
211 spin_lock(&tty_files_lock);
212 list_add(&priv->list, &tty->tty_files);
213 spin_unlock(&tty_files_lock);
215 return 0;
218 /* Delete file from its tty */
219 void tty_del_file(struct file *file)
221 struct tty_file_private *priv = file->private_data;
223 spin_lock(&tty_files_lock);
224 list_del(&priv->list);
225 spin_unlock(&tty_files_lock);
226 file->private_data = NULL;
227 kfree(priv);
231 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234 * tty_name - return tty naming
235 * @tty: tty structure
236 * @buf: buffer for output
238 * Convert a tty structure into a name. The name reflects the kernel
239 * naming policy and if udev is in use may not reflect user space
241 * Locking: none
244 char *tty_name(struct tty_struct *tty, char *buf)
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 strcpy(buf, "NULL tty");
248 else
249 strcpy(buf, tty->name);
250 return buf;
253 EXPORT_SYMBOL(tty_name);
255 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
256 const char *routine)
258 #ifdef TTY_PARANOIA_CHECK
259 if (!tty) {
260 printk(KERN_WARNING
261 "null TTY for (%d:%d) in %s\n",
262 imajor(inode), iminor(inode), routine);
263 return 1;
265 if (tty->magic != TTY_MAGIC) {
266 printk(KERN_WARNING
267 "bad magic number for tty struct (%d:%d) in %s\n",
268 imajor(inode), iminor(inode), routine);
269 return 1;
271 #endif
272 return 0;
275 static int check_tty_count(struct tty_struct *tty, const char *routine)
277 #ifdef CHECK_TTY_COUNT
278 struct list_head *p;
279 int count = 0;
281 spin_lock(&tty_files_lock);
282 list_for_each(p, &tty->tty_files) {
283 count++;
285 spin_unlock(&tty_files_lock);
286 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
287 tty->driver->subtype == PTY_TYPE_SLAVE &&
288 tty->link && tty->link->count)
289 count++;
290 if (tty->count != count) {
291 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
292 "!= #fd's(%d) in %s\n",
293 tty->name, tty->count, count, routine);
294 return count;
296 #endif
297 return 0;
301 * get_tty_driver - find device of a tty
302 * @dev_t: device identifier
303 * @index: returns the index of the tty
305 * This routine returns a tty driver structure, given a device number
306 * and also passes back the index number.
308 * Locking: caller must hold tty_mutex
311 static struct tty_driver *get_tty_driver(dev_t device, int *index)
313 struct tty_driver *p;
315 list_for_each_entry(p, &tty_drivers, tty_drivers) {
316 dev_t base = MKDEV(p->major, p->minor_start);
317 if (device < base || device >= base + p->num)
318 continue;
319 *index = device - base;
320 return tty_driver_kref_get(p);
322 return NULL;
325 #ifdef CONFIG_CONSOLE_POLL
328 * tty_find_polling_driver - find device of a polled tty
329 * @name: name string to match
330 * @line: pointer to resulting tty line nr
332 * This routine returns a tty driver structure, given a name
333 * and the condition that the tty driver is capable of polled
334 * operation.
336 struct tty_driver *tty_find_polling_driver(char *name, int *line)
338 struct tty_driver *p, *res = NULL;
339 int tty_line = 0;
340 int len;
341 char *str, *stp;
343 for (str = name; *str; str++)
344 if ((*str >= '0' && *str <= '9') || *str == ',')
345 break;
346 if (!*str)
347 return NULL;
349 len = str - name;
350 tty_line = simple_strtoul(str, &str, 10);
352 mutex_lock(&tty_mutex);
353 /* Search through the tty devices to look for a match */
354 list_for_each_entry(p, &tty_drivers, tty_drivers) {
355 if (strncmp(name, p->name, len) != 0)
356 continue;
357 stp = str;
358 if (*stp == ',')
359 stp++;
360 if (*stp == '\0')
361 stp = NULL;
363 if (tty_line >= 0 && tty_line < p->num && p->ops &&
364 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
365 res = tty_driver_kref_get(p);
366 *line = tty_line;
367 break;
370 mutex_unlock(&tty_mutex);
372 return res;
374 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
375 #endif
378 * tty_check_change - check for POSIX terminal changes
379 * @tty: tty to check
381 * If we try to write to, or set the state of, a terminal and we're
382 * not in the foreground, send a SIGTTOU. If the signal is blocked or
383 * ignored, go ahead and perform the operation. (POSIX 7.2)
385 * Locking: ctrl_lock
388 int tty_check_change(struct tty_struct *tty)
390 unsigned long flags;
391 int ret = 0;
393 if (current->signal->tty != tty)
394 return 0;
396 spin_lock_irqsave(&tty->ctrl_lock, flags);
398 if (!tty->pgrp) {
399 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
400 goto out_unlock;
402 if (task_pgrp(current) == tty->pgrp)
403 goto out_unlock;
404 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
405 if (is_ignored(SIGTTOU))
406 goto out;
407 if (is_current_pgrp_orphaned()) {
408 ret = -EIO;
409 goto out;
411 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
412 set_thread_flag(TIF_SIGPENDING);
413 ret = -ERESTARTSYS;
414 out:
415 return ret;
416 out_unlock:
417 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
418 return ret;
421 EXPORT_SYMBOL(tty_check_change);
423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
424 size_t count, loff_t *ppos)
426 return 0;
429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
430 size_t count, loff_t *ppos)
432 return -EIO;
435 /* No kernel lock held - none needed ;) */
436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
438 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
442 unsigned long arg)
444 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
447 static long hung_up_tty_compat_ioctl(struct file *file,
448 unsigned int cmd, unsigned long arg)
450 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
453 static const struct file_operations tty_fops = {
454 .llseek = no_llseek,
455 .read = tty_read,
456 .write = tty_write,
457 .poll = tty_poll,
458 .unlocked_ioctl = tty_ioctl,
459 .compat_ioctl = tty_compat_ioctl,
460 .open = tty_open,
461 .release = tty_release,
462 .fasync = tty_fasync,
465 static const struct file_operations console_fops = {
466 .llseek = no_llseek,
467 .read = tty_read,
468 .write = redirected_tty_write,
469 .poll = tty_poll,
470 .unlocked_ioctl = tty_ioctl,
471 .compat_ioctl = tty_compat_ioctl,
472 .open = tty_open,
473 .release = tty_release,
474 .fasync = tty_fasync,
477 static const struct file_operations hung_up_tty_fops = {
478 .llseek = no_llseek,
479 .read = hung_up_tty_read,
480 .write = hung_up_tty_write,
481 .poll = hung_up_tty_poll,
482 .unlocked_ioctl = hung_up_tty_ioctl,
483 .compat_ioctl = hung_up_tty_compat_ioctl,
484 .release = tty_release,
487 static DEFINE_SPINLOCK(redirect_lock);
488 static struct file *redirect;
491 * tty_wakeup - request more data
492 * @tty: terminal
494 * Internal and external helper for wakeups of tty. This function
495 * informs the line discipline if present that the driver is ready
496 * to receive more output data.
499 void tty_wakeup(struct tty_struct *tty)
501 struct tty_ldisc *ld;
503 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
504 ld = tty_ldisc_ref(tty);
505 if (ld) {
506 if (ld->ops->write_wakeup)
507 ld->ops->write_wakeup(tty);
508 tty_ldisc_deref(ld);
511 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
514 EXPORT_SYMBOL_GPL(tty_wakeup);
517 * __tty_hangup - actual handler for hangup events
518 * @work: tty device
520 * This can be called by the "eventd" kernel thread. That is process
521 * synchronous but doesn't hold any locks, so we need to make sure we
522 * have the appropriate locks for what we're doing.
524 * The hangup event clears any pending redirections onto the hung up
525 * device. It ensures future writes will error and it does the needed
526 * line discipline hangup and signal delivery. The tty object itself
527 * remains intact.
529 * Locking:
530 * BTM
531 * redirect lock for undoing redirection
532 * file list lock for manipulating list of ttys
533 * tty_ldisc_lock from called functions
534 * termios_mutex resetting termios data
535 * tasklist_lock to walk task list for hangup event
536 * ->siglock to protect ->signal/->sighand
538 void __tty_hangup(struct tty_struct *tty)
540 struct file *cons_filp = NULL;
541 struct file *filp, *f = NULL;
542 struct task_struct *p;
543 struct tty_file_private *priv;
544 int closecount = 0, n;
545 unsigned long flags;
546 int refs = 0;
548 if (!tty)
549 return;
552 spin_lock(&redirect_lock);
553 if (redirect && file_tty(redirect) == tty) {
554 f = redirect;
555 redirect = NULL;
557 spin_unlock(&redirect_lock);
559 tty_lock();
561 /* some functions below drop BTM, so we need this bit */
562 set_bit(TTY_HUPPING, &tty->flags);
564 /* inuse_filps is protected by the single tty lock,
565 this really needs to change if we want to flush the
566 workqueue with the lock held */
567 check_tty_count(tty, "tty_hangup");
569 spin_lock(&tty_files_lock);
570 /* This breaks for file handles being sent over AF_UNIX sockets ? */
571 list_for_each_entry(priv, &tty->tty_files, list) {
572 filp = priv->file;
573 if (filp->f_op->write == redirected_tty_write)
574 cons_filp = filp;
575 if (filp->f_op->write != tty_write)
576 continue;
577 closecount++;
578 __tty_fasync(-1, filp, 0); /* can't block */
579 filp->f_op = &hung_up_tty_fops;
581 spin_unlock(&tty_files_lock);
584 * it drops BTM and thus races with reopen
585 * we protect the race by TTY_HUPPING
587 tty_ldisc_hangup(tty);
589 read_lock(&tasklist_lock);
590 if (tty->session) {
591 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
592 spin_lock_irq(&p->sighand->siglock);
593 if (p->signal->tty == tty) {
594 p->signal->tty = NULL;
595 /* We defer the dereferences outside fo
596 the tasklist lock */
597 refs++;
599 if (!p->signal->leader) {
600 spin_unlock_irq(&p->sighand->siglock);
601 continue;
603 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
604 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
605 put_pid(p->signal->tty_old_pgrp); /* A noop */
606 spin_lock_irqsave(&tty->ctrl_lock, flags);
607 if (tty->pgrp)
608 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
609 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
610 spin_unlock_irq(&p->sighand->siglock);
611 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
613 read_unlock(&tasklist_lock);
615 spin_lock_irqsave(&tty->ctrl_lock, flags);
616 clear_bit(TTY_THROTTLED, &tty->flags);
617 clear_bit(TTY_PUSH, &tty->flags);
618 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
619 put_pid(tty->session);
620 put_pid(tty->pgrp);
621 tty->session = NULL;
622 tty->pgrp = NULL;
623 tty->ctrl_status = 0;
624 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
626 /* Account for the p->signal references we killed */
627 while (refs--)
628 tty_kref_put(tty);
631 * If one of the devices matches a console pointer, we
632 * cannot just call hangup() because that will cause
633 * tty->count and state->count to go out of sync.
634 * So we just call close() the right number of times.
636 if (cons_filp) {
637 if (tty->ops->close)
638 for (n = 0; n < closecount; n++)
639 tty->ops->close(tty, cons_filp);
640 } else if (tty->ops->hangup)
641 (tty->ops->hangup)(tty);
643 * We don't want to have driver/ldisc interactions beyond
644 * the ones we did here. The driver layer expects no
645 * calls after ->hangup() from the ldisc side. However we
646 * can't yet guarantee all that.
648 set_bit(TTY_HUPPED, &tty->flags);
649 clear_bit(TTY_HUPPING, &tty->flags);
650 tty_ldisc_enable(tty);
652 tty_unlock();
654 if (f)
655 fput(f);
658 static void do_tty_hangup(struct work_struct *work)
660 struct tty_struct *tty =
661 container_of(work, struct tty_struct, hangup_work);
663 __tty_hangup(tty);
667 * tty_hangup - trigger a hangup event
668 * @tty: tty to hangup
670 * A carrier loss (virtual or otherwise) has occurred on this like
671 * schedule a hangup sequence to run after this event.
674 void tty_hangup(struct tty_struct *tty)
676 #ifdef TTY_DEBUG_HANGUP
677 char buf[64];
678 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
679 #endif
680 schedule_work(&tty->hangup_work);
683 EXPORT_SYMBOL(tty_hangup);
686 * tty_vhangup - process vhangup
687 * @tty: tty to hangup
689 * The user has asked via system call for the terminal to be hung up.
690 * We do this synchronously so that when the syscall returns the process
691 * is complete. That guarantee is necessary for security reasons.
694 void tty_vhangup(struct tty_struct *tty)
696 #ifdef TTY_DEBUG_HANGUP
697 char buf[64];
699 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
700 #endif
701 __tty_hangup(tty);
704 EXPORT_SYMBOL(tty_vhangup);
708 * tty_vhangup_self - process vhangup for own ctty
710 * Perform a vhangup on the current controlling tty
713 void tty_vhangup_self(void)
715 struct tty_struct *tty;
717 tty = get_current_tty();
718 if (tty) {
719 tty_vhangup(tty);
720 tty_kref_put(tty);
725 * tty_hung_up_p - was tty hung up
726 * @filp: file pointer of tty
728 * Return true if the tty has been subject to a vhangup or a carrier
729 * loss
732 int tty_hung_up_p(struct file *filp)
734 return (filp->f_op == &hung_up_tty_fops);
737 EXPORT_SYMBOL(tty_hung_up_p);
739 static void session_clear_tty(struct pid *session)
741 struct task_struct *p;
742 do_each_pid_task(session, PIDTYPE_SID, p) {
743 proc_clear_tty(p);
744 } while_each_pid_task(session, PIDTYPE_SID, p);
748 * disassociate_ctty - disconnect controlling tty
749 * @on_exit: true if exiting so need to "hang up" the session
751 * This function is typically called only by the session leader, when
752 * it wants to disassociate itself from its controlling tty.
754 * It performs the following functions:
755 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
756 * (2) Clears the tty from being controlling the session
757 * (3) Clears the controlling tty for all processes in the
758 * session group.
760 * The argument on_exit is set to 1 if called when a process is
761 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
763 * Locking:
764 * BTM is taken for hysterical raisins, and held when
765 * called from no_tty().
766 * tty_mutex is taken to protect tty
767 * ->siglock is taken to protect ->signal/->sighand
768 * tasklist_lock is taken to walk process list for sessions
769 * ->siglock is taken to protect ->signal/->sighand
772 void disassociate_ctty(int on_exit)
774 struct tty_struct *tty;
775 struct pid *tty_pgrp = NULL;
777 if (!current->signal->leader)
778 return;
780 tty = get_current_tty();
781 if (tty) {
782 tty_pgrp = get_pid(tty->pgrp);
783 if (on_exit) {
784 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
785 tty_vhangup(tty);
787 tty_kref_put(tty);
788 } else if (on_exit) {
789 struct pid *old_pgrp;
790 spin_lock_irq(&current->sighand->siglock);
791 old_pgrp = current->signal->tty_old_pgrp;
792 current->signal->tty_old_pgrp = NULL;
793 spin_unlock_irq(&current->sighand->siglock);
794 if (old_pgrp) {
795 kill_pgrp(old_pgrp, SIGHUP, on_exit);
796 kill_pgrp(old_pgrp, SIGCONT, on_exit);
797 put_pid(old_pgrp);
799 return;
801 if (tty_pgrp) {
802 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
803 if (!on_exit)
804 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
805 put_pid(tty_pgrp);
808 spin_lock_irq(&current->sighand->siglock);
809 put_pid(current->signal->tty_old_pgrp);
810 current->signal->tty_old_pgrp = NULL;
811 spin_unlock_irq(&current->sighand->siglock);
813 tty = get_current_tty();
814 if (tty) {
815 unsigned long flags;
816 spin_lock_irqsave(&tty->ctrl_lock, flags);
817 put_pid(tty->session);
818 put_pid(tty->pgrp);
819 tty->session = NULL;
820 tty->pgrp = NULL;
821 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
822 tty_kref_put(tty);
823 } else {
824 #ifdef TTY_DEBUG_HANGUP
825 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
826 " = NULL", tty);
827 #endif
830 /* Now clear signal->tty under the lock */
831 read_lock(&tasklist_lock);
832 session_clear_tty(task_session(current));
833 read_unlock(&tasklist_lock);
838 * no_tty - Ensure the current process does not have a controlling tty
840 void no_tty(void)
842 struct task_struct *tsk = current;
843 tty_lock();
844 disassociate_ctty(0);
845 tty_unlock();
846 proc_clear_tty(tsk);
851 * stop_tty - propagate flow control
852 * @tty: tty to stop
854 * Perform flow control to the driver. For PTY/TTY pairs we
855 * must also propagate the TIOCKPKT status. May be called
856 * on an already stopped device and will not re-call the driver
857 * method.
859 * This functionality is used by both the line disciplines for
860 * halting incoming flow and by the driver. It may therefore be
861 * called from any context, may be under the tty atomic_write_lock
862 * but not always.
864 * Locking:
865 * Uses the tty control lock internally
868 void stop_tty(struct tty_struct *tty)
870 unsigned long flags;
871 spin_lock_irqsave(&tty->ctrl_lock, flags);
872 if (tty->stopped) {
873 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
874 return;
876 tty->stopped = 1;
877 if (tty->link && tty->link->packet) {
878 tty->ctrl_status &= ~TIOCPKT_START;
879 tty->ctrl_status |= TIOCPKT_STOP;
880 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
882 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
883 if (tty->ops->stop)
884 (tty->ops->stop)(tty);
887 EXPORT_SYMBOL(stop_tty);
890 * start_tty - propagate flow control
891 * @tty: tty to start
893 * Start a tty that has been stopped if at all possible. Perform
894 * any necessary wakeups and propagate the TIOCPKT status. If this
895 * is the tty was previous stopped and is being started then the
896 * driver start method is invoked and the line discipline woken.
898 * Locking:
899 * ctrl_lock
902 void start_tty(struct tty_struct *tty)
904 unsigned long flags;
905 spin_lock_irqsave(&tty->ctrl_lock, flags);
906 if (!tty->stopped || tty->flow_stopped) {
907 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
908 return;
910 tty->stopped = 0;
911 if (tty->link && tty->link->packet) {
912 tty->ctrl_status &= ~TIOCPKT_STOP;
913 tty->ctrl_status |= TIOCPKT_START;
914 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
916 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
917 if (tty->ops->start)
918 (tty->ops->start)(tty);
919 /* If we have a running line discipline it may need kicking */
920 tty_wakeup(tty);
923 EXPORT_SYMBOL(start_tty);
926 * tty_read - read method for tty device files
927 * @file: pointer to tty file
928 * @buf: user buffer
929 * @count: size of user buffer
930 * @ppos: unused
932 * Perform the read system call function on this terminal device. Checks
933 * for hung up devices before calling the line discipline method.
935 * Locking:
936 * Locks the line discipline internally while needed. Multiple
937 * read calls may be outstanding in parallel.
940 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
941 loff_t *ppos)
943 int i;
944 struct inode *inode = file->f_path.dentry->d_inode;
945 struct tty_struct *tty = file_tty(file);
946 struct tty_ldisc *ld;
948 if (tty_paranoia_check(tty, inode, "tty_read"))
949 return -EIO;
950 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
951 return -EIO;
953 /* We want to wait for the line discipline to sort out in this
954 situation */
955 ld = tty_ldisc_ref_wait(tty);
956 if (ld->ops->read)
957 i = (ld->ops->read)(tty, file, buf, count);
958 else
959 i = -EIO;
960 tty_ldisc_deref(ld);
961 if (i > 0)
962 inode->i_atime = current_fs_time(inode->i_sb);
963 return i;
966 void tty_write_unlock(struct tty_struct *tty)
968 mutex_unlock(&tty->atomic_write_lock);
969 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
972 int tty_write_lock(struct tty_struct *tty, int ndelay)
974 if (!mutex_trylock(&tty->atomic_write_lock)) {
975 if (ndelay)
976 return -EAGAIN;
977 if (mutex_lock_interruptible(&tty->atomic_write_lock))
978 return -ERESTARTSYS;
980 return 0;
984 * Split writes up in sane blocksizes to avoid
985 * denial-of-service type attacks
987 static inline ssize_t do_tty_write(
988 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
989 struct tty_struct *tty,
990 struct file *file,
991 const char __user *buf,
992 size_t count)
994 ssize_t ret, written = 0;
995 unsigned int chunk;
997 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
998 if (ret < 0)
999 return ret;
1002 * We chunk up writes into a temporary buffer. This
1003 * simplifies low-level drivers immensely, since they
1004 * don't have locking issues and user mode accesses.
1006 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1007 * big chunk-size..
1009 * The default chunk-size is 2kB, because the NTTY
1010 * layer has problems with bigger chunks. It will
1011 * claim to be able to handle more characters than
1012 * it actually does.
1014 * FIXME: This can probably go away now except that 64K chunks
1015 * are too likely to fail unless switched to vmalloc...
1017 chunk = 2048;
1018 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1019 chunk = 65536;
1020 if (count < chunk)
1021 chunk = count;
1023 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1024 if (tty->write_cnt < chunk) {
1025 unsigned char *buf_chunk;
1027 if (chunk < 1024)
1028 chunk = 1024;
1030 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1031 if (!buf_chunk) {
1032 ret = -ENOMEM;
1033 goto out;
1035 kfree(tty->write_buf);
1036 tty->write_cnt = chunk;
1037 tty->write_buf = buf_chunk;
1040 /* Do the write .. */
1041 for (;;) {
1042 size_t size = count;
1043 if (size > chunk)
1044 size = chunk;
1045 ret = -EFAULT;
1046 if (copy_from_user(tty->write_buf, buf, size))
1047 break;
1048 ret = write(tty, file, tty->write_buf, size);
1049 if (ret <= 0)
1050 break;
1051 written += ret;
1052 buf += ret;
1053 count -= ret;
1054 if (!count)
1055 break;
1056 ret = -ERESTARTSYS;
1057 if (signal_pending(current))
1058 break;
1059 cond_resched();
1061 if (written) {
1062 struct inode *inode = file->f_path.dentry->d_inode;
1063 inode->i_mtime = current_fs_time(inode->i_sb);
1064 ret = written;
1066 out:
1067 tty_write_unlock(tty);
1068 return ret;
1072 * tty_write_message - write a message to a certain tty, not just the console.
1073 * @tty: the destination tty_struct
1074 * @msg: the message to write
1076 * This is used for messages that need to be redirected to a specific tty.
1077 * We don't put it into the syslog queue right now maybe in the future if
1078 * really needed.
1080 * We must still hold the BTM and test the CLOSING flag for the moment.
1083 void tty_write_message(struct tty_struct *tty, char *msg)
1085 if (tty) {
1086 mutex_lock(&tty->atomic_write_lock);
1087 tty_lock();
1088 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1089 tty_unlock();
1090 tty->ops->write(tty, msg, strlen(msg));
1091 } else
1092 tty_unlock();
1093 tty_write_unlock(tty);
1095 return;
1100 * tty_write - write method for tty device file
1101 * @file: tty file pointer
1102 * @buf: user data to write
1103 * @count: bytes to write
1104 * @ppos: unused
1106 * Write data to a tty device via the line discipline.
1108 * Locking:
1109 * Locks the line discipline as required
1110 * Writes to the tty driver are serialized by the atomic_write_lock
1111 * and are then processed in chunks to the device. The line discipline
1112 * write method will not be invoked in parallel for each device.
1115 static ssize_t tty_write(struct file *file, const char __user *buf,
1116 size_t count, loff_t *ppos)
1118 struct inode *inode = file->f_path.dentry->d_inode;
1119 struct tty_struct *tty = file_tty(file);
1120 struct tty_ldisc *ld;
1121 ssize_t ret;
1123 if (tty_paranoia_check(tty, inode, "tty_write"))
1124 return -EIO;
1125 if (!tty || !tty->ops->write ||
1126 (test_bit(TTY_IO_ERROR, &tty->flags)))
1127 return -EIO;
1128 /* Short term debug to catch buggy drivers */
1129 if (tty->ops->write_room == NULL)
1130 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1131 tty->driver->name);
1132 ld = tty_ldisc_ref_wait(tty);
1133 if (!ld->ops->write)
1134 ret = -EIO;
1135 else
1136 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1137 tty_ldisc_deref(ld);
1138 return ret;
1141 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1142 size_t count, loff_t *ppos)
1144 struct file *p = NULL;
1146 spin_lock(&redirect_lock);
1147 if (redirect) {
1148 get_file(redirect);
1149 p = redirect;
1151 spin_unlock(&redirect_lock);
1153 if (p) {
1154 ssize_t res;
1155 res = vfs_write(p, buf, count, &p->f_pos);
1156 fput(p);
1157 return res;
1159 return tty_write(file, buf, count, ppos);
1162 static char ptychar[] = "pqrstuvwxyzabcde";
1165 * pty_line_name - generate name for a pty
1166 * @driver: the tty driver in use
1167 * @index: the minor number
1168 * @p: output buffer of at least 6 bytes
1170 * Generate a name from a driver reference and write it to the output
1171 * buffer.
1173 * Locking: None
1175 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177 int i = index + driver->name_base;
1178 /* ->name is initialized to "ttyp", but "tty" is expected */
1179 sprintf(p, "%s%c%x",
1180 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1181 ptychar[i >> 4 & 0xf], i & 0xf);
1185 * tty_line_name - generate name for a tty
1186 * @driver: the tty driver in use
1187 * @index: the minor number
1188 * @p: output buffer of at least 7 bytes
1190 * Generate a name from a driver reference and write it to the output
1191 * buffer.
1193 * Locking: None
1195 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1201 * tty_driver_lookup_tty() - find an existing tty, if any
1202 * @driver: the driver for the tty
1203 * @idx: the minor number
1205 * Return the tty, if found or ERR_PTR() otherwise.
1207 * Locking: tty_mutex must be held. If tty is found, the mutex must
1208 * be held until the 'fast-open' is also done. Will change once we
1209 * have refcounting in the driver and per driver locking
1211 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1212 struct inode *inode, int idx)
1214 struct tty_struct *tty;
1216 if (driver->ops->lookup)
1217 return driver->ops->lookup(driver, inode, idx);
1219 tty = driver->ttys[idx];
1220 return tty;
1224 * tty_init_termios - helper for termios setup
1225 * @tty: the tty to set up
1227 * Initialise the termios structures for this tty. Thus runs under
1228 * the tty_mutex currently so we can be relaxed about ordering.
1231 int tty_init_termios(struct tty_struct *tty)
1233 struct ktermios *tp;
1234 int idx = tty->index;
1236 tp = tty->driver->termios[idx];
1237 if (tp == NULL) {
1238 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1239 if (tp == NULL)
1240 return -ENOMEM;
1241 memcpy(tp, &tty->driver->init_termios,
1242 sizeof(struct ktermios));
1243 tty->driver->termios[idx] = tp;
1245 tty->termios = tp;
1246 tty->termios_locked = tp + 1;
1248 /* Compatibility until drivers always set this */
1249 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1250 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1251 return 0;
1253 EXPORT_SYMBOL_GPL(tty_init_termios);
1256 * tty_driver_install_tty() - install a tty entry in the driver
1257 * @driver: the driver for the tty
1258 * @tty: the tty
1260 * Install a tty object into the driver tables. The tty->index field
1261 * will be set by the time this is called. This method is responsible
1262 * for ensuring any need additional structures are allocated and
1263 * configured.
1265 * Locking: tty_mutex for now
1267 static int tty_driver_install_tty(struct tty_driver *driver,
1268 struct tty_struct *tty)
1270 int idx = tty->index;
1271 int ret;
1273 if (driver->ops->install) {
1274 ret = driver->ops->install(driver, tty);
1275 return ret;
1278 if (tty_init_termios(tty) == 0) {
1279 tty_driver_kref_get(driver);
1280 tty->count++;
1281 driver->ttys[idx] = tty;
1282 return 0;
1284 return -ENOMEM;
1288 * tty_driver_remove_tty() - remove a tty from the driver tables
1289 * @driver: the driver for the tty
1290 * @idx: the minor number
1292 * Remvoe a tty object from the driver tables. The tty->index field
1293 * will be set by the time this is called.
1295 * Locking: tty_mutex for now
1297 static void tty_driver_remove_tty(struct tty_driver *driver,
1298 struct tty_struct *tty)
1300 if (driver->ops->remove)
1301 driver->ops->remove(driver, tty);
1302 else
1303 driver->ttys[tty->index] = NULL;
1307 * tty_reopen() - fast re-open of an open tty
1308 * @tty - the tty to open
1310 * Return 0 on success, -errno on error.
1312 * Locking: tty_mutex must be held from the time the tty was found
1313 * till this open completes.
1315 static int tty_reopen(struct tty_struct *tty)
1317 struct tty_driver *driver = tty->driver;
1319 if (test_bit(TTY_CLOSING, &tty->flags) ||
1320 test_bit(TTY_HUPPING, &tty->flags) ||
1321 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322 return -EIO;
1324 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325 driver->subtype == PTY_TYPE_MASTER) {
1327 * special case for PTY masters: only one open permitted,
1328 * and the slave side open count is incremented as well.
1330 if (tty->count)
1331 return -EIO;
1333 tty->link->count++;
1335 tty->count++;
1336 tty->driver = driver; /* N.B. why do this every time?? */
1338 mutex_lock(&tty->ldisc_mutex);
1339 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340 mutex_unlock(&tty->ldisc_mutex);
1342 return 0;
1346 * tty_init_dev - initialise a tty device
1347 * @driver: tty driver we are opening a device on
1348 * @idx: device index
1349 * @ret_tty: returned tty structure
1350 * @first_ok: ok to open a new device (used by ptmx)
1352 * Prepare a tty device. This may not be a "new" clean device but
1353 * could also be an active device. The pty drivers require special
1354 * handling because of this.
1356 * Locking:
1357 * The function is called under the tty_mutex, which
1358 * protects us from the tty struct or driver itself going away.
1360 * On exit the tty device has the line discipline attached and
1361 * a reference count of 1. If a pair was created for pty/tty use
1362 * and the other was a pty master then it too has a reference count of 1.
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open. The new code protects the open with a mutex, so it's
1366 * really quite straightforward. The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1370 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371 int first_ok)
1373 struct tty_struct *tty;
1374 int retval;
1376 /* Check if pty master is being opened multiple times */
1377 if (driver->subtype == PTY_TYPE_MASTER &&
1378 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379 return ERR_PTR(-EIO);
1383 * First time open is complex, especially for PTY devices.
1384 * This code guarantees that either everything succeeds and the
1385 * TTY is ready for operation, or else the table slots are vacated
1386 * and the allocated memory released. (Except that the termios
1387 * and locked termios may be retained.)
1390 if (!try_module_get(driver->owner))
1391 return ERR_PTR(-ENODEV);
1393 tty = alloc_tty_struct();
1394 if (!tty) {
1395 retval = -ENOMEM;
1396 goto err_module_put;
1398 initialize_tty_struct(tty, driver, idx);
1400 retval = tty_driver_install_tty(driver, tty);
1401 if (retval < 0)
1402 goto err_deinit_tty;
1405 * Structures all installed ... call the ldisc open routines.
1406 * If we fail here just call release_tty to clean up. No need
1407 * to decrement the use counts, as release_tty doesn't care.
1409 retval = tty_ldisc_setup(tty, tty->link);
1410 if (retval)
1411 goto err_release_tty;
1412 return tty;
1414 err_deinit_tty:
1415 deinitialize_tty_struct(tty);
1416 free_tty_struct(tty);
1417 err_module_put:
1418 module_put(driver->owner);
1419 return ERR_PTR(retval);
1421 /* call the tty release_tty routine to clean out this slot */
1422 err_release_tty:
1423 if (printk_ratelimit())
1424 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1425 "clearing slot %d\n", idx);
1426 release_tty(tty, idx);
1427 return ERR_PTR(retval);
1430 void tty_free_termios(struct tty_struct *tty)
1432 struct ktermios *tp;
1433 int idx = tty->index;
1434 /* Kill this flag and push into drivers for locking etc */
1435 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1436 /* FIXME: Locking on ->termios array */
1437 tp = tty->termios;
1438 tty->driver->termios[idx] = NULL;
1439 kfree(tp);
1442 EXPORT_SYMBOL(tty_free_termios);
1444 void tty_shutdown(struct tty_struct *tty)
1446 tty_driver_remove_tty(tty->driver, tty);
1447 tty_free_termios(tty);
1449 EXPORT_SYMBOL(tty_shutdown);
1452 * release_one_tty - release tty structure memory
1453 * @kref: kref of tty we are obliterating
1455 * Releases memory associated with a tty structure, and clears out the
1456 * driver table slots. This function is called when a device is no longer
1457 * in use. It also gets called when setup of a device fails.
1459 * Locking:
1460 * tty_mutex - sometimes only
1461 * takes the file list lock internally when working on the list
1462 * of ttys that the driver keeps.
1464 * This method gets called from a work queue so that the driver private
1465 * cleanup ops can sleep (needed for USB at least)
1467 static void release_one_tty(struct work_struct *work)
1469 struct tty_struct *tty =
1470 container_of(work, struct tty_struct, hangup_work);
1471 struct tty_driver *driver = tty->driver;
1473 if (tty->ops->cleanup)
1474 tty->ops->cleanup(tty);
1476 tty->magic = 0;
1477 tty_driver_kref_put(driver);
1478 module_put(driver->owner);
1480 spin_lock(&tty_files_lock);
1481 list_del_init(&tty->tty_files);
1482 spin_unlock(&tty_files_lock);
1484 put_pid(tty->pgrp);
1485 put_pid(tty->session);
1486 free_tty_struct(tty);
1489 static void queue_release_one_tty(struct kref *kref)
1491 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1493 if (tty->ops->shutdown)
1494 tty->ops->shutdown(tty);
1495 else
1496 tty_shutdown(tty);
1498 /* The hangup queue is now free so we can reuse it rather than
1499 waste a chunk of memory for each port */
1500 INIT_WORK(&tty->hangup_work, release_one_tty);
1501 schedule_work(&tty->hangup_work);
1505 * tty_kref_put - release a tty kref
1506 * @tty: tty device
1508 * Release a reference to a tty device and if need be let the kref
1509 * layer destruct the object for us
1512 void tty_kref_put(struct tty_struct *tty)
1514 if (tty)
1515 kref_put(&tty->kref, queue_release_one_tty);
1517 EXPORT_SYMBOL(tty_kref_put);
1520 * release_tty - release tty structure memory
1522 * Release both @tty and a possible linked partner (think pty pair),
1523 * and decrement the refcount of the backing module.
1525 * Locking:
1526 * tty_mutex - sometimes only
1527 * takes the file list lock internally when working on the list
1528 * of ttys that the driver keeps.
1529 * FIXME: should we require tty_mutex is held here ??
1532 static void release_tty(struct tty_struct *tty, int idx)
1534 /* This should always be true but check for the moment */
1535 WARN_ON(tty->index != idx);
1537 if (tty->link)
1538 tty_kref_put(tty->link);
1539 tty_kref_put(tty);
1543 * tty_release - vfs callback for close
1544 * @inode: inode of tty
1545 * @filp: file pointer for handle to tty
1547 * Called the last time each file handle is closed that references
1548 * this tty. There may however be several such references.
1550 * Locking:
1551 * Takes bkl. See tty_release_dev
1553 * Even releasing the tty structures is a tricky business.. We have
1554 * to be very careful that the structures are all released at the
1555 * same time, as interrupts might otherwise get the wrong pointers.
1557 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1558 * lead to double frees or releasing memory still in use.
1561 int tty_release(struct inode *inode, struct file *filp)
1563 struct tty_struct *tty = file_tty(filp);
1564 struct tty_struct *o_tty;
1565 int pty_master, tty_closing, o_tty_closing, do_sleep;
1566 int devpts;
1567 int idx;
1568 char buf[64];
1570 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1571 return 0;
1573 tty_lock();
1574 check_tty_count(tty, "tty_release_dev");
1576 __tty_fasync(-1, filp, 0);
1578 idx = tty->index;
1579 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1580 tty->driver->subtype == PTY_TYPE_MASTER);
1581 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1582 o_tty = tty->link;
1584 #ifdef TTY_PARANOIA_CHECK
1585 if (idx < 0 || idx >= tty->driver->num) {
1586 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1587 "free (%s)\n", tty->name);
1588 tty_unlock();
1589 return 0;
1591 if (!devpts) {
1592 if (tty != tty->driver->ttys[idx]) {
1593 tty_unlock();
1594 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1595 "for (%s)\n", idx, tty->name);
1596 return 0;
1598 if (tty->termios != tty->driver->termios[idx]) {
1599 tty_unlock();
1600 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1601 "for (%s)\n",
1602 idx, tty->name);
1603 return 0;
1606 #endif
1608 #ifdef TTY_DEBUG_HANGUP
1609 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1610 tty_name(tty, buf), tty->count);
1611 #endif
1613 #ifdef TTY_PARANOIA_CHECK
1614 if (tty->driver->other &&
1615 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1616 if (o_tty != tty->driver->other->ttys[idx]) {
1617 tty_unlock();
1618 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1619 "not o_tty for (%s)\n",
1620 idx, tty->name);
1621 return 0 ;
1623 if (o_tty->termios != tty->driver->other->termios[idx]) {
1624 tty_unlock();
1625 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1626 "not o_termios for (%s)\n",
1627 idx, tty->name);
1628 return 0;
1630 if (o_tty->link != tty) {
1631 tty_unlock();
1632 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1633 return 0;
1636 #endif
1637 if (tty->ops->close)
1638 tty->ops->close(tty, filp);
1640 tty_unlock();
1642 * Sanity check: if tty->count is going to zero, there shouldn't be
1643 * any waiters on tty->read_wait or tty->write_wait. We test the
1644 * wait queues and kick everyone out _before_ actually starting to
1645 * close. This ensures that we won't block while releasing the tty
1646 * structure.
1648 * The test for the o_tty closing is necessary, since the master and
1649 * slave sides may close in any order. If the slave side closes out
1650 * first, its count will be one, since the master side holds an open.
1651 * Thus this test wouldn't be triggered at the time the slave closes,
1652 * so we do it now.
1654 * Note that it's possible for the tty to be opened again while we're
1655 * flushing out waiters. By recalculating the closing flags before
1656 * each iteration we avoid any problems.
1658 while (1) {
1659 /* Guard against races with tty->count changes elsewhere and
1660 opens on /dev/tty */
1662 mutex_lock(&tty_mutex);
1663 tty_lock();
1664 tty_closing = tty->count <= 1;
1665 o_tty_closing = o_tty &&
1666 (o_tty->count <= (pty_master ? 1 : 0));
1667 do_sleep = 0;
1669 if (tty_closing) {
1670 if (waitqueue_active(&tty->read_wait)) {
1671 wake_up_poll(&tty->read_wait, POLLIN);
1672 do_sleep++;
1674 if (waitqueue_active(&tty->write_wait)) {
1675 wake_up_poll(&tty->write_wait, POLLOUT);
1676 do_sleep++;
1679 if (o_tty_closing) {
1680 if (waitqueue_active(&o_tty->read_wait)) {
1681 wake_up_poll(&o_tty->read_wait, POLLIN);
1682 do_sleep++;
1684 if (waitqueue_active(&o_tty->write_wait)) {
1685 wake_up_poll(&o_tty->write_wait, POLLOUT);
1686 do_sleep++;
1689 if (!do_sleep)
1690 break;
1692 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1693 "active!\n", tty_name(tty, buf));
1694 tty_unlock();
1695 mutex_unlock(&tty_mutex);
1696 schedule();
1700 * The closing flags are now consistent with the open counts on
1701 * both sides, and we've completed the last operation that could
1702 * block, so it's safe to proceed with closing.
1704 if (pty_master) {
1705 if (--o_tty->count < 0) {
1706 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1707 "(%d) for %s\n",
1708 o_tty->count, tty_name(o_tty, buf));
1709 o_tty->count = 0;
1712 if (--tty->count < 0) {
1713 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1714 tty->count, tty_name(tty, buf));
1715 tty->count = 0;
1719 * We've decremented tty->count, so we need to remove this file
1720 * descriptor off the tty->tty_files list; this serves two
1721 * purposes:
1722 * - check_tty_count sees the correct number of file descriptors
1723 * associated with this tty.
1724 * - do_tty_hangup no longer sees this file descriptor as
1725 * something that needs to be handled for hangups.
1727 tty_del_file(filp);
1730 * Perform some housekeeping before deciding whether to return.
1732 * Set the TTY_CLOSING flag if this was the last open. In the
1733 * case of a pty we may have to wait around for the other side
1734 * to close, and TTY_CLOSING makes sure we can't be reopened.
1736 if (tty_closing)
1737 set_bit(TTY_CLOSING, &tty->flags);
1738 if (o_tty_closing)
1739 set_bit(TTY_CLOSING, &o_tty->flags);
1742 * If _either_ side is closing, make sure there aren't any
1743 * processes that still think tty or o_tty is their controlling
1744 * tty.
1746 if (tty_closing || o_tty_closing) {
1747 read_lock(&tasklist_lock);
1748 session_clear_tty(tty->session);
1749 if (o_tty)
1750 session_clear_tty(o_tty->session);
1751 read_unlock(&tasklist_lock);
1754 mutex_unlock(&tty_mutex);
1756 /* check whether both sides are closing ... */
1757 if (!tty_closing || (o_tty && !o_tty_closing)) {
1758 tty_unlock();
1759 return 0;
1762 #ifdef TTY_DEBUG_HANGUP
1763 printk(KERN_DEBUG "freeing tty structure...");
1764 #endif
1766 * Ask the line discipline code to release its structures
1768 tty_ldisc_release(tty, o_tty);
1770 * The release_tty function takes care of the details of clearing
1771 * the slots and preserving the termios structure.
1773 release_tty(tty, idx);
1775 /* Make this pty number available for reallocation */
1776 if (devpts)
1777 devpts_kill_index(inode, idx);
1778 tty_unlock();
1779 return 0;
1783 * tty_open - open a tty device
1784 * @inode: inode of device file
1785 * @filp: file pointer to tty
1787 * tty_open and tty_release keep up the tty count that contains the
1788 * number of opens done on a tty. We cannot use the inode-count, as
1789 * different inodes might point to the same tty.
1791 * Open-counting is needed for pty masters, as well as for keeping
1792 * track of serial lines: DTR is dropped when the last close happens.
1793 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1795 * The termios state of a pty is reset on first open so that
1796 * settings don't persist across reuse.
1798 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1799 * tty->count should protect the rest.
1800 * ->siglock protects ->signal/->sighand
1803 static int tty_open(struct inode *inode, struct file *filp)
1805 struct tty_struct *tty = NULL;
1806 int noctty, retval;
1807 struct tty_driver *driver;
1808 int index;
1809 dev_t device = inode->i_rdev;
1810 unsigned saved_flags = filp->f_flags;
1812 nonseekable_open(inode, filp);
1814 retry_open:
1815 noctty = filp->f_flags & O_NOCTTY;
1816 index = -1;
1817 retval = 0;
1819 mutex_lock(&tty_mutex);
1820 tty_lock();
1822 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1823 tty = get_current_tty();
1824 if (!tty) {
1825 tty_unlock();
1826 mutex_unlock(&tty_mutex);
1827 return -ENXIO;
1829 driver = tty_driver_kref_get(tty->driver);
1830 index = tty->index;
1831 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1832 /* noctty = 1; */
1833 /* FIXME: Should we take a driver reference ? */
1834 tty_kref_put(tty);
1835 goto got_driver;
1837 #ifdef CONFIG_VT
1838 if (device == MKDEV(TTY_MAJOR, 0)) {
1839 extern struct tty_driver *console_driver;
1840 driver = tty_driver_kref_get(console_driver);
1841 index = fg_console;
1842 noctty = 1;
1843 goto got_driver;
1845 #endif
1846 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1847 struct tty_driver *console_driver = console_device(&index);
1848 if (console_driver) {
1849 driver = tty_driver_kref_get(console_driver);
1850 if (driver) {
1851 /* Don't let /dev/console block */
1852 filp->f_flags |= O_NONBLOCK;
1853 noctty = 1;
1854 goto got_driver;
1857 tty_unlock();
1858 mutex_unlock(&tty_mutex);
1859 return -ENODEV;
1862 driver = get_tty_driver(device, &index);
1863 if (!driver) {
1864 tty_unlock();
1865 mutex_unlock(&tty_mutex);
1866 return -ENODEV;
1868 got_driver:
1869 if (!tty) {
1870 /* check whether we're reopening an existing tty */
1871 tty = tty_driver_lookup_tty(driver, inode, index);
1873 if (IS_ERR(tty)) {
1874 tty_unlock();
1875 mutex_unlock(&tty_mutex);
1876 return PTR_ERR(tty);
1880 if (tty) {
1881 retval = tty_reopen(tty);
1882 if (retval)
1883 tty = ERR_PTR(retval);
1884 } else
1885 tty = tty_init_dev(driver, index, 0);
1887 mutex_unlock(&tty_mutex);
1888 tty_driver_kref_put(driver);
1889 if (IS_ERR(tty)) {
1890 tty_unlock();
1891 return PTR_ERR(tty);
1894 retval = tty_add_file(tty, filp);
1895 if (retval) {
1896 tty_unlock();
1897 tty_release(inode, filp);
1898 return retval;
1901 check_tty_count(tty, "tty_open");
1902 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1903 tty->driver->subtype == PTY_TYPE_MASTER)
1904 noctty = 1;
1905 #ifdef TTY_DEBUG_HANGUP
1906 printk(KERN_DEBUG "opening %s...", tty->name);
1907 #endif
1908 if (tty->ops->open)
1909 retval = tty->ops->open(tty, filp);
1910 else
1911 retval = -ENODEV;
1912 filp->f_flags = saved_flags;
1914 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915 !capable(CAP_SYS_ADMIN))
1916 retval = -EBUSY;
1918 if (retval) {
1919 #ifdef TTY_DEBUG_HANGUP
1920 printk(KERN_DEBUG "error %d in opening %s...", retval,
1921 tty->name);
1922 #endif
1923 tty_unlock(); /* need to call tty_release without BTM */
1924 tty_release(inode, filp);
1925 if (retval != -ERESTARTSYS)
1926 return retval;
1928 if (signal_pending(current))
1929 return retval;
1931 schedule();
1933 * Need to reset f_op in case a hangup happened.
1935 tty_lock();
1936 if (filp->f_op == &hung_up_tty_fops)
1937 filp->f_op = &tty_fops;
1938 tty_unlock();
1939 goto retry_open;
1941 tty_unlock();
1944 mutex_lock(&tty_mutex);
1945 tty_lock();
1946 spin_lock_irq(&current->sighand->siglock);
1947 if (!noctty &&
1948 current->signal->leader &&
1949 !current->signal->tty &&
1950 tty->session == NULL)
1951 __proc_set_tty(current, tty);
1952 spin_unlock_irq(&current->sighand->siglock);
1953 tty_unlock();
1954 mutex_unlock(&tty_mutex);
1955 return 0;
1961 * tty_poll - check tty status
1962 * @filp: file being polled
1963 * @wait: poll wait structures to update
1965 * Call the line discipline polling method to obtain the poll
1966 * status of the device.
1968 * Locking: locks called line discipline but ldisc poll method
1969 * may be re-entered freely by other callers.
1972 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1974 struct tty_struct *tty = file_tty(filp);
1975 struct tty_ldisc *ld;
1976 int ret = 0;
1978 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1979 return 0;
1981 ld = tty_ldisc_ref_wait(tty);
1982 if (ld->ops->poll)
1983 ret = (ld->ops->poll)(tty, filp, wait);
1984 tty_ldisc_deref(ld);
1985 return ret;
1988 static int __tty_fasync(int fd, struct file *filp, int on)
1990 struct tty_struct *tty = file_tty(filp);
1991 unsigned long flags;
1992 int retval = 0;
1994 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1995 goto out;
1997 retval = fasync_helper(fd, filp, on, &tty->fasync);
1998 if (retval <= 0)
1999 goto out;
2001 if (on) {
2002 enum pid_type type;
2003 struct pid *pid;
2004 if (!waitqueue_active(&tty->read_wait))
2005 tty->minimum_to_wake = 1;
2006 spin_lock_irqsave(&tty->ctrl_lock, flags);
2007 if (tty->pgrp) {
2008 pid = tty->pgrp;
2009 type = PIDTYPE_PGID;
2010 } else {
2011 pid = task_pid(current);
2012 type = PIDTYPE_PID;
2014 get_pid(pid);
2015 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2016 retval = __f_setown(filp, pid, type, 0);
2017 put_pid(pid);
2018 if (retval)
2019 goto out;
2020 } else {
2021 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2022 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2024 retval = 0;
2025 out:
2026 return retval;
2029 static int tty_fasync(int fd, struct file *filp, int on)
2031 int retval;
2032 tty_lock();
2033 retval = __tty_fasync(fd, filp, on);
2034 tty_unlock();
2035 return retval;
2039 * tiocsti - fake input character
2040 * @tty: tty to fake input into
2041 * @p: pointer to character
2043 * Fake input to a tty device. Does the necessary locking and
2044 * input management.
2046 * FIXME: does not honour flow control ??
2048 * Locking:
2049 * Called functions take tty_ldisc_lock
2050 * current->signal->tty check is safe without locks
2052 * FIXME: may race normal receive processing
2055 static int tiocsti(struct tty_struct *tty, char __user *p)
2057 char ch, mbz = 0;
2058 struct tty_ldisc *ld;
2060 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2061 return -EPERM;
2062 if (get_user(ch, p))
2063 return -EFAULT;
2064 tty_audit_tiocsti(tty, ch);
2065 ld = tty_ldisc_ref_wait(tty);
2066 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2067 tty_ldisc_deref(ld);
2068 return 0;
2072 * tiocgwinsz - implement window query ioctl
2073 * @tty; tty
2074 * @arg: user buffer for result
2076 * Copies the kernel idea of the window size into the user buffer.
2078 * Locking: tty->termios_mutex is taken to ensure the winsize data
2079 * is consistent.
2082 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2084 int err;
2086 mutex_lock(&tty->termios_mutex);
2087 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2088 mutex_unlock(&tty->termios_mutex);
2090 return err ? -EFAULT: 0;
2094 * tty_do_resize - resize event
2095 * @tty: tty being resized
2096 * @rows: rows (character)
2097 * @cols: cols (character)
2099 * Update the termios variables and send the necessary signals to
2100 * peform a terminal resize correctly
2103 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2105 struct pid *pgrp;
2106 unsigned long flags;
2108 /* Lock the tty */
2109 mutex_lock(&tty->termios_mutex);
2110 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2111 goto done;
2112 /* Get the PID values and reference them so we can
2113 avoid holding the tty ctrl lock while sending signals */
2114 spin_lock_irqsave(&tty->ctrl_lock, flags);
2115 pgrp = get_pid(tty->pgrp);
2116 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2118 if (pgrp)
2119 kill_pgrp(pgrp, SIGWINCH, 1);
2120 put_pid(pgrp);
2122 tty->winsize = *ws;
2123 done:
2124 mutex_unlock(&tty->termios_mutex);
2125 return 0;
2129 * tiocswinsz - implement window size set ioctl
2130 * @tty; tty side of tty
2131 * @arg: user buffer for result
2133 * Copies the user idea of the window size to the kernel. Traditionally
2134 * this is just advisory information but for the Linux console it
2135 * actually has driver level meaning and triggers a VC resize.
2137 * Locking:
2138 * Driver dependent. The default do_resize method takes the
2139 * tty termios mutex and ctrl_lock. The console takes its own lock
2140 * then calls into the default method.
2143 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2145 struct winsize tmp_ws;
2146 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2147 return -EFAULT;
2149 if (tty->ops->resize)
2150 return tty->ops->resize(tty, &tmp_ws);
2151 else
2152 return tty_do_resize(tty, &tmp_ws);
2156 * tioccons - allow admin to move logical console
2157 * @file: the file to become console
2159 * Allow the administrator to move the redirected console device
2161 * Locking: uses redirect_lock to guard the redirect information
2164 static int tioccons(struct file *file)
2166 if (!capable(CAP_SYS_ADMIN))
2167 return -EPERM;
2168 if (file->f_op->write == redirected_tty_write) {
2169 struct file *f;
2170 spin_lock(&redirect_lock);
2171 f = redirect;
2172 redirect = NULL;
2173 spin_unlock(&redirect_lock);
2174 if (f)
2175 fput(f);
2176 return 0;
2178 spin_lock(&redirect_lock);
2179 if (redirect) {
2180 spin_unlock(&redirect_lock);
2181 return -EBUSY;
2183 get_file(file);
2184 redirect = file;
2185 spin_unlock(&redirect_lock);
2186 return 0;
2190 * fionbio - non blocking ioctl
2191 * @file: file to set blocking value
2192 * @p: user parameter
2194 * Historical tty interfaces had a blocking control ioctl before
2195 * the generic functionality existed. This piece of history is preserved
2196 * in the expected tty API of posix OS's.
2198 * Locking: none, the open file handle ensures it won't go away.
2201 static int fionbio(struct file *file, int __user *p)
2203 int nonblock;
2205 if (get_user(nonblock, p))
2206 return -EFAULT;
2208 spin_lock(&file->f_lock);
2209 if (nonblock)
2210 file->f_flags |= O_NONBLOCK;
2211 else
2212 file->f_flags &= ~O_NONBLOCK;
2213 spin_unlock(&file->f_lock);
2214 return 0;
2218 * tiocsctty - set controlling tty
2219 * @tty: tty structure
2220 * @arg: user argument
2222 * This ioctl is used to manage job control. It permits a session
2223 * leader to set this tty as the controlling tty for the session.
2225 * Locking:
2226 * Takes tty_mutex() to protect tty instance
2227 * Takes tasklist_lock internally to walk sessions
2228 * Takes ->siglock() when updating signal->tty
2231 static int tiocsctty(struct tty_struct *tty, int arg)
2233 int ret = 0;
2234 if (current->signal->leader && (task_session(current) == tty->session))
2235 return ret;
2237 mutex_lock(&tty_mutex);
2239 * The process must be a session leader and
2240 * not have a controlling tty already.
2242 if (!current->signal->leader || current->signal->tty) {
2243 ret = -EPERM;
2244 goto unlock;
2247 if (tty->session) {
2249 * This tty is already the controlling
2250 * tty for another session group!
2252 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2254 * Steal it away
2256 read_lock(&tasklist_lock);
2257 session_clear_tty(tty->session);
2258 read_unlock(&tasklist_lock);
2259 } else {
2260 ret = -EPERM;
2261 goto unlock;
2264 proc_set_tty(current, tty);
2265 unlock:
2266 mutex_unlock(&tty_mutex);
2267 return ret;
2271 * tty_get_pgrp - return a ref counted pgrp pid
2272 * @tty: tty to read
2274 * Returns a refcounted instance of the pid struct for the process
2275 * group controlling the tty.
2278 struct pid *tty_get_pgrp(struct tty_struct *tty)
2280 unsigned long flags;
2281 struct pid *pgrp;
2283 spin_lock_irqsave(&tty->ctrl_lock, flags);
2284 pgrp = get_pid(tty->pgrp);
2285 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2287 return pgrp;
2289 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2292 * tiocgpgrp - get process group
2293 * @tty: tty passed by user
2294 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2295 * @p: returned pid
2297 * Obtain the process group of the tty. If there is no process group
2298 * return an error.
2300 * Locking: none. Reference to current->signal->tty is safe.
2303 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2305 struct pid *pid;
2306 int ret;
2308 * (tty == real_tty) is a cheap way of
2309 * testing if the tty is NOT a master pty.
2311 if (tty == real_tty && current->signal->tty != real_tty)
2312 return -ENOTTY;
2313 pid = tty_get_pgrp(real_tty);
2314 ret = put_user(pid_vnr(pid), p);
2315 put_pid(pid);
2316 return ret;
2320 * tiocspgrp - attempt to set process group
2321 * @tty: tty passed by user
2322 * @real_tty: tty side device matching tty passed by user
2323 * @p: pid pointer
2325 * Set the process group of the tty to the session passed. Only
2326 * permitted where the tty session is our session.
2328 * Locking: RCU, ctrl lock
2331 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2333 struct pid *pgrp;
2334 pid_t pgrp_nr;
2335 int retval = tty_check_change(real_tty);
2336 unsigned long flags;
2338 if (retval == -EIO)
2339 return -ENOTTY;
2340 if (retval)
2341 return retval;
2342 if (!current->signal->tty ||
2343 (current->signal->tty != real_tty) ||
2344 (real_tty->session != task_session(current)))
2345 return -ENOTTY;
2346 if (get_user(pgrp_nr, p))
2347 return -EFAULT;
2348 if (pgrp_nr < 0)
2349 return -EINVAL;
2350 rcu_read_lock();
2351 pgrp = find_vpid(pgrp_nr);
2352 retval = -ESRCH;
2353 if (!pgrp)
2354 goto out_unlock;
2355 retval = -EPERM;
2356 if (session_of_pgrp(pgrp) != task_session(current))
2357 goto out_unlock;
2358 retval = 0;
2359 spin_lock_irqsave(&tty->ctrl_lock, flags);
2360 put_pid(real_tty->pgrp);
2361 real_tty->pgrp = get_pid(pgrp);
2362 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363 out_unlock:
2364 rcu_read_unlock();
2365 return retval;
2369 * tiocgsid - get session id
2370 * @tty: tty passed by user
2371 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2372 * @p: pointer to returned session id
2374 * Obtain the session id of the tty. If there is no session
2375 * return an error.
2377 * Locking: none. Reference to current->signal->tty is safe.
2380 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2383 * (tty == real_tty) is a cheap way of
2384 * testing if the tty is NOT a master pty.
2386 if (tty == real_tty && current->signal->tty != real_tty)
2387 return -ENOTTY;
2388 if (!real_tty->session)
2389 return -ENOTTY;
2390 return put_user(pid_vnr(real_tty->session), p);
2394 * tiocsetd - set line discipline
2395 * @tty: tty device
2396 * @p: pointer to user data
2398 * Set the line discipline according to user request.
2400 * Locking: see tty_set_ldisc, this function is just a helper
2403 static int tiocsetd(struct tty_struct *tty, int __user *p)
2405 int ldisc;
2406 int ret;
2408 if (get_user(ldisc, p))
2409 return -EFAULT;
2411 ret = tty_set_ldisc(tty, ldisc);
2413 return ret;
2417 * send_break - performed time break
2418 * @tty: device to break on
2419 * @duration: timeout in mS
2421 * Perform a timed break on hardware that lacks its own driver level
2422 * timed break functionality.
2424 * Locking:
2425 * atomic_write_lock serializes
2429 static int send_break(struct tty_struct *tty, unsigned int duration)
2431 int retval;
2433 if (tty->ops->break_ctl == NULL)
2434 return 0;
2436 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2437 retval = tty->ops->break_ctl(tty, duration);
2438 else {
2439 /* Do the work ourselves */
2440 if (tty_write_lock(tty, 0) < 0)
2441 return -EINTR;
2442 retval = tty->ops->break_ctl(tty, -1);
2443 if (retval)
2444 goto out;
2445 if (!signal_pending(current))
2446 msleep_interruptible(duration);
2447 retval = tty->ops->break_ctl(tty, 0);
2448 out:
2449 tty_write_unlock(tty);
2450 if (signal_pending(current))
2451 retval = -EINTR;
2453 return retval;
2457 * tty_tiocmget - get modem status
2458 * @tty: tty device
2459 * @file: user file pointer
2460 * @p: pointer to result
2462 * Obtain the modem status bits from the tty driver if the feature
2463 * is supported. Return -EINVAL if it is not available.
2465 * Locking: none (up to the driver)
2468 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2470 int retval = -EINVAL;
2472 if (tty->ops->tiocmget) {
2473 retval = tty->ops->tiocmget(tty);
2475 if (retval >= 0)
2476 retval = put_user(retval, p);
2478 return retval;
2482 * tty_tiocmset - set modem status
2483 * @tty: tty device
2484 * @cmd: command - clear bits, set bits or set all
2485 * @p: pointer to desired bits
2487 * Set the modem status bits from the tty driver if the feature
2488 * is supported. Return -EINVAL if it is not available.
2490 * Locking: none (up to the driver)
2493 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2494 unsigned __user *p)
2496 int retval;
2497 unsigned int set, clear, val;
2499 if (tty->ops->tiocmset == NULL)
2500 return -EINVAL;
2502 retval = get_user(val, p);
2503 if (retval)
2504 return retval;
2505 set = clear = 0;
2506 switch (cmd) {
2507 case TIOCMBIS:
2508 set = val;
2509 break;
2510 case TIOCMBIC:
2511 clear = val;
2512 break;
2513 case TIOCMSET:
2514 set = val;
2515 clear = ~val;
2516 break;
2518 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2520 return tty->ops->tiocmset(tty, set, clear);
2523 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2525 int retval = -EINVAL;
2526 struct serial_icounter_struct icount;
2527 memset(&icount, 0, sizeof(icount));
2528 if (tty->ops->get_icount)
2529 retval = tty->ops->get_icount(tty, &icount);
2530 if (retval != 0)
2531 return retval;
2532 if (copy_to_user(arg, &icount, sizeof(icount)))
2533 return -EFAULT;
2534 return 0;
2537 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2539 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2540 tty->driver->subtype == PTY_TYPE_MASTER)
2541 tty = tty->link;
2542 return tty;
2544 EXPORT_SYMBOL(tty_pair_get_tty);
2546 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2548 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2549 tty->driver->subtype == PTY_TYPE_MASTER)
2550 return tty;
2551 return tty->link;
2553 EXPORT_SYMBOL(tty_pair_get_pty);
2556 * Split this up, as gcc can choke on it otherwise..
2558 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2560 struct tty_struct *tty = file_tty(file);
2561 struct tty_struct *real_tty;
2562 void __user *p = (void __user *)arg;
2563 int retval;
2564 struct tty_ldisc *ld;
2565 struct inode *inode = file->f_dentry->d_inode;
2567 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2568 return -EINVAL;
2570 real_tty = tty_pair_get_tty(tty);
2573 * Factor out some common prep work
2575 switch (cmd) {
2576 case TIOCSETD:
2577 case TIOCSBRK:
2578 case TIOCCBRK:
2579 case TCSBRK:
2580 case TCSBRKP:
2581 retval = tty_check_change(tty);
2582 if (retval)
2583 return retval;
2584 if (cmd != TIOCCBRK) {
2585 tty_wait_until_sent(tty, 0);
2586 if (signal_pending(current))
2587 return -EINTR;
2589 break;
2593 * Now do the stuff.
2595 switch (cmd) {
2596 case TIOCSTI:
2597 return tiocsti(tty, p);
2598 case TIOCGWINSZ:
2599 return tiocgwinsz(real_tty, p);
2600 case TIOCSWINSZ:
2601 return tiocswinsz(real_tty, p);
2602 case TIOCCONS:
2603 return real_tty != tty ? -EINVAL : tioccons(file);
2604 case FIONBIO:
2605 return fionbio(file, p);
2606 case TIOCEXCL:
2607 set_bit(TTY_EXCLUSIVE, &tty->flags);
2608 return 0;
2609 case TIOCNXCL:
2610 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2611 return 0;
2612 case TIOCNOTTY:
2613 if (current->signal->tty != tty)
2614 return -ENOTTY;
2615 no_tty();
2616 return 0;
2617 case TIOCSCTTY:
2618 return tiocsctty(tty, arg);
2619 case TIOCGPGRP:
2620 return tiocgpgrp(tty, real_tty, p);
2621 case TIOCSPGRP:
2622 return tiocspgrp(tty, real_tty, p);
2623 case TIOCGSID:
2624 return tiocgsid(tty, real_tty, p);
2625 case TIOCGETD:
2626 return put_user(tty->ldisc->ops->num, (int __user *)p);
2627 case TIOCSETD:
2628 return tiocsetd(tty, p);
2629 case TIOCVHANGUP:
2630 if (!capable(CAP_SYS_ADMIN))
2631 return -EPERM;
2632 tty_vhangup(tty);
2633 return 0;
2634 case TIOCGDEV:
2636 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2637 return put_user(ret, (unsigned int __user *)p);
2640 * Break handling
2642 case TIOCSBRK: /* Turn break on, unconditionally */
2643 if (tty->ops->break_ctl)
2644 return tty->ops->break_ctl(tty, -1);
2645 return 0;
2646 case TIOCCBRK: /* Turn break off, unconditionally */
2647 if (tty->ops->break_ctl)
2648 return tty->ops->break_ctl(tty, 0);
2649 return 0;
2650 case TCSBRK: /* SVID version: non-zero arg --> no break */
2651 /* non-zero arg means wait for all output data
2652 * to be sent (performed above) but don't send break.
2653 * This is used by the tcdrain() termios function.
2655 if (!arg)
2656 return send_break(tty, 250);
2657 return 0;
2658 case TCSBRKP: /* support for POSIX tcsendbreak() */
2659 return send_break(tty, arg ? arg*100 : 250);
2661 case TIOCMGET:
2662 return tty_tiocmget(tty, p);
2663 case TIOCMSET:
2664 case TIOCMBIC:
2665 case TIOCMBIS:
2666 return tty_tiocmset(tty, cmd, p);
2667 case TIOCGICOUNT:
2668 retval = tty_tiocgicount(tty, p);
2669 /* For the moment allow fall through to the old method */
2670 if (retval != -EINVAL)
2671 return retval;
2672 break;
2673 case TCFLSH:
2674 switch (arg) {
2675 case TCIFLUSH:
2676 case TCIOFLUSH:
2677 /* flush tty buffer and allow ldisc to process ioctl */
2678 tty_buffer_flush(tty);
2679 break;
2681 break;
2683 if (tty->ops->ioctl) {
2684 retval = (tty->ops->ioctl)(tty, cmd, arg);
2685 if (retval != -ENOIOCTLCMD)
2686 return retval;
2688 ld = tty_ldisc_ref_wait(tty);
2689 retval = -EINVAL;
2690 if (ld->ops->ioctl) {
2691 retval = ld->ops->ioctl(tty, file, cmd, arg);
2692 if (retval == -ENOIOCTLCMD)
2693 retval = -EINVAL;
2695 tty_ldisc_deref(ld);
2696 return retval;
2699 #ifdef CONFIG_COMPAT
2700 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2701 unsigned long arg)
2703 struct inode *inode = file->f_dentry->d_inode;
2704 struct tty_struct *tty = file_tty(file);
2705 struct tty_ldisc *ld;
2706 int retval = -ENOIOCTLCMD;
2708 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2709 return -EINVAL;
2711 if (tty->ops->compat_ioctl) {
2712 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2713 if (retval != -ENOIOCTLCMD)
2714 return retval;
2717 ld = tty_ldisc_ref_wait(tty);
2718 if (ld->ops->compat_ioctl)
2719 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2720 tty_ldisc_deref(ld);
2722 return retval;
2724 #endif
2727 * This implements the "Secure Attention Key" --- the idea is to
2728 * prevent trojan horses by killing all processes associated with this
2729 * tty when the user hits the "Secure Attention Key". Required for
2730 * super-paranoid applications --- see the Orange Book for more details.
2732 * This code could be nicer; ideally it should send a HUP, wait a few
2733 * seconds, then send a INT, and then a KILL signal. But you then
2734 * have to coordinate with the init process, since all processes associated
2735 * with the current tty must be dead before the new getty is allowed
2736 * to spawn.
2738 * Now, if it would be correct ;-/ The current code has a nasty hole -
2739 * it doesn't catch files in flight. We may send the descriptor to ourselves
2740 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2742 * Nasty bug: do_SAK is being called in interrupt context. This can
2743 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2745 void __do_SAK(struct tty_struct *tty)
2747 #ifdef TTY_SOFT_SAK
2748 tty_hangup(tty);
2749 #else
2750 struct task_struct *g, *p;
2751 struct pid *session;
2752 int i;
2753 struct file *filp;
2754 struct fdtable *fdt;
2756 if (!tty)
2757 return;
2758 session = tty->session;
2760 tty_ldisc_flush(tty);
2762 tty_driver_flush_buffer(tty);
2764 read_lock(&tasklist_lock);
2765 /* Kill the entire session */
2766 do_each_pid_task(session, PIDTYPE_SID, p) {
2767 printk(KERN_NOTICE "SAK: killed process %d"
2768 " (%s): task_session(p)==tty->session\n",
2769 task_pid_nr(p), p->comm);
2770 send_sig(SIGKILL, p, 1);
2771 } while_each_pid_task(session, PIDTYPE_SID, p);
2772 /* Now kill any processes that happen to have the
2773 * tty open.
2775 do_each_thread(g, p) {
2776 if (p->signal->tty == tty) {
2777 printk(KERN_NOTICE "SAK: killed process %d"
2778 " (%s): task_session(p)==tty->session\n",
2779 task_pid_nr(p), p->comm);
2780 send_sig(SIGKILL, p, 1);
2781 continue;
2783 task_lock(p);
2784 if (p->files) {
2786 * We don't take a ref to the file, so we must
2787 * hold ->file_lock instead.
2789 spin_lock(&p->files->file_lock);
2790 fdt = files_fdtable(p->files);
2791 for (i = 0; i < fdt->max_fds; i++) {
2792 filp = fcheck_files(p->files, i);
2793 if (!filp)
2794 continue;
2795 if (filp->f_op->read == tty_read &&
2796 file_tty(filp) == tty) {
2797 printk(KERN_NOTICE "SAK: killed process %d"
2798 " (%s): fd#%d opened to the tty\n",
2799 task_pid_nr(p), p->comm, i);
2800 force_sig(SIGKILL, p);
2801 break;
2804 spin_unlock(&p->files->file_lock);
2806 task_unlock(p);
2807 } while_each_thread(g, p);
2808 read_unlock(&tasklist_lock);
2809 #endif
2812 static void do_SAK_work(struct work_struct *work)
2814 struct tty_struct *tty =
2815 container_of(work, struct tty_struct, SAK_work);
2816 __do_SAK(tty);
2820 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2821 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2822 * the values which we write to it will be identical to the values which it
2823 * already has. --akpm
2825 void do_SAK(struct tty_struct *tty)
2827 if (!tty)
2828 return;
2829 schedule_work(&tty->SAK_work);
2832 EXPORT_SYMBOL(do_SAK);
2834 static int dev_match_devt(struct device *dev, void *data)
2836 dev_t *devt = data;
2837 return dev->devt == *devt;
2840 /* Must put_device() after it's unused! */
2841 static struct device *tty_get_device(struct tty_struct *tty)
2843 dev_t devt = tty_devnum(tty);
2844 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2849 * initialize_tty_struct
2850 * @tty: tty to initialize
2852 * This subroutine initializes a tty structure that has been newly
2853 * allocated.
2855 * Locking: none - tty in question must not be exposed at this point
2858 void initialize_tty_struct(struct tty_struct *tty,
2859 struct tty_driver *driver, int idx)
2861 memset(tty, 0, sizeof(struct tty_struct));
2862 kref_init(&tty->kref);
2863 tty->magic = TTY_MAGIC;
2864 tty_ldisc_init(tty);
2865 tty->session = NULL;
2866 tty->pgrp = NULL;
2867 tty->overrun_time = jiffies;
2868 tty->buf.head = tty->buf.tail = NULL;
2869 tty_buffer_init(tty);
2870 mutex_init(&tty->termios_mutex);
2871 mutex_init(&tty->ldisc_mutex);
2872 init_waitqueue_head(&tty->write_wait);
2873 init_waitqueue_head(&tty->read_wait);
2874 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2875 mutex_init(&tty->atomic_read_lock);
2876 mutex_init(&tty->atomic_write_lock);
2877 mutex_init(&tty->output_lock);
2878 mutex_init(&tty->echo_lock);
2879 spin_lock_init(&tty->read_lock);
2880 spin_lock_init(&tty->ctrl_lock);
2881 INIT_LIST_HEAD(&tty->tty_files);
2882 INIT_WORK(&tty->SAK_work, do_SAK_work);
2884 tty->driver = driver;
2885 tty->ops = driver->ops;
2886 tty->index = idx;
2887 tty_line_name(driver, idx, tty->name);
2888 tty->dev = tty_get_device(tty);
2892 * deinitialize_tty_struct
2893 * @tty: tty to deinitialize
2895 * This subroutine deinitializes a tty structure that has been newly
2896 * allocated but tty_release cannot be called on that yet.
2898 * Locking: none - tty in question must not be exposed at this point
2900 void deinitialize_tty_struct(struct tty_struct *tty)
2902 tty_ldisc_deinit(tty);
2906 * tty_put_char - write one character to a tty
2907 * @tty: tty
2908 * @ch: character
2910 * Write one byte to the tty using the provided put_char method
2911 * if present. Returns the number of characters successfully output.
2913 * Note: the specific put_char operation in the driver layer may go
2914 * away soon. Don't call it directly, use this method
2917 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2919 if (tty->ops->put_char)
2920 return tty->ops->put_char(tty, ch);
2921 return tty->ops->write(tty, &ch, 1);
2923 EXPORT_SYMBOL_GPL(tty_put_char);
2925 struct class *tty_class;
2928 * tty_register_device - register a tty device
2929 * @driver: the tty driver that describes the tty device
2930 * @index: the index in the tty driver for this tty device
2931 * @device: a struct device that is associated with this tty device.
2932 * This field is optional, if there is no known struct device
2933 * for this tty device it can be set to NULL safely.
2935 * Returns a pointer to the struct device for this tty device
2936 * (or ERR_PTR(-EFOO) on error).
2938 * This call is required to be made to register an individual tty device
2939 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2940 * that bit is not set, this function should not be called by a tty
2941 * driver.
2943 * Locking: ??
2946 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2947 struct device *device)
2949 char name[64];
2950 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2952 if (index >= driver->num) {
2953 printk(KERN_ERR "Attempt to register invalid tty line number "
2954 " (%d).\n", index);
2955 return ERR_PTR(-EINVAL);
2958 if (driver->type == TTY_DRIVER_TYPE_PTY)
2959 pty_line_name(driver, index, name);
2960 else
2961 tty_line_name(driver, index, name);
2963 return device_create(tty_class, device, dev, NULL, name);
2965 EXPORT_SYMBOL(tty_register_device);
2968 * tty_unregister_device - unregister a tty device
2969 * @driver: the tty driver that describes the tty device
2970 * @index: the index in the tty driver for this tty device
2972 * If a tty device is registered with a call to tty_register_device() then
2973 * this function must be called when the tty device is gone.
2975 * Locking: ??
2978 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2980 device_destroy(tty_class,
2981 MKDEV(driver->major, driver->minor_start) + index);
2983 EXPORT_SYMBOL(tty_unregister_device);
2985 struct tty_driver *alloc_tty_driver(int lines)
2987 struct tty_driver *driver;
2989 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2990 if (driver) {
2991 kref_init(&driver->kref);
2992 driver->magic = TTY_DRIVER_MAGIC;
2993 driver->num = lines;
2994 /* later we'll move allocation of tables here */
2996 return driver;
2998 EXPORT_SYMBOL(alloc_tty_driver);
3000 static void destruct_tty_driver(struct kref *kref)
3002 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3003 int i;
3004 struct ktermios *tp;
3005 void *p;
3007 if (driver->flags & TTY_DRIVER_INSTALLED) {
3009 * Free the termios and termios_locked structures because
3010 * we don't want to get memory leaks when modular tty
3011 * drivers are removed from the kernel.
3013 for (i = 0; i < driver->num; i++) {
3014 tp = driver->termios[i];
3015 if (tp) {
3016 driver->termios[i] = NULL;
3017 kfree(tp);
3019 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3020 tty_unregister_device(driver, i);
3022 p = driver->ttys;
3023 proc_tty_unregister_driver(driver);
3024 driver->ttys = NULL;
3025 driver->termios = NULL;
3026 kfree(p);
3027 cdev_del(&driver->cdev);
3029 kfree(driver);
3032 void tty_driver_kref_put(struct tty_driver *driver)
3034 kref_put(&driver->kref, destruct_tty_driver);
3036 EXPORT_SYMBOL(tty_driver_kref_put);
3038 void tty_set_operations(struct tty_driver *driver,
3039 const struct tty_operations *op)
3041 driver->ops = op;
3043 EXPORT_SYMBOL(tty_set_operations);
3045 void put_tty_driver(struct tty_driver *d)
3047 tty_driver_kref_put(d);
3049 EXPORT_SYMBOL(put_tty_driver);
3052 * Called by a tty driver to register itself.
3054 int tty_register_driver(struct tty_driver *driver)
3056 int error;
3057 int i;
3058 dev_t dev;
3059 void **p = NULL;
3060 struct device *d;
3062 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3063 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3064 if (!p)
3065 return -ENOMEM;
3068 if (!driver->major) {
3069 error = alloc_chrdev_region(&dev, driver->minor_start,
3070 driver->num, driver->name);
3071 if (!error) {
3072 driver->major = MAJOR(dev);
3073 driver->minor_start = MINOR(dev);
3075 } else {
3076 dev = MKDEV(driver->major, driver->minor_start);
3077 error = register_chrdev_region(dev, driver->num, driver->name);
3079 if (error < 0) {
3080 kfree(p);
3081 return error;
3084 if (p) {
3085 driver->ttys = (struct tty_struct **)p;
3086 driver->termios = (struct ktermios **)(p + driver->num);
3087 } else {
3088 driver->ttys = NULL;
3089 driver->termios = NULL;
3092 cdev_init(&driver->cdev, &tty_fops);
3093 driver->cdev.owner = driver->owner;
3094 error = cdev_add(&driver->cdev, dev, driver->num);
3095 if (error) {
3096 unregister_chrdev_region(dev, driver->num);
3097 driver->ttys = NULL;
3098 driver->termios = NULL;
3099 kfree(p);
3100 return error;
3103 mutex_lock(&tty_mutex);
3104 list_add(&driver->tty_drivers, &tty_drivers);
3105 mutex_unlock(&tty_mutex);
3107 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3108 for (i = 0; i < driver->num; i++) {
3109 d = tty_register_device(driver, i, NULL);
3110 if (IS_ERR(d)) {
3111 error = PTR_ERR(d);
3112 goto err;
3116 proc_tty_register_driver(driver);
3117 driver->flags |= TTY_DRIVER_INSTALLED;
3118 return 0;
3120 err:
3121 for (i--; i >= 0; i--)
3122 tty_unregister_device(driver, i);
3124 mutex_lock(&tty_mutex);
3125 list_del(&driver->tty_drivers);
3126 mutex_unlock(&tty_mutex);
3128 unregister_chrdev_region(dev, driver->num);
3129 driver->ttys = NULL;
3130 driver->termios = NULL;
3131 kfree(p);
3132 return error;
3135 EXPORT_SYMBOL(tty_register_driver);
3138 * Called by a tty driver to unregister itself.
3140 int tty_unregister_driver(struct tty_driver *driver)
3142 #if 0
3143 /* FIXME */
3144 if (driver->refcount)
3145 return -EBUSY;
3146 #endif
3147 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3148 driver->num);
3149 mutex_lock(&tty_mutex);
3150 list_del(&driver->tty_drivers);
3151 mutex_unlock(&tty_mutex);
3152 return 0;
3155 EXPORT_SYMBOL(tty_unregister_driver);
3157 dev_t tty_devnum(struct tty_struct *tty)
3159 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3161 EXPORT_SYMBOL(tty_devnum);
3163 void proc_clear_tty(struct task_struct *p)
3165 unsigned long flags;
3166 struct tty_struct *tty;
3167 spin_lock_irqsave(&p->sighand->siglock, flags);
3168 tty = p->signal->tty;
3169 p->signal->tty = NULL;
3170 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3171 tty_kref_put(tty);
3174 /* Called under the sighand lock */
3176 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3178 if (tty) {
3179 unsigned long flags;
3180 /* We should not have a session or pgrp to put here but.... */
3181 spin_lock_irqsave(&tty->ctrl_lock, flags);
3182 put_pid(tty->session);
3183 put_pid(tty->pgrp);
3184 tty->pgrp = get_pid(task_pgrp(tsk));
3185 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3186 tty->session = get_pid(task_session(tsk));
3187 if (tsk->signal->tty) {
3188 printk(KERN_DEBUG "tty not NULL!!\n");
3189 tty_kref_put(tsk->signal->tty);
3192 put_pid(tsk->signal->tty_old_pgrp);
3193 tsk->signal->tty = tty_kref_get(tty);
3194 tsk->signal->tty_old_pgrp = NULL;
3197 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3199 spin_lock_irq(&tsk->sighand->siglock);
3200 __proc_set_tty(tsk, tty);
3201 spin_unlock_irq(&tsk->sighand->siglock);
3204 struct tty_struct *get_current_tty(void)
3206 struct tty_struct *tty;
3207 unsigned long flags;
3209 spin_lock_irqsave(&current->sighand->siglock, flags);
3210 tty = tty_kref_get(current->signal->tty);
3211 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3212 return tty;
3214 EXPORT_SYMBOL_GPL(get_current_tty);
3216 void tty_default_fops(struct file_operations *fops)
3218 *fops = tty_fops;
3222 * Initialize the console device. This is called *early*, so
3223 * we can't necessarily depend on lots of kernel help here.
3224 * Just do some early initializations, and do the complex setup
3225 * later.
3227 void __init console_init(void)
3229 initcall_t *call;
3231 /* Setup the default TTY line discipline. */
3232 tty_ldisc_begin();
3235 * set up the console device so that later boot sequences can
3236 * inform about problems etc..
3238 call = __con_initcall_start;
3239 while (call < __con_initcall_end) {
3240 (*call)();
3241 call++;
3245 static char *tty_devnode(struct device *dev, mode_t *mode)
3247 if (!mode)
3248 return NULL;
3249 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3250 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3251 *mode = 0666;
3252 return NULL;
3255 static int __init tty_class_init(void)
3257 tty_class = class_create(THIS_MODULE, "tty");
3258 if (IS_ERR(tty_class))
3259 return PTR_ERR(tty_class);
3260 tty_class->devnode = tty_devnode;
3261 return 0;
3264 postcore_initcall(tty_class_init);
3266 /* 3/2004 jmc: why do these devices exist? */
3267 static struct cdev tty_cdev, console_cdev;
3269 static ssize_t show_cons_active(struct device *dev,
3270 struct device_attribute *attr, char *buf)
3272 struct console *cs[16];
3273 int i = 0;
3274 struct console *c;
3275 ssize_t count = 0;
3277 console_lock();
3278 for_each_console(c) {
3279 if (!c->device)
3280 continue;
3281 if (!c->write)
3282 continue;
3283 if ((c->flags & CON_ENABLED) == 0)
3284 continue;
3285 cs[i++] = c;
3286 if (i >= ARRAY_SIZE(cs))
3287 break;
3289 while (i--)
3290 count += sprintf(buf + count, "%s%d%c",
3291 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3292 console_unlock();
3294 return count;
3296 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3298 static struct device *consdev;
3300 void console_sysfs_notify(void)
3302 if (consdev)
3303 sysfs_notify(&consdev->kobj, NULL, "active");
3307 * Ok, now we can initialize the rest of the tty devices and can count
3308 * on memory allocations, interrupts etc..
3310 int __init tty_init(void)
3312 cdev_init(&tty_cdev, &tty_fops);
3313 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3314 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3315 panic("Couldn't register /dev/tty driver\n");
3316 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3318 cdev_init(&console_cdev, &console_fops);
3319 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3320 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3321 panic("Couldn't register /dev/console driver\n");
3322 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3323 "console");
3324 if (IS_ERR(consdev))
3325 consdev = NULL;
3326 else
3327 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3329 #ifdef CONFIG_VT
3330 vty_init(&console_fops);
3331 #endif
3332 return 0;