ring_buffer: reset write when reserve buffer fail
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / trace / ring_buffer.c
blob0b9de5a3d6997c64301a315c03ae5bfaf88ae040
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h> /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
19 #include "trace.h"
22 * A fast way to enable or disable all ring buffers is to
23 * call tracing_on or tracing_off. Turning off the ring buffers
24 * prevents all ring buffers from being recorded to.
25 * Turning this switch on, makes it OK to write to the
26 * ring buffer, if the ring buffer is enabled itself.
28 * There's three layers that must be on in order to write
29 * to the ring buffer.
31 * 1) This global flag must be set.
32 * 2) The ring buffer must be enabled for recording.
33 * 3) The per cpu buffer must be enabled for recording.
35 * In case of an anomaly, this global flag has a bit set that
36 * will permantly disable all ring buffers.
40 * Global flag to disable all recording to ring buffers
41 * This has two bits: ON, DISABLED
43 * ON DISABLED
44 * ---- ----------
45 * 0 0 : ring buffers are off
46 * 1 0 : ring buffers are on
47 * X 1 : ring buffers are permanently disabled
50 enum {
51 RB_BUFFERS_ON_BIT = 0,
52 RB_BUFFERS_DISABLED_BIT = 1,
55 enum {
56 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
57 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
60 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
62 /**
63 * tracing_on - enable all tracing buffers
65 * This function enables all tracing buffers that may have been
66 * disabled with tracing_off.
68 void tracing_on(void)
70 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
72 EXPORT_SYMBOL_GPL(tracing_on);
74 /**
75 * tracing_off - turn off all tracing buffers
77 * This function stops all tracing buffers from recording data.
78 * It does not disable any overhead the tracers themselves may
79 * be causing. This function simply causes all recording to
80 * the ring buffers to fail.
82 void tracing_off(void)
84 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
86 EXPORT_SYMBOL_GPL(tracing_off);
88 /**
89 * tracing_off_permanent - permanently disable ring buffers
91 * This function, once called, will disable all ring buffers
92 * permanenty.
94 void tracing_off_permanent(void)
96 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
99 #include "trace.h"
101 /* Up this if you want to test the TIME_EXTENTS and normalization */
102 #define DEBUG_SHIFT 0
104 /* FIXME!!! */
105 u64 ring_buffer_time_stamp(int cpu)
107 u64 time;
109 preempt_disable_notrace();
110 /* shift to debug/test normalization and TIME_EXTENTS */
111 time = sched_clock() << DEBUG_SHIFT;
112 preempt_enable_no_resched_notrace();
114 return time;
116 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
118 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
120 /* Just stupid testing the normalize function and deltas */
121 *ts >>= DEBUG_SHIFT;
123 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
125 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
126 #define RB_ALIGNMENT 4U
127 #define RB_MAX_SMALL_DATA 28
129 enum {
130 RB_LEN_TIME_EXTEND = 8,
131 RB_LEN_TIME_STAMP = 16,
134 /* inline for ring buffer fast paths */
135 static unsigned
136 rb_event_length(struct ring_buffer_event *event)
138 unsigned length;
140 switch (event->type) {
141 case RINGBUF_TYPE_PADDING:
142 /* undefined */
143 return -1;
145 case RINGBUF_TYPE_TIME_EXTEND:
146 return RB_LEN_TIME_EXTEND;
148 case RINGBUF_TYPE_TIME_STAMP:
149 return RB_LEN_TIME_STAMP;
151 case RINGBUF_TYPE_DATA:
152 if (event->len)
153 length = event->len * RB_ALIGNMENT;
154 else
155 length = event->array[0];
156 return length + RB_EVNT_HDR_SIZE;
157 default:
158 BUG();
160 /* not hit */
161 return 0;
165 * ring_buffer_event_length - return the length of the event
166 * @event: the event to get the length of
168 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
170 unsigned length = rb_event_length(event);
171 if (event->type != RINGBUF_TYPE_DATA)
172 return length;
173 length -= RB_EVNT_HDR_SIZE;
174 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
175 length -= sizeof(event->array[0]);
176 return length;
178 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
180 /* inline for ring buffer fast paths */
181 static void *
182 rb_event_data(struct ring_buffer_event *event)
184 BUG_ON(event->type != RINGBUF_TYPE_DATA);
185 /* If length is in len field, then array[0] has the data */
186 if (event->len)
187 return (void *)&event->array[0];
188 /* Otherwise length is in array[0] and array[1] has the data */
189 return (void *)&event->array[1];
193 * ring_buffer_event_data - return the data of the event
194 * @event: the event to get the data from
196 void *ring_buffer_event_data(struct ring_buffer_event *event)
198 return rb_event_data(event);
200 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
202 #define for_each_buffer_cpu(buffer, cpu) \
203 for_each_cpu(cpu, buffer->cpumask)
205 #define TS_SHIFT 27
206 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
207 #define TS_DELTA_TEST (~TS_MASK)
209 struct buffer_data_page {
210 u64 time_stamp; /* page time stamp */
211 local_t commit; /* write commited index */
212 unsigned char data[]; /* data of buffer page */
215 struct buffer_page {
216 local_t write; /* index for next write */
217 unsigned read; /* index for next read */
218 struct list_head list; /* list of free pages */
219 struct buffer_data_page *page; /* Actual data page */
222 static void rb_init_page(struct buffer_data_page *bpage)
224 local_set(&bpage->commit, 0);
228 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
229 * this issue out.
231 static void free_buffer_page(struct buffer_page *bpage)
233 free_page((unsigned long)bpage->page);
234 kfree(bpage);
238 * We need to fit the time_stamp delta into 27 bits.
240 static inline int test_time_stamp(u64 delta)
242 if (delta & TS_DELTA_TEST)
243 return 1;
244 return 0;
247 #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
250 * head_page == tail_page && head == tail then buffer is empty.
252 struct ring_buffer_per_cpu {
253 int cpu;
254 struct ring_buffer *buffer;
255 spinlock_t reader_lock; /* serialize readers */
256 raw_spinlock_t lock;
257 struct lock_class_key lock_key;
258 struct list_head pages;
259 struct buffer_page *head_page; /* read from head */
260 struct buffer_page *tail_page; /* write to tail */
261 struct buffer_page *commit_page; /* commited pages */
262 struct buffer_page *reader_page;
263 unsigned long overrun;
264 unsigned long entries;
265 u64 write_stamp;
266 u64 read_stamp;
267 atomic_t record_disabled;
270 struct ring_buffer {
271 unsigned pages;
272 unsigned flags;
273 int cpus;
274 cpumask_var_t cpumask;
275 atomic_t record_disabled;
277 struct mutex mutex;
279 struct ring_buffer_per_cpu **buffers;
282 struct ring_buffer_iter {
283 struct ring_buffer_per_cpu *cpu_buffer;
284 unsigned long head;
285 struct buffer_page *head_page;
286 u64 read_stamp;
289 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
290 #define RB_WARN_ON(buffer, cond) \
291 ({ \
292 int _____ret = unlikely(cond); \
293 if (_____ret) { \
294 atomic_inc(&buffer->record_disabled); \
295 WARN_ON(1); \
297 _____ret; \
301 * check_pages - integrity check of buffer pages
302 * @cpu_buffer: CPU buffer with pages to test
304 * As a safty measure we check to make sure the data pages have not
305 * been corrupted.
307 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
309 struct list_head *head = &cpu_buffer->pages;
310 struct buffer_page *bpage, *tmp;
312 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
313 return -1;
314 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
315 return -1;
317 list_for_each_entry_safe(bpage, tmp, head, list) {
318 if (RB_WARN_ON(cpu_buffer,
319 bpage->list.next->prev != &bpage->list))
320 return -1;
321 if (RB_WARN_ON(cpu_buffer,
322 bpage->list.prev->next != &bpage->list))
323 return -1;
326 return 0;
329 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
330 unsigned nr_pages)
332 struct list_head *head = &cpu_buffer->pages;
333 struct buffer_page *bpage, *tmp;
334 unsigned long addr;
335 LIST_HEAD(pages);
336 unsigned i;
338 for (i = 0; i < nr_pages; i++) {
339 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
340 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
341 if (!bpage)
342 goto free_pages;
343 list_add(&bpage->list, &pages);
345 addr = __get_free_page(GFP_KERNEL);
346 if (!addr)
347 goto free_pages;
348 bpage->page = (void *)addr;
349 rb_init_page(bpage->page);
352 list_splice(&pages, head);
354 rb_check_pages(cpu_buffer);
356 return 0;
358 free_pages:
359 list_for_each_entry_safe(bpage, tmp, &pages, list) {
360 list_del_init(&bpage->list);
361 free_buffer_page(bpage);
363 return -ENOMEM;
366 static struct ring_buffer_per_cpu *
367 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
369 struct ring_buffer_per_cpu *cpu_buffer;
370 struct buffer_page *bpage;
371 unsigned long addr;
372 int ret;
374 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
375 GFP_KERNEL, cpu_to_node(cpu));
376 if (!cpu_buffer)
377 return NULL;
379 cpu_buffer->cpu = cpu;
380 cpu_buffer->buffer = buffer;
381 spin_lock_init(&cpu_buffer->reader_lock);
382 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
383 INIT_LIST_HEAD(&cpu_buffer->pages);
385 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
386 GFP_KERNEL, cpu_to_node(cpu));
387 if (!bpage)
388 goto fail_free_buffer;
390 cpu_buffer->reader_page = bpage;
391 addr = __get_free_page(GFP_KERNEL);
392 if (!addr)
393 goto fail_free_reader;
394 bpage->page = (void *)addr;
395 rb_init_page(bpage->page);
397 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
399 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
400 if (ret < 0)
401 goto fail_free_reader;
403 cpu_buffer->head_page
404 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
405 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
407 return cpu_buffer;
409 fail_free_reader:
410 free_buffer_page(cpu_buffer->reader_page);
412 fail_free_buffer:
413 kfree(cpu_buffer);
414 return NULL;
417 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
419 struct list_head *head = &cpu_buffer->pages;
420 struct buffer_page *bpage, *tmp;
422 list_del_init(&cpu_buffer->reader_page->list);
423 free_buffer_page(cpu_buffer->reader_page);
425 list_for_each_entry_safe(bpage, tmp, head, list) {
426 list_del_init(&bpage->list);
427 free_buffer_page(bpage);
429 kfree(cpu_buffer);
433 * Causes compile errors if the struct buffer_page gets bigger
434 * than the struct page.
436 extern int ring_buffer_page_too_big(void);
439 * ring_buffer_alloc - allocate a new ring_buffer
440 * @size: the size in bytes per cpu that is needed.
441 * @flags: attributes to set for the ring buffer.
443 * Currently the only flag that is available is the RB_FL_OVERWRITE
444 * flag. This flag means that the buffer will overwrite old data
445 * when the buffer wraps. If this flag is not set, the buffer will
446 * drop data when the tail hits the head.
448 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
450 struct ring_buffer *buffer;
451 int bsize;
452 int cpu;
454 /* Paranoid! Optimizes out when all is well */
455 if (sizeof(struct buffer_page) > sizeof(struct page))
456 ring_buffer_page_too_big();
459 /* keep it in its own cache line */
460 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
461 GFP_KERNEL);
462 if (!buffer)
463 return NULL;
465 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
466 goto fail_free_buffer;
468 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
469 buffer->flags = flags;
471 /* need at least two pages */
472 if (buffer->pages == 1)
473 buffer->pages++;
475 cpumask_copy(buffer->cpumask, cpu_possible_mask);
476 buffer->cpus = nr_cpu_ids;
478 bsize = sizeof(void *) * nr_cpu_ids;
479 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
480 GFP_KERNEL);
481 if (!buffer->buffers)
482 goto fail_free_cpumask;
484 for_each_buffer_cpu(buffer, cpu) {
485 buffer->buffers[cpu] =
486 rb_allocate_cpu_buffer(buffer, cpu);
487 if (!buffer->buffers[cpu])
488 goto fail_free_buffers;
491 mutex_init(&buffer->mutex);
493 return buffer;
495 fail_free_buffers:
496 for_each_buffer_cpu(buffer, cpu) {
497 if (buffer->buffers[cpu])
498 rb_free_cpu_buffer(buffer->buffers[cpu]);
500 kfree(buffer->buffers);
502 fail_free_cpumask:
503 free_cpumask_var(buffer->cpumask);
505 fail_free_buffer:
506 kfree(buffer);
507 return NULL;
509 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
512 * ring_buffer_free - free a ring buffer.
513 * @buffer: the buffer to free.
515 void
516 ring_buffer_free(struct ring_buffer *buffer)
518 int cpu;
520 for_each_buffer_cpu(buffer, cpu)
521 rb_free_cpu_buffer(buffer->buffers[cpu]);
523 free_cpumask_var(buffer->cpumask);
525 kfree(buffer);
527 EXPORT_SYMBOL_GPL(ring_buffer_free);
529 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
531 static void
532 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
534 struct buffer_page *bpage;
535 struct list_head *p;
536 unsigned i;
538 atomic_inc(&cpu_buffer->record_disabled);
539 synchronize_sched();
541 for (i = 0; i < nr_pages; i++) {
542 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
543 return;
544 p = cpu_buffer->pages.next;
545 bpage = list_entry(p, struct buffer_page, list);
546 list_del_init(&bpage->list);
547 free_buffer_page(bpage);
549 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
550 return;
552 rb_reset_cpu(cpu_buffer);
554 rb_check_pages(cpu_buffer);
556 atomic_dec(&cpu_buffer->record_disabled);
560 static void
561 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
562 struct list_head *pages, unsigned nr_pages)
564 struct buffer_page *bpage;
565 struct list_head *p;
566 unsigned i;
568 atomic_inc(&cpu_buffer->record_disabled);
569 synchronize_sched();
571 for (i = 0; i < nr_pages; i++) {
572 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
573 return;
574 p = pages->next;
575 bpage = list_entry(p, struct buffer_page, list);
576 list_del_init(&bpage->list);
577 list_add_tail(&bpage->list, &cpu_buffer->pages);
579 rb_reset_cpu(cpu_buffer);
581 rb_check_pages(cpu_buffer);
583 atomic_dec(&cpu_buffer->record_disabled);
587 * ring_buffer_resize - resize the ring buffer
588 * @buffer: the buffer to resize.
589 * @size: the new size.
591 * The tracer is responsible for making sure that the buffer is
592 * not being used while changing the size.
593 * Note: We may be able to change the above requirement by using
594 * RCU synchronizations.
596 * Minimum size is 2 * BUF_PAGE_SIZE.
598 * Returns -1 on failure.
600 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
602 struct ring_buffer_per_cpu *cpu_buffer;
603 unsigned nr_pages, rm_pages, new_pages;
604 struct buffer_page *bpage, *tmp;
605 unsigned long buffer_size;
606 unsigned long addr;
607 LIST_HEAD(pages);
608 int i, cpu;
611 * Always succeed at resizing a non-existent buffer:
613 if (!buffer)
614 return size;
616 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
617 size *= BUF_PAGE_SIZE;
618 buffer_size = buffer->pages * BUF_PAGE_SIZE;
620 /* we need a minimum of two pages */
621 if (size < BUF_PAGE_SIZE * 2)
622 size = BUF_PAGE_SIZE * 2;
624 if (size == buffer_size)
625 return size;
627 mutex_lock(&buffer->mutex);
629 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
631 if (size < buffer_size) {
633 /* easy case, just free pages */
634 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
635 mutex_unlock(&buffer->mutex);
636 return -1;
639 rm_pages = buffer->pages - nr_pages;
641 for_each_buffer_cpu(buffer, cpu) {
642 cpu_buffer = buffer->buffers[cpu];
643 rb_remove_pages(cpu_buffer, rm_pages);
645 goto out;
649 * This is a bit more difficult. We only want to add pages
650 * when we can allocate enough for all CPUs. We do this
651 * by allocating all the pages and storing them on a local
652 * link list. If we succeed in our allocation, then we
653 * add these pages to the cpu_buffers. Otherwise we just free
654 * them all and return -ENOMEM;
656 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
657 mutex_unlock(&buffer->mutex);
658 return -1;
661 new_pages = nr_pages - buffer->pages;
663 for_each_buffer_cpu(buffer, cpu) {
664 for (i = 0; i < new_pages; i++) {
665 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
666 cache_line_size()),
667 GFP_KERNEL, cpu_to_node(cpu));
668 if (!bpage)
669 goto free_pages;
670 list_add(&bpage->list, &pages);
671 addr = __get_free_page(GFP_KERNEL);
672 if (!addr)
673 goto free_pages;
674 bpage->page = (void *)addr;
675 rb_init_page(bpage->page);
679 for_each_buffer_cpu(buffer, cpu) {
680 cpu_buffer = buffer->buffers[cpu];
681 rb_insert_pages(cpu_buffer, &pages, new_pages);
684 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
685 mutex_unlock(&buffer->mutex);
686 return -1;
689 out:
690 buffer->pages = nr_pages;
691 mutex_unlock(&buffer->mutex);
693 return size;
695 free_pages:
696 list_for_each_entry_safe(bpage, tmp, &pages, list) {
697 list_del_init(&bpage->list);
698 free_buffer_page(bpage);
700 mutex_unlock(&buffer->mutex);
701 return -ENOMEM;
703 EXPORT_SYMBOL_GPL(ring_buffer_resize);
705 static inline int rb_null_event(struct ring_buffer_event *event)
707 return event->type == RINGBUF_TYPE_PADDING;
710 static inline void *
711 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
713 return bpage->data + index;
716 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
718 return bpage->page->data + index;
721 static inline struct ring_buffer_event *
722 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
724 return __rb_page_index(cpu_buffer->reader_page,
725 cpu_buffer->reader_page->read);
728 static inline struct ring_buffer_event *
729 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
731 return __rb_page_index(cpu_buffer->head_page,
732 cpu_buffer->head_page->read);
735 static inline struct ring_buffer_event *
736 rb_iter_head_event(struct ring_buffer_iter *iter)
738 return __rb_page_index(iter->head_page, iter->head);
741 static inline unsigned rb_page_write(struct buffer_page *bpage)
743 return local_read(&bpage->write);
746 static inline unsigned rb_page_commit(struct buffer_page *bpage)
748 return local_read(&bpage->page->commit);
751 /* Size is determined by what has been commited */
752 static inline unsigned rb_page_size(struct buffer_page *bpage)
754 return rb_page_commit(bpage);
757 static inline unsigned
758 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
760 return rb_page_commit(cpu_buffer->commit_page);
763 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
765 return rb_page_commit(cpu_buffer->head_page);
769 * When the tail hits the head and the buffer is in overwrite mode,
770 * the head jumps to the next page and all content on the previous
771 * page is discarded. But before doing so, we update the overrun
772 * variable of the buffer.
774 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
776 struct ring_buffer_event *event;
777 unsigned long head;
779 for (head = 0; head < rb_head_size(cpu_buffer);
780 head += rb_event_length(event)) {
782 event = __rb_page_index(cpu_buffer->head_page, head);
783 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
784 return;
785 /* Only count data entries */
786 if (event->type != RINGBUF_TYPE_DATA)
787 continue;
788 cpu_buffer->overrun++;
789 cpu_buffer->entries--;
793 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
794 struct buffer_page **bpage)
796 struct list_head *p = (*bpage)->list.next;
798 if (p == &cpu_buffer->pages)
799 p = p->next;
801 *bpage = list_entry(p, struct buffer_page, list);
804 static inline unsigned
805 rb_event_index(struct ring_buffer_event *event)
807 unsigned long addr = (unsigned long)event;
809 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
812 static int
813 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
814 struct ring_buffer_event *event)
816 unsigned long addr = (unsigned long)event;
817 unsigned long index;
819 index = rb_event_index(event);
820 addr &= PAGE_MASK;
822 return cpu_buffer->commit_page->page == (void *)addr &&
823 rb_commit_index(cpu_buffer) == index;
826 static void
827 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
828 struct ring_buffer_event *event)
830 unsigned long addr = (unsigned long)event;
831 unsigned long index;
833 index = rb_event_index(event);
834 addr &= PAGE_MASK;
836 while (cpu_buffer->commit_page->page != (void *)addr) {
837 if (RB_WARN_ON(cpu_buffer,
838 cpu_buffer->commit_page == cpu_buffer->tail_page))
839 return;
840 cpu_buffer->commit_page->page->commit =
841 cpu_buffer->commit_page->write;
842 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
843 cpu_buffer->write_stamp =
844 cpu_buffer->commit_page->page->time_stamp;
847 /* Now set the commit to the event's index */
848 local_set(&cpu_buffer->commit_page->page->commit, index);
851 static void
852 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
855 * We only race with interrupts and NMIs on this CPU.
856 * If we own the commit event, then we can commit
857 * all others that interrupted us, since the interruptions
858 * are in stack format (they finish before they come
859 * back to us). This allows us to do a simple loop to
860 * assign the commit to the tail.
862 again:
863 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
864 cpu_buffer->commit_page->page->commit =
865 cpu_buffer->commit_page->write;
866 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
867 cpu_buffer->write_stamp =
868 cpu_buffer->commit_page->page->time_stamp;
869 /* add barrier to keep gcc from optimizing too much */
870 barrier();
872 while (rb_commit_index(cpu_buffer) !=
873 rb_page_write(cpu_buffer->commit_page)) {
874 cpu_buffer->commit_page->page->commit =
875 cpu_buffer->commit_page->write;
876 barrier();
879 /* again, keep gcc from optimizing */
880 barrier();
883 * If an interrupt came in just after the first while loop
884 * and pushed the tail page forward, we will be left with
885 * a dangling commit that will never go forward.
887 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
888 goto again;
891 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
893 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
894 cpu_buffer->reader_page->read = 0;
897 static void rb_inc_iter(struct ring_buffer_iter *iter)
899 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
902 * The iterator could be on the reader page (it starts there).
903 * But the head could have moved, since the reader was
904 * found. Check for this case and assign the iterator
905 * to the head page instead of next.
907 if (iter->head_page == cpu_buffer->reader_page)
908 iter->head_page = cpu_buffer->head_page;
909 else
910 rb_inc_page(cpu_buffer, &iter->head_page);
912 iter->read_stamp = iter->head_page->page->time_stamp;
913 iter->head = 0;
917 * ring_buffer_update_event - update event type and data
918 * @event: the even to update
919 * @type: the type of event
920 * @length: the size of the event field in the ring buffer
922 * Update the type and data fields of the event. The length
923 * is the actual size that is written to the ring buffer,
924 * and with this, we can determine what to place into the
925 * data field.
927 static void
928 rb_update_event(struct ring_buffer_event *event,
929 unsigned type, unsigned length)
931 event->type = type;
933 switch (type) {
935 case RINGBUF_TYPE_PADDING:
936 break;
938 case RINGBUF_TYPE_TIME_EXTEND:
939 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
940 break;
942 case RINGBUF_TYPE_TIME_STAMP:
943 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
944 break;
946 case RINGBUF_TYPE_DATA:
947 length -= RB_EVNT_HDR_SIZE;
948 if (length > RB_MAX_SMALL_DATA) {
949 event->len = 0;
950 event->array[0] = length;
951 } else
952 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
953 break;
954 default:
955 BUG();
959 static unsigned rb_calculate_event_length(unsigned length)
961 struct ring_buffer_event event; /* Used only for sizeof array */
963 /* zero length can cause confusions */
964 if (!length)
965 length = 1;
967 if (length > RB_MAX_SMALL_DATA)
968 length += sizeof(event.array[0]);
970 length += RB_EVNT_HDR_SIZE;
971 length = ALIGN(length, RB_ALIGNMENT);
973 return length;
976 static struct ring_buffer_event *
977 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
978 unsigned type, unsigned long length, u64 *ts)
980 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
981 unsigned long tail, write;
982 struct ring_buffer *buffer = cpu_buffer->buffer;
983 struct ring_buffer_event *event;
984 unsigned long flags;
986 commit_page = cpu_buffer->commit_page;
987 /* we just need to protect against interrupts */
988 barrier();
989 tail_page = cpu_buffer->tail_page;
990 write = local_add_return(length, &tail_page->write);
991 tail = write - length;
993 /* See if we shot pass the end of this buffer page */
994 if (write > BUF_PAGE_SIZE) {
995 struct buffer_page *next_page = tail_page;
997 local_irq_save(flags);
998 __raw_spin_lock(&cpu_buffer->lock);
1000 rb_inc_page(cpu_buffer, &next_page);
1002 head_page = cpu_buffer->head_page;
1003 reader_page = cpu_buffer->reader_page;
1005 /* we grabbed the lock before incrementing */
1006 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1007 goto out_unlock;
1010 * If for some reason, we had an interrupt storm that made
1011 * it all the way around the buffer, bail, and warn
1012 * about it.
1014 if (unlikely(next_page == commit_page)) {
1015 WARN_ON_ONCE(1);
1016 goto out_unlock;
1019 if (next_page == head_page) {
1020 if (!(buffer->flags & RB_FL_OVERWRITE))
1021 goto out_unlock;
1023 /* tail_page has not moved yet? */
1024 if (tail_page == cpu_buffer->tail_page) {
1025 /* count overflows */
1026 rb_update_overflow(cpu_buffer);
1028 rb_inc_page(cpu_buffer, &head_page);
1029 cpu_buffer->head_page = head_page;
1030 cpu_buffer->head_page->read = 0;
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1039 if (tail_page == cpu_buffer->tail_page) {
1040 local_set(&next_page->write, 0);
1041 local_set(&next_page->page->commit, 0);
1042 cpu_buffer->tail_page = next_page;
1044 /* reread the time stamp */
1045 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1046 cpu_buffer->tail_page->page->time_stamp = *ts;
1050 * The actual tail page has moved forward.
1052 if (tail < BUF_PAGE_SIZE) {
1053 /* Mark the rest of the page with padding */
1054 event = __rb_page_index(tail_page, tail);
1055 event->type = RINGBUF_TYPE_PADDING;
1058 if (tail <= BUF_PAGE_SIZE)
1059 /* Set the write back to the previous setting */
1060 local_set(&tail_page->write, tail);
1063 * If this was a commit entry that failed,
1064 * increment that too
1066 if (tail_page == cpu_buffer->commit_page &&
1067 tail == rb_commit_index(cpu_buffer)) {
1068 rb_set_commit_to_write(cpu_buffer);
1071 __raw_spin_unlock(&cpu_buffer->lock);
1072 local_irq_restore(flags);
1074 /* fail and let the caller try again */
1075 return ERR_PTR(-EAGAIN);
1078 /* We reserved something on the buffer */
1080 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1081 return NULL;
1083 event = __rb_page_index(tail_page, tail);
1084 rb_update_event(event, type, length);
1087 * If this is a commit and the tail is zero, then update
1088 * this page's time stamp.
1090 if (!tail && rb_is_commit(cpu_buffer, event))
1091 cpu_buffer->commit_page->page->time_stamp = *ts;
1093 return event;
1095 out_unlock:
1096 /* reset write */
1097 if (tail <= BUF_PAGE_SIZE)
1098 local_set(&tail_page->write, tail);
1100 __raw_spin_unlock(&cpu_buffer->lock);
1101 local_irq_restore(flags);
1102 return NULL;
1105 static int
1106 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1107 u64 *ts, u64 *delta)
1109 struct ring_buffer_event *event;
1110 static int once;
1111 int ret;
1113 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1114 printk(KERN_WARNING "Delta way too big! %llu"
1115 " ts=%llu write stamp = %llu\n",
1116 (unsigned long long)*delta,
1117 (unsigned long long)*ts,
1118 (unsigned long long)cpu_buffer->write_stamp);
1119 WARN_ON(1);
1123 * The delta is too big, we to add a
1124 * new timestamp.
1126 event = __rb_reserve_next(cpu_buffer,
1127 RINGBUF_TYPE_TIME_EXTEND,
1128 RB_LEN_TIME_EXTEND,
1129 ts);
1130 if (!event)
1131 return -EBUSY;
1133 if (PTR_ERR(event) == -EAGAIN)
1134 return -EAGAIN;
1136 /* Only a commited time event can update the write stamp */
1137 if (rb_is_commit(cpu_buffer, event)) {
1139 * If this is the first on the page, then we need to
1140 * update the page itself, and just put in a zero.
1142 if (rb_event_index(event)) {
1143 event->time_delta = *delta & TS_MASK;
1144 event->array[0] = *delta >> TS_SHIFT;
1145 } else {
1146 cpu_buffer->commit_page->page->time_stamp = *ts;
1147 event->time_delta = 0;
1148 event->array[0] = 0;
1150 cpu_buffer->write_stamp = *ts;
1151 /* let the caller know this was the commit */
1152 ret = 1;
1153 } else {
1154 /* Darn, this is just wasted space */
1155 event->time_delta = 0;
1156 event->array[0] = 0;
1157 ret = 0;
1160 *delta = 0;
1162 return ret;
1165 static struct ring_buffer_event *
1166 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1167 unsigned type, unsigned long length)
1169 struct ring_buffer_event *event;
1170 u64 ts, delta;
1171 int commit = 0;
1172 int nr_loops = 0;
1174 again:
1176 * We allow for interrupts to reenter here and do a trace.
1177 * If one does, it will cause this original code to loop
1178 * back here. Even with heavy interrupts happening, this
1179 * should only happen a few times in a row. If this happens
1180 * 1000 times in a row, there must be either an interrupt
1181 * storm or we have something buggy.
1182 * Bail!
1184 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1185 return NULL;
1187 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1190 * Only the first commit can update the timestamp.
1191 * Yes there is a race here. If an interrupt comes in
1192 * just after the conditional and it traces too, then it
1193 * will also check the deltas. More than one timestamp may
1194 * also be made. But only the entry that did the actual
1195 * commit will be something other than zero.
1197 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1198 rb_page_write(cpu_buffer->tail_page) ==
1199 rb_commit_index(cpu_buffer)) {
1201 delta = ts - cpu_buffer->write_stamp;
1203 /* make sure this delta is calculated here */
1204 barrier();
1206 /* Did the write stamp get updated already? */
1207 if (unlikely(ts < cpu_buffer->write_stamp))
1208 delta = 0;
1210 if (test_time_stamp(delta)) {
1212 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1214 if (commit == -EBUSY)
1215 return NULL;
1217 if (commit == -EAGAIN)
1218 goto again;
1220 RB_WARN_ON(cpu_buffer, commit < 0);
1222 } else
1223 /* Non commits have zero deltas */
1224 delta = 0;
1226 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1227 if (PTR_ERR(event) == -EAGAIN)
1228 goto again;
1230 if (!event) {
1231 if (unlikely(commit))
1233 * Ouch! We needed a timestamp and it was commited. But
1234 * we didn't get our event reserved.
1236 rb_set_commit_to_write(cpu_buffer);
1237 return NULL;
1241 * If the timestamp was commited, make the commit our entry
1242 * now so that we will update it when needed.
1244 if (commit)
1245 rb_set_commit_event(cpu_buffer, event);
1246 else if (!rb_is_commit(cpu_buffer, event))
1247 delta = 0;
1249 event->time_delta = delta;
1251 return event;
1254 static DEFINE_PER_CPU(int, rb_need_resched);
1257 * ring_buffer_lock_reserve - reserve a part of the buffer
1258 * @buffer: the ring buffer to reserve from
1259 * @length: the length of the data to reserve (excluding event header)
1260 * @flags: a pointer to save the interrupt flags
1262 * Returns a reseverd event on the ring buffer to copy directly to.
1263 * The user of this interface will need to get the body to write into
1264 * and can use the ring_buffer_event_data() interface.
1266 * The length is the length of the data needed, not the event length
1267 * which also includes the event header.
1269 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1270 * If NULL is returned, then nothing has been allocated or locked.
1272 struct ring_buffer_event *
1273 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1274 unsigned long length,
1275 unsigned long *flags)
1277 struct ring_buffer_per_cpu *cpu_buffer;
1278 struct ring_buffer_event *event;
1279 int cpu, resched;
1281 if (ring_buffer_flags != RB_BUFFERS_ON)
1282 return NULL;
1284 if (atomic_read(&buffer->record_disabled))
1285 return NULL;
1287 /* If we are tracing schedule, we don't want to recurse */
1288 resched = ftrace_preempt_disable();
1290 cpu = raw_smp_processor_id();
1292 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1293 goto out;
1295 cpu_buffer = buffer->buffers[cpu];
1297 if (atomic_read(&cpu_buffer->record_disabled))
1298 goto out;
1300 length = rb_calculate_event_length(length);
1301 if (length > BUF_PAGE_SIZE)
1302 goto out;
1304 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1305 if (!event)
1306 goto out;
1309 * Need to store resched state on this cpu.
1310 * Only the first needs to.
1313 if (preempt_count() == 1)
1314 per_cpu(rb_need_resched, cpu) = resched;
1316 return event;
1318 out:
1319 ftrace_preempt_enable(resched);
1320 return NULL;
1322 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1324 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1325 struct ring_buffer_event *event)
1327 cpu_buffer->entries++;
1329 /* Only process further if we own the commit */
1330 if (!rb_is_commit(cpu_buffer, event))
1331 return;
1333 cpu_buffer->write_stamp += event->time_delta;
1335 rb_set_commit_to_write(cpu_buffer);
1339 * ring_buffer_unlock_commit - commit a reserved
1340 * @buffer: The buffer to commit to
1341 * @event: The event pointer to commit.
1342 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1344 * This commits the data to the ring buffer, and releases any locks held.
1346 * Must be paired with ring_buffer_lock_reserve.
1348 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1349 struct ring_buffer_event *event,
1350 unsigned long flags)
1352 struct ring_buffer_per_cpu *cpu_buffer;
1353 int cpu = raw_smp_processor_id();
1355 cpu_buffer = buffer->buffers[cpu];
1357 rb_commit(cpu_buffer, event);
1360 * Only the last preempt count needs to restore preemption.
1362 if (preempt_count() == 1)
1363 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1364 else
1365 preempt_enable_no_resched_notrace();
1367 return 0;
1369 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1372 * ring_buffer_write - write data to the buffer without reserving
1373 * @buffer: The ring buffer to write to.
1374 * @length: The length of the data being written (excluding the event header)
1375 * @data: The data to write to the buffer.
1377 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1378 * one function. If you already have the data to write to the buffer, it
1379 * may be easier to simply call this function.
1381 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1382 * and not the length of the event which would hold the header.
1384 int ring_buffer_write(struct ring_buffer *buffer,
1385 unsigned long length,
1386 void *data)
1388 struct ring_buffer_per_cpu *cpu_buffer;
1389 struct ring_buffer_event *event;
1390 unsigned long event_length;
1391 void *body;
1392 int ret = -EBUSY;
1393 int cpu, resched;
1395 if (ring_buffer_flags != RB_BUFFERS_ON)
1396 return -EBUSY;
1398 if (atomic_read(&buffer->record_disabled))
1399 return -EBUSY;
1401 resched = ftrace_preempt_disable();
1403 cpu = raw_smp_processor_id();
1405 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1406 goto out;
1408 cpu_buffer = buffer->buffers[cpu];
1410 if (atomic_read(&cpu_buffer->record_disabled))
1411 goto out;
1413 event_length = rb_calculate_event_length(length);
1414 event = rb_reserve_next_event(cpu_buffer,
1415 RINGBUF_TYPE_DATA, event_length);
1416 if (!event)
1417 goto out;
1419 body = rb_event_data(event);
1421 memcpy(body, data, length);
1423 rb_commit(cpu_buffer, event);
1425 ret = 0;
1426 out:
1427 ftrace_preempt_enable(resched);
1429 return ret;
1431 EXPORT_SYMBOL_GPL(ring_buffer_write);
1433 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1435 struct buffer_page *reader = cpu_buffer->reader_page;
1436 struct buffer_page *head = cpu_buffer->head_page;
1437 struct buffer_page *commit = cpu_buffer->commit_page;
1439 return reader->read == rb_page_commit(reader) &&
1440 (commit == reader ||
1441 (commit == head &&
1442 head->read == rb_page_commit(commit)));
1446 * ring_buffer_record_disable - stop all writes into the buffer
1447 * @buffer: The ring buffer to stop writes to.
1449 * This prevents all writes to the buffer. Any attempt to write
1450 * to the buffer after this will fail and return NULL.
1452 * The caller should call synchronize_sched() after this.
1454 void ring_buffer_record_disable(struct ring_buffer *buffer)
1456 atomic_inc(&buffer->record_disabled);
1458 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1461 * ring_buffer_record_enable - enable writes to the buffer
1462 * @buffer: The ring buffer to enable writes
1464 * Note, multiple disables will need the same number of enables
1465 * to truely enable the writing (much like preempt_disable).
1467 void ring_buffer_record_enable(struct ring_buffer *buffer)
1469 atomic_dec(&buffer->record_disabled);
1471 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1474 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1475 * @buffer: The ring buffer to stop writes to.
1476 * @cpu: The CPU buffer to stop
1478 * This prevents all writes to the buffer. Any attempt to write
1479 * to the buffer after this will fail and return NULL.
1481 * The caller should call synchronize_sched() after this.
1483 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1485 struct ring_buffer_per_cpu *cpu_buffer;
1487 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1488 return;
1490 cpu_buffer = buffer->buffers[cpu];
1491 atomic_inc(&cpu_buffer->record_disabled);
1493 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1496 * ring_buffer_record_enable_cpu - enable writes to the buffer
1497 * @buffer: The ring buffer to enable writes
1498 * @cpu: The CPU to enable.
1500 * Note, multiple disables will need the same number of enables
1501 * to truely enable the writing (much like preempt_disable).
1503 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1505 struct ring_buffer_per_cpu *cpu_buffer;
1507 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1508 return;
1510 cpu_buffer = buffer->buffers[cpu];
1511 atomic_dec(&cpu_buffer->record_disabled);
1513 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1516 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1517 * @buffer: The ring buffer
1518 * @cpu: The per CPU buffer to get the entries from.
1520 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1522 struct ring_buffer_per_cpu *cpu_buffer;
1524 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1525 return 0;
1527 cpu_buffer = buffer->buffers[cpu];
1528 return cpu_buffer->entries;
1530 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1533 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1534 * @buffer: The ring buffer
1535 * @cpu: The per CPU buffer to get the number of overruns from
1537 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1539 struct ring_buffer_per_cpu *cpu_buffer;
1541 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1542 return 0;
1544 cpu_buffer = buffer->buffers[cpu];
1545 return cpu_buffer->overrun;
1547 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1550 * ring_buffer_entries - get the number of entries in a buffer
1551 * @buffer: The ring buffer
1553 * Returns the total number of entries in the ring buffer
1554 * (all CPU entries)
1556 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1558 struct ring_buffer_per_cpu *cpu_buffer;
1559 unsigned long entries = 0;
1560 int cpu;
1562 /* if you care about this being correct, lock the buffer */
1563 for_each_buffer_cpu(buffer, cpu) {
1564 cpu_buffer = buffer->buffers[cpu];
1565 entries += cpu_buffer->entries;
1568 return entries;
1570 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1573 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1574 * @buffer: The ring buffer
1576 * Returns the total number of overruns in the ring buffer
1577 * (all CPU entries)
1579 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1581 struct ring_buffer_per_cpu *cpu_buffer;
1582 unsigned long overruns = 0;
1583 int cpu;
1585 /* if you care about this being correct, lock the buffer */
1586 for_each_buffer_cpu(buffer, cpu) {
1587 cpu_buffer = buffer->buffers[cpu];
1588 overruns += cpu_buffer->overrun;
1591 return overruns;
1593 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1595 static void rb_iter_reset(struct ring_buffer_iter *iter)
1597 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1599 /* Iterator usage is expected to have record disabled */
1600 if (list_empty(&cpu_buffer->reader_page->list)) {
1601 iter->head_page = cpu_buffer->head_page;
1602 iter->head = cpu_buffer->head_page->read;
1603 } else {
1604 iter->head_page = cpu_buffer->reader_page;
1605 iter->head = cpu_buffer->reader_page->read;
1607 if (iter->head)
1608 iter->read_stamp = cpu_buffer->read_stamp;
1609 else
1610 iter->read_stamp = iter->head_page->page->time_stamp;
1614 * ring_buffer_iter_reset - reset an iterator
1615 * @iter: The iterator to reset
1617 * Resets the iterator, so that it will start from the beginning
1618 * again.
1620 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1622 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1623 unsigned long flags;
1625 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1626 rb_iter_reset(iter);
1627 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1629 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1632 * ring_buffer_iter_empty - check if an iterator has no more to read
1633 * @iter: The iterator to check
1635 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1637 struct ring_buffer_per_cpu *cpu_buffer;
1639 cpu_buffer = iter->cpu_buffer;
1641 return iter->head_page == cpu_buffer->commit_page &&
1642 iter->head == rb_commit_index(cpu_buffer);
1644 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1646 static void
1647 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1648 struct ring_buffer_event *event)
1650 u64 delta;
1652 switch (event->type) {
1653 case RINGBUF_TYPE_PADDING:
1654 return;
1656 case RINGBUF_TYPE_TIME_EXTEND:
1657 delta = event->array[0];
1658 delta <<= TS_SHIFT;
1659 delta += event->time_delta;
1660 cpu_buffer->read_stamp += delta;
1661 return;
1663 case RINGBUF_TYPE_TIME_STAMP:
1664 /* FIXME: not implemented */
1665 return;
1667 case RINGBUF_TYPE_DATA:
1668 cpu_buffer->read_stamp += event->time_delta;
1669 return;
1671 default:
1672 BUG();
1674 return;
1677 static void
1678 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1679 struct ring_buffer_event *event)
1681 u64 delta;
1683 switch (event->type) {
1684 case RINGBUF_TYPE_PADDING:
1685 return;
1687 case RINGBUF_TYPE_TIME_EXTEND:
1688 delta = event->array[0];
1689 delta <<= TS_SHIFT;
1690 delta += event->time_delta;
1691 iter->read_stamp += delta;
1692 return;
1694 case RINGBUF_TYPE_TIME_STAMP:
1695 /* FIXME: not implemented */
1696 return;
1698 case RINGBUF_TYPE_DATA:
1699 iter->read_stamp += event->time_delta;
1700 return;
1702 default:
1703 BUG();
1705 return;
1708 static struct buffer_page *
1709 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1711 struct buffer_page *reader = NULL;
1712 unsigned long flags;
1713 int nr_loops = 0;
1715 local_irq_save(flags);
1716 __raw_spin_lock(&cpu_buffer->lock);
1718 again:
1720 * This should normally only loop twice. But because the
1721 * start of the reader inserts an empty page, it causes
1722 * a case where we will loop three times. There should be no
1723 * reason to loop four times (that I know of).
1725 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1726 reader = NULL;
1727 goto out;
1730 reader = cpu_buffer->reader_page;
1732 /* If there's more to read, return this page */
1733 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1734 goto out;
1736 /* Never should we have an index greater than the size */
1737 if (RB_WARN_ON(cpu_buffer,
1738 cpu_buffer->reader_page->read > rb_page_size(reader)))
1739 goto out;
1741 /* check if we caught up to the tail */
1742 reader = NULL;
1743 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1744 goto out;
1747 * Splice the empty reader page into the list around the head.
1748 * Reset the reader page to size zero.
1751 reader = cpu_buffer->head_page;
1752 cpu_buffer->reader_page->list.next = reader->list.next;
1753 cpu_buffer->reader_page->list.prev = reader->list.prev;
1755 local_set(&cpu_buffer->reader_page->write, 0);
1756 local_set(&cpu_buffer->reader_page->page->commit, 0);
1758 /* Make the reader page now replace the head */
1759 reader->list.prev->next = &cpu_buffer->reader_page->list;
1760 reader->list.next->prev = &cpu_buffer->reader_page->list;
1763 * If the tail is on the reader, then we must set the head
1764 * to the inserted page, otherwise we set it one before.
1766 cpu_buffer->head_page = cpu_buffer->reader_page;
1768 if (cpu_buffer->commit_page != reader)
1769 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1771 /* Finally update the reader page to the new head */
1772 cpu_buffer->reader_page = reader;
1773 rb_reset_reader_page(cpu_buffer);
1775 goto again;
1777 out:
1778 __raw_spin_unlock(&cpu_buffer->lock);
1779 local_irq_restore(flags);
1781 return reader;
1784 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1786 struct ring_buffer_event *event;
1787 struct buffer_page *reader;
1788 unsigned length;
1790 reader = rb_get_reader_page(cpu_buffer);
1792 /* This function should not be called when buffer is empty */
1793 if (RB_WARN_ON(cpu_buffer, !reader))
1794 return;
1796 event = rb_reader_event(cpu_buffer);
1798 if (event->type == RINGBUF_TYPE_DATA)
1799 cpu_buffer->entries--;
1801 rb_update_read_stamp(cpu_buffer, event);
1803 length = rb_event_length(event);
1804 cpu_buffer->reader_page->read += length;
1807 static void rb_advance_iter(struct ring_buffer_iter *iter)
1809 struct ring_buffer *buffer;
1810 struct ring_buffer_per_cpu *cpu_buffer;
1811 struct ring_buffer_event *event;
1812 unsigned length;
1814 cpu_buffer = iter->cpu_buffer;
1815 buffer = cpu_buffer->buffer;
1818 * Check if we are at the end of the buffer.
1820 if (iter->head >= rb_page_size(iter->head_page)) {
1821 if (RB_WARN_ON(buffer,
1822 iter->head_page == cpu_buffer->commit_page))
1823 return;
1824 rb_inc_iter(iter);
1825 return;
1828 event = rb_iter_head_event(iter);
1830 length = rb_event_length(event);
1833 * This should not be called to advance the header if we are
1834 * at the tail of the buffer.
1836 if (RB_WARN_ON(cpu_buffer,
1837 (iter->head_page == cpu_buffer->commit_page) &&
1838 (iter->head + length > rb_commit_index(cpu_buffer))))
1839 return;
1841 rb_update_iter_read_stamp(iter, event);
1843 iter->head += length;
1845 /* check for end of page padding */
1846 if ((iter->head >= rb_page_size(iter->head_page)) &&
1847 (iter->head_page != cpu_buffer->commit_page))
1848 rb_advance_iter(iter);
1851 static struct ring_buffer_event *
1852 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1854 struct ring_buffer_per_cpu *cpu_buffer;
1855 struct ring_buffer_event *event;
1856 struct buffer_page *reader;
1857 int nr_loops = 0;
1859 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1860 return NULL;
1862 cpu_buffer = buffer->buffers[cpu];
1864 again:
1866 * We repeat when a timestamp is encountered. It is possible
1867 * to get multiple timestamps from an interrupt entering just
1868 * as one timestamp is about to be written. The max times
1869 * that this can happen is the number of nested interrupts we
1870 * can have. Nesting 10 deep of interrupts is clearly
1871 * an anomaly.
1873 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1874 return NULL;
1876 reader = rb_get_reader_page(cpu_buffer);
1877 if (!reader)
1878 return NULL;
1880 event = rb_reader_event(cpu_buffer);
1882 switch (event->type) {
1883 case RINGBUF_TYPE_PADDING:
1884 RB_WARN_ON(cpu_buffer, 1);
1885 rb_advance_reader(cpu_buffer);
1886 return NULL;
1888 case RINGBUF_TYPE_TIME_EXTEND:
1889 /* Internal data, OK to advance */
1890 rb_advance_reader(cpu_buffer);
1891 goto again;
1893 case RINGBUF_TYPE_TIME_STAMP:
1894 /* FIXME: not implemented */
1895 rb_advance_reader(cpu_buffer);
1896 goto again;
1898 case RINGBUF_TYPE_DATA:
1899 if (ts) {
1900 *ts = cpu_buffer->read_stamp + event->time_delta;
1901 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1903 return event;
1905 default:
1906 BUG();
1909 return NULL;
1911 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1913 static struct ring_buffer_event *
1914 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1916 struct ring_buffer *buffer;
1917 struct ring_buffer_per_cpu *cpu_buffer;
1918 struct ring_buffer_event *event;
1919 int nr_loops = 0;
1921 if (ring_buffer_iter_empty(iter))
1922 return NULL;
1924 cpu_buffer = iter->cpu_buffer;
1925 buffer = cpu_buffer->buffer;
1927 again:
1929 * We repeat when a timestamp is encountered. It is possible
1930 * to get multiple timestamps from an interrupt entering just
1931 * as one timestamp is about to be written. The max times
1932 * that this can happen is the number of nested interrupts we
1933 * can have. Nesting 10 deep of interrupts is clearly
1934 * an anomaly.
1936 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1937 return NULL;
1939 if (rb_per_cpu_empty(cpu_buffer))
1940 return NULL;
1942 event = rb_iter_head_event(iter);
1944 switch (event->type) {
1945 case RINGBUF_TYPE_PADDING:
1946 rb_inc_iter(iter);
1947 goto again;
1949 case RINGBUF_TYPE_TIME_EXTEND:
1950 /* Internal data, OK to advance */
1951 rb_advance_iter(iter);
1952 goto again;
1954 case RINGBUF_TYPE_TIME_STAMP:
1955 /* FIXME: not implemented */
1956 rb_advance_iter(iter);
1957 goto again;
1959 case RINGBUF_TYPE_DATA:
1960 if (ts) {
1961 *ts = iter->read_stamp + event->time_delta;
1962 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1964 return event;
1966 default:
1967 BUG();
1970 return NULL;
1972 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
1975 * ring_buffer_peek - peek at the next event to be read
1976 * @buffer: The ring buffer to read
1977 * @cpu: The cpu to peak at
1978 * @ts: The timestamp counter of this event.
1980 * This will return the event that will be read next, but does
1981 * not consume the data.
1983 struct ring_buffer_event *
1984 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1986 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1987 struct ring_buffer_event *event;
1988 unsigned long flags;
1990 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1991 event = rb_buffer_peek(buffer, cpu, ts);
1992 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1994 return event;
1998 * ring_buffer_iter_peek - peek at the next event to be read
1999 * @iter: The ring buffer iterator
2000 * @ts: The timestamp counter of this event.
2002 * This will return the event that will be read next, but does
2003 * not increment the iterator.
2005 struct ring_buffer_event *
2006 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2008 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2009 struct ring_buffer_event *event;
2010 unsigned long flags;
2012 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2013 event = rb_iter_peek(iter, ts);
2014 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2016 return event;
2020 * ring_buffer_consume - return an event and consume it
2021 * @buffer: The ring buffer to get the next event from
2023 * Returns the next event in the ring buffer, and that event is consumed.
2024 * Meaning, that sequential reads will keep returning a different event,
2025 * and eventually empty the ring buffer if the producer is slower.
2027 struct ring_buffer_event *
2028 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2030 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2031 struct ring_buffer_event *event;
2032 unsigned long flags;
2034 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2035 return NULL;
2037 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2039 event = rb_buffer_peek(buffer, cpu, ts);
2040 if (!event)
2041 goto out;
2043 rb_advance_reader(cpu_buffer);
2045 out:
2046 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2048 return event;
2050 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2053 * ring_buffer_read_start - start a non consuming read of the buffer
2054 * @buffer: The ring buffer to read from
2055 * @cpu: The cpu buffer to iterate over
2057 * This starts up an iteration through the buffer. It also disables
2058 * the recording to the buffer until the reading is finished.
2059 * This prevents the reading from being corrupted. This is not
2060 * a consuming read, so a producer is not expected.
2062 * Must be paired with ring_buffer_finish.
2064 struct ring_buffer_iter *
2065 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2067 struct ring_buffer_per_cpu *cpu_buffer;
2068 struct ring_buffer_iter *iter;
2069 unsigned long flags;
2071 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2072 return NULL;
2074 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2075 if (!iter)
2076 return NULL;
2078 cpu_buffer = buffer->buffers[cpu];
2080 iter->cpu_buffer = cpu_buffer;
2082 atomic_inc(&cpu_buffer->record_disabled);
2083 synchronize_sched();
2085 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2086 __raw_spin_lock(&cpu_buffer->lock);
2087 rb_iter_reset(iter);
2088 __raw_spin_unlock(&cpu_buffer->lock);
2089 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2091 return iter;
2093 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2096 * ring_buffer_finish - finish reading the iterator of the buffer
2097 * @iter: The iterator retrieved by ring_buffer_start
2099 * This re-enables the recording to the buffer, and frees the
2100 * iterator.
2102 void
2103 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2107 atomic_dec(&cpu_buffer->record_disabled);
2108 kfree(iter);
2110 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2113 * ring_buffer_read - read the next item in the ring buffer by the iterator
2114 * @iter: The ring buffer iterator
2115 * @ts: The time stamp of the event read.
2117 * This reads the next event in the ring buffer and increments the iterator.
2119 struct ring_buffer_event *
2120 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2122 struct ring_buffer_event *event;
2123 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2124 unsigned long flags;
2126 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2127 event = rb_iter_peek(iter, ts);
2128 if (!event)
2129 goto out;
2131 rb_advance_iter(iter);
2132 out:
2133 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2135 return event;
2137 EXPORT_SYMBOL_GPL(ring_buffer_read);
2140 * ring_buffer_size - return the size of the ring buffer (in bytes)
2141 * @buffer: The ring buffer.
2143 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2145 return BUF_PAGE_SIZE * buffer->pages;
2147 EXPORT_SYMBOL_GPL(ring_buffer_size);
2149 static void
2150 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2152 cpu_buffer->head_page
2153 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2154 local_set(&cpu_buffer->head_page->write, 0);
2155 local_set(&cpu_buffer->head_page->page->commit, 0);
2157 cpu_buffer->head_page->read = 0;
2159 cpu_buffer->tail_page = cpu_buffer->head_page;
2160 cpu_buffer->commit_page = cpu_buffer->head_page;
2162 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2163 local_set(&cpu_buffer->reader_page->write, 0);
2164 local_set(&cpu_buffer->reader_page->page->commit, 0);
2165 cpu_buffer->reader_page->read = 0;
2167 cpu_buffer->overrun = 0;
2168 cpu_buffer->entries = 0;
2172 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2173 * @buffer: The ring buffer to reset a per cpu buffer of
2174 * @cpu: The CPU buffer to be reset
2176 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2178 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2179 unsigned long flags;
2181 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2182 return;
2184 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2186 __raw_spin_lock(&cpu_buffer->lock);
2188 rb_reset_cpu(cpu_buffer);
2190 __raw_spin_unlock(&cpu_buffer->lock);
2192 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2194 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2197 * ring_buffer_reset - reset a ring buffer
2198 * @buffer: The ring buffer to reset all cpu buffers
2200 void ring_buffer_reset(struct ring_buffer *buffer)
2202 int cpu;
2204 for_each_buffer_cpu(buffer, cpu)
2205 ring_buffer_reset_cpu(buffer, cpu);
2207 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2210 * rind_buffer_empty - is the ring buffer empty?
2211 * @buffer: The ring buffer to test
2213 int ring_buffer_empty(struct ring_buffer *buffer)
2215 struct ring_buffer_per_cpu *cpu_buffer;
2216 int cpu;
2218 /* yes this is racy, but if you don't like the race, lock the buffer */
2219 for_each_buffer_cpu(buffer, cpu) {
2220 cpu_buffer = buffer->buffers[cpu];
2221 if (!rb_per_cpu_empty(cpu_buffer))
2222 return 0;
2224 return 1;
2226 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2229 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2230 * @buffer: The ring buffer
2231 * @cpu: The CPU buffer to test
2233 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2235 struct ring_buffer_per_cpu *cpu_buffer;
2237 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2238 return 1;
2240 cpu_buffer = buffer->buffers[cpu];
2241 return rb_per_cpu_empty(cpu_buffer);
2243 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2246 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2247 * @buffer_a: One buffer to swap with
2248 * @buffer_b: The other buffer to swap with
2250 * This function is useful for tracers that want to take a "snapshot"
2251 * of a CPU buffer and has another back up buffer lying around.
2252 * it is expected that the tracer handles the cpu buffer not being
2253 * used at the moment.
2255 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2256 struct ring_buffer *buffer_b, int cpu)
2258 struct ring_buffer_per_cpu *cpu_buffer_a;
2259 struct ring_buffer_per_cpu *cpu_buffer_b;
2261 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2262 !cpumask_test_cpu(cpu, buffer_b->cpumask))
2263 return -EINVAL;
2265 /* At least make sure the two buffers are somewhat the same */
2266 if (buffer_a->pages != buffer_b->pages)
2267 return -EINVAL;
2269 cpu_buffer_a = buffer_a->buffers[cpu];
2270 cpu_buffer_b = buffer_b->buffers[cpu];
2273 * We can't do a synchronize_sched here because this
2274 * function can be called in atomic context.
2275 * Normally this will be called from the same CPU as cpu.
2276 * If not it's up to the caller to protect this.
2278 atomic_inc(&cpu_buffer_a->record_disabled);
2279 atomic_inc(&cpu_buffer_b->record_disabled);
2281 buffer_a->buffers[cpu] = cpu_buffer_b;
2282 buffer_b->buffers[cpu] = cpu_buffer_a;
2284 cpu_buffer_b->buffer = buffer_a;
2285 cpu_buffer_a->buffer = buffer_b;
2287 atomic_dec(&cpu_buffer_a->record_disabled);
2288 atomic_dec(&cpu_buffer_b->record_disabled);
2290 return 0;
2292 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2294 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2295 struct buffer_data_page *bpage)
2297 struct ring_buffer_event *event;
2298 unsigned long head;
2300 __raw_spin_lock(&cpu_buffer->lock);
2301 for (head = 0; head < local_read(&bpage->commit);
2302 head += rb_event_length(event)) {
2304 event = __rb_data_page_index(bpage, head);
2305 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2306 return;
2307 /* Only count data entries */
2308 if (event->type != RINGBUF_TYPE_DATA)
2309 continue;
2310 cpu_buffer->entries--;
2312 __raw_spin_unlock(&cpu_buffer->lock);
2316 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2317 * @buffer: the buffer to allocate for.
2319 * This function is used in conjunction with ring_buffer_read_page.
2320 * When reading a full page from the ring buffer, these functions
2321 * can be used to speed up the process. The calling function should
2322 * allocate a few pages first with this function. Then when it
2323 * needs to get pages from the ring buffer, it passes the result
2324 * of this function into ring_buffer_read_page, which will swap
2325 * the page that was allocated, with the read page of the buffer.
2327 * Returns:
2328 * The page allocated, or NULL on error.
2330 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2332 unsigned long addr;
2333 struct buffer_data_page *bpage;
2335 addr = __get_free_page(GFP_KERNEL);
2336 if (!addr)
2337 return NULL;
2339 bpage = (void *)addr;
2341 return bpage;
2345 * ring_buffer_free_read_page - free an allocated read page
2346 * @buffer: the buffer the page was allocate for
2347 * @data: the page to free
2349 * Free a page allocated from ring_buffer_alloc_read_page.
2351 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2353 free_page((unsigned long)data);
2357 * ring_buffer_read_page - extract a page from the ring buffer
2358 * @buffer: buffer to extract from
2359 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2360 * @cpu: the cpu of the buffer to extract
2361 * @full: should the extraction only happen when the page is full.
2363 * This function will pull out a page from the ring buffer and consume it.
2364 * @data_page must be the address of the variable that was returned
2365 * from ring_buffer_alloc_read_page. This is because the page might be used
2366 * to swap with a page in the ring buffer.
2368 * for example:
2369 * rpage = ring_buffer_alloc_page(buffer);
2370 * if (!rpage)
2371 * return error;
2372 * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2373 * if (ret)
2374 * process_page(rpage);
2376 * When @full is set, the function will not return true unless
2377 * the writer is off the reader page.
2379 * Note: it is up to the calling functions to handle sleeps and wakeups.
2380 * The ring buffer can be used anywhere in the kernel and can not
2381 * blindly call wake_up. The layer that uses the ring buffer must be
2382 * responsible for that.
2384 * Returns:
2385 * 1 if data has been transferred
2386 * 0 if no data has been transferred.
2388 int ring_buffer_read_page(struct ring_buffer *buffer,
2389 void **data_page, int cpu, int full)
2391 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2392 struct ring_buffer_event *event;
2393 struct buffer_data_page *bpage;
2394 unsigned long flags;
2395 int ret = 0;
2397 if (!data_page)
2398 return 0;
2400 bpage = *data_page;
2401 if (!bpage)
2402 return 0;
2404 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2407 * rb_buffer_peek will get the next ring buffer if
2408 * the current reader page is empty.
2410 event = rb_buffer_peek(buffer, cpu, NULL);
2411 if (!event)
2412 goto out;
2414 /* check for data */
2415 if (!local_read(&cpu_buffer->reader_page->page->commit))
2416 goto out;
2418 * If the writer is already off of the read page, then simply
2419 * switch the read page with the given page. Otherwise
2420 * we need to copy the data from the reader to the writer.
2422 if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2423 unsigned int read = cpu_buffer->reader_page->read;
2425 if (full)
2426 goto out;
2427 /* The writer is still on the reader page, we must copy */
2428 bpage = cpu_buffer->reader_page->page;
2429 memcpy(bpage->data,
2430 cpu_buffer->reader_page->page->data + read,
2431 local_read(&bpage->commit) - read);
2433 /* consume what was read */
2434 cpu_buffer->reader_page += read;
2436 } else {
2437 /* swap the pages */
2438 rb_init_page(bpage);
2439 bpage = cpu_buffer->reader_page->page;
2440 cpu_buffer->reader_page->page = *data_page;
2441 cpu_buffer->reader_page->read = 0;
2442 *data_page = bpage;
2444 ret = 1;
2446 /* update the entry counter */
2447 rb_remove_entries(cpu_buffer, bpage);
2448 out:
2449 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2451 return ret;
2454 static ssize_t
2455 rb_simple_read(struct file *filp, char __user *ubuf,
2456 size_t cnt, loff_t *ppos)
2458 long *p = filp->private_data;
2459 char buf[64];
2460 int r;
2462 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2463 r = sprintf(buf, "permanently disabled\n");
2464 else
2465 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2467 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2470 static ssize_t
2471 rb_simple_write(struct file *filp, const char __user *ubuf,
2472 size_t cnt, loff_t *ppos)
2474 long *p = filp->private_data;
2475 char buf[64];
2476 long val;
2477 int ret;
2479 if (cnt >= sizeof(buf))
2480 return -EINVAL;
2482 if (copy_from_user(&buf, ubuf, cnt))
2483 return -EFAULT;
2485 buf[cnt] = 0;
2487 ret = strict_strtoul(buf, 10, &val);
2488 if (ret < 0)
2489 return ret;
2491 if (val)
2492 set_bit(RB_BUFFERS_ON_BIT, p);
2493 else
2494 clear_bit(RB_BUFFERS_ON_BIT, p);
2496 (*ppos)++;
2498 return cnt;
2501 static struct file_operations rb_simple_fops = {
2502 .open = tracing_open_generic,
2503 .read = rb_simple_read,
2504 .write = rb_simple_write,
2508 static __init int rb_init_debugfs(void)
2510 struct dentry *d_tracer;
2511 struct dentry *entry;
2513 d_tracer = tracing_init_dentry();
2515 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2516 &ring_buffer_flags, &rb_simple_fops);
2517 if (!entry)
2518 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2520 return 0;
2523 fs_initcall(rb_init_debugfs);