libata: Limit ATAPI DMA to R/W commands only for TORiSAN DVD drives (take 3)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blobcf2338cbe4ea05ce301f51feb7c0d2a1f9e8ef96
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 int libata_noacpi = 1;
97 module_param_named(noacpi, libata_noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
115 * LOCKING:
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
155 * LOCKING:
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
215 * LOCKING:
216 * caller.
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
220 u8 cmd;
222 int index, fua, lba48, write;
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
245 return -1;
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
253 * LOCKING:
254 * None.
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
260 * RETURNS:
261 * Block address read from @tf.
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
265 u64 block = 0;
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
288 return block;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
300 * LOCKING:
301 * None.
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
306 * RETURNS:
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
358 tf->hob_nsect = (n_block >> 8) & 0xff;
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
370 tf->nsect = n_block & 0xff;
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
411 return 0;
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
423 * LOCKING:
424 * None.
426 * RETURNS:
427 * Packed xfer_mask.
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461 static const struct ata_xfer_ent {
462 int shift, bits;
463 u8 base;
464 } ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
478 * LOCKING:
479 * None.
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
499 * Return matching xfer_mask for @xfer_mode.
501 * LOCKING:
502 * None.
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
509 const struct ata_xfer_ent *ent;
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
521 * Return matching xfer_shift for @xfer_mode.
523 * LOCKING:
524 * None.
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
531 const struct ata_xfer_ent *ent;
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
546 * LOCKING:
547 * None.
549 * RETURNS:
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
553 static const char *ata_mode_string(unsigned int xfer_mask)
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
561 "PIO5",
562 "PIO6",
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
566 "MWDMA3",
567 "MWDMA4",
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
577 int highbit;
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
582 return "<n/a>";
585 static const char *sata_spd_string(unsigned int spd)
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
597 void ata_dev_disable(struct ata_device *dev)
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
603 dev->class++;
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
621 * LOCKING:
622 * caller.
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
630 ap->ops->dev_select(ap, device);
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
658 * LOCKING:
659 * None.
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
704 * LOCKING:
705 * caller.
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
718 ap->ops->dev_select(ap, device);
720 memset(&tf, 0, sizeof(tf));
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
759 * LOCKING:
760 * caller.
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
766 unsigned int c;
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
777 ofs++;
778 len -= 2;
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
793 * LOCKING:
794 * caller.
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
799 unsigned char *p;
801 WARN_ON(!(len & 1));
803 ata_id_string(id, s, ofs, len - 1);
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
811 static u64 ata_id_n_sectors(const u16 *id)
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @unknown: mode to assume if we cannot tell
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
843 unsigned int mask;
844 u8 mode;
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
873 * This function performs no actual function.
875 * May be used as the dev_select() entry in ata_port_operations.
877 * LOCKING:
878 * caller.
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
894 * May be used as the dev_select() entry in ata_port_operations.
896 * LOCKING:
897 * caller.
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
902 u8 tmp;
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
928 * LOCKING:
929 * caller.
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
939 if (wait)
940 ata_wait_idle(ap);
942 ap->ops->dev_select(ap, device);
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
958 * LOCKING:
959 * caller.
962 static inline void ata_dump_id(const u16 *id)
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
986 id[88],
987 id[93]);
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
997 * FIXME: pre IDE drive timing (do we care ?).
999 * LOCKING:
1000 * None.
1002 * RETURNS:
1003 * Computed xfermask
1005 static unsigned int ata_id_xfermask(const u16 *id)
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1035 if (ata_id_is_cfa(id)) {
1037 * Process compact flash extended modes
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1075 * LOCKING:
1076 * Inherited from caller.
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1081 int rc;
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 return;
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1105 void ata_port_flush_task(struct ata_port *ap)
1107 unsigned long flags;
1109 DPRINTK("ENTER\n");
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
1127 flush_workqueue(ata_wq);
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1140 struct completion *waiting = qc->private_data;
1142 complete(waiting);
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1179 int rc;
1181 spin_lock_irqsave(ap->lock, flags);
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1189 /* initialize internal qc */
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1202 BUG();
1203 qc = __ata_qc_from_tag(ap, tag);
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
1218 /* prepare & issue qc */
1219 qc->tf = *tf;
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1237 ata_qc_issue(qc);
1239 spin_unlock_irqrestore(ap->lock, flags);
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1243 ata_port_flush_task(ap);
1245 if (!rc) {
1246 spin_lock_irqsave(ap->lock, flags);
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1266 spin_unlock_irqrestore(ap->lock, flags);
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1281 /* finish up */
1282 spin_lock_irqsave(ap->lock, flags);
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1287 ata_qc_free(qc);
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1301 * Kill the following code as soon as those drivers are fixed.
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1308 spin_unlock_irqrestore(ap->lock, flags);
1310 return err_mask;
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1364 struct ata_taskfile tf;
1366 ata_tf_init(dev, &tf);
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1405 return 0;
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1420 * LOCKING:
1421 * Kernel thread context (may sleep)
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1441 retry:
1442 ata_tf_init(dev, &tf);
1444 switch (class) {
1445 case ATA_DEV_ATA:
1446 tf.command = ATA_CMD_ID_ATA;
1447 break;
1448 case ATA_DEV_ATAPI:
1449 tf.command = ATA_CMD_ID_ATAPI;
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1457 tf.protocol = ATA_PROT_PIO;
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1467 tf.flags |= ATA_TFLAG_POLLING;
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1471 if (err_mask) {
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1475 return -ENOENT;
1478 rc = -EIO;
1479 reason = "I/O error";
1480 goto err_out;
1483 swap_buf_le16(id, ATA_ID_WORDS);
1485 /* sanity check */
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1517 flags &= ~ATA_READID_POSTRESET;
1518 goto retry;
1522 *p_class = class;
1524 return 0;
1526 err_out:
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 return rc;
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1563 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1565 int i;
1567 if (ap->scsi_host) {
1568 unsigned int len = 0;
1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 len = max(len, ap->device[i].cdb_len);
1573 ap->scsi_host->max_cmd_len = len;
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1584 * LOCKING:
1585 * Kernel thread context (may sleep)
1587 * RETURNS:
1588 * 0 on success, -errno otherwise
1590 int ata_dev_configure(struct ata_device *dev)
1592 struct ata_port *ap = dev->ap;
1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 const u16 *id = dev->id;
1595 unsigned int xfer_mask;
1596 char revbuf[7]; /* XYZ-99\0 */
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
1599 int rc;
1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 __FUNCTION__);
1604 return 0;
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1610 /* set _SDD */
1611 rc = ata_acpi_push_id(ap, dev->devno);
1612 if (rc) {
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 rc);
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap))
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1625 __FUNCTION__,
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
1629 /* initialize to-be-configured parameters */
1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 dev->max_sectors = 0;
1632 dev->cdb_len = 0;
1633 dev->n_sectors = 0;
1634 dev->cylinders = 0;
1635 dev->heads = 0;
1636 dev->sectors = 0;
1639 * common ATA, ATAPI feature tests
1642 /* find max transfer mode; for printk only */
1643 xfer_mask = ata_id_xfermask(id);
1645 if (ata_msg_probe(ap))
1646 ata_dump_id(id);
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf, 7, "CFA");
1657 else
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1660 dev->n_sectors = ata_id_n_sectors(id);
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1664 sizeof(fwrevbuf));
1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1667 sizeof(modelbuf));
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1672 if (ata_id_has_lba(id)) {
1673 const char *lba_desc;
1674 char ncq_desc[20];
1676 lba_desc = "LBA";
1677 dev->flags |= ATA_DFLAG_LBA;
1678 if (ata_id_has_lba48(id)) {
1679 dev->flags |= ATA_DFLAG_LBA48;
1680 lba_desc = "LBA48";
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1687 /* config NCQ */
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev->n_sectors,
1699 dev->multi_count, lba_desc, ncq_desc);
1701 } else {
1702 /* CHS */
1704 /* Default translation */
1705 dev->cylinders = id[1];
1706 dev->heads = id[3];
1707 dev->sectors = id[6];
1709 if (ata_id_current_chs_valid(id)) {
1710 /* Current CHS translation is valid. */
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap) && print_info) {
1718 ata_dev_printk(dev, KERN_INFO,
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
1722 ata_dev_printk(dev, KERN_INFO,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1730 dev->cdb_len = 16;
1733 /* ATAPI-specific feature tests */
1734 else if (dev->class == ATA_DEV_ATAPI) {
1735 char *cdb_intr_string = "";
1737 rc = atapi_cdb_len(id);
1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
1742 rc = -EINVAL;
1743 goto err_out_nosup;
1745 dev->cdb_len = (unsigned int) rc;
1747 if (ata_id_cdb_intr(dev->id)) {
1748 dev->flags |= ATA_DFLAG_CDB_INTR;
1749 cdb_intr_string = ", CDB intr";
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap) && print_info)
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1756 cdb_intr_string);
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1767 idiot */
1768 if (print_info) {
1769 ata_dev_printk(dev, KERN_WARNING,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1776 ata_set_port_max_cmd_len(ap);
1778 /* limit bridge transfers to udma5, 200 sectors */
1779 if (ata_dev_knobble(dev)) {
1780 if (ata_msg_drv(ap) && print_info)
1781 ata_dev_printk(dev, KERN_INFO,
1782 "applying bridge limits\n");
1783 dev->udma_mask &= ATA_UDMA5;
1784 dev->max_sectors = ATA_MAX_SECTORS;
1787 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1788 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1790 /* limit ATAPI DMA to R/W commands only */
1791 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1792 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1794 if (ap->ops->dev_config)
1795 ap->ops->dev_config(ap, dev);
1797 if (ata_msg_probe(ap))
1798 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1799 __FUNCTION__, ata_chk_status(ap));
1800 return 0;
1802 err_out_nosup:
1803 if (ata_msg_probe(ap))
1804 ata_dev_printk(dev, KERN_DEBUG,
1805 "%s: EXIT, err\n", __FUNCTION__);
1806 return rc;
1810 * ata_bus_probe - Reset and probe ATA bus
1811 * @ap: Bus to probe
1813 * Master ATA bus probing function. Initiates a hardware-dependent
1814 * bus reset, then attempts to identify any devices found on
1815 * the bus.
1817 * LOCKING:
1818 * PCI/etc. bus probe sem.
1820 * RETURNS:
1821 * Zero on success, negative errno otherwise.
1824 int ata_bus_probe(struct ata_port *ap)
1826 unsigned int classes[ATA_MAX_DEVICES];
1827 int tries[ATA_MAX_DEVICES];
1828 int i, rc;
1829 struct ata_device *dev;
1831 ata_port_probe(ap);
1833 for (i = 0; i < ATA_MAX_DEVICES; i++)
1834 tries[i] = ATA_PROBE_MAX_TRIES;
1836 retry:
1837 /* reset and determine device classes */
1838 ap->ops->phy_reset(ap);
1840 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1841 dev = &ap->device[i];
1843 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1844 dev->class != ATA_DEV_UNKNOWN)
1845 classes[dev->devno] = dev->class;
1846 else
1847 classes[dev->devno] = ATA_DEV_NONE;
1849 dev->class = ATA_DEV_UNKNOWN;
1852 ata_port_probe(ap);
1854 /* after the reset the device state is PIO 0 and the controller
1855 state is undefined. Record the mode */
1857 for (i = 0; i < ATA_MAX_DEVICES; i++)
1858 ap->device[i].pio_mode = XFER_PIO_0;
1860 /* read IDENTIFY page and configure devices. We have to do the identify
1861 specific sequence bass-ackwards so that PDIAG- is released by
1862 the slave device */
1864 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1865 dev = &ap->device[i];
1867 if (tries[i])
1868 dev->class = classes[i];
1870 if (!ata_dev_enabled(dev))
1871 continue;
1873 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1874 dev->id);
1875 if (rc)
1876 goto fail;
1879 /* After the identify sequence we can now set up the devices. We do
1880 this in the normal order so that the user doesn't get confused */
1882 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1883 dev = &ap->device[i];
1884 if (!ata_dev_enabled(dev))
1885 continue;
1887 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1888 rc = ata_dev_configure(dev);
1889 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1890 if (rc)
1891 goto fail;
1894 /* configure transfer mode */
1895 rc = ata_set_mode(ap, &dev);
1896 if (rc)
1897 goto fail;
1899 for (i = 0; i < ATA_MAX_DEVICES; i++)
1900 if (ata_dev_enabled(&ap->device[i]))
1901 return 0;
1903 /* no device present, disable port */
1904 ata_port_disable(ap);
1905 ap->ops->port_disable(ap);
1906 return -ENODEV;
1908 fail:
1909 tries[dev->devno]--;
1911 switch (rc) {
1912 case -EINVAL:
1913 /* eeek, something went very wrong, give up */
1914 tries[dev->devno] = 0;
1915 break;
1917 case -ENODEV:
1918 /* give it just one more chance */
1919 tries[dev->devno] = min(tries[dev->devno], 1);
1920 case -EIO:
1921 if (tries[dev->devno] == 1) {
1922 /* This is the last chance, better to slow
1923 * down than lose it.
1925 sata_down_spd_limit(ap);
1926 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1930 if (!tries[dev->devno])
1931 ata_dev_disable(dev);
1933 goto retry;
1937 * ata_port_probe - Mark port as enabled
1938 * @ap: Port for which we indicate enablement
1940 * Modify @ap data structure such that the system
1941 * thinks that the entire port is enabled.
1943 * LOCKING: host lock, or some other form of
1944 * serialization.
1947 void ata_port_probe(struct ata_port *ap)
1949 ap->flags &= ~ATA_FLAG_DISABLED;
1953 * sata_print_link_status - Print SATA link status
1954 * @ap: SATA port to printk link status about
1956 * This function prints link speed and status of a SATA link.
1958 * LOCKING:
1959 * None.
1961 static void sata_print_link_status(struct ata_port *ap)
1963 u32 sstatus, scontrol, tmp;
1965 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1966 return;
1967 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1969 if (ata_port_online(ap)) {
1970 tmp = (sstatus >> 4) & 0xf;
1971 ata_port_printk(ap, KERN_INFO,
1972 "SATA link up %s (SStatus %X SControl %X)\n",
1973 sata_spd_string(tmp), sstatus, scontrol);
1974 } else {
1975 ata_port_printk(ap, KERN_INFO,
1976 "SATA link down (SStatus %X SControl %X)\n",
1977 sstatus, scontrol);
1982 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1983 * @ap: SATA port associated with target SATA PHY.
1985 * This function issues commands to standard SATA Sxxx
1986 * PHY registers, to wake up the phy (and device), and
1987 * clear any reset condition.
1989 * LOCKING:
1990 * PCI/etc. bus probe sem.
1993 void __sata_phy_reset(struct ata_port *ap)
1995 u32 sstatus;
1996 unsigned long timeout = jiffies + (HZ * 5);
1998 if (ap->flags & ATA_FLAG_SATA_RESET) {
1999 /* issue phy wake/reset */
2000 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2001 /* Couldn't find anything in SATA I/II specs, but
2002 * AHCI-1.1 10.4.2 says at least 1 ms. */
2003 mdelay(1);
2005 /* phy wake/clear reset */
2006 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2008 /* wait for phy to become ready, if necessary */
2009 do {
2010 msleep(200);
2011 sata_scr_read(ap, SCR_STATUS, &sstatus);
2012 if ((sstatus & 0xf) != 1)
2013 break;
2014 } while (time_before(jiffies, timeout));
2016 /* print link status */
2017 sata_print_link_status(ap);
2019 /* TODO: phy layer with polling, timeouts, etc. */
2020 if (!ata_port_offline(ap))
2021 ata_port_probe(ap);
2022 else
2023 ata_port_disable(ap);
2025 if (ap->flags & ATA_FLAG_DISABLED)
2026 return;
2028 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2029 ata_port_disable(ap);
2030 return;
2033 ap->cbl = ATA_CBL_SATA;
2037 * sata_phy_reset - Reset SATA bus.
2038 * @ap: SATA port associated with target SATA PHY.
2040 * This function resets the SATA bus, and then probes
2041 * the bus for devices.
2043 * LOCKING:
2044 * PCI/etc. bus probe sem.
2047 void sata_phy_reset(struct ata_port *ap)
2049 __sata_phy_reset(ap);
2050 if (ap->flags & ATA_FLAG_DISABLED)
2051 return;
2052 ata_bus_reset(ap);
2056 * ata_dev_pair - return other device on cable
2057 * @adev: device
2059 * Obtain the other device on the same cable, or if none is
2060 * present NULL is returned
2063 struct ata_device *ata_dev_pair(struct ata_device *adev)
2065 struct ata_port *ap = adev->ap;
2066 struct ata_device *pair = &ap->device[1 - adev->devno];
2067 if (!ata_dev_enabled(pair))
2068 return NULL;
2069 return pair;
2073 * ata_port_disable - Disable port.
2074 * @ap: Port to be disabled.
2076 * Modify @ap data structure such that the system
2077 * thinks that the entire port is disabled, and should
2078 * never attempt to probe or communicate with devices
2079 * on this port.
2081 * LOCKING: host lock, or some other form of
2082 * serialization.
2085 void ata_port_disable(struct ata_port *ap)
2087 ap->device[0].class = ATA_DEV_NONE;
2088 ap->device[1].class = ATA_DEV_NONE;
2089 ap->flags |= ATA_FLAG_DISABLED;
2093 * sata_down_spd_limit - adjust SATA spd limit downward
2094 * @ap: Port to adjust SATA spd limit for
2096 * Adjust SATA spd limit of @ap downward. Note that this
2097 * function only adjusts the limit. The change must be applied
2098 * using sata_set_spd().
2100 * LOCKING:
2101 * Inherited from caller.
2103 * RETURNS:
2104 * 0 on success, negative errno on failure
2106 int sata_down_spd_limit(struct ata_port *ap)
2108 u32 sstatus, spd, mask;
2109 int rc, highbit;
2111 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2112 if (rc)
2113 return rc;
2115 mask = ap->sata_spd_limit;
2116 if (mask <= 1)
2117 return -EINVAL;
2118 highbit = fls(mask) - 1;
2119 mask &= ~(1 << highbit);
2121 spd = (sstatus >> 4) & 0xf;
2122 if (spd <= 1)
2123 return -EINVAL;
2124 spd--;
2125 mask &= (1 << spd) - 1;
2126 if (!mask)
2127 return -EINVAL;
2129 ap->sata_spd_limit = mask;
2131 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2132 sata_spd_string(fls(mask)));
2134 return 0;
2137 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2139 u32 spd, limit;
2141 if (ap->sata_spd_limit == UINT_MAX)
2142 limit = 0;
2143 else
2144 limit = fls(ap->sata_spd_limit);
2146 spd = (*scontrol >> 4) & 0xf;
2147 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2149 return spd != limit;
2153 * sata_set_spd_needed - is SATA spd configuration needed
2154 * @ap: Port in question
2156 * Test whether the spd limit in SControl matches
2157 * @ap->sata_spd_limit. This function is used to determine
2158 * whether hardreset is necessary to apply SATA spd
2159 * configuration.
2161 * LOCKING:
2162 * Inherited from caller.
2164 * RETURNS:
2165 * 1 if SATA spd configuration is needed, 0 otherwise.
2167 int sata_set_spd_needed(struct ata_port *ap)
2169 u32 scontrol;
2171 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2172 return 0;
2174 return __sata_set_spd_needed(ap, &scontrol);
2178 * sata_set_spd - set SATA spd according to spd limit
2179 * @ap: Port to set SATA spd for
2181 * Set SATA spd of @ap according to sata_spd_limit.
2183 * LOCKING:
2184 * Inherited from caller.
2186 * RETURNS:
2187 * 0 if spd doesn't need to be changed, 1 if spd has been
2188 * changed. Negative errno if SCR registers are inaccessible.
2190 int sata_set_spd(struct ata_port *ap)
2192 u32 scontrol;
2193 int rc;
2195 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2196 return rc;
2198 if (!__sata_set_spd_needed(ap, &scontrol))
2199 return 0;
2201 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2202 return rc;
2204 return 1;
2208 * This mode timing computation functionality is ported over from
2209 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2212 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2213 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2214 * for UDMA6, which is currently supported only by Maxtor drives.
2216 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2219 static const struct ata_timing ata_timing[] = {
2221 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2222 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2223 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2224 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2226 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2227 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2228 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2229 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2230 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2232 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2234 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2235 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2236 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2238 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2239 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2240 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2242 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2243 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2244 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2245 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2247 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2248 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2249 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2251 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2253 { 0xFF }
2256 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2257 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2259 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2261 q->setup = EZ(t->setup * 1000, T);
2262 q->act8b = EZ(t->act8b * 1000, T);
2263 q->rec8b = EZ(t->rec8b * 1000, T);
2264 q->cyc8b = EZ(t->cyc8b * 1000, T);
2265 q->active = EZ(t->active * 1000, T);
2266 q->recover = EZ(t->recover * 1000, T);
2267 q->cycle = EZ(t->cycle * 1000, T);
2268 q->udma = EZ(t->udma * 1000, UT);
2271 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2272 struct ata_timing *m, unsigned int what)
2274 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2275 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2276 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2277 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2278 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2279 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2280 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2281 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2284 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2286 const struct ata_timing *t;
2288 for (t = ata_timing; t->mode != speed; t++)
2289 if (t->mode == 0xFF)
2290 return NULL;
2291 return t;
2294 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2295 struct ata_timing *t, int T, int UT)
2297 const struct ata_timing *s;
2298 struct ata_timing p;
2301 * Find the mode.
2304 if (!(s = ata_timing_find_mode(speed)))
2305 return -EINVAL;
2307 memcpy(t, s, sizeof(*s));
2310 * If the drive is an EIDE drive, it can tell us it needs extended
2311 * PIO/MW_DMA cycle timing.
2314 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2315 memset(&p, 0, sizeof(p));
2316 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2317 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2318 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2319 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2320 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2322 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2326 * Convert the timing to bus clock counts.
2329 ata_timing_quantize(t, t, T, UT);
2332 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2333 * S.M.A.R.T * and some other commands. We have to ensure that the
2334 * DMA cycle timing is slower/equal than the fastest PIO timing.
2337 if (speed > XFER_PIO_6) {
2338 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2339 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2343 * Lengthen active & recovery time so that cycle time is correct.
2346 if (t->act8b + t->rec8b < t->cyc8b) {
2347 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2348 t->rec8b = t->cyc8b - t->act8b;
2351 if (t->active + t->recover < t->cycle) {
2352 t->active += (t->cycle - (t->active + t->recover)) / 2;
2353 t->recover = t->cycle - t->active;
2356 return 0;
2360 * ata_down_xfermask_limit - adjust dev xfer masks downward
2361 * @dev: Device to adjust xfer masks
2362 * @sel: ATA_DNXFER_* selector
2364 * Adjust xfer masks of @dev downward. Note that this function
2365 * does not apply the change. Invoking ata_set_mode() afterwards
2366 * will apply the limit.
2368 * LOCKING:
2369 * Inherited from caller.
2371 * RETURNS:
2372 * 0 on success, negative errno on failure
2374 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2376 char buf[32];
2377 unsigned int orig_mask, xfer_mask;
2378 unsigned int pio_mask, mwdma_mask, udma_mask;
2379 int quiet, highbit;
2381 quiet = !!(sel & ATA_DNXFER_QUIET);
2382 sel &= ~ATA_DNXFER_QUIET;
2384 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2385 dev->mwdma_mask,
2386 dev->udma_mask);
2387 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2389 switch (sel) {
2390 case ATA_DNXFER_PIO:
2391 highbit = fls(pio_mask) - 1;
2392 pio_mask &= ~(1 << highbit);
2393 break;
2395 case ATA_DNXFER_DMA:
2396 if (udma_mask) {
2397 highbit = fls(udma_mask) - 1;
2398 udma_mask &= ~(1 << highbit);
2399 if (!udma_mask)
2400 return -ENOENT;
2401 } else if (mwdma_mask) {
2402 highbit = fls(mwdma_mask) - 1;
2403 mwdma_mask &= ~(1 << highbit);
2404 if (!mwdma_mask)
2405 return -ENOENT;
2407 break;
2409 case ATA_DNXFER_40C:
2410 udma_mask &= ATA_UDMA_MASK_40C;
2411 break;
2413 case ATA_DNXFER_FORCE_PIO0:
2414 pio_mask &= 1;
2415 case ATA_DNXFER_FORCE_PIO:
2416 mwdma_mask = 0;
2417 udma_mask = 0;
2418 break;
2420 default:
2421 BUG();
2424 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2426 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2427 return -ENOENT;
2429 if (!quiet) {
2430 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2431 snprintf(buf, sizeof(buf), "%s:%s",
2432 ata_mode_string(xfer_mask),
2433 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2434 else
2435 snprintf(buf, sizeof(buf), "%s",
2436 ata_mode_string(xfer_mask));
2438 ata_dev_printk(dev, KERN_WARNING,
2439 "limiting speed to %s\n", buf);
2442 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2443 &dev->udma_mask);
2445 return 0;
2448 static int ata_dev_set_mode(struct ata_device *dev)
2450 struct ata_eh_context *ehc = &dev->ap->eh_context;
2451 unsigned int err_mask;
2452 int rc;
2454 dev->flags &= ~ATA_DFLAG_PIO;
2455 if (dev->xfer_shift == ATA_SHIFT_PIO)
2456 dev->flags |= ATA_DFLAG_PIO;
2458 err_mask = ata_dev_set_xfermode(dev);
2459 /* Old CFA may refuse this command, which is just fine */
2460 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2461 err_mask &= ~AC_ERR_DEV;
2463 if (err_mask) {
2464 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2465 "(err_mask=0x%x)\n", err_mask);
2466 return -EIO;
2469 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2470 rc = ata_dev_revalidate(dev, 0);
2471 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2472 if (rc)
2473 return rc;
2475 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2476 dev->xfer_shift, (int)dev->xfer_mode);
2478 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2479 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2480 return 0;
2484 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2485 * @ap: port on which timings will be programmed
2486 * @r_failed_dev: out paramter for failed device
2488 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2489 * ata_set_mode() fails, pointer to the failing device is
2490 * returned in @r_failed_dev.
2492 * LOCKING:
2493 * PCI/etc. bus probe sem.
2495 * RETURNS:
2496 * 0 on success, negative errno otherwise
2498 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2500 struct ata_device *dev;
2501 int i, rc = 0, used_dma = 0, found = 0;
2503 /* has private set_mode? */
2504 if (ap->ops->set_mode)
2505 return ap->ops->set_mode(ap, r_failed_dev);
2507 /* step 1: calculate xfer_mask */
2508 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2509 unsigned int pio_mask, dma_mask;
2511 dev = &ap->device[i];
2513 if (!ata_dev_enabled(dev))
2514 continue;
2516 ata_dev_xfermask(dev);
2518 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2519 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2520 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2521 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2523 found = 1;
2524 if (dev->dma_mode)
2525 used_dma = 1;
2527 if (!found)
2528 goto out;
2530 /* step 2: always set host PIO timings */
2531 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2532 dev = &ap->device[i];
2533 if (!ata_dev_enabled(dev))
2534 continue;
2536 if (!dev->pio_mode) {
2537 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2538 rc = -EINVAL;
2539 goto out;
2542 dev->xfer_mode = dev->pio_mode;
2543 dev->xfer_shift = ATA_SHIFT_PIO;
2544 if (ap->ops->set_piomode)
2545 ap->ops->set_piomode(ap, dev);
2548 /* step 3: set host DMA timings */
2549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2550 dev = &ap->device[i];
2552 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2553 continue;
2555 dev->xfer_mode = dev->dma_mode;
2556 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2557 if (ap->ops->set_dmamode)
2558 ap->ops->set_dmamode(ap, dev);
2561 /* step 4: update devices' xfer mode */
2562 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2563 dev = &ap->device[i];
2565 /* don't update suspended devices' xfer mode */
2566 if (!ata_dev_ready(dev))
2567 continue;
2569 rc = ata_dev_set_mode(dev);
2570 if (rc)
2571 goto out;
2574 /* Record simplex status. If we selected DMA then the other
2575 * host channels are not permitted to do so.
2577 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2578 ap->host->simplex_claimed = ap;
2580 /* step5: chip specific finalisation */
2581 if (ap->ops->post_set_mode)
2582 ap->ops->post_set_mode(ap);
2583 out:
2584 if (rc)
2585 *r_failed_dev = dev;
2586 return rc;
2590 * ata_tf_to_host - issue ATA taskfile to host controller
2591 * @ap: port to which command is being issued
2592 * @tf: ATA taskfile register set
2594 * Issues ATA taskfile register set to ATA host controller,
2595 * with proper synchronization with interrupt handler and
2596 * other threads.
2598 * LOCKING:
2599 * spin_lock_irqsave(host lock)
2602 static inline void ata_tf_to_host(struct ata_port *ap,
2603 const struct ata_taskfile *tf)
2605 ap->ops->tf_load(ap, tf);
2606 ap->ops->exec_command(ap, tf);
2610 * ata_busy_sleep - sleep until BSY clears, or timeout
2611 * @ap: port containing status register to be polled
2612 * @tmout_pat: impatience timeout
2613 * @tmout: overall timeout
2615 * Sleep until ATA Status register bit BSY clears,
2616 * or a timeout occurs.
2618 * LOCKING:
2619 * Kernel thread context (may sleep).
2621 * RETURNS:
2622 * 0 on success, -errno otherwise.
2624 int ata_busy_sleep(struct ata_port *ap,
2625 unsigned long tmout_pat, unsigned long tmout)
2627 unsigned long timer_start, timeout;
2628 u8 status;
2630 status = ata_busy_wait(ap, ATA_BUSY, 300);
2631 timer_start = jiffies;
2632 timeout = timer_start + tmout_pat;
2633 while (status != 0xff && (status & ATA_BUSY) &&
2634 time_before(jiffies, timeout)) {
2635 msleep(50);
2636 status = ata_busy_wait(ap, ATA_BUSY, 3);
2639 if (status != 0xff && (status & ATA_BUSY))
2640 ata_port_printk(ap, KERN_WARNING,
2641 "port is slow to respond, please be patient "
2642 "(Status 0x%x)\n", status);
2644 timeout = timer_start + tmout;
2645 while (status != 0xff && (status & ATA_BUSY) &&
2646 time_before(jiffies, timeout)) {
2647 msleep(50);
2648 status = ata_chk_status(ap);
2651 if (status == 0xff)
2652 return -ENODEV;
2654 if (status & ATA_BUSY) {
2655 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2656 "(%lu secs, Status 0x%x)\n",
2657 tmout / HZ, status);
2658 return -EBUSY;
2661 return 0;
2664 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2666 struct ata_ioports *ioaddr = &ap->ioaddr;
2667 unsigned int dev0 = devmask & (1 << 0);
2668 unsigned int dev1 = devmask & (1 << 1);
2669 unsigned long timeout;
2671 /* if device 0 was found in ata_devchk, wait for its
2672 * BSY bit to clear
2674 if (dev0)
2675 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2677 /* if device 1 was found in ata_devchk, wait for
2678 * register access, then wait for BSY to clear
2680 timeout = jiffies + ATA_TMOUT_BOOT;
2681 while (dev1) {
2682 u8 nsect, lbal;
2684 ap->ops->dev_select(ap, 1);
2685 nsect = ioread8(ioaddr->nsect_addr);
2686 lbal = ioread8(ioaddr->lbal_addr);
2687 if ((nsect == 1) && (lbal == 1))
2688 break;
2689 if (time_after(jiffies, timeout)) {
2690 dev1 = 0;
2691 break;
2693 msleep(50); /* give drive a breather */
2695 if (dev1)
2696 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2698 /* is all this really necessary? */
2699 ap->ops->dev_select(ap, 0);
2700 if (dev1)
2701 ap->ops->dev_select(ap, 1);
2702 if (dev0)
2703 ap->ops->dev_select(ap, 0);
2706 static unsigned int ata_bus_softreset(struct ata_port *ap,
2707 unsigned int devmask)
2709 struct ata_ioports *ioaddr = &ap->ioaddr;
2711 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2713 /* software reset. causes dev0 to be selected */
2714 iowrite8(ap->ctl, ioaddr->ctl_addr);
2715 udelay(20); /* FIXME: flush */
2716 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2717 udelay(20); /* FIXME: flush */
2718 iowrite8(ap->ctl, ioaddr->ctl_addr);
2720 /* spec mandates ">= 2ms" before checking status.
2721 * We wait 150ms, because that was the magic delay used for
2722 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2723 * between when the ATA command register is written, and then
2724 * status is checked. Because waiting for "a while" before
2725 * checking status is fine, post SRST, we perform this magic
2726 * delay here as well.
2728 * Old drivers/ide uses the 2mS rule and then waits for ready
2730 msleep(150);
2732 /* Before we perform post reset processing we want to see if
2733 * the bus shows 0xFF because the odd clown forgets the D7
2734 * pulldown resistor.
2736 if (ata_check_status(ap) == 0xFF)
2737 return 0;
2739 ata_bus_post_reset(ap, devmask);
2741 return 0;
2745 * ata_bus_reset - reset host port and associated ATA channel
2746 * @ap: port to reset
2748 * This is typically the first time we actually start issuing
2749 * commands to the ATA channel. We wait for BSY to clear, then
2750 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2751 * result. Determine what devices, if any, are on the channel
2752 * by looking at the device 0/1 error register. Look at the signature
2753 * stored in each device's taskfile registers, to determine if
2754 * the device is ATA or ATAPI.
2756 * LOCKING:
2757 * PCI/etc. bus probe sem.
2758 * Obtains host lock.
2760 * SIDE EFFECTS:
2761 * Sets ATA_FLAG_DISABLED if bus reset fails.
2764 void ata_bus_reset(struct ata_port *ap)
2766 struct ata_ioports *ioaddr = &ap->ioaddr;
2767 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2768 u8 err;
2769 unsigned int dev0, dev1 = 0, devmask = 0;
2771 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2773 /* determine if device 0/1 are present */
2774 if (ap->flags & ATA_FLAG_SATA_RESET)
2775 dev0 = 1;
2776 else {
2777 dev0 = ata_devchk(ap, 0);
2778 if (slave_possible)
2779 dev1 = ata_devchk(ap, 1);
2782 if (dev0)
2783 devmask |= (1 << 0);
2784 if (dev1)
2785 devmask |= (1 << 1);
2787 /* select device 0 again */
2788 ap->ops->dev_select(ap, 0);
2790 /* issue bus reset */
2791 if (ap->flags & ATA_FLAG_SRST)
2792 if (ata_bus_softreset(ap, devmask))
2793 goto err_out;
2796 * determine by signature whether we have ATA or ATAPI devices
2798 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2799 if ((slave_possible) && (err != 0x81))
2800 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2802 /* re-enable interrupts */
2803 ap->ops->irq_on(ap);
2805 /* is double-select really necessary? */
2806 if (ap->device[1].class != ATA_DEV_NONE)
2807 ap->ops->dev_select(ap, 1);
2808 if (ap->device[0].class != ATA_DEV_NONE)
2809 ap->ops->dev_select(ap, 0);
2811 /* if no devices were detected, disable this port */
2812 if ((ap->device[0].class == ATA_DEV_NONE) &&
2813 (ap->device[1].class == ATA_DEV_NONE))
2814 goto err_out;
2816 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2817 /* set up device control for ATA_FLAG_SATA_RESET */
2818 iowrite8(ap->ctl, ioaddr->ctl_addr);
2821 DPRINTK("EXIT\n");
2822 return;
2824 err_out:
2825 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2826 ap->ops->port_disable(ap);
2828 DPRINTK("EXIT\n");
2832 * sata_phy_debounce - debounce SATA phy status
2833 * @ap: ATA port to debounce SATA phy status for
2834 * @params: timing parameters { interval, duratinon, timeout } in msec
2836 * Make sure SStatus of @ap reaches stable state, determined by
2837 * holding the same value where DET is not 1 for @duration polled
2838 * every @interval, before @timeout. Timeout constraints the
2839 * beginning of the stable state. Because, after hot unplugging,
2840 * DET gets stuck at 1 on some controllers, this functions waits
2841 * until timeout then returns 0 if DET is stable at 1.
2843 * LOCKING:
2844 * Kernel thread context (may sleep)
2846 * RETURNS:
2847 * 0 on success, -errno on failure.
2849 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2851 unsigned long interval_msec = params[0];
2852 unsigned long duration = params[1] * HZ / 1000;
2853 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2854 unsigned long last_jiffies;
2855 u32 last, cur;
2856 int rc;
2858 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2859 return rc;
2860 cur &= 0xf;
2862 last = cur;
2863 last_jiffies = jiffies;
2865 while (1) {
2866 msleep(interval_msec);
2867 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2868 return rc;
2869 cur &= 0xf;
2871 /* DET stable? */
2872 if (cur == last) {
2873 if (cur == 1 && time_before(jiffies, timeout))
2874 continue;
2875 if (time_after(jiffies, last_jiffies + duration))
2876 return 0;
2877 continue;
2880 /* unstable, start over */
2881 last = cur;
2882 last_jiffies = jiffies;
2884 /* check timeout */
2885 if (time_after(jiffies, timeout))
2886 return -EBUSY;
2891 * sata_phy_resume - resume SATA phy
2892 * @ap: ATA port to resume SATA phy for
2893 * @params: timing parameters { interval, duratinon, timeout } in msec
2895 * Resume SATA phy of @ap and debounce it.
2897 * LOCKING:
2898 * Kernel thread context (may sleep)
2900 * RETURNS:
2901 * 0 on success, -errno on failure.
2903 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2905 u32 scontrol;
2906 int rc;
2908 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2909 return rc;
2911 scontrol = (scontrol & 0x0f0) | 0x300;
2913 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2914 return rc;
2916 /* Some PHYs react badly if SStatus is pounded immediately
2917 * after resuming. Delay 200ms before debouncing.
2919 msleep(200);
2921 return sata_phy_debounce(ap, params);
2924 static void ata_wait_spinup(struct ata_port *ap)
2926 struct ata_eh_context *ehc = &ap->eh_context;
2927 unsigned long end, secs;
2928 int rc;
2930 /* first, debounce phy if SATA */
2931 if (ap->cbl == ATA_CBL_SATA) {
2932 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2934 /* if debounced successfully and offline, no need to wait */
2935 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2936 return;
2939 /* okay, let's give the drive time to spin up */
2940 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2941 secs = ((end - jiffies) + HZ - 1) / HZ;
2943 if (time_after(jiffies, end))
2944 return;
2946 if (secs > 5)
2947 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2948 "(%lu secs)\n", secs);
2950 schedule_timeout_uninterruptible(end - jiffies);
2954 * ata_std_prereset - prepare for reset
2955 * @ap: ATA port to be reset
2957 * @ap is about to be reset. Initialize it.
2959 * LOCKING:
2960 * Kernel thread context (may sleep)
2962 * RETURNS:
2963 * 0 on success, -errno otherwise.
2965 int ata_std_prereset(struct ata_port *ap)
2967 struct ata_eh_context *ehc = &ap->eh_context;
2968 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2969 int rc;
2971 /* handle link resume & hotplug spinup */
2972 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2973 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2974 ehc->i.action |= ATA_EH_HARDRESET;
2976 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2977 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2978 ata_wait_spinup(ap);
2980 /* if we're about to do hardreset, nothing more to do */
2981 if (ehc->i.action & ATA_EH_HARDRESET)
2982 return 0;
2984 /* if SATA, resume phy */
2985 if (ap->cbl == ATA_CBL_SATA) {
2986 rc = sata_phy_resume(ap, timing);
2987 if (rc && rc != -EOPNOTSUPP) {
2988 /* phy resume failed */
2989 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2990 "link for reset (errno=%d)\n", rc);
2991 return rc;
2995 /* Wait for !BSY if the controller can wait for the first D2H
2996 * Reg FIS and we don't know that no device is attached.
2998 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2999 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3001 return 0;
3005 * ata_std_softreset - reset host port via ATA SRST
3006 * @ap: port to reset
3007 * @classes: resulting classes of attached devices
3009 * Reset host port using ATA SRST.
3011 * LOCKING:
3012 * Kernel thread context (may sleep)
3014 * RETURNS:
3015 * 0 on success, -errno otherwise.
3017 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3019 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3020 unsigned int devmask = 0, err_mask;
3021 u8 err;
3023 DPRINTK("ENTER\n");
3025 if (ata_port_offline(ap)) {
3026 classes[0] = ATA_DEV_NONE;
3027 goto out;
3030 /* determine if device 0/1 are present */
3031 if (ata_devchk(ap, 0))
3032 devmask |= (1 << 0);
3033 if (slave_possible && ata_devchk(ap, 1))
3034 devmask |= (1 << 1);
3036 /* select device 0 again */
3037 ap->ops->dev_select(ap, 0);
3039 /* issue bus reset */
3040 DPRINTK("about to softreset, devmask=%x\n", devmask);
3041 err_mask = ata_bus_softreset(ap, devmask);
3042 if (err_mask) {
3043 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3044 err_mask);
3045 return -EIO;
3048 /* determine by signature whether we have ATA or ATAPI devices */
3049 classes[0] = ata_dev_try_classify(ap, 0, &err);
3050 if (slave_possible && err != 0x81)
3051 classes[1] = ata_dev_try_classify(ap, 1, &err);
3053 out:
3054 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3055 return 0;
3059 * sata_port_hardreset - reset port via SATA phy reset
3060 * @ap: port to reset
3061 * @timing: timing parameters { interval, duratinon, timeout } in msec
3063 * SATA phy-reset host port using DET bits of SControl register.
3065 * LOCKING:
3066 * Kernel thread context (may sleep)
3068 * RETURNS:
3069 * 0 on success, -errno otherwise.
3071 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3073 u32 scontrol;
3074 int rc;
3076 DPRINTK("ENTER\n");
3078 if (sata_set_spd_needed(ap)) {
3079 /* SATA spec says nothing about how to reconfigure
3080 * spd. To be on the safe side, turn off phy during
3081 * reconfiguration. This works for at least ICH7 AHCI
3082 * and Sil3124.
3084 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3085 goto out;
3087 scontrol = (scontrol & 0x0f0) | 0x304;
3089 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3090 goto out;
3092 sata_set_spd(ap);
3095 /* issue phy wake/reset */
3096 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3097 goto out;
3099 scontrol = (scontrol & 0x0f0) | 0x301;
3101 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3102 goto out;
3104 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3105 * 10.4.2 says at least 1 ms.
3107 msleep(1);
3109 /* bring phy back */
3110 rc = sata_phy_resume(ap, timing);
3111 out:
3112 DPRINTK("EXIT, rc=%d\n", rc);
3113 return rc;
3117 * sata_std_hardreset - reset host port via SATA phy reset
3118 * @ap: port to reset
3119 * @class: resulting class of attached device
3121 * SATA phy-reset host port using DET bits of SControl register,
3122 * wait for !BSY and classify the attached device.
3124 * LOCKING:
3125 * Kernel thread context (may sleep)
3127 * RETURNS:
3128 * 0 on success, -errno otherwise.
3130 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3132 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3133 int rc;
3135 DPRINTK("ENTER\n");
3137 /* do hardreset */
3138 rc = sata_port_hardreset(ap, timing);
3139 if (rc) {
3140 ata_port_printk(ap, KERN_ERR,
3141 "COMRESET failed (errno=%d)\n", rc);
3142 return rc;
3145 /* TODO: phy layer with polling, timeouts, etc. */
3146 if (ata_port_offline(ap)) {
3147 *class = ATA_DEV_NONE;
3148 DPRINTK("EXIT, link offline\n");
3149 return 0;
3152 /* wait a while before checking status, see SRST for more info */
3153 msleep(150);
3155 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3156 ata_port_printk(ap, KERN_ERR,
3157 "COMRESET failed (device not ready)\n");
3158 return -EIO;
3161 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3163 *class = ata_dev_try_classify(ap, 0, NULL);
3165 DPRINTK("EXIT, class=%u\n", *class);
3166 return 0;
3170 * ata_std_postreset - standard postreset callback
3171 * @ap: the target ata_port
3172 * @classes: classes of attached devices
3174 * This function is invoked after a successful reset. Note that
3175 * the device might have been reset more than once using
3176 * different reset methods before postreset is invoked.
3178 * LOCKING:
3179 * Kernel thread context (may sleep)
3181 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3183 u32 serror;
3185 DPRINTK("ENTER\n");
3187 /* print link status */
3188 sata_print_link_status(ap);
3190 /* clear SError */
3191 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3192 sata_scr_write(ap, SCR_ERROR, serror);
3194 /* re-enable interrupts */
3195 if (!ap->ops->error_handler)
3196 ap->ops->irq_on(ap);
3198 /* is double-select really necessary? */
3199 if (classes[0] != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 1);
3201 if (classes[1] != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 0);
3204 /* bail out if no device is present */
3205 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3206 DPRINTK("EXIT, no device\n");
3207 return;
3210 /* set up device control */
3211 if (ap->ioaddr.ctl_addr)
3212 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3214 DPRINTK("EXIT\n");
3218 * ata_dev_same_device - Determine whether new ID matches configured device
3219 * @dev: device to compare against
3220 * @new_class: class of the new device
3221 * @new_id: IDENTIFY page of the new device
3223 * Compare @new_class and @new_id against @dev and determine
3224 * whether @dev is the device indicated by @new_class and
3225 * @new_id.
3227 * LOCKING:
3228 * None.
3230 * RETURNS:
3231 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3233 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3234 const u16 *new_id)
3236 const u16 *old_id = dev->id;
3237 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3238 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3239 u64 new_n_sectors;
3241 if (dev->class != new_class) {
3242 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3243 dev->class, new_class);
3244 return 0;
3247 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3248 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3249 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3250 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3251 new_n_sectors = ata_id_n_sectors(new_id);
3253 if (strcmp(model[0], model[1])) {
3254 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3255 "'%s' != '%s'\n", model[0], model[1]);
3256 return 0;
3259 if (strcmp(serial[0], serial[1])) {
3260 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3261 "'%s' != '%s'\n", serial[0], serial[1]);
3262 return 0;
3265 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3266 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3267 "%llu != %llu\n",
3268 (unsigned long long)dev->n_sectors,
3269 (unsigned long long)new_n_sectors);
3270 return 0;
3273 return 1;
3277 * ata_dev_revalidate - Revalidate ATA device
3278 * @dev: device to revalidate
3279 * @readid_flags: read ID flags
3281 * Re-read IDENTIFY page and make sure @dev is still attached to
3282 * the port.
3284 * LOCKING:
3285 * Kernel thread context (may sleep)
3287 * RETURNS:
3288 * 0 on success, negative errno otherwise
3290 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3292 unsigned int class = dev->class;
3293 u16 *id = (void *)dev->ap->sector_buf;
3294 int rc;
3296 if (!ata_dev_enabled(dev)) {
3297 rc = -ENODEV;
3298 goto fail;
3301 /* read ID data */
3302 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3303 if (rc)
3304 goto fail;
3306 /* is the device still there? */
3307 if (!ata_dev_same_device(dev, class, id)) {
3308 rc = -ENODEV;
3309 goto fail;
3312 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3314 /* configure device according to the new ID */
3315 rc = ata_dev_configure(dev);
3316 if (rc == 0)
3317 return 0;
3319 fail:
3320 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3321 return rc;
3324 struct ata_blacklist_entry {
3325 const char *model_num;
3326 const char *model_rev;
3327 unsigned long horkage;
3330 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3331 /* Devices with DMA related problems under Linux */
3332 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3333 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3334 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3335 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3336 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3337 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3338 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3339 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3340 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3341 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3342 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3343 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3344 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3345 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3346 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3347 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3348 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3349 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3350 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3351 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3352 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3353 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3354 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3355 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3356 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3357 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3358 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3359 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3360 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3362 /* Weird ATAPI devices */
3363 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3364 ATA_HORKAGE_DMA_RW_ONLY },
3366 /* Devices we expect to fail diagnostics */
3368 /* Devices where NCQ should be avoided */
3369 /* NCQ is slow */
3370 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3371 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3372 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3373 /* NCQ is broken */
3374 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3375 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3376 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3378 /* Devices with NCQ limits */
3380 /* End Marker */
3384 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3386 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3387 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3388 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3390 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3391 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3393 while (ad->model_num) {
3394 if (!strcmp(ad->model_num, model_num)) {
3395 if (ad->model_rev == NULL)
3396 return ad->horkage;
3397 if (!strcmp(ad->model_rev, model_rev))
3398 return ad->horkage;
3400 ad++;
3402 return 0;
3405 static int ata_dma_blacklisted(const struct ata_device *dev)
3407 /* We don't support polling DMA.
3408 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3409 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3411 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3412 (dev->flags & ATA_DFLAG_CDB_INTR))
3413 return 1;
3414 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3418 * ata_dev_xfermask - Compute supported xfermask of the given device
3419 * @dev: Device to compute xfermask for
3421 * Compute supported xfermask of @dev and store it in
3422 * dev->*_mask. This function is responsible for applying all
3423 * known limits including host controller limits, device
3424 * blacklist, etc...
3426 * LOCKING:
3427 * None.
3429 static void ata_dev_xfermask(struct ata_device *dev)
3431 struct ata_port *ap = dev->ap;
3432 struct ata_host *host = ap->host;
3433 unsigned long xfer_mask;
3435 /* controller modes available */
3436 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3437 ap->mwdma_mask, ap->udma_mask);
3439 /* Apply cable rule here. Don't apply it early because when
3440 * we handle hot plug the cable type can itself change.
3442 if (ap->cbl == ATA_CBL_PATA40)
3443 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3444 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3445 * host side are checked drive side as well. Cases where we know a
3446 * 40wire cable is used safely for 80 are not checked here.
3448 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3449 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3452 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3453 dev->mwdma_mask, dev->udma_mask);
3454 xfer_mask &= ata_id_xfermask(dev->id);
3457 * CFA Advanced TrueIDE timings are not allowed on a shared
3458 * cable
3460 if (ata_dev_pair(dev)) {
3461 /* No PIO5 or PIO6 */
3462 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3463 /* No MWDMA3 or MWDMA 4 */
3464 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3467 if (ata_dma_blacklisted(dev)) {
3468 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3469 ata_dev_printk(dev, KERN_WARNING,
3470 "device is on DMA blacklist, disabling DMA\n");
3473 if ((host->flags & ATA_HOST_SIMPLEX) &&
3474 host->simplex_claimed && host->simplex_claimed != ap) {
3475 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3476 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3477 "other device, disabling DMA\n");
3480 if (ap->ops->mode_filter)
3481 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3483 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3484 &dev->mwdma_mask, &dev->udma_mask);
3488 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3489 * @dev: Device to which command will be sent
3491 * Issue SET FEATURES - XFER MODE command to device @dev
3492 * on port @ap.
3494 * LOCKING:
3495 * PCI/etc. bus probe sem.
3497 * RETURNS:
3498 * 0 on success, AC_ERR_* mask otherwise.
3501 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3503 struct ata_taskfile tf;
3504 unsigned int err_mask;
3506 /* set up set-features taskfile */
3507 DPRINTK("set features - xfer mode\n");
3509 ata_tf_init(dev, &tf);
3510 tf.command = ATA_CMD_SET_FEATURES;
3511 tf.feature = SETFEATURES_XFER;
3512 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3513 tf.protocol = ATA_PROT_NODATA;
3514 tf.nsect = dev->xfer_mode;
3516 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3518 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3519 return err_mask;
3523 * ata_dev_init_params - Issue INIT DEV PARAMS command
3524 * @dev: Device to which command will be sent
3525 * @heads: Number of heads (taskfile parameter)
3526 * @sectors: Number of sectors (taskfile parameter)
3528 * LOCKING:
3529 * Kernel thread context (may sleep)
3531 * RETURNS:
3532 * 0 on success, AC_ERR_* mask otherwise.
3534 static unsigned int ata_dev_init_params(struct ata_device *dev,
3535 u16 heads, u16 sectors)
3537 struct ata_taskfile tf;
3538 unsigned int err_mask;
3540 /* Number of sectors per track 1-255. Number of heads 1-16 */
3541 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3542 return AC_ERR_INVALID;
3544 /* set up init dev params taskfile */
3545 DPRINTK("init dev params \n");
3547 ata_tf_init(dev, &tf);
3548 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3549 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3550 tf.protocol = ATA_PROT_NODATA;
3551 tf.nsect = sectors;
3552 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3554 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3556 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3557 return err_mask;
3561 * ata_sg_clean - Unmap DMA memory associated with command
3562 * @qc: Command containing DMA memory to be released
3564 * Unmap all mapped DMA memory associated with this command.
3566 * LOCKING:
3567 * spin_lock_irqsave(host lock)
3569 void ata_sg_clean(struct ata_queued_cmd *qc)
3571 struct ata_port *ap = qc->ap;
3572 struct scatterlist *sg = qc->__sg;
3573 int dir = qc->dma_dir;
3574 void *pad_buf = NULL;
3576 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3577 WARN_ON(sg == NULL);
3579 if (qc->flags & ATA_QCFLAG_SINGLE)
3580 WARN_ON(qc->n_elem > 1);
3582 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3584 /* if we padded the buffer out to 32-bit bound, and data
3585 * xfer direction is from-device, we must copy from the
3586 * pad buffer back into the supplied buffer
3588 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3589 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3591 if (qc->flags & ATA_QCFLAG_SG) {
3592 if (qc->n_elem)
3593 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3594 /* restore last sg */
3595 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3596 if (pad_buf) {
3597 struct scatterlist *psg = &qc->pad_sgent;
3598 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3599 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3600 kunmap_atomic(addr, KM_IRQ0);
3602 } else {
3603 if (qc->n_elem)
3604 dma_unmap_single(ap->dev,
3605 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3606 dir);
3607 /* restore sg */
3608 sg->length += qc->pad_len;
3609 if (pad_buf)
3610 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3611 pad_buf, qc->pad_len);
3614 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3615 qc->__sg = NULL;
3619 * ata_fill_sg - Fill PCI IDE PRD table
3620 * @qc: Metadata associated with taskfile to be transferred
3622 * Fill PCI IDE PRD (scatter-gather) table with segments
3623 * associated with the current disk command.
3625 * LOCKING:
3626 * spin_lock_irqsave(host lock)
3629 static void ata_fill_sg(struct ata_queued_cmd *qc)
3631 struct ata_port *ap = qc->ap;
3632 struct scatterlist *sg;
3633 unsigned int idx;
3635 WARN_ON(qc->__sg == NULL);
3636 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3638 idx = 0;
3639 ata_for_each_sg(sg, qc) {
3640 u32 addr, offset;
3641 u32 sg_len, len;
3643 /* determine if physical DMA addr spans 64K boundary.
3644 * Note h/w doesn't support 64-bit, so we unconditionally
3645 * truncate dma_addr_t to u32.
3647 addr = (u32) sg_dma_address(sg);
3648 sg_len = sg_dma_len(sg);
3650 while (sg_len) {
3651 offset = addr & 0xffff;
3652 len = sg_len;
3653 if ((offset + sg_len) > 0x10000)
3654 len = 0x10000 - offset;
3656 ap->prd[idx].addr = cpu_to_le32(addr);
3657 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3658 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3660 idx++;
3661 sg_len -= len;
3662 addr += len;
3666 if (idx)
3667 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3670 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3671 * @qc: Metadata associated with taskfile to check
3673 * Allow low-level driver to filter ATA PACKET commands, returning
3674 * a status indicating whether or not it is OK to use DMA for the
3675 * supplied PACKET command.
3677 * LOCKING:
3678 * spin_lock_irqsave(host lock)
3680 * RETURNS: 0 when ATAPI DMA can be used
3681 * nonzero otherwise
3683 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3685 struct ata_port *ap = qc->ap;
3686 int rc = 0; /* Assume ATAPI DMA is OK by default */
3688 /* some drives can only do ATAPI DMA on read/write */
3689 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3690 struct scsi_cmnd *cmd = qc->scsicmd;
3691 u8 *scsicmd = cmd->cmnd;
3693 switch (scsicmd[0]) {
3694 case READ_10:
3695 case WRITE_10:
3696 case READ_12:
3697 case WRITE_12:
3698 case READ_6:
3699 case WRITE_6:
3700 /* atapi dma maybe ok */
3701 break;
3702 default:
3703 /* turn off atapi dma */
3704 return 1;
3708 if (ap->ops->check_atapi_dma)
3709 rc = ap->ops->check_atapi_dma(qc);
3711 return rc;
3714 * ata_qc_prep - Prepare taskfile for submission
3715 * @qc: Metadata associated with taskfile to be prepared
3717 * Prepare ATA taskfile for submission.
3719 * LOCKING:
3720 * spin_lock_irqsave(host lock)
3722 void ata_qc_prep(struct ata_queued_cmd *qc)
3724 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3725 return;
3727 ata_fill_sg(qc);
3730 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3733 * ata_sg_init_one - Associate command with memory buffer
3734 * @qc: Command to be associated
3735 * @buf: Memory buffer
3736 * @buflen: Length of memory buffer, in bytes.
3738 * Initialize the data-related elements of queued_cmd @qc
3739 * to point to a single memory buffer, @buf of byte length @buflen.
3741 * LOCKING:
3742 * spin_lock_irqsave(host lock)
3745 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3747 qc->flags |= ATA_QCFLAG_SINGLE;
3749 qc->__sg = &qc->sgent;
3750 qc->n_elem = 1;
3751 qc->orig_n_elem = 1;
3752 qc->buf_virt = buf;
3753 qc->nbytes = buflen;
3755 sg_init_one(&qc->sgent, buf, buflen);
3759 * ata_sg_init - Associate command with scatter-gather table.
3760 * @qc: Command to be associated
3761 * @sg: Scatter-gather table.
3762 * @n_elem: Number of elements in s/g table.
3764 * Initialize the data-related elements of queued_cmd @qc
3765 * to point to a scatter-gather table @sg, containing @n_elem
3766 * elements.
3768 * LOCKING:
3769 * spin_lock_irqsave(host lock)
3772 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3773 unsigned int n_elem)
3775 qc->flags |= ATA_QCFLAG_SG;
3776 qc->__sg = sg;
3777 qc->n_elem = n_elem;
3778 qc->orig_n_elem = n_elem;
3782 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3783 * @qc: Command with memory buffer to be mapped.
3785 * DMA-map the memory buffer associated with queued_cmd @qc.
3787 * LOCKING:
3788 * spin_lock_irqsave(host lock)
3790 * RETURNS:
3791 * Zero on success, negative on error.
3794 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3796 struct ata_port *ap = qc->ap;
3797 int dir = qc->dma_dir;
3798 struct scatterlist *sg = qc->__sg;
3799 dma_addr_t dma_address;
3800 int trim_sg = 0;
3802 /* we must lengthen transfers to end on a 32-bit boundary */
3803 qc->pad_len = sg->length & 3;
3804 if (qc->pad_len) {
3805 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3806 struct scatterlist *psg = &qc->pad_sgent;
3808 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3810 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3812 if (qc->tf.flags & ATA_TFLAG_WRITE)
3813 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3814 qc->pad_len);
3816 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3817 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3818 /* trim sg */
3819 sg->length -= qc->pad_len;
3820 if (sg->length == 0)
3821 trim_sg = 1;
3823 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3824 sg->length, qc->pad_len);
3827 if (trim_sg) {
3828 qc->n_elem--;
3829 goto skip_map;
3832 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3833 sg->length, dir);
3834 if (dma_mapping_error(dma_address)) {
3835 /* restore sg */
3836 sg->length += qc->pad_len;
3837 return -1;
3840 sg_dma_address(sg) = dma_address;
3841 sg_dma_len(sg) = sg->length;
3843 skip_map:
3844 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3845 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3847 return 0;
3851 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3852 * @qc: Command with scatter-gather table to be mapped.
3854 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3856 * LOCKING:
3857 * spin_lock_irqsave(host lock)
3859 * RETURNS:
3860 * Zero on success, negative on error.
3864 static int ata_sg_setup(struct ata_queued_cmd *qc)
3866 struct ata_port *ap = qc->ap;
3867 struct scatterlist *sg = qc->__sg;
3868 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3869 int n_elem, pre_n_elem, dir, trim_sg = 0;
3871 VPRINTK("ENTER, ata%u\n", ap->print_id);
3872 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3874 /* we must lengthen transfers to end on a 32-bit boundary */
3875 qc->pad_len = lsg->length & 3;
3876 if (qc->pad_len) {
3877 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3878 struct scatterlist *psg = &qc->pad_sgent;
3879 unsigned int offset;
3881 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3883 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3886 * psg->page/offset are used to copy to-be-written
3887 * data in this function or read data in ata_sg_clean.
3889 offset = lsg->offset + lsg->length - qc->pad_len;
3890 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3891 psg->offset = offset_in_page(offset);
3893 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3894 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3895 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3896 kunmap_atomic(addr, KM_IRQ0);
3899 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3900 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3901 /* trim last sg */
3902 lsg->length -= qc->pad_len;
3903 if (lsg->length == 0)
3904 trim_sg = 1;
3906 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3907 qc->n_elem - 1, lsg->length, qc->pad_len);
3910 pre_n_elem = qc->n_elem;
3911 if (trim_sg && pre_n_elem)
3912 pre_n_elem--;
3914 if (!pre_n_elem) {
3915 n_elem = 0;
3916 goto skip_map;
3919 dir = qc->dma_dir;
3920 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3921 if (n_elem < 1) {
3922 /* restore last sg */
3923 lsg->length += qc->pad_len;
3924 return -1;
3927 DPRINTK("%d sg elements mapped\n", n_elem);
3929 skip_map:
3930 qc->n_elem = n_elem;
3932 return 0;
3936 * swap_buf_le16 - swap halves of 16-bit words in place
3937 * @buf: Buffer to swap
3938 * @buf_words: Number of 16-bit words in buffer.
3940 * Swap halves of 16-bit words if needed to convert from
3941 * little-endian byte order to native cpu byte order, or
3942 * vice-versa.
3944 * LOCKING:
3945 * Inherited from caller.
3947 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3949 #ifdef __BIG_ENDIAN
3950 unsigned int i;
3952 for (i = 0; i < buf_words; i++)
3953 buf[i] = le16_to_cpu(buf[i]);
3954 #endif /* __BIG_ENDIAN */
3958 * ata_data_xfer - Transfer data by PIO
3959 * @adev: device to target
3960 * @buf: data buffer
3961 * @buflen: buffer length
3962 * @write_data: read/write
3964 * Transfer data from/to the device data register by PIO.
3966 * LOCKING:
3967 * Inherited from caller.
3969 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3970 unsigned int buflen, int write_data)
3972 struct ata_port *ap = adev->ap;
3973 unsigned int words = buflen >> 1;
3975 /* Transfer multiple of 2 bytes */
3976 if (write_data)
3977 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3978 else
3979 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3981 /* Transfer trailing 1 byte, if any. */
3982 if (unlikely(buflen & 0x01)) {
3983 u16 align_buf[1] = { 0 };
3984 unsigned char *trailing_buf = buf + buflen - 1;
3986 if (write_data) {
3987 memcpy(align_buf, trailing_buf, 1);
3988 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3989 } else {
3990 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3991 memcpy(trailing_buf, align_buf, 1);
3997 * ata_data_xfer_noirq - Transfer data by PIO
3998 * @adev: device to target
3999 * @buf: data buffer
4000 * @buflen: buffer length
4001 * @write_data: read/write
4003 * Transfer data from/to the device data register by PIO. Do the
4004 * transfer with interrupts disabled.
4006 * LOCKING:
4007 * Inherited from caller.
4009 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4010 unsigned int buflen, int write_data)
4012 unsigned long flags;
4013 local_irq_save(flags);
4014 ata_data_xfer(adev, buf, buflen, write_data);
4015 local_irq_restore(flags);
4020 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4021 * @qc: Command on going
4023 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4025 * LOCKING:
4026 * Inherited from caller.
4029 static void ata_pio_sector(struct ata_queued_cmd *qc)
4031 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4032 struct scatterlist *sg = qc->__sg;
4033 struct ata_port *ap = qc->ap;
4034 struct page *page;
4035 unsigned int offset;
4036 unsigned char *buf;
4038 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4039 ap->hsm_task_state = HSM_ST_LAST;
4041 page = sg[qc->cursg].page;
4042 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4044 /* get the current page and offset */
4045 page = nth_page(page, (offset >> PAGE_SHIFT));
4046 offset %= PAGE_SIZE;
4048 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4050 if (PageHighMem(page)) {
4051 unsigned long flags;
4053 /* FIXME: use a bounce buffer */
4054 local_irq_save(flags);
4055 buf = kmap_atomic(page, KM_IRQ0);
4057 /* do the actual data transfer */
4058 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4060 kunmap_atomic(buf, KM_IRQ0);
4061 local_irq_restore(flags);
4062 } else {
4063 buf = page_address(page);
4064 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4067 qc->curbytes += ATA_SECT_SIZE;
4068 qc->cursg_ofs += ATA_SECT_SIZE;
4070 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4071 qc->cursg++;
4072 qc->cursg_ofs = 0;
4077 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4078 * @qc: Command on going
4080 * Transfer one or many ATA_SECT_SIZE of data from/to the
4081 * ATA device for the DRQ request.
4083 * LOCKING:
4084 * Inherited from caller.
4087 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4089 if (is_multi_taskfile(&qc->tf)) {
4090 /* READ/WRITE MULTIPLE */
4091 unsigned int nsect;
4093 WARN_ON(qc->dev->multi_count == 0);
4095 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4096 qc->dev->multi_count);
4097 while (nsect--)
4098 ata_pio_sector(qc);
4099 } else
4100 ata_pio_sector(qc);
4104 * atapi_send_cdb - Write CDB bytes to hardware
4105 * @ap: Port to which ATAPI device is attached.
4106 * @qc: Taskfile currently active
4108 * When device has indicated its readiness to accept
4109 * a CDB, this function is called. Send the CDB.
4111 * LOCKING:
4112 * caller.
4115 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4117 /* send SCSI cdb */
4118 DPRINTK("send cdb\n");
4119 WARN_ON(qc->dev->cdb_len < 12);
4121 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4122 ata_altstatus(ap); /* flush */
4124 switch (qc->tf.protocol) {
4125 case ATA_PROT_ATAPI:
4126 ap->hsm_task_state = HSM_ST;
4127 break;
4128 case ATA_PROT_ATAPI_NODATA:
4129 ap->hsm_task_state = HSM_ST_LAST;
4130 break;
4131 case ATA_PROT_ATAPI_DMA:
4132 ap->hsm_task_state = HSM_ST_LAST;
4133 /* initiate bmdma */
4134 ap->ops->bmdma_start(qc);
4135 break;
4140 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4141 * @qc: Command on going
4142 * @bytes: number of bytes
4144 * Transfer Transfer data from/to the ATAPI device.
4146 * LOCKING:
4147 * Inherited from caller.
4151 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4153 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4154 struct scatterlist *sg = qc->__sg;
4155 struct ata_port *ap = qc->ap;
4156 struct page *page;
4157 unsigned char *buf;
4158 unsigned int offset, count;
4160 if (qc->curbytes + bytes >= qc->nbytes)
4161 ap->hsm_task_state = HSM_ST_LAST;
4163 next_sg:
4164 if (unlikely(qc->cursg >= qc->n_elem)) {
4166 * The end of qc->sg is reached and the device expects
4167 * more data to transfer. In order not to overrun qc->sg
4168 * and fulfill length specified in the byte count register,
4169 * - for read case, discard trailing data from the device
4170 * - for write case, padding zero data to the device
4172 u16 pad_buf[1] = { 0 };
4173 unsigned int words = bytes >> 1;
4174 unsigned int i;
4176 if (words) /* warning if bytes > 1 */
4177 ata_dev_printk(qc->dev, KERN_WARNING,
4178 "%u bytes trailing data\n", bytes);
4180 for (i = 0; i < words; i++)
4181 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4183 ap->hsm_task_state = HSM_ST_LAST;
4184 return;
4187 sg = &qc->__sg[qc->cursg];
4189 page = sg->page;
4190 offset = sg->offset + qc->cursg_ofs;
4192 /* get the current page and offset */
4193 page = nth_page(page, (offset >> PAGE_SHIFT));
4194 offset %= PAGE_SIZE;
4196 /* don't overrun current sg */
4197 count = min(sg->length - qc->cursg_ofs, bytes);
4199 /* don't cross page boundaries */
4200 count = min(count, (unsigned int)PAGE_SIZE - offset);
4202 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4204 if (PageHighMem(page)) {
4205 unsigned long flags;
4207 /* FIXME: use bounce buffer */
4208 local_irq_save(flags);
4209 buf = kmap_atomic(page, KM_IRQ0);
4211 /* do the actual data transfer */
4212 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4214 kunmap_atomic(buf, KM_IRQ0);
4215 local_irq_restore(flags);
4216 } else {
4217 buf = page_address(page);
4218 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4221 bytes -= count;
4222 qc->curbytes += count;
4223 qc->cursg_ofs += count;
4225 if (qc->cursg_ofs == sg->length) {
4226 qc->cursg++;
4227 qc->cursg_ofs = 0;
4230 if (bytes)
4231 goto next_sg;
4235 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4236 * @qc: Command on going
4238 * Transfer Transfer data from/to the ATAPI device.
4240 * LOCKING:
4241 * Inherited from caller.
4244 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4246 struct ata_port *ap = qc->ap;
4247 struct ata_device *dev = qc->dev;
4248 unsigned int ireason, bc_lo, bc_hi, bytes;
4249 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4251 /* Abuse qc->result_tf for temp storage of intermediate TF
4252 * here to save some kernel stack usage.
4253 * For normal completion, qc->result_tf is not relevant. For
4254 * error, qc->result_tf is later overwritten by ata_qc_complete().
4255 * So, the correctness of qc->result_tf is not affected.
4257 ap->ops->tf_read(ap, &qc->result_tf);
4258 ireason = qc->result_tf.nsect;
4259 bc_lo = qc->result_tf.lbam;
4260 bc_hi = qc->result_tf.lbah;
4261 bytes = (bc_hi << 8) | bc_lo;
4263 /* shall be cleared to zero, indicating xfer of data */
4264 if (ireason & (1 << 0))
4265 goto err_out;
4267 /* make sure transfer direction matches expected */
4268 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4269 if (do_write != i_write)
4270 goto err_out;
4272 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4274 __atapi_pio_bytes(qc, bytes);
4276 return;
4278 err_out:
4279 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4280 qc->err_mask |= AC_ERR_HSM;
4281 ap->hsm_task_state = HSM_ST_ERR;
4285 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4286 * @ap: the target ata_port
4287 * @qc: qc on going
4289 * RETURNS:
4290 * 1 if ok in workqueue, 0 otherwise.
4293 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4295 if (qc->tf.flags & ATA_TFLAG_POLLING)
4296 return 1;
4298 if (ap->hsm_task_state == HSM_ST_FIRST) {
4299 if (qc->tf.protocol == ATA_PROT_PIO &&
4300 (qc->tf.flags & ATA_TFLAG_WRITE))
4301 return 1;
4303 if (is_atapi_taskfile(&qc->tf) &&
4304 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4305 return 1;
4308 return 0;
4312 * ata_hsm_qc_complete - finish a qc running on standard HSM
4313 * @qc: Command to complete
4314 * @in_wq: 1 if called from workqueue, 0 otherwise
4316 * Finish @qc which is running on standard HSM.
4318 * LOCKING:
4319 * If @in_wq is zero, spin_lock_irqsave(host lock).
4320 * Otherwise, none on entry and grabs host lock.
4322 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4324 struct ata_port *ap = qc->ap;
4325 unsigned long flags;
4327 if (ap->ops->error_handler) {
4328 if (in_wq) {
4329 spin_lock_irqsave(ap->lock, flags);
4331 /* EH might have kicked in while host lock is
4332 * released.
4334 qc = ata_qc_from_tag(ap, qc->tag);
4335 if (qc) {
4336 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4337 ap->ops->irq_on(ap);
4338 ata_qc_complete(qc);
4339 } else
4340 ata_port_freeze(ap);
4343 spin_unlock_irqrestore(ap->lock, flags);
4344 } else {
4345 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4346 ata_qc_complete(qc);
4347 else
4348 ata_port_freeze(ap);
4350 } else {
4351 if (in_wq) {
4352 spin_lock_irqsave(ap->lock, flags);
4353 ap->ops->irq_on(ap);
4354 ata_qc_complete(qc);
4355 spin_unlock_irqrestore(ap->lock, flags);
4356 } else
4357 ata_qc_complete(qc);
4360 ata_altstatus(ap); /* flush */
4364 * ata_hsm_move - move the HSM to the next state.
4365 * @ap: the target ata_port
4366 * @qc: qc on going
4367 * @status: current device status
4368 * @in_wq: 1 if called from workqueue, 0 otherwise
4370 * RETURNS:
4371 * 1 when poll next status needed, 0 otherwise.
4373 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4374 u8 status, int in_wq)
4376 unsigned long flags = 0;
4377 int poll_next;
4379 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4381 /* Make sure ata_qc_issue_prot() does not throw things
4382 * like DMA polling into the workqueue. Notice that
4383 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4385 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4387 fsm_start:
4388 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4389 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4391 switch (ap->hsm_task_state) {
4392 case HSM_ST_FIRST:
4393 /* Send first data block or PACKET CDB */
4395 /* If polling, we will stay in the work queue after
4396 * sending the data. Otherwise, interrupt handler
4397 * takes over after sending the data.
4399 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4401 /* check device status */
4402 if (unlikely((status & ATA_DRQ) == 0)) {
4403 /* handle BSY=0, DRQ=0 as error */
4404 if (likely(status & (ATA_ERR | ATA_DF)))
4405 /* device stops HSM for abort/error */
4406 qc->err_mask |= AC_ERR_DEV;
4407 else
4408 /* HSM violation. Let EH handle this */
4409 qc->err_mask |= AC_ERR_HSM;
4411 ap->hsm_task_state = HSM_ST_ERR;
4412 goto fsm_start;
4415 /* Device should not ask for data transfer (DRQ=1)
4416 * when it finds something wrong.
4417 * We ignore DRQ here and stop the HSM by
4418 * changing hsm_task_state to HSM_ST_ERR and
4419 * let the EH abort the command or reset the device.
4421 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4422 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4423 "error, dev_stat 0x%X\n", status);
4424 qc->err_mask |= AC_ERR_HSM;
4425 ap->hsm_task_state = HSM_ST_ERR;
4426 goto fsm_start;
4429 /* Send the CDB (atapi) or the first data block (ata pio out).
4430 * During the state transition, interrupt handler shouldn't
4431 * be invoked before the data transfer is complete and
4432 * hsm_task_state is changed. Hence, the following locking.
4434 if (in_wq)
4435 spin_lock_irqsave(ap->lock, flags);
4437 if (qc->tf.protocol == ATA_PROT_PIO) {
4438 /* PIO data out protocol.
4439 * send first data block.
4442 /* ata_pio_sectors() might change the state
4443 * to HSM_ST_LAST. so, the state is changed here
4444 * before ata_pio_sectors().
4446 ap->hsm_task_state = HSM_ST;
4447 ata_pio_sectors(qc);
4448 ata_altstatus(ap); /* flush */
4449 } else
4450 /* send CDB */
4451 atapi_send_cdb(ap, qc);
4453 if (in_wq)
4454 spin_unlock_irqrestore(ap->lock, flags);
4456 /* if polling, ata_pio_task() handles the rest.
4457 * otherwise, interrupt handler takes over from here.
4459 break;
4461 case HSM_ST:
4462 /* complete command or read/write the data register */
4463 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4464 /* ATAPI PIO protocol */
4465 if ((status & ATA_DRQ) == 0) {
4466 /* No more data to transfer or device error.
4467 * Device error will be tagged in HSM_ST_LAST.
4469 ap->hsm_task_state = HSM_ST_LAST;
4470 goto fsm_start;
4473 /* Device should not ask for data transfer (DRQ=1)
4474 * when it finds something wrong.
4475 * We ignore DRQ here and stop the HSM by
4476 * changing hsm_task_state to HSM_ST_ERR and
4477 * let the EH abort the command or reset the device.
4479 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4480 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4481 "device error, dev_stat 0x%X\n",
4482 status);
4483 qc->err_mask |= AC_ERR_HSM;
4484 ap->hsm_task_state = HSM_ST_ERR;
4485 goto fsm_start;
4488 atapi_pio_bytes(qc);
4490 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4491 /* bad ireason reported by device */
4492 goto fsm_start;
4494 } else {
4495 /* ATA PIO protocol */
4496 if (unlikely((status & ATA_DRQ) == 0)) {
4497 /* handle BSY=0, DRQ=0 as error */
4498 if (likely(status & (ATA_ERR | ATA_DF)))
4499 /* device stops HSM for abort/error */
4500 qc->err_mask |= AC_ERR_DEV;
4501 else
4502 /* HSM violation. Let EH handle this.
4503 * Phantom devices also trigger this
4504 * condition. Mark hint.
4506 qc->err_mask |= AC_ERR_HSM |
4507 AC_ERR_NODEV_HINT;
4509 ap->hsm_task_state = HSM_ST_ERR;
4510 goto fsm_start;
4513 /* For PIO reads, some devices may ask for
4514 * data transfer (DRQ=1) alone with ERR=1.
4515 * We respect DRQ here and transfer one
4516 * block of junk data before changing the
4517 * hsm_task_state to HSM_ST_ERR.
4519 * For PIO writes, ERR=1 DRQ=1 doesn't make
4520 * sense since the data block has been
4521 * transferred to the device.
4523 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4524 /* data might be corrputed */
4525 qc->err_mask |= AC_ERR_DEV;
4527 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4528 ata_pio_sectors(qc);
4529 ata_altstatus(ap);
4530 status = ata_wait_idle(ap);
4533 if (status & (ATA_BUSY | ATA_DRQ))
4534 qc->err_mask |= AC_ERR_HSM;
4536 /* ata_pio_sectors() might change the
4537 * state to HSM_ST_LAST. so, the state
4538 * is changed after ata_pio_sectors().
4540 ap->hsm_task_state = HSM_ST_ERR;
4541 goto fsm_start;
4544 ata_pio_sectors(qc);
4546 if (ap->hsm_task_state == HSM_ST_LAST &&
4547 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4548 /* all data read */
4549 ata_altstatus(ap);
4550 status = ata_wait_idle(ap);
4551 goto fsm_start;
4555 ata_altstatus(ap); /* flush */
4556 poll_next = 1;
4557 break;
4559 case HSM_ST_LAST:
4560 if (unlikely(!ata_ok(status))) {
4561 qc->err_mask |= __ac_err_mask(status);
4562 ap->hsm_task_state = HSM_ST_ERR;
4563 goto fsm_start;
4566 /* no more data to transfer */
4567 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4568 ap->print_id, qc->dev->devno, status);
4570 WARN_ON(qc->err_mask);
4572 ap->hsm_task_state = HSM_ST_IDLE;
4574 /* complete taskfile transaction */
4575 ata_hsm_qc_complete(qc, in_wq);
4577 poll_next = 0;
4578 break;
4580 case HSM_ST_ERR:
4581 /* make sure qc->err_mask is available to
4582 * know what's wrong and recover
4584 WARN_ON(qc->err_mask == 0);
4586 ap->hsm_task_state = HSM_ST_IDLE;
4588 /* complete taskfile transaction */
4589 ata_hsm_qc_complete(qc, in_wq);
4591 poll_next = 0;
4592 break;
4593 default:
4594 poll_next = 0;
4595 BUG();
4598 return poll_next;
4601 static void ata_pio_task(struct work_struct *work)
4603 struct ata_port *ap =
4604 container_of(work, struct ata_port, port_task.work);
4605 struct ata_queued_cmd *qc = ap->port_task_data;
4606 u8 status;
4607 int poll_next;
4609 fsm_start:
4610 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4613 * This is purely heuristic. This is a fast path.
4614 * Sometimes when we enter, BSY will be cleared in
4615 * a chk-status or two. If not, the drive is probably seeking
4616 * or something. Snooze for a couple msecs, then
4617 * chk-status again. If still busy, queue delayed work.
4619 status = ata_busy_wait(ap, ATA_BUSY, 5);
4620 if (status & ATA_BUSY) {
4621 msleep(2);
4622 status = ata_busy_wait(ap, ATA_BUSY, 10);
4623 if (status & ATA_BUSY) {
4624 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4625 return;
4629 /* move the HSM */
4630 poll_next = ata_hsm_move(ap, qc, status, 1);
4632 /* another command or interrupt handler
4633 * may be running at this point.
4635 if (poll_next)
4636 goto fsm_start;
4640 * ata_qc_new - Request an available ATA command, for queueing
4641 * @ap: Port associated with device @dev
4642 * @dev: Device from whom we request an available command structure
4644 * LOCKING:
4645 * None.
4648 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4650 struct ata_queued_cmd *qc = NULL;
4651 unsigned int i;
4653 /* no command while frozen */
4654 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4655 return NULL;
4657 /* the last tag is reserved for internal command. */
4658 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4659 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4660 qc = __ata_qc_from_tag(ap, i);
4661 break;
4664 if (qc)
4665 qc->tag = i;
4667 return qc;
4671 * ata_qc_new_init - Request an available ATA command, and initialize it
4672 * @dev: Device from whom we request an available command structure
4674 * LOCKING:
4675 * None.
4678 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4680 struct ata_port *ap = dev->ap;
4681 struct ata_queued_cmd *qc;
4683 qc = ata_qc_new(ap);
4684 if (qc) {
4685 qc->scsicmd = NULL;
4686 qc->ap = ap;
4687 qc->dev = dev;
4689 ata_qc_reinit(qc);
4692 return qc;
4696 * ata_qc_free - free unused ata_queued_cmd
4697 * @qc: Command to complete
4699 * Designed to free unused ata_queued_cmd object
4700 * in case something prevents using it.
4702 * LOCKING:
4703 * spin_lock_irqsave(host lock)
4705 void ata_qc_free(struct ata_queued_cmd *qc)
4707 struct ata_port *ap = qc->ap;
4708 unsigned int tag;
4710 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4712 qc->flags = 0;
4713 tag = qc->tag;
4714 if (likely(ata_tag_valid(tag))) {
4715 qc->tag = ATA_TAG_POISON;
4716 clear_bit(tag, &ap->qc_allocated);
4720 void __ata_qc_complete(struct ata_queued_cmd *qc)
4722 struct ata_port *ap = qc->ap;
4724 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4725 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4727 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4728 ata_sg_clean(qc);
4730 /* command should be marked inactive atomically with qc completion */
4731 if (qc->tf.protocol == ATA_PROT_NCQ)
4732 ap->sactive &= ~(1 << qc->tag);
4733 else
4734 ap->active_tag = ATA_TAG_POISON;
4736 /* atapi: mark qc as inactive to prevent the interrupt handler
4737 * from completing the command twice later, before the error handler
4738 * is called. (when rc != 0 and atapi request sense is needed)
4740 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4741 ap->qc_active &= ~(1 << qc->tag);
4743 /* call completion callback */
4744 qc->complete_fn(qc);
4747 static void fill_result_tf(struct ata_queued_cmd *qc)
4749 struct ata_port *ap = qc->ap;
4751 qc->result_tf.flags = qc->tf.flags;
4752 ap->ops->tf_read(ap, &qc->result_tf);
4756 * ata_qc_complete - Complete an active ATA command
4757 * @qc: Command to complete
4758 * @err_mask: ATA Status register contents
4760 * Indicate to the mid and upper layers that an ATA
4761 * command has completed, with either an ok or not-ok status.
4763 * LOCKING:
4764 * spin_lock_irqsave(host lock)
4766 void ata_qc_complete(struct ata_queued_cmd *qc)
4768 struct ata_port *ap = qc->ap;
4770 /* XXX: New EH and old EH use different mechanisms to
4771 * synchronize EH with regular execution path.
4773 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4774 * Normal execution path is responsible for not accessing a
4775 * failed qc. libata core enforces the rule by returning NULL
4776 * from ata_qc_from_tag() for failed qcs.
4778 * Old EH depends on ata_qc_complete() nullifying completion
4779 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4780 * not synchronize with interrupt handler. Only PIO task is
4781 * taken care of.
4783 if (ap->ops->error_handler) {
4784 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4786 if (unlikely(qc->err_mask))
4787 qc->flags |= ATA_QCFLAG_FAILED;
4789 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4790 if (!ata_tag_internal(qc->tag)) {
4791 /* always fill result TF for failed qc */
4792 fill_result_tf(qc);
4793 ata_qc_schedule_eh(qc);
4794 return;
4798 /* read result TF if requested */
4799 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4800 fill_result_tf(qc);
4802 __ata_qc_complete(qc);
4803 } else {
4804 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4805 return;
4807 /* read result TF if failed or requested */
4808 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4809 fill_result_tf(qc);
4811 __ata_qc_complete(qc);
4816 * ata_qc_complete_multiple - Complete multiple qcs successfully
4817 * @ap: port in question
4818 * @qc_active: new qc_active mask
4819 * @finish_qc: LLDD callback invoked before completing a qc
4821 * Complete in-flight commands. This functions is meant to be
4822 * called from low-level driver's interrupt routine to complete
4823 * requests normally. ap->qc_active and @qc_active is compared
4824 * and commands are completed accordingly.
4826 * LOCKING:
4827 * spin_lock_irqsave(host lock)
4829 * RETURNS:
4830 * Number of completed commands on success, -errno otherwise.
4832 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4833 void (*finish_qc)(struct ata_queued_cmd *))
4835 int nr_done = 0;
4836 u32 done_mask;
4837 int i;
4839 done_mask = ap->qc_active ^ qc_active;
4841 if (unlikely(done_mask & qc_active)) {
4842 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4843 "(%08x->%08x)\n", ap->qc_active, qc_active);
4844 return -EINVAL;
4847 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4848 struct ata_queued_cmd *qc;
4850 if (!(done_mask & (1 << i)))
4851 continue;
4853 if ((qc = ata_qc_from_tag(ap, i))) {
4854 if (finish_qc)
4855 finish_qc(qc);
4856 ata_qc_complete(qc);
4857 nr_done++;
4861 return nr_done;
4864 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4866 struct ata_port *ap = qc->ap;
4868 switch (qc->tf.protocol) {
4869 case ATA_PROT_NCQ:
4870 case ATA_PROT_DMA:
4871 case ATA_PROT_ATAPI_DMA:
4872 return 1;
4874 case ATA_PROT_ATAPI:
4875 case ATA_PROT_PIO:
4876 if (ap->flags & ATA_FLAG_PIO_DMA)
4877 return 1;
4879 /* fall through */
4881 default:
4882 return 0;
4885 /* never reached */
4889 * ata_qc_issue - issue taskfile to device
4890 * @qc: command to issue to device
4892 * Prepare an ATA command to submission to device.
4893 * This includes mapping the data into a DMA-able
4894 * area, filling in the S/G table, and finally
4895 * writing the taskfile to hardware, starting the command.
4897 * LOCKING:
4898 * spin_lock_irqsave(host lock)
4900 void ata_qc_issue(struct ata_queued_cmd *qc)
4902 struct ata_port *ap = qc->ap;
4904 /* Make sure only one non-NCQ command is outstanding. The
4905 * check is skipped for old EH because it reuses active qc to
4906 * request ATAPI sense.
4908 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4910 if (qc->tf.protocol == ATA_PROT_NCQ) {
4911 WARN_ON(ap->sactive & (1 << qc->tag));
4912 ap->sactive |= 1 << qc->tag;
4913 } else {
4914 WARN_ON(ap->sactive);
4915 ap->active_tag = qc->tag;
4918 qc->flags |= ATA_QCFLAG_ACTIVE;
4919 ap->qc_active |= 1 << qc->tag;
4921 if (ata_should_dma_map(qc)) {
4922 if (qc->flags & ATA_QCFLAG_SG) {
4923 if (ata_sg_setup(qc))
4924 goto sg_err;
4925 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4926 if (ata_sg_setup_one(qc))
4927 goto sg_err;
4929 } else {
4930 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4933 ap->ops->qc_prep(qc);
4935 qc->err_mask |= ap->ops->qc_issue(qc);
4936 if (unlikely(qc->err_mask))
4937 goto err;
4938 return;
4940 sg_err:
4941 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4942 qc->err_mask |= AC_ERR_SYSTEM;
4943 err:
4944 ata_qc_complete(qc);
4948 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4949 * @qc: command to issue to device
4951 * Using various libata functions and hooks, this function
4952 * starts an ATA command. ATA commands are grouped into
4953 * classes called "protocols", and issuing each type of protocol
4954 * is slightly different.
4956 * May be used as the qc_issue() entry in ata_port_operations.
4958 * LOCKING:
4959 * spin_lock_irqsave(host lock)
4961 * RETURNS:
4962 * Zero on success, AC_ERR_* mask on failure
4965 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4967 struct ata_port *ap = qc->ap;
4969 /* Use polling pio if the LLD doesn't handle
4970 * interrupt driven pio and atapi CDB interrupt.
4972 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4973 switch (qc->tf.protocol) {
4974 case ATA_PROT_PIO:
4975 case ATA_PROT_NODATA:
4976 case ATA_PROT_ATAPI:
4977 case ATA_PROT_ATAPI_NODATA:
4978 qc->tf.flags |= ATA_TFLAG_POLLING;
4979 break;
4980 case ATA_PROT_ATAPI_DMA:
4981 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4982 /* see ata_dma_blacklisted() */
4983 BUG();
4984 break;
4985 default:
4986 break;
4990 /* Some controllers show flaky interrupt behavior after
4991 * setting xfer mode. Use polling instead.
4993 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4994 qc->tf.feature == SETFEATURES_XFER) &&
4995 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4996 qc->tf.flags |= ATA_TFLAG_POLLING;
4998 /* select the device */
4999 ata_dev_select(ap, qc->dev->devno, 1, 0);
5001 /* start the command */
5002 switch (qc->tf.protocol) {
5003 case ATA_PROT_NODATA:
5004 if (qc->tf.flags & ATA_TFLAG_POLLING)
5005 ata_qc_set_polling(qc);
5007 ata_tf_to_host(ap, &qc->tf);
5008 ap->hsm_task_state = HSM_ST_LAST;
5010 if (qc->tf.flags & ATA_TFLAG_POLLING)
5011 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5013 break;
5015 case ATA_PROT_DMA:
5016 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5018 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5019 ap->ops->bmdma_setup(qc); /* set up bmdma */
5020 ap->ops->bmdma_start(qc); /* initiate bmdma */
5021 ap->hsm_task_state = HSM_ST_LAST;
5022 break;
5024 case ATA_PROT_PIO:
5025 if (qc->tf.flags & ATA_TFLAG_POLLING)
5026 ata_qc_set_polling(qc);
5028 ata_tf_to_host(ap, &qc->tf);
5030 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5031 /* PIO data out protocol */
5032 ap->hsm_task_state = HSM_ST_FIRST;
5033 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5035 /* always send first data block using
5036 * the ata_pio_task() codepath.
5038 } else {
5039 /* PIO data in protocol */
5040 ap->hsm_task_state = HSM_ST;
5042 if (qc->tf.flags & ATA_TFLAG_POLLING)
5043 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5045 /* if polling, ata_pio_task() handles the rest.
5046 * otherwise, interrupt handler takes over from here.
5050 break;
5052 case ATA_PROT_ATAPI:
5053 case ATA_PROT_ATAPI_NODATA:
5054 if (qc->tf.flags & ATA_TFLAG_POLLING)
5055 ata_qc_set_polling(qc);
5057 ata_tf_to_host(ap, &qc->tf);
5059 ap->hsm_task_state = HSM_ST_FIRST;
5061 /* send cdb by polling if no cdb interrupt */
5062 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5063 (qc->tf.flags & ATA_TFLAG_POLLING))
5064 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5065 break;
5067 case ATA_PROT_ATAPI_DMA:
5068 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5070 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5071 ap->ops->bmdma_setup(qc); /* set up bmdma */
5072 ap->hsm_task_state = HSM_ST_FIRST;
5074 /* send cdb by polling if no cdb interrupt */
5075 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5076 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5077 break;
5079 default:
5080 WARN_ON(1);
5081 return AC_ERR_SYSTEM;
5084 return 0;
5088 * ata_host_intr - Handle host interrupt for given (port, task)
5089 * @ap: Port on which interrupt arrived (possibly...)
5090 * @qc: Taskfile currently active in engine
5092 * Handle host interrupt for given queued command. Currently,
5093 * only DMA interrupts are handled. All other commands are
5094 * handled via polling with interrupts disabled (nIEN bit).
5096 * LOCKING:
5097 * spin_lock_irqsave(host lock)
5099 * RETURNS:
5100 * One if interrupt was handled, zero if not (shared irq).
5103 inline unsigned int ata_host_intr (struct ata_port *ap,
5104 struct ata_queued_cmd *qc)
5106 struct ata_eh_info *ehi = &ap->eh_info;
5107 u8 status, host_stat = 0;
5109 VPRINTK("ata%u: protocol %d task_state %d\n",
5110 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5112 /* Check whether we are expecting interrupt in this state */
5113 switch (ap->hsm_task_state) {
5114 case HSM_ST_FIRST:
5115 /* Some pre-ATAPI-4 devices assert INTRQ
5116 * at this state when ready to receive CDB.
5119 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5120 * The flag was turned on only for atapi devices.
5121 * No need to check is_atapi_taskfile(&qc->tf) again.
5123 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5124 goto idle_irq;
5125 break;
5126 case HSM_ST_LAST:
5127 if (qc->tf.protocol == ATA_PROT_DMA ||
5128 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5129 /* check status of DMA engine */
5130 host_stat = ap->ops->bmdma_status(ap);
5131 VPRINTK("ata%u: host_stat 0x%X\n",
5132 ap->print_id, host_stat);
5134 /* if it's not our irq... */
5135 if (!(host_stat & ATA_DMA_INTR))
5136 goto idle_irq;
5138 /* before we do anything else, clear DMA-Start bit */
5139 ap->ops->bmdma_stop(qc);
5141 if (unlikely(host_stat & ATA_DMA_ERR)) {
5142 /* error when transfering data to/from memory */
5143 qc->err_mask |= AC_ERR_HOST_BUS;
5144 ap->hsm_task_state = HSM_ST_ERR;
5147 break;
5148 case HSM_ST:
5149 break;
5150 default:
5151 goto idle_irq;
5154 /* check altstatus */
5155 status = ata_altstatus(ap);
5156 if (status & ATA_BUSY)
5157 goto idle_irq;
5159 /* check main status, clearing INTRQ */
5160 status = ata_chk_status(ap);
5161 if (unlikely(status & ATA_BUSY))
5162 goto idle_irq;
5164 /* ack bmdma irq events */
5165 ap->ops->irq_clear(ap);
5167 ata_hsm_move(ap, qc, status, 0);
5169 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5170 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5171 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5173 return 1; /* irq handled */
5175 idle_irq:
5176 ap->stats.idle_irq++;
5178 #ifdef ATA_IRQ_TRAP
5179 if ((ap->stats.idle_irq % 1000) == 0) {
5180 ap->ops->irq_ack(ap, 0); /* debug trap */
5181 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5182 return 1;
5184 #endif
5185 return 0; /* irq not handled */
5189 * ata_interrupt - Default ATA host interrupt handler
5190 * @irq: irq line (unused)
5191 * @dev_instance: pointer to our ata_host information structure
5193 * Default interrupt handler for PCI IDE devices. Calls
5194 * ata_host_intr() for each port that is not disabled.
5196 * LOCKING:
5197 * Obtains host lock during operation.
5199 * RETURNS:
5200 * IRQ_NONE or IRQ_HANDLED.
5203 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5205 struct ata_host *host = dev_instance;
5206 unsigned int i;
5207 unsigned int handled = 0;
5208 unsigned long flags;
5210 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5211 spin_lock_irqsave(&host->lock, flags);
5213 for (i = 0; i < host->n_ports; i++) {
5214 struct ata_port *ap;
5216 ap = host->ports[i];
5217 if (ap &&
5218 !(ap->flags & ATA_FLAG_DISABLED)) {
5219 struct ata_queued_cmd *qc;
5221 qc = ata_qc_from_tag(ap, ap->active_tag);
5222 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5223 (qc->flags & ATA_QCFLAG_ACTIVE))
5224 handled |= ata_host_intr(ap, qc);
5228 spin_unlock_irqrestore(&host->lock, flags);
5230 return IRQ_RETVAL(handled);
5234 * sata_scr_valid - test whether SCRs are accessible
5235 * @ap: ATA port to test SCR accessibility for
5237 * Test whether SCRs are accessible for @ap.
5239 * LOCKING:
5240 * None.
5242 * RETURNS:
5243 * 1 if SCRs are accessible, 0 otherwise.
5245 int sata_scr_valid(struct ata_port *ap)
5247 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5251 * sata_scr_read - read SCR register of the specified port
5252 * @ap: ATA port to read SCR for
5253 * @reg: SCR to read
5254 * @val: Place to store read value
5256 * Read SCR register @reg of @ap into *@val. This function is
5257 * guaranteed to succeed if the cable type of the port is SATA
5258 * and the port implements ->scr_read.
5260 * LOCKING:
5261 * None.
5263 * RETURNS:
5264 * 0 on success, negative errno on failure.
5266 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5268 if (sata_scr_valid(ap)) {
5269 *val = ap->ops->scr_read(ap, reg);
5270 return 0;
5272 return -EOPNOTSUPP;
5276 * sata_scr_write - write SCR register of the specified port
5277 * @ap: ATA port to write SCR for
5278 * @reg: SCR to write
5279 * @val: value to write
5281 * Write @val to SCR register @reg of @ap. This function is
5282 * guaranteed to succeed if the cable type of the port is SATA
5283 * and the port implements ->scr_read.
5285 * LOCKING:
5286 * None.
5288 * RETURNS:
5289 * 0 on success, negative errno on failure.
5291 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5293 if (sata_scr_valid(ap)) {
5294 ap->ops->scr_write(ap, reg, val);
5295 return 0;
5297 return -EOPNOTSUPP;
5301 * sata_scr_write_flush - write SCR register of the specified port and flush
5302 * @ap: ATA port to write SCR for
5303 * @reg: SCR to write
5304 * @val: value to write
5306 * This function is identical to sata_scr_write() except that this
5307 * function performs flush after writing to the register.
5309 * LOCKING:
5310 * None.
5312 * RETURNS:
5313 * 0 on success, negative errno on failure.
5315 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5317 if (sata_scr_valid(ap)) {
5318 ap->ops->scr_write(ap, reg, val);
5319 ap->ops->scr_read(ap, reg);
5320 return 0;
5322 return -EOPNOTSUPP;
5326 * ata_port_online - test whether the given port is online
5327 * @ap: ATA port to test
5329 * Test whether @ap is online. Note that this function returns 0
5330 * if online status of @ap cannot be obtained, so
5331 * ata_port_online(ap) != !ata_port_offline(ap).
5333 * LOCKING:
5334 * None.
5336 * RETURNS:
5337 * 1 if the port online status is available and online.
5339 int ata_port_online(struct ata_port *ap)
5341 u32 sstatus;
5343 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5344 return 1;
5345 return 0;
5349 * ata_port_offline - test whether the given port is offline
5350 * @ap: ATA port to test
5352 * Test whether @ap is offline. Note that this function returns
5353 * 0 if offline status of @ap cannot be obtained, so
5354 * ata_port_online(ap) != !ata_port_offline(ap).
5356 * LOCKING:
5357 * None.
5359 * RETURNS:
5360 * 1 if the port offline status is available and offline.
5362 int ata_port_offline(struct ata_port *ap)
5364 u32 sstatus;
5366 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5367 return 1;
5368 return 0;
5371 int ata_flush_cache(struct ata_device *dev)
5373 unsigned int err_mask;
5374 u8 cmd;
5376 if (!ata_try_flush_cache(dev))
5377 return 0;
5379 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5380 cmd = ATA_CMD_FLUSH_EXT;
5381 else
5382 cmd = ATA_CMD_FLUSH;
5384 err_mask = ata_do_simple_cmd(dev, cmd);
5385 if (err_mask) {
5386 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5387 return -EIO;
5390 return 0;
5393 #ifdef CONFIG_PM
5394 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5395 unsigned int action, unsigned int ehi_flags,
5396 int wait)
5398 unsigned long flags;
5399 int i, rc;
5401 for (i = 0; i < host->n_ports; i++) {
5402 struct ata_port *ap = host->ports[i];
5404 /* Previous resume operation might still be in
5405 * progress. Wait for PM_PENDING to clear.
5407 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5408 ata_port_wait_eh(ap);
5409 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5412 /* request PM ops to EH */
5413 spin_lock_irqsave(ap->lock, flags);
5415 ap->pm_mesg = mesg;
5416 if (wait) {
5417 rc = 0;
5418 ap->pm_result = &rc;
5421 ap->pflags |= ATA_PFLAG_PM_PENDING;
5422 ap->eh_info.action |= action;
5423 ap->eh_info.flags |= ehi_flags;
5425 ata_port_schedule_eh(ap);
5427 spin_unlock_irqrestore(ap->lock, flags);
5429 /* wait and check result */
5430 if (wait) {
5431 ata_port_wait_eh(ap);
5432 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5433 if (rc)
5434 return rc;
5438 return 0;
5442 * ata_host_suspend - suspend host
5443 * @host: host to suspend
5444 * @mesg: PM message
5446 * Suspend @host. Actual operation is performed by EH. This
5447 * function requests EH to perform PM operations and waits for EH
5448 * to finish.
5450 * LOCKING:
5451 * Kernel thread context (may sleep).
5453 * RETURNS:
5454 * 0 on success, -errno on failure.
5456 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5458 int i, j, rc;
5460 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5461 if (rc)
5462 goto fail;
5464 /* EH is quiescent now. Fail if we have any ready device.
5465 * This happens if hotplug occurs between completion of device
5466 * suspension and here.
5468 for (i = 0; i < host->n_ports; i++) {
5469 struct ata_port *ap = host->ports[i];
5471 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5472 struct ata_device *dev = &ap->device[j];
5474 if (ata_dev_ready(dev)) {
5475 ata_port_printk(ap, KERN_WARNING,
5476 "suspend failed, device %d "
5477 "still active\n", dev->devno);
5478 rc = -EBUSY;
5479 goto fail;
5484 host->dev->power.power_state = mesg;
5485 return 0;
5487 fail:
5488 ata_host_resume(host);
5489 return rc;
5493 * ata_host_resume - resume host
5494 * @host: host to resume
5496 * Resume @host. Actual operation is performed by EH. This
5497 * function requests EH to perform PM operations and returns.
5498 * Note that all resume operations are performed parallely.
5500 * LOCKING:
5501 * Kernel thread context (may sleep).
5503 void ata_host_resume(struct ata_host *host)
5505 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5506 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5507 host->dev->power.power_state = PMSG_ON;
5509 #endif
5512 * ata_port_start - Set port up for dma.
5513 * @ap: Port to initialize
5515 * Called just after data structures for each port are
5516 * initialized. Allocates space for PRD table.
5518 * May be used as the port_start() entry in ata_port_operations.
5520 * LOCKING:
5521 * Inherited from caller.
5523 int ata_port_start(struct ata_port *ap)
5525 struct device *dev = ap->dev;
5526 int rc;
5528 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5529 GFP_KERNEL);
5530 if (!ap->prd)
5531 return -ENOMEM;
5533 rc = ata_pad_alloc(ap, dev);
5534 if (rc)
5535 return rc;
5537 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5538 (unsigned long long)ap->prd_dma);
5539 return 0;
5543 * ata_dev_init - Initialize an ata_device structure
5544 * @dev: Device structure to initialize
5546 * Initialize @dev in preparation for probing.
5548 * LOCKING:
5549 * Inherited from caller.
5551 void ata_dev_init(struct ata_device *dev)
5553 struct ata_port *ap = dev->ap;
5554 unsigned long flags;
5556 /* SATA spd limit is bound to the first device */
5557 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5559 /* High bits of dev->flags are used to record warm plug
5560 * requests which occur asynchronously. Synchronize using
5561 * host lock.
5563 spin_lock_irqsave(ap->lock, flags);
5564 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5565 spin_unlock_irqrestore(ap->lock, flags);
5567 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5568 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5569 dev->pio_mask = UINT_MAX;
5570 dev->mwdma_mask = UINT_MAX;
5571 dev->udma_mask = UINT_MAX;
5575 * ata_port_init - Initialize an ata_port structure
5576 * @ap: Structure to initialize
5577 * @host: Collection of hosts to which @ap belongs
5578 * @ent: Probe information provided by low-level driver
5579 * @port_no: Port number associated with this ata_port
5581 * Initialize a new ata_port structure.
5583 * LOCKING:
5584 * Inherited from caller.
5586 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5587 const struct ata_probe_ent *ent, unsigned int port_no)
5589 unsigned int i;
5591 ap->lock = &host->lock;
5592 ap->flags = ATA_FLAG_DISABLED;
5593 ap->print_id = ata_print_id++;
5594 ap->ctl = ATA_DEVCTL_OBS;
5595 ap->host = host;
5596 ap->dev = ent->dev;
5597 ap->port_no = port_no;
5598 if (port_no == 1 && ent->pinfo2) {
5599 ap->pio_mask = ent->pinfo2->pio_mask;
5600 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5601 ap->udma_mask = ent->pinfo2->udma_mask;
5602 ap->flags |= ent->pinfo2->flags;
5603 ap->ops = ent->pinfo2->port_ops;
5604 } else {
5605 ap->pio_mask = ent->pio_mask;
5606 ap->mwdma_mask = ent->mwdma_mask;
5607 ap->udma_mask = ent->udma_mask;
5608 ap->flags |= ent->port_flags;
5609 ap->ops = ent->port_ops;
5611 ap->hw_sata_spd_limit = UINT_MAX;
5612 ap->active_tag = ATA_TAG_POISON;
5613 ap->last_ctl = 0xFF;
5615 #if defined(ATA_VERBOSE_DEBUG)
5616 /* turn on all debugging levels */
5617 ap->msg_enable = 0x00FF;
5618 #elif defined(ATA_DEBUG)
5619 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5620 #else
5621 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5622 #endif
5624 INIT_DELAYED_WORK(&ap->port_task, NULL);
5625 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5626 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5627 INIT_LIST_HEAD(&ap->eh_done_q);
5628 init_waitqueue_head(&ap->eh_wait_q);
5630 /* set cable type */
5631 ap->cbl = ATA_CBL_NONE;
5632 if (ap->flags & ATA_FLAG_SATA)
5633 ap->cbl = ATA_CBL_SATA;
5635 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5636 struct ata_device *dev = &ap->device[i];
5637 dev->ap = ap;
5638 dev->devno = i;
5639 ata_dev_init(dev);
5642 #ifdef ATA_IRQ_TRAP
5643 ap->stats.unhandled_irq = 1;
5644 ap->stats.idle_irq = 1;
5645 #endif
5647 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5651 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5652 * @ap: ATA port to initialize SCSI host for
5653 * @shost: SCSI host associated with @ap
5655 * Initialize SCSI host @shost associated with ATA port @ap.
5657 * LOCKING:
5658 * Inherited from caller.
5660 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5662 ap->scsi_host = shost;
5664 shost->unique_id = ap->print_id;
5665 shost->max_id = 16;
5666 shost->max_lun = 1;
5667 shost->max_channel = 1;
5668 shost->max_cmd_len = 12;
5672 * ata_port_add - Attach low-level ATA driver to system
5673 * @ent: Information provided by low-level driver
5674 * @host: Collections of ports to which we add
5675 * @port_no: Port number associated with this host
5677 * Attach low-level ATA driver to system.
5679 * LOCKING:
5680 * PCI/etc. bus probe sem.
5682 * RETURNS:
5683 * New ata_port on success, for NULL on error.
5685 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5686 struct ata_host *host,
5687 unsigned int port_no)
5689 struct Scsi_Host *shost;
5690 struct ata_port *ap;
5692 DPRINTK("ENTER\n");
5694 if (!ent->port_ops->error_handler &&
5695 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5696 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5697 port_no);
5698 return NULL;
5701 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5702 if (!shost)
5703 return NULL;
5705 shost->transportt = &ata_scsi_transport_template;
5707 ap = ata_shost_to_port(shost);
5709 ata_port_init(ap, host, ent, port_no);
5710 ata_port_init_shost(ap, shost);
5712 return ap;
5715 static void ata_host_release(struct device *gendev, void *res)
5717 struct ata_host *host = dev_get_drvdata(gendev);
5718 int i;
5720 for (i = 0; i < host->n_ports; i++) {
5721 struct ata_port *ap = host->ports[i];
5723 if (ap && ap->ops->port_stop)
5724 ap->ops->port_stop(ap);
5727 if (host->ops->host_stop)
5728 host->ops->host_stop(host);
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap = host->ports[i];
5733 if (ap)
5734 scsi_host_put(ap->scsi_host);
5736 host->ports[i] = NULL;
5739 dev_set_drvdata(gendev, NULL);
5743 * ata_sas_host_init - Initialize a host struct
5744 * @host: host to initialize
5745 * @dev: device host is attached to
5746 * @flags: host flags
5747 * @ops: port_ops
5749 * LOCKING:
5750 * PCI/etc. bus probe sem.
5754 void ata_host_init(struct ata_host *host, struct device *dev,
5755 unsigned long flags, const struct ata_port_operations *ops)
5757 spin_lock_init(&host->lock);
5758 host->dev = dev;
5759 host->flags = flags;
5760 host->ops = ops;
5764 * ata_device_add - Register hardware device with ATA and SCSI layers
5765 * @ent: Probe information describing hardware device to be registered
5767 * This function processes the information provided in the probe
5768 * information struct @ent, allocates the necessary ATA and SCSI
5769 * host information structures, initializes them, and registers
5770 * everything with requisite kernel subsystems.
5772 * This function requests irqs, probes the ATA bus, and probes
5773 * the SCSI bus.
5775 * LOCKING:
5776 * PCI/etc. bus probe sem.
5778 * RETURNS:
5779 * Number of ports registered. Zero on error (no ports registered).
5781 int ata_device_add(const struct ata_probe_ent *ent)
5783 unsigned int i;
5784 struct device *dev = ent->dev;
5785 struct ata_host *host;
5786 int rc;
5788 DPRINTK("ENTER\n");
5790 if (ent->irq == 0) {
5791 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5792 return 0;
5795 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5796 return 0;
5798 /* alloc a container for our list of ATA ports (buses) */
5799 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5800 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5801 if (!host)
5802 goto err_out;
5803 devres_add(dev, host);
5804 dev_set_drvdata(dev, host);
5806 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5807 host->n_ports = ent->n_ports;
5808 host->irq = ent->irq;
5809 host->irq2 = ent->irq2;
5810 host->iomap = ent->iomap;
5811 host->private_data = ent->private_data;
5813 /* register each port bound to this device */
5814 for (i = 0; i < host->n_ports; i++) {
5815 struct ata_port *ap;
5816 unsigned long xfer_mode_mask;
5817 int irq_line = ent->irq;
5819 ap = ata_port_add(ent, host, i);
5820 host->ports[i] = ap;
5821 if (!ap)
5822 goto err_out;
5824 /* dummy? */
5825 if (ent->dummy_port_mask & (1 << i)) {
5826 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5827 ap->ops = &ata_dummy_port_ops;
5828 continue;
5831 /* start port */
5832 rc = ap->ops->port_start(ap);
5833 if (rc) {
5834 host->ports[i] = NULL;
5835 scsi_host_put(ap->scsi_host);
5836 goto err_out;
5839 /* Report the secondary IRQ for second channel legacy */
5840 if (i == 1 && ent->irq2)
5841 irq_line = ent->irq2;
5843 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5844 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5845 (ap->pio_mask << ATA_SHIFT_PIO);
5847 /* print per-port info to dmesg */
5848 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5849 "ctl 0x%p bmdma 0x%p irq %d\n",
5850 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5851 ata_mode_string(xfer_mode_mask),
5852 ap->ioaddr.cmd_addr,
5853 ap->ioaddr.ctl_addr,
5854 ap->ioaddr.bmdma_addr,
5855 irq_line);
5857 /* freeze port before requesting IRQ */
5858 ata_eh_freeze_port(ap);
5861 /* obtain irq, that may be shared between channels */
5862 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5863 ent->irq_flags, DRV_NAME, host);
5864 if (rc) {
5865 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5866 ent->irq, rc);
5867 goto err_out;
5870 /* do we have a second IRQ for the other channel, eg legacy mode */
5871 if (ent->irq2) {
5872 /* We will get weird core code crashes later if this is true
5873 so trap it now */
5874 BUG_ON(ent->irq == ent->irq2);
5876 rc = devm_request_irq(dev, ent->irq2,
5877 ent->port_ops->irq_handler, ent->irq_flags,
5878 DRV_NAME, host);
5879 if (rc) {
5880 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5881 ent->irq2, rc);
5882 goto err_out;
5886 /* resource acquisition complete */
5887 devres_remove_group(dev, ata_device_add);
5889 /* perform each probe synchronously */
5890 DPRINTK("probe begin\n");
5891 for (i = 0; i < host->n_ports; i++) {
5892 struct ata_port *ap = host->ports[i];
5893 u32 scontrol;
5894 int rc;
5896 /* init sata_spd_limit to the current value */
5897 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5898 int spd = (scontrol >> 4) & 0xf;
5899 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5901 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5903 rc = scsi_add_host(ap->scsi_host, dev);
5904 if (rc) {
5905 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5906 /* FIXME: do something useful here */
5907 /* FIXME: handle unconditional calls to
5908 * scsi_scan_host and ata_host_remove, below,
5909 * at the very least
5913 if (ap->ops->error_handler) {
5914 struct ata_eh_info *ehi = &ap->eh_info;
5915 unsigned long flags;
5917 ata_port_probe(ap);
5919 /* kick EH for boot probing */
5920 spin_lock_irqsave(ap->lock, flags);
5922 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5923 ehi->action |= ATA_EH_SOFTRESET;
5924 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5926 ap->pflags |= ATA_PFLAG_LOADING;
5927 ata_port_schedule_eh(ap);
5929 spin_unlock_irqrestore(ap->lock, flags);
5931 /* wait for EH to finish */
5932 ata_port_wait_eh(ap);
5933 } else {
5934 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5935 rc = ata_bus_probe(ap);
5936 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5938 if (rc) {
5939 /* FIXME: do something useful here?
5940 * Current libata behavior will
5941 * tear down everything when
5942 * the module is removed
5943 * or the h/w is unplugged.
5949 /* probes are done, now scan each port's disk(s) */
5950 DPRINTK("host probe begin\n");
5951 for (i = 0; i < host->n_ports; i++) {
5952 struct ata_port *ap = host->ports[i];
5954 ata_scsi_scan_host(ap);
5957 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5958 return ent->n_ports; /* success */
5960 err_out:
5961 devres_release_group(dev, ata_device_add);
5962 VPRINTK("EXIT, returning %d\n", rc);
5963 return 0;
5967 * ata_port_detach - Detach ATA port in prepration of device removal
5968 * @ap: ATA port to be detached
5970 * Detach all ATA devices and the associated SCSI devices of @ap;
5971 * then, remove the associated SCSI host. @ap is guaranteed to
5972 * be quiescent on return from this function.
5974 * LOCKING:
5975 * Kernel thread context (may sleep).
5977 void ata_port_detach(struct ata_port *ap)
5979 unsigned long flags;
5980 int i;
5982 if (!ap->ops->error_handler)
5983 goto skip_eh;
5985 /* tell EH we're leaving & flush EH */
5986 spin_lock_irqsave(ap->lock, flags);
5987 ap->pflags |= ATA_PFLAG_UNLOADING;
5988 spin_unlock_irqrestore(ap->lock, flags);
5990 ata_port_wait_eh(ap);
5992 /* EH is now guaranteed to see UNLOADING, so no new device
5993 * will be attached. Disable all existing devices.
5995 spin_lock_irqsave(ap->lock, flags);
5997 for (i = 0; i < ATA_MAX_DEVICES; i++)
5998 ata_dev_disable(&ap->device[i]);
6000 spin_unlock_irqrestore(ap->lock, flags);
6002 /* Final freeze & EH. All in-flight commands are aborted. EH
6003 * will be skipped and retrials will be terminated with bad
6004 * target.
6006 spin_lock_irqsave(ap->lock, flags);
6007 ata_port_freeze(ap); /* won't be thawed */
6008 spin_unlock_irqrestore(ap->lock, flags);
6010 ata_port_wait_eh(ap);
6012 /* Flush hotplug task. The sequence is similar to
6013 * ata_port_flush_task().
6015 flush_workqueue(ata_aux_wq);
6016 cancel_delayed_work(&ap->hotplug_task);
6017 flush_workqueue(ata_aux_wq);
6019 skip_eh:
6020 /* remove the associated SCSI host */
6021 scsi_remove_host(ap->scsi_host);
6025 * ata_host_detach - Detach all ports of an ATA host
6026 * @host: Host to detach
6028 * Detach all ports of @host.
6030 * LOCKING:
6031 * Kernel thread context (may sleep).
6033 void ata_host_detach(struct ata_host *host)
6035 int i;
6037 for (i = 0; i < host->n_ports; i++)
6038 ata_port_detach(host->ports[i]);
6041 struct ata_probe_ent *
6042 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6044 struct ata_probe_ent *probe_ent;
6046 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6047 if (!probe_ent) {
6048 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6049 kobject_name(&(dev->kobj)));
6050 return NULL;
6053 INIT_LIST_HEAD(&probe_ent->node);
6054 probe_ent->dev = dev;
6056 probe_ent->sht = port->sht;
6057 probe_ent->port_flags = port->flags;
6058 probe_ent->pio_mask = port->pio_mask;
6059 probe_ent->mwdma_mask = port->mwdma_mask;
6060 probe_ent->udma_mask = port->udma_mask;
6061 probe_ent->port_ops = port->port_ops;
6062 probe_ent->private_data = port->private_data;
6064 return probe_ent;
6068 * ata_std_ports - initialize ioaddr with standard port offsets.
6069 * @ioaddr: IO address structure to be initialized
6071 * Utility function which initializes data_addr, error_addr,
6072 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6073 * device_addr, status_addr, and command_addr to standard offsets
6074 * relative to cmd_addr.
6076 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6079 void ata_std_ports(struct ata_ioports *ioaddr)
6081 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6082 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6083 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6084 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6085 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6086 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6087 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6088 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6089 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6090 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6094 #ifdef CONFIG_PCI
6097 * ata_pci_remove_one - PCI layer callback for device removal
6098 * @pdev: PCI device that was removed
6100 * PCI layer indicates to libata via this hook that hot-unplug or
6101 * module unload event has occurred. Detach all ports. Resource
6102 * release is handled via devres.
6104 * LOCKING:
6105 * Inherited from PCI layer (may sleep).
6107 void ata_pci_remove_one(struct pci_dev *pdev)
6109 struct device *dev = pci_dev_to_dev(pdev);
6110 struct ata_host *host = dev_get_drvdata(dev);
6112 ata_host_detach(host);
6115 /* move to PCI subsystem */
6116 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6118 unsigned long tmp = 0;
6120 switch (bits->width) {
6121 case 1: {
6122 u8 tmp8 = 0;
6123 pci_read_config_byte(pdev, bits->reg, &tmp8);
6124 tmp = tmp8;
6125 break;
6127 case 2: {
6128 u16 tmp16 = 0;
6129 pci_read_config_word(pdev, bits->reg, &tmp16);
6130 tmp = tmp16;
6131 break;
6133 case 4: {
6134 u32 tmp32 = 0;
6135 pci_read_config_dword(pdev, bits->reg, &tmp32);
6136 tmp = tmp32;
6137 break;
6140 default:
6141 return -EINVAL;
6144 tmp &= bits->mask;
6146 return (tmp == bits->val) ? 1 : 0;
6149 #ifdef CONFIG_PM
6150 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6152 pci_save_state(pdev);
6153 pci_disable_device(pdev);
6155 if (mesg.event == PM_EVENT_SUSPEND)
6156 pci_set_power_state(pdev, PCI_D3hot);
6159 int ata_pci_device_do_resume(struct pci_dev *pdev)
6161 int rc;
6163 pci_set_power_state(pdev, PCI_D0);
6164 pci_restore_state(pdev);
6166 rc = pcim_enable_device(pdev);
6167 if (rc) {
6168 dev_printk(KERN_ERR, &pdev->dev,
6169 "failed to enable device after resume (%d)\n", rc);
6170 return rc;
6173 pci_set_master(pdev);
6174 return 0;
6177 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6179 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6180 int rc = 0;
6182 rc = ata_host_suspend(host, mesg);
6183 if (rc)
6184 return rc;
6186 ata_pci_device_do_suspend(pdev, mesg);
6188 return 0;
6191 int ata_pci_device_resume(struct pci_dev *pdev)
6193 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6194 int rc;
6196 rc = ata_pci_device_do_resume(pdev);
6197 if (rc == 0)
6198 ata_host_resume(host);
6199 return rc;
6201 #endif /* CONFIG_PM */
6203 #endif /* CONFIG_PCI */
6206 static int __init ata_init(void)
6208 ata_probe_timeout *= HZ;
6209 ata_wq = create_workqueue("ata");
6210 if (!ata_wq)
6211 return -ENOMEM;
6213 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6214 if (!ata_aux_wq) {
6215 destroy_workqueue(ata_wq);
6216 return -ENOMEM;
6219 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6220 return 0;
6223 static void __exit ata_exit(void)
6225 destroy_workqueue(ata_wq);
6226 destroy_workqueue(ata_aux_wq);
6229 subsys_initcall(ata_init);
6230 module_exit(ata_exit);
6232 static unsigned long ratelimit_time;
6233 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6235 int ata_ratelimit(void)
6237 int rc;
6238 unsigned long flags;
6240 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6242 if (time_after(jiffies, ratelimit_time)) {
6243 rc = 1;
6244 ratelimit_time = jiffies + (HZ/5);
6245 } else
6246 rc = 0;
6248 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6250 return rc;
6254 * ata_wait_register - wait until register value changes
6255 * @reg: IO-mapped register
6256 * @mask: Mask to apply to read register value
6257 * @val: Wait condition
6258 * @interval_msec: polling interval in milliseconds
6259 * @timeout_msec: timeout in milliseconds
6261 * Waiting for some bits of register to change is a common
6262 * operation for ATA controllers. This function reads 32bit LE
6263 * IO-mapped register @reg and tests for the following condition.
6265 * (*@reg & mask) != val
6267 * If the condition is met, it returns; otherwise, the process is
6268 * repeated after @interval_msec until timeout.
6270 * LOCKING:
6271 * Kernel thread context (may sleep)
6273 * RETURNS:
6274 * The final register value.
6276 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6277 unsigned long interval_msec,
6278 unsigned long timeout_msec)
6280 unsigned long timeout;
6281 u32 tmp;
6283 tmp = ioread32(reg);
6285 /* Calculate timeout _after_ the first read to make sure
6286 * preceding writes reach the controller before starting to
6287 * eat away the timeout.
6289 timeout = jiffies + (timeout_msec * HZ) / 1000;
6291 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6292 msleep(interval_msec);
6293 tmp = ioread32(reg);
6296 return tmp;
6300 * Dummy port_ops
6302 static void ata_dummy_noret(struct ata_port *ap) { }
6303 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6304 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6306 static u8 ata_dummy_check_status(struct ata_port *ap)
6308 return ATA_DRDY;
6311 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6313 return AC_ERR_SYSTEM;
6316 const struct ata_port_operations ata_dummy_port_ops = {
6317 .port_disable = ata_port_disable,
6318 .check_status = ata_dummy_check_status,
6319 .check_altstatus = ata_dummy_check_status,
6320 .dev_select = ata_noop_dev_select,
6321 .qc_prep = ata_noop_qc_prep,
6322 .qc_issue = ata_dummy_qc_issue,
6323 .freeze = ata_dummy_noret,
6324 .thaw = ata_dummy_noret,
6325 .error_handler = ata_dummy_noret,
6326 .post_internal_cmd = ata_dummy_qc_noret,
6327 .irq_clear = ata_dummy_noret,
6328 .port_start = ata_dummy_ret0,
6329 .port_stop = ata_dummy_noret,
6333 * libata is essentially a library of internal helper functions for
6334 * low-level ATA host controller drivers. As such, the API/ABI is
6335 * likely to change as new drivers are added and updated.
6336 * Do not depend on ABI/API stability.
6339 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6340 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6341 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6342 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6343 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6344 EXPORT_SYMBOL_GPL(ata_std_ports);
6345 EXPORT_SYMBOL_GPL(ata_host_init);
6346 EXPORT_SYMBOL_GPL(ata_device_add);
6347 EXPORT_SYMBOL_GPL(ata_host_detach);
6348 EXPORT_SYMBOL_GPL(ata_sg_init);
6349 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6350 EXPORT_SYMBOL_GPL(ata_hsm_move);
6351 EXPORT_SYMBOL_GPL(ata_qc_complete);
6352 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6353 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6354 EXPORT_SYMBOL_GPL(ata_tf_load);
6355 EXPORT_SYMBOL_GPL(ata_tf_read);
6356 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6357 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6358 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6359 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6360 EXPORT_SYMBOL_GPL(ata_check_status);
6361 EXPORT_SYMBOL_GPL(ata_altstatus);
6362 EXPORT_SYMBOL_GPL(ata_exec_command);
6363 EXPORT_SYMBOL_GPL(ata_port_start);
6364 EXPORT_SYMBOL_GPL(ata_interrupt);
6365 EXPORT_SYMBOL_GPL(ata_data_xfer);
6366 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6367 EXPORT_SYMBOL_GPL(ata_qc_prep);
6368 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6369 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6370 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6371 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6372 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6373 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6374 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6375 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6376 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6377 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6378 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6379 EXPORT_SYMBOL_GPL(ata_port_probe);
6380 EXPORT_SYMBOL_GPL(ata_dev_disable);
6381 EXPORT_SYMBOL_GPL(sata_set_spd);
6382 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6383 EXPORT_SYMBOL_GPL(sata_phy_resume);
6384 EXPORT_SYMBOL_GPL(sata_phy_reset);
6385 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6386 EXPORT_SYMBOL_GPL(ata_bus_reset);
6387 EXPORT_SYMBOL_GPL(ata_std_prereset);
6388 EXPORT_SYMBOL_GPL(ata_std_softreset);
6389 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6390 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6391 EXPORT_SYMBOL_GPL(ata_std_postreset);
6392 EXPORT_SYMBOL_GPL(ata_dev_classify);
6393 EXPORT_SYMBOL_GPL(ata_dev_pair);
6394 EXPORT_SYMBOL_GPL(ata_port_disable);
6395 EXPORT_SYMBOL_GPL(ata_ratelimit);
6396 EXPORT_SYMBOL_GPL(ata_wait_register);
6397 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6398 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6399 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6400 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6401 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6402 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6403 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6404 EXPORT_SYMBOL_GPL(ata_host_intr);
6405 EXPORT_SYMBOL_GPL(sata_scr_valid);
6406 EXPORT_SYMBOL_GPL(sata_scr_read);
6407 EXPORT_SYMBOL_GPL(sata_scr_write);
6408 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6409 EXPORT_SYMBOL_GPL(ata_port_online);
6410 EXPORT_SYMBOL_GPL(ata_port_offline);
6411 #ifdef CONFIG_PM
6412 EXPORT_SYMBOL_GPL(ata_host_suspend);
6413 EXPORT_SYMBOL_GPL(ata_host_resume);
6414 #endif /* CONFIG_PM */
6415 EXPORT_SYMBOL_GPL(ata_id_string);
6416 EXPORT_SYMBOL_GPL(ata_id_c_string);
6417 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6418 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6419 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6421 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6422 EXPORT_SYMBOL_GPL(ata_timing_compute);
6423 EXPORT_SYMBOL_GPL(ata_timing_merge);
6425 #ifdef CONFIG_PCI
6426 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6427 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6428 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6429 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6430 #ifdef CONFIG_PM
6431 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6432 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6433 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6434 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6435 #endif /* CONFIG_PM */
6436 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6437 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6438 #endif /* CONFIG_PCI */
6440 #ifdef CONFIG_PM
6441 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6442 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6443 #endif /* CONFIG_PM */
6445 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6446 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6447 EXPORT_SYMBOL_GPL(ata_port_abort);
6448 EXPORT_SYMBOL_GPL(ata_port_freeze);
6449 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6450 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6451 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6452 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6453 EXPORT_SYMBOL_GPL(ata_do_eh);
6454 EXPORT_SYMBOL_GPL(ata_irq_on);
6455 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6456 EXPORT_SYMBOL_GPL(ata_irq_ack);
6457 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6458 EXPORT_SYMBOL_GPL(ata_dev_try_classify);