xen mmu: fix a race window causing leave_mm BUG()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / mmu.c
blob4916176c53e3ae3f0672d0b4bc91a3b0b58dbe9f
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/module.h>
46 #include <linux/gfp.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/fixmap.h>
51 #include <asm/mmu_context.h>
52 #include <asm/setup.h>
53 #include <asm/paravirt.h>
54 #include <asm/linkage.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
59 #include <xen/page.h>
60 #include <xen/interface/xen.h>
61 #include <xen/interface/version.h>
62 #include <xen/hvc-console.h>
64 #include "multicalls.h"
65 #include "mmu.h"
66 #include "debugfs.h"
68 #define MMU_UPDATE_HISTO 30
70 #ifdef CONFIG_XEN_DEBUG_FS
72 static struct {
73 u32 pgd_update;
74 u32 pgd_update_pinned;
75 u32 pgd_update_batched;
77 u32 pud_update;
78 u32 pud_update_pinned;
79 u32 pud_update_batched;
81 u32 pmd_update;
82 u32 pmd_update_pinned;
83 u32 pmd_update_batched;
85 u32 pte_update;
86 u32 pte_update_pinned;
87 u32 pte_update_batched;
89 u32 mmu_update;
90 u32 mmu_update_extended;
91 u32 mmu_update_histo[MMU_UPDATE_HISTO];
93 u32 prot_commit;
94 u32 prot_commit_batched;
96 u32 set_pte_at;
97 u32 set_pte_at_batched;
98 u32 set_pte_at_pinned;
99 u32 set_pte_at_current;
100 u32 set_pte_at_kernel;
101 } mmu_stats;
103 static u8 zero_stats;
105 static inline void check_zero(void)
107 if (unlikely(zero_stats)) {
108 memset(&mmu_stats, 0, sizeof(mmu_stats));
109 zero_stats = 0;
113 #define ADD_STATS(elem, val) \
114 do { check_zero(); mmu_stats.elem += (val); } while(0)
116 #else /* !CONFIG_XEN_DEBUG_FS */
118 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
120 #endif /* CONFIG_XEN_DEBUG_FS */
124 * Identity map, in addition to plain kernel map. This needs to be
125 * large enough to allocate page table pages to allocate the rest.
126 * Each page can map 2MB.
128 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
130 #ifdef CONFIG_X86_64
131 /* l3 pud for userspace vsyscall mapping */
132 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
133 #endif /* CONFIG_X86_64 */
136 * Note about cr3 (pagetable base) values:
138 * xen_cr3 contains the current logical cr3 value; it contains the
139 * last set cr3. This may not be the current effective cr3, because
140 * its update may be being lazily deferred. However, a vcpu looking
141 * at its own cr3 can use this value knowing that it everything will
142 * be self-consistent.
144 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
145 * hypercall to set the vcpu cr3 is complete (so it may be a little
146 * out of date, but it will never be set early). If one vcpu is
147 * looking at another vcpu's cr3 value, it should use this variable.
149 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
150 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
154 * Just beyond the highest usermode address. STACK_TOP_MAX has a
155 * redzone above it, so round it up to a PGD boundary.
157 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
160 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
161 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
163 /* Placeholder for holes in the address space */
164 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
165 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
167 /* Array of pointers to pages containing p2m entries */
168 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
169 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
171 /* Arrays of p2m arrays expressed in mfns used for save/restore */
172 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
174 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
175 __page_aligned_bss;
177 static inline unsigned p2m_top_index(unsigned long pfn)
179 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
180 return pfn / P2M_ENTRIES_PER_PAGE;
183 static inline unsigned p2m_index(unsigned long pfn)
185 return pfn % P2M_ENTRIES_PER_PAGE;
188 /* Build the parallel p2m_top_mfn structures */
189 void xen_build_mfn_list_list(void)
191 unsigned pfn, idx;
193 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
194 unsigned topidx = p2m_top_index(pfn);
196 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
199 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
200 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
201 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
205 void xen_setup_mfn_list_list(void)
207 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
209 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
210 virt_to_mfn(p2m_top_mfn_list);
211 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
214 /* Set up p2m_top to point to the domain-builder provided p2m pages */
215 void __init xen_build_dynamic_phys_to_machine(void)
217 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
218 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
219 unsigned pfn;
221 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
222 unsigned topidx = p2m_top_index(pfn);
224 p2m_top[topidx] = &mfn_list[pfn];
227 xen_build_mfn_list_list();
230 unsigned long get_phys_to_machine(unsigned long pfn)
232 unsigned topidx, idx;
234 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
235 return INVALID_P2M_ENTRY;
237 topidx = p2m_top_index(pfn);
238 idx = p2m_index(pfn);
239 return p2m_top[topidx][idx];
241 EXPORT_SYMBOL_GPL(get_phys_to_machine);
243 /* install a new p2m_top page */
244 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
246 unsigned topidx = p2m_top_index(pfn);
247 unsigned long **pfnp, *mfnp;
248 unsigned i;
250 pfnp = &p2m_top[topidx];
251 mfnp = &p2m_top_mfn[topidx];
253 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
254 p[i] = INVALID_P2M_ENTRY;
256 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
257 *mfnp = virt_to_mfn(p);
258 return true;
261 return false;
264 static void alloc_p2m(unsigned long pfn)
266 unsigned long *p;
268 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
269 BUG_ON(p == NULL);
271 if (!install_p2mtop_page(pfn, p))
272 free_page((unsigned long)p);
275 /* Try to install p2m mapping; fail if intermediate bits missing */
276 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
278 unsigned topidx, idx;
280 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
281 BUG_ON(mfn != INVALID_P2M_ENTRY);
282 return true;
285 topidx = p2m_top_index(pfn);
286 if (p2m_top[topidx] == p2m_missing) {
287 if (mfn == INVALID_P2M_ENTRY)
288 return true;
289 return false;
292 idx = p2m_index(pfn);
293 p2m_top[topidx][idx] = mfn;
295 return true;
298 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
300 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
301 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
302 return;
305 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
306 alloc_p2m(pfn);
308 if (!__set_phys_to_machine(pfn, mfn))
309 BUG();
313 unsigned long arbitrary_virt_to_mfn(void *vaddr)
315 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
317 return PFN_DOWN(maddr.maddr);
320 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
322 unsigned long address = (unsigned long)vaddr;
323 unsigned int level;
324 pte_t *pte;
325 unsigned offset;
328 * if the PFN is in the linear mapped vaddr range, we can just use
329 * the (quick) virt_to_machine() p2m lookup
331 if (virt_addr_valid(vaddr))
332 return virt_to_machine(vaddr);
334 /* otherwise we have to do a (slower) full page-table walk */
336 pte = lookup_address(address, &level);
337 BUG_ON(pte == NULL);
338 offset = address & ~PAGE_MASK;
339 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
342 void make_lowmem_page_readonly(void *vaddr)
344 pte_t *pte, ptev;
345 unsigned long address = (unsigned long)vaddr;
346 unsigned int level;
348 pte = lookup_address(address, &level);
349 BUG_ON(pte == NULL);
351 ptev = pte_wrprotect(*pte);
353 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
354 BUG();
357 void make_lowmem_page_readwrite(void *vaddr)
359 pte_t *pte, ptev;
360 unsigned long address = (unsigned long)vaddr;
361 unsigned int level;
363 pte = lookup_address(address, &level);
364 BUG_ON(pte == NULL);
366 ptev = pte_mkwrite(*pte);
368 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
369 BUG();
373 static bool xen_page_pinned(void *ptr)
375 struct page *page = virt_to_page(ptr);
377 return PagePinned(page);
380 static void xen_extend_mmu_update(const struct mmu_update *update)
382 struct multicall_space mcs;
383 struct mmu_update *u;
385 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
387 if (mcs.mc != NULL) {
388 ADD_STATS(mmu_update_extended, 1);
389 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
391 mcs.mc->args[1]++;
393 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
394 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
395 else
396 ADD_STATS(mmu_update_histo[0], 1);
397 } else {
398 ADD_STATS(mmu_update, 1);
399 mcs = __xen_mc_entry(sizeof(*u));
400 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
401 ADD_STATS(mmu_update_histo[1], 1);
404 u = mcs.args;
405 *u = *update;
408 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
410 struct mmu_update u;
412 preempt_disable();
414 xen_mc_batch();
416 /* ptr may be ioremapped for 64-bit pagetable setup */
417 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
418 u.val = pmd_val_ma(val);
419 xen_extend_mmu_update(&u);
421 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
423 xen_mc_issue(PARAVIRT_LAZY_MMU);
425 preempt_enable();
428 void xen_set_pmd(pmd_t *ptr, pmd_t val)
430 ADD_STATS(pmd_update, 1);
432 /* If page is not pinned, we can just update the entry
433 directly */
434 if (!xen_page_pinned(ptr)) {
435 *ptr = val;
436 return;
439 ADD_STATS(pmd_update_pinned, 1);
441 xen_set_pmd_hyper(ptr, val);
445 * Associate a virtual page frame with a given physical page frame
446 * and protection flags for that frame.
448 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
450 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
453 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
454 pte_t *ptep, pte_t pteval)
456 ADD_STATS(set_pte_at, 1);
457 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
458 ADD_STATS(set_pte_at_current, mm == current->mm);
459 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
461 if (mm == current->mm || mm == &init_mm) {
462 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
463 struct multicall_space mcs;
464 mcs = xen_mc_entry(0);
466 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
467 ADD_STATS(set_pte_at_batched, 1);
468 xen_mc_issue(PARAVIRT_LAZY_MMU);
469 goto out;
470 } else
471 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
472 goto out;
474 xen_set_pte(ptep, pteval);
476 out: return;
479 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
480 unsigned long addr, pte_t *ptep)
482 /* Just return the pte as-is. We preserve the bits on commit */
483 return *ptep;
486 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
487 pte_t *ptep, pte_t pte)
489 struct mmu_update u;
491 xen_mc_batch();
493 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
494 u.val = pte_val_ma(pte);
495 xen_extend_mmu_update(&u);
497 ADD_STATS(prot_commit, 1);
498 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
500 xen_mc_issue(PARAVIRT_LAZY_MMU);
503 /* Assume pteval_t is equivalent to all the other *val_t types. */
504 static pteval_t pte_mfn_to_pfn(pteval_t val)
506 if (val & _PAGE_PRESENT) {
507 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
508 pteval_t flags = val & PTE_FLAGS_MASK;
509 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
512 return val;
515 static pteval_t pte_pfn_to_mfn(pteval_t val)
517 if (val & _PAGE_PRESENT) {
518 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
519 pteval_t flags = val & PTE_FLAGS_MASK;
520 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
523 return val;
526 pteval_t xen_pte_val(pte_t pte)
528 return pte_mfn_to_pfn(pte.pte);
530 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
532 pgdval_t xen_pgd_val(pgd_t pgd)
534 return pte_mfn_to_pfn(pgd.pgd);
536 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
538 pte_t xen_make_pte(pteval_t pte)
540 pte = pte_pfn_to_mfn(pte);
541 return native_make_pte(pte);
543 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
545 pgd_t xen_make_pgd(pgdval_t pgd)
547 pgd = pte_pfn_to_mfn(pgd);
548 return native_make_pgd(pgd);
550 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
552 pmdval_t xen_pmd_val(pmd_t pmd)
554 return pte_mfn_to_pfn(pmd.pmd);
556 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
558 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
560 struct mmu_update u;
562 preempt_disable();
564 xen_mc_batch();
566 /* ptr may be ioremapped for 64-bit pagetable setup */
567 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
568 u.val = pud_val_ma(val);
569 xen_extend_mmu_update(&u);
571 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
573 xen_mc_issue(PARAVIRT_LAZY_MMU);
575 preempt_enable();
578 void xen_set_pud(pud_t *ptr, pud_t val)
580 ADD_STATS(pud_update, 1);
582 /* If page is not pinned, we can just update the entry
583 directly */
584 if (!xen_page_pinned(ptr)) {
585 *ptr = val;
586 return;
589 ADD_STATS(pud_update_pinned, 1);
591 xen_set_pud_hyper(ptr, val);
594 void xen_set_pte(pte_t *ptep, pte_t pte)
596 ADD_STATS(pte_update, 1);
597 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
598 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
600 #ifdef CONFIG_X86_PAE
601 ptep->pte_high = pte.pte_high;
602 smp_wmb();
603 ptep->pte_low = pte.pte_low;
604 #else
605 *ptep = pte;
606 #endif
609 #ifdef CONFIG_X86_PAE
610 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
612 set_64bit((u64 *)ptep, native_pte_val(pte));
615 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
617 ptep->pte_low = 0;
618 smp_wmb(); /* make sure low gets written first */
619 ptep->pte_high = 0;
622 void xen_pmd_clear(pmd_t *pmdp)
624 set_pmd(pmdp, __pmd(0));
626 #endif /* CONFIG_X86_PAE */
628 pmd_t xen_make_pmd(pmdval_t pmd)
630 pmd = pte_pfn_to_mfn(pmd);
631 return native_make_pmd(pmd);
633 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
635 #if PAGETABLE_LEVELS == 4
636 pudval_t xen_pud_val(pud_t pud)
638 return pte_mfn_to_pfn(pud.pud);
640 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
642 pud_t xen_make_pud(pudval_t pud)
644 pud = pte_pfn_to_mfn(pud);
646 return native_make_pud(pud);
648 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
650 pgd_t *xen_get_user_pgd(pgd_t *pgd)
652 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
653 unsigned offset = pgd - pgd_page;
654 pgd_t *user_ptr = NULL;
656 if (offset < pgd_index(USER_LIMIT)) {
657 struct page *page = virt_to_page(pgd_page);
658 user_ptr = (pgd_t *)page->private;
659 if (user_ptr)
660 user_ptr += offset;
663 return user_ptr;
666 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
668 struct mmu_update u;
670 u.ptr = virt_to_machine(ptr).maddr;
671 u.val = pgd_val_ma(val);
672 xen_extend_mmu_update(&u);
676 * Raw hypercall-based set_pgd, intended for in early boot before
677 * there's a page structure. This implies:
678 * 1. The only existing pagetable is the kernel's
679 * 2. It is always pinned
680 * 3. It has no user pagetable attached to it
682 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
684 preempt_disable();
686 xen_mc_batch();
688 __xen_set_pgd_hyper(ptr, val);
690 xen_mc_issue(PARAVIRT_LAZY_MMU);
692 preempt_enable();
695 void xen_set_pgd(pgd_t *ptr, pgd_t val)
697 pgd_t *user_ptr = xen_get_user_pgd(ptr);
699 ADD_STATS(pgd_update, 1);
701 /* If page is not pinned, we can just update the entry
702 directly */
703 if (!xen_page_pinned(ptr)) {
704 *ptr = val;
705 if (user_ptr) {
706 WARN_ON(xen_page_pinned(user_ptr));
707 *user_ptr = val;
709 return;
712 ADD_STATS(pgd_update_pinned, 1);
713 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
715 /* If it's pinned, then we can at least batch the kernel and
716 user updates together. */
717 xen_mc_batch();
719 __xen_set_pgd_hyper(ptr, val);
720 if (user_ptr)
721 __xen_set_pgd_hyper(user_ptr, val);
723 xen_mc_issue(PARAVIRT_LAZY_MMU);
725 #endif /* PAGETABLE_LEVELS == 4 */
728 * (Yet another) pagetable walker. This one is intended for pinning a
729 * pagetable. This means that it walks a pagetable and calls the
730 * callback function on each page it finds making up the page table,
731 * at every level. It walks the entire pagetable, but it only bothers
732 * pinning pte pages which are below limit. In the normal case this
733 * will be STACK_TOP_MAX, but at boot we need to pin up to
734 * FIXADDR_TOP.
736 * For 32-bit the important bit is that we don't pin beyond there,
737 * because then we start getting into Xen's ptes.
739 * For 64-bit, we must skip the Xen hole in the middle of the address
740 * space, just after the big x86-64 virtual hole.
742 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
743 int (*func)(struct mm_struct *mm, struct page *,
744 enum pt_level),
745 unsigned long limit)
747 int flush = 0;
748 unsigned hole_low, hole_high;
749 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
750 unsigned pgdidx, pudidx, pmdidx;
752 /* The limit is the last byte to be touched */
753 limit--;
754 BUG_ON(limit >= FIXADDR_TOP);
756 if (xen_feature(XENFEAT_auto_translated_physmap))
757 return 0;
760 * 64-bit has a great big hole in the middle of the address
761 * space, which contains the Xen mappings. On 32-bit these
762 * will end up making a zero-sized hole and so is a no-op.
764 hole_low = pgd_index(USER_LIMIT);
765 hole_high = pgd_index(PAGE_OFFSET);
767 pgdidx_limit = pgd_index(limit);
768 #if PTRS_PER_PUD > 1
769 pudidx_limit = pud_index(limit);
770 #else
771 pudidx_limit = 0;
772 #endif
773 #if PTRS_PER_PMD > 1
774 pmdidx_limit = pmd_index(limit);
775 #else
776 pmdidx_limit = 0;
777 #endif
779 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
780 pud_t *pud;
782 if (pgdidx >= hole_low && pgdidx < hole_high)
783 continue;
785 if (!pgd_val(pgd[pgdidx]))
786 continue;
788 pud = pud_offset(&pgd[pgdidx], 0);
790 if (PTRS_PER_PUD > 1) /* not folded */
791 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
793 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
794 pmd_t *pmd;
796 if (pgdidx == pgdidx_limit &&
797 pudidx > pudidx_limit)
798 goto out;
800 if (pud_none(pud[pudidx]))
801 continue;
803 pmd = pmd_offset(&pud[pudidx], 0);
805 if (PTRS_PER_PMD > 1) /* not folded */
806 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
808 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
809 struct page *pte;
811 if (pgdidx == pgdidx_limit &&
812 pudidx == pudidx_limit &&
813 pmdidx > pmdidx_limit)
814 goto out;
816 if (pmd_none(pmd[pmdidx]))
817 continue;
819 pte = pmd_page(pmd[pmdidx]);
820 flush |= (*func)(mm, pte, PT_PTE);
825 out:
826 /* Do the top level last, so that the callbacks can use it as
827 a cue to do final things like tlb flushes. */
828 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
830 return flush;
833 static int xen_pgd_walk(struct mm_struct *mm,
834 int (*func)(struct mm_struct *mm, struct page *,
835 enum pt_level),
836 unsigned long limit)
838 return __xen_pgd_walk(mm, mm->pgd, func, limit);
841 /* If we're using split pte locks, then take the page's lock and
842 return a pointer to it. Otherwise return NULL. */
843 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
845 spinlock_t *ptl = NULL;
847 #if USE_SPLIT_PTLOCKS
848 ptl = __pte_lockptr(page);
849 spin_lock_nest_lock(ptl, &mm->page_table_lock);
850 #endif
852 return ptl;
855 static void xen_pte_unlock(void *v)
857 spinlock_t *ptl = v;
858 spin_unlock(ptl);
861 static void xen_do_pin(unsigned level, unsigned long pfn)
863 struct mmuext_op *op;
864 struct multicall_space mcs;
866 mcs = __xen_mc_entry(sizeof(*op));
867 op = mcs.args;
868 op->cmd = level;
869 op->arg1.mfn = pfn_to_mfn(pfn);
870 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
873 static int xen_pin_page(struct mm_struct *mm, struct page *page,
874 enum pt_level level)
876 unsigned pgfl = TestSetPagePinned(page);
877 int flush;
879 if (pgfl)
880 flush = 0; /* already pinned */
881 else if (PageHighMem(page))
882 /* kmaps need flushing if we found an unpinned
883 highpage */
884 flush = 1;
885 else {
886 void *pt = lowmem_page_address(page);
887 unsigned long pfn = page_to_pfn(page);
888 struct multicall_space mcs = __xen_mc_entry(0);
889 spinlock_t *ptl;
891 flush = 0;
894 * We need to hold the pagetable lock between the time
895 * we make the pagetable RO and when we actually pin
896 * it. If we don't, then other users may come in and
897 * attempt to update the pagetable by writing it,
898 * which will fail because the memory is RO but not
899 * pinned, so Xen won't do the trap'n'emulate.
901 * If we're using split pte locks, we can't hold the
902 * entire pagetable's worth of locks during the
903 * traverse, because we may wrap the preempt count (8
904 * bits). The solution is to mark RO and pin each PTE
905 * page while holding the lock. This means the number
906 * of locks we end up holding is never more than a
907 * batch size (~32 entries, at present).
909 * If we're not using split pte locks, we needn't pin
910 * the PTE pages independently, because we're
911 * protected by the overall pagetable lock.
913 ptl = NULL;
914 if (level == PT_PTE)
915 ptl = xen_pte_lock(page, mm);
917 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
918 pfn_pte(pfn, PAGE_KERNEL_RO),
919 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
921 if (ptl) {
922 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
924 /* Queue a deferred unlock for when this batch
925 is completed. */
926 xen_mc_callback(xen_pte_unlock, ptl);
930 return flush;
933 /* This is called just after a mm has been created, but it has not
934 been used yet. We need to make sure that its pagetable is all
935 read-only, and can be pinned. */
936 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
938 vm_unmap_aliases();
940 xen_mc_batch();
942 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
943 /* re-enable interrupts for flushing */
944 xen_mc_issue(0);
946 kmap_flush_unused();
948 xen_mc_batch();
951 #ifdef CONFIG_X86_64
953 pgd_t *user_pgd = xen_get_user_pgd(pgd);
955 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
957 if (user_pgd) {
958 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
959 xen_do_pin(MMUEXT_PIN_L4_TABLE,
960 PFN_DOWN(__pa(user_pgd)));
963 #else /* CONFIG_X86_32 */
964 #ifdef CONFIG_X86_PAE
965 /* Need to make sure unshared kernel PMD is pinnable */
966 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
967 PT_PMD);
968 #endif
969 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
970 #endif /* CONFIG_X86_64 */
971 xen_mc_issue(0);
974 static void xen_pgd_pin(struct mm_struct *mm)
976 __xen_pgd_pin(mm, mm->pgd);
980 * On save, we need to pin all pagetables to make sure they get their
981 * mfns turned into pfns. Search the list for any unpinned pgds and pin
982 * them (unpinned pgds are not currently in use, probably because the
983 * process is under construction or destruction).
985 * Expected to be called in stop_machine() ("equivalent to taking
986 * every spinlock in the system"), so the locking doesn't really
987 * matter all that much.
989 void xen_mm_pin_all(void)
991 unsigned long flags;
992 struct page *page;
994 spin_lock_irqsave(&pgd_lock, flags);
996 list_for_each_entry(page, &pgd_list, lru) {
997 if (!PagePinned(page)) {
998 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
999 SetPageSavePinned(page);
1003 spin_unlock_irqrestore(&pgd_lock, flags);
1007 * The init_mm pagetable is really pinned as soon as its created, but
1008 * that's before we have page structures to store the bits. So do all
1009 * the book-keeping now.
1011 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1012 enum pt_level level)
1014 SetPagePinned(page);
1015 return 0;
1018 static void __init xen_mark_init_mm_pinned(void)
1020 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1023 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1024 enum pt_level level)
1026 unsigned pgfl = TestClearPagePinned(page);
1028 if (pgfl && !PageHighMem(page)) {
1029 void *pt = lowmem_page_address(page);
1030 unsigned long pfn = page_to_pfn(page);
1031 spinlock_t *ptl = NULL;
1032 struct multicall_space mcs;
1035 * Do the converse to pin_page. If we're using split
1036 * pte locks, we must be holding the lock for while
1037 * the pte page is unpinned but still RO to prevent
1038 * concurrent updates from seeing it in this
1039 * partially-pinned state.
1041 if (level == PT_PTE) {
1042 ptl = xen_pte_lock(page, mm);
1044 if (ptl)
1045 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1048 mcs = __xen_mc_entry(0);
1050 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1051 pfn_pte(pfn, PAGE_KERNEL),
1052 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1054 if (ptl) {
1055 /* unlock when batch completed */
1056 xen_mc_callback(xen_pte_unlock, ptl);
1060 return 0; /* never need to flush on unpin */
1063 /* Release a pagetables pages back as normal RW */
1064 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1066 xen_mc_batch();
1068 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1070 #ifdef CONFIG_X86_64
1072 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1074 if (user_pgd) {
1075 xen_do_pin(MMUEXT_UNPIN_TABLE,
1076 PFN_DOWN(__pa(user_pgd)));
1077 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1080 #endif
1082 #ifdef CONFIG_X86_PAE
1083 /* Need to make sure unshared kernel PMD is unpinned */
1084 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1085 PT_PMD);
1086 #endif
1088 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1090 xen_mc_issue(0);
1093 static void xen_pgd_unpin(struct mm_struct *mm)
1095 __xen_pgd_unpin(mm, mm->pgd);
1099 * On resume, undo any pinning done at save, so that the rest of the
1100 * kernel doesn't see any unexpected pinned pagetables.
1102 void xen_mm_unpin_all(void)
1104 unsigned long flags;
1105 struct page *page;
1107 spin_lock_irqsave(&pgd_lock, flags);
1109 list_for_each_entry(page, &pgd_list, lru) {
1110 if (PageSavePinned(page)) {
1111 BUG_ON(!PagePinned(page));
1112 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1113 ClearPageSavePinned(page);
1117 spin_unlock_irqrestore(&pgd_lock, flags);
1120 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1122 spin_lock(&next->page_table_lock);
1123 xen_pgd_pin(next);
1124 spin_unlock(&next->page_table_lock);
1127 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1129 spin_lock(&mm->page_table_lock);
1130 xen_pgd_pin(mm);
1131 spin_unlock(&mm->page_table_lock);
1135 #ifdef CONFIG_SMP
1136 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1137 we need to repoint it somewhere else before we can unpin it. */
1138 static void drop_other_mm_ref(void *info)
1140 struct mm_struct *mm = info;
1141 struct mm_struct *active_mm;
1143 active_mm = percpu_read(cpu_tlbstate.active_mm);
1145 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1146 leave_mm(smp_processor_id());
1148 /* If this cpu still has a stale cr3 reference, then make sure
1149 it has been flushed. */
1150 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1151 load_cr3(swapper_pg_dir);
1154 static void xen_drop_mm_ref(struct mm_struct *mm)
1156 cpumask_var_t mask;
1157 unsigned cpu;
1159 if (current->active_mm == mm) {
1160 if (current->mm == mm)
1161 load_cr3(swapper_pg_dir);
1162 else
1163 leave_mm(smp_processor_id());
1166 /* Get the "official" set of cpus referring to our pagetable. */
1167 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1168 for_each_online_cpu(cpu) {
1169 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1170 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1171 continue;
1172 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1174 return;
1176 cpumask_copy(mask, mm_cpumask(mm));
1178 /* It's possible that a vcpu may have a stale reference to our
1179 cr3, because its in lazy mode, and it hasn't yet flushed
1180 its set of pending hypercalls yet. In this case, we can
1181 look at its actual current cr3 value, and force it to flush
1182 if needed. */
1183 for_each_online_cpu(cpu) {
1184 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1185 cpumask_set_cpu(cpu, mask);
1188 if (!cpumask_empty(mask))
1189 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1190 free_cpumask_var(mask);
1192 #else
1193 static void xen_drop_mm_ref(struct mm_struct *mm)
1195 if (current->active_mm == mm)
1196 load_cr3(swapper_pg_dir);
1198 #endif
1201 * While a process runs, Xen pins its pagetables, which means that the
1202 * hypervisor forces it to be read-only, and it controls all updates
1203 * to it. This means that all pagetable updates have to go via the
1204 * hypervisor, which is moderately expensive.
1206 * Since we're pulling the pagetable down, we switch to use init_mm,
1207 * unpin old process pagetable and mark it all read-write, which
1208 * allows further operations on it to be simple memory accesses.
1210 * The only subtle point is that another CPU may be still using the
1211 * pagetable because of lazy tlb flushing. This means we need need to
1212 * switch all CPUs off this pagetable before we can unpin it.
1214 void xen_exit_mmap(struct mm_struct *mm)
1216 get_cpu(); /* make sure we don't move around */
1217 xen_drop_mm_ref(mm);
1218 put_cpu();
1220 spin_lock(&mm->page_table_lock);
1222 /* pgd may not be pinned in the error exit path of execve */
1223 if (xen_page_pinned(mm->pgd))
1224 xen_pgd_unpin(mm);
1226 spin_unlock(&mm->page_table_lock);
1229 static __init void xen_pagetable_setup_start(pgd_t *base)
1233 static void xen_post_allocator_init(void);
1235 static __init void xen_pagetable_setup_done(pgd_t *base)
1237 xen_setup_shared_info();
1238 xen_post_allocator_init();
1241 static void xen_write_cr2(unsigned long cr2)
1243 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1246 static unsigned long xen_read_cr2(void)
1248 return percpu_read(xen_vcpu)->arch.cr2;
1251 unsigned long xen_read_cr2_direct(void)
1253 return percpu_read(xen_vcpu_info.arch.cr2);
1256 static void xen_flush_tlb(void)
1258 struct mmuext_op *op;
1259 struct multicall_space mcs;
1261 preempt_disable();
1263 mcs = xen_mc_entry(sizeof(*op));
1265 op = mcs.args;
1266 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1267 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1269 xen_mc_issue(PARAVIRT_LAZY_MMU);
1271 preempt_enable();
1274 static void xen_flush_tlb_single(unsigned long addr)
1276 struct mmuext_op *op;
1277 struct multicall_space mcs;
1279 preempt_disable();
1281 mcs = xen_mc_entry(sizeof(*op));
1282 op = mcs.args;
1283 op->cmd = MMUEXT_INVLPG_LOCAL;
1284 op->arg1.linear_addr = addr & PAGE_MASK;
1285 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1287 xen_mc_issue(PARAVIRT_LAZY_MMU);
1289 preempt_enable();
1292 static void xen_flush_tlb_others(const struct cpumask *cpus,
1293 struct mm_struct *mm, unsigned long va)
1295 struct {
1296 struct mmuext_op op;
1297 DECLARE_BITMAP(mask, NR_CPUS);
1298 } *args;
1299 struct multicall_space mcs;
1301 if (cpumask_empty(cpus))
1302 return; /* nothing to do */
1304 mcs = xen_mc_entry(sizeof(*args));
1305 args = mcs.args;
1306 args->op.arg2.vcpumask = to_cpumask(args->mask);
1308 /* Remove us, and any offline CPUS. */
1309 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1310 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1312 if (va == TLB_FLUSH_ALL) {
1313 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1314 } else {
1315 args->op.cmd = MMUEXT_INVLPG_MULTI;
1316 args->op.arg1.linear_addr = va;
1319 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1321 xen_mc_issue(PARAVIRT_LAZY_MMU);
1324 static unsigned long xen_read_cr3(void)
1326 return percpu_read(xen_cr3);
1329 static void set_current_cr3(void *v)
1331 percpu_write(xen_current_cr3, (unsigned long)v);
1334 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1336 struct mmuext_op *op;
1337 struct multicall_space mcs;
1338 unsigned long mfn;
1340 if (cr3)
1341 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1342 else
1343 mfn = 0;
1345 WARN_ON(mfn == 0 && kernel);
1347 mcs = __xen_mc_entry(sizeof(*op));
1349 op = mcs.args;
1350 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1351 op->arg1.mfn = mfn;
1353 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1355 if (kernel) {
1356 percpu_write(xen_cr3, cr3);
1358 /* Update xen_current_cr3 once the batch has actually
1359 been submitted. */
1360 xen_mc_callback(set_current_cr3, (void *)cr3);
1364 static void xen_write_cr3(unsigned long cr3)
1366 BUG_ON(preemptible());
1368 xen_mc_batch(); /* disables interrupts */
1370 /* Update while interrupts are disabled, so its atomic with
1371 respect to ipis */
1372 percpu_write(xen_cr3, cr3);
1374 __xen_write_cr3(true, cr3);
1376 #ifdef CONFIG_X86_64
1378 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1379 if (user_pgd)
1380 __xen_write_cr3(false, __pa(user_pgd));
1381 else
1382 __xen_write_cr3(false, 0);
1384 #endif
1386 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1389 static int xen_pgd_alloc(struct mm_struct *mm)
1391 pgd_t *pgd = mm->pgd;
1392 int ret = 0;
1394 BUG_ON(PagePinned(virt_to_page(pgd)));
1396 #ifdef CONFIG_X86_64
1398 struct page *page = virt_to_page(pgd);
1399 pgd_t *user_pgd;
1401 BUG_ON(page->private != 0);
1403 ret = -ENOMEM;
1405 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1406 page->private = (unsigned long)user_pgd;
1408 if (user_pgd != NULL) {
1409 user_pgd[pgd_index(VSYSCALL_START)] =
1410 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1411 ret = 0;
1414 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1416 #endif
1418 return ret;
1421 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1423 #ifdef CONFIG_X86_64
1424 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1426 if (user_pgd)
1427 free_page((unsigned long)user_pgd);
1428 #endif
1431 #ifdef CONFIG_X86_32
1432 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1434 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1435 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1436 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1437 pte_val_ma(pte));
1439 return pte;
1442 /* Init-time set_pte while constructing initial pagetables, which
1443 doesn't allow RO pagetable pages to be remapped RW */
1444 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1446 pte = mask_rw_pte(ptep, pte);
1448 xen_set_pte(ptep, pte);
1450 #endif
1452 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1454 struct mmuext_op op;
1455 op.cmd = cmd;
1456 op.arg1.mfn = pfn_to_mfn(pfn);
1457 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1458 BUG();
1461 /* Early in boot, while setting up the initial pagetable, assume
1462 everything is pinned. */
1463 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1465 #ifdef CONFIG_FLATMEM
1466 BUG_ON(mem_map); /* should only be used early */
1467 #endif
1468 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1469 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1472 /* Used for pmd and pud */
1473 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1475 #ifdef CONFIG_FLATMEM
1476 BUG_ON(mem_map); /* should only be used early */
1477 #endif
1478 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1481 /* Early release_pte assumes that all pts are pinned, since there's
1482 only init_mm and anything attached to that is pinned. */
1483 static __init void xen_release_pte_init(unsigned long pfn)
1485 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1486 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1489 static __init void xen_release_pmd_init(unsigned long pfn)
1491 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1494 /* This needs to make sure the new pte page is pinned iff its being
1495 attached to a pinned pagetable. */
1496 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1498 struct page *page = pfn_to_page(pfn);
1500 if (PagePinned(virt_to_page(mm->pgd))) {
1501 SetPagePinned(page);
1503 vm_unmap_aliases();
1504 if (!PageHighMem(page)) {
1505 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1506 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1507 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1508 } else {
1509 /* make sure there are no stray mappings of
1510 this page */
1511 kmap_flush_unused();
1516 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1518 xen_alloc_ptpage(mm, pfn, PT_PTE);
1521 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1523 xen_alloc_ptpage(mm, pfn, PT_PMD);
1526 /* This should never happen until we're OK to use struct page */
1527 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1529 struct page *page = pfn_to_page(pfn);
1531 if (PagePinned(page)) {
1532 if (!PageHighMem(page)) {
1533 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1534 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1535 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1537 ClearPagePinned(page);
1541 static void xen_release_pte(unsigned long pfn)
1543 xen_release_ptpage(pfn, PT_PTE);
1546 static void xen_release_pmd(unsigned long pfn)
1548 xen_release_ptpage(pfn, PT_PMD);
1551 #if PAGETABLE_LEVELS == 4
1552 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1554 xen_alloc_ptpage(mm, pfn, PT_PUD);
1557 static void xen_release_pud(unsigned long pfn)
1559 xen_release_ptpage(pfn, PT_PUD);
1561 #endif
1563 void __init xen_reserve_top(void)
1565 #ifdef CONFIG_X86_32
1566 unsigned long top = HYPERVISOR_VIRT_START;
1567 struct xen_platform_parameters pp;
1569 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1570 top = pp.virt_start;
1572 reserve_top_address(-top);
1573 #endif /* CONFIG_X86_32 */
1577 * Like __va(), but returns address in the kernel mapping (which is
1578 * all we have until the physical memory mapping has been set up.
1580 static void *__ka(phys_addr_t paddr)
1582 #ifdef CONFIG_X86_64
1583 return (void *)(paddr + __START_KERNEL_map);
1584 #else
1585 return __va(paddr);
1586 #endif
1589 /* Convert a machine address to physical address */
1590 static unsigned long m2p(phys_addr_t maddr)
1592 phys_addr_t paddr;
1594 maddr &= PTE_PFN_MASK;
1595 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1597 return paddr;
1600 /* Convert a machine address to kernel virtual */
1601 static void *m2v(phys_addr_t maddr)
1603 return __ka(m2p(maddr));
1606 static void set_page_prot(void *addr, pgprot_t prot)
1608 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1609 pte_t pte = pfn_pte(pfn, prot);
1611 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1612 BUG();
1615 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1617 unsigned pmdidx, pteidx;
1618 unsigned ident_pte;
1619 unsigned long pfn;
1621 ident_pte = 0;
1622 pfn = 0;
1623 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1624 pte_t *pte_page;
1626 /* Reuse or allocate a page of ptes */
1627 if (pmd_present(pmd[pmdidx]))
1628 pte_page = m2v(pmd[pmdidx].pmd);
1629 else {
1630 /* Check for free pte pages */
1631 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1632 break;
1634 pte_page = &level1_ident_pgt[ident_pte];
1635 ident_pte += PTRS_PER_PTE;
1637 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1640 /* Install mappings */
1641 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1642 pte_t pte;
1644 if (!pte_none(pte_page[pteidx]))
1645 continue;
1647 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1648 pte_page[pteidx] = pte;
1652 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1653 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1655 set_page_prot(pmd, PAGE_KERNEL_RO);
1658 #ifdef CONFIG_X86_64
1659 static void convert_pfn_mfn(void *v)
1661 pte_t *pte = v;
1662 int i;
1664 /* All levels are converted the same way, so just treat them
1665 as ptes. */
1666 for (i = 0; i < PTRS_PER_PTE; i++)
1667 pte[i] = xen_make_pte(pte[i].pte);
1671 * Set up the inital kernel pagetable.
1673 * We can construct this by grafting the Xen provided pagetable into
1674 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1675 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1676 * means that only the kernel has a physical mapping to start with -
1677 * but that's enough to get __va working. We need to fill in the rest
1678 * of the physical mapping once some sort of allocator has been set
1679 * up.
1681 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1682 unsigned long max_pfn)
1684 pud_t *l3;
1685 pmd_t *l2;
1687 /* max_pfn_mapped is the last pfn mapped in the initial memory
1688 * mappings. Considering that on Xen after the kernel mappings we
1689 * have the mappings of some pages that don't exist in pfn space, we
1690 * set max_pfn_mapped to the last real pfn mapped. */
1691 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1693 /* Zap identity mapping */
1694 init_level4_pgt[0] = __pgd(0);
1696 /* Pre-constructed entries are in pfn, so convert to mfn */
1697 convert_pfn_mfn(init_level4_pgt);
1698 convert_pfn_mfn(level3_ident_pgt);
1699 convert_pfn_mfn(level3_kernel_pgt);
1701 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1702 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1704 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1705 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1707 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1708 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1709 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1711 /* Set up identity map */
1712 xen_map_identity_early(level2_ident_pgt, max_pfn);
1714 /* Make pagetable pieces RO */
1715 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1716 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1717 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1718 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1719 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1720 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1722 /* Pin down new L4 */
1723 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1724 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1726 /* Unpin Xen-provided one */
1727 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1729 /* Switch over */
1730 pgd = init_level4_pgt;
1733 * At this stage there can be no user pgd, and no page
1734 * structure to attach it to, so make sure we just set kernel
1735 * pgd.
1737 xen_mc_batch();
1738 __xen_write_cr3(true, __pa(pgd));
1739 xen_mc_issue(PARAVIRT_LAZY_CPU);
1741 reserve_early(__pa(xen_start_info->pt_base),
1742 __pa(xen_start_info->pt_base +
1743 xen_start_info->nr_pt_frames * PAGE_SIZE),
1744 "XEN PAGETABLES");
1746 return pgd;
1748 #else /* !CONFIG_X86_64 */
1749 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1751 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1752 unsigned long max_pfn)
1754 pmd_t *kernel_pmd;
1756 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1758 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1759 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1761 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1763 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1764 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1765 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1767 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1768 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1769 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1771 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1773 xen_write_cr3(__pa(swapper_pg_dir));
1775 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1777 reserve_early(__pa(xen_start_info->pt_base),
1778 __pa(xen_start_info->pt_base +
1779 xen_start_info->nr_pt_frames * PAGE_SIZE),
1780 "XEN PAGETABLES");
1782 return swapper_pg_dir;
1784 #endif /* CONFIG_X86_64 */
1786 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1788 pte_t pte;
1790 phys >>= PAGE_SHIFT;
1792 switch (idx) {
1793 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1794 #ifdef CONFIG_X86_F00F_BUG
1795 case FIX_F00F_IDT:
1796 #endif
1797 #ifdef CONFIG_X86_32
1798 case FIX_WP_TEST:
1799 case FIX_VDSO:
1800 # ifdef CONFIG_HIGHMEM
1801 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1802 # endif
1803 #else
1804 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1805 #endif
1806 #ifdef CONFIG_X86_LOCAL_APIC
1807 case FIX_APIC_BASE: /* maps dummy local APIC */
1808 #endif
1809 case FIX_TEXT_POKE0:
1810 case FIX_TEXT_POKE1:
1811 /* All local page mappings */
1812 pte = pfn_pte(phys, prot);
1813 break;
1815 default:
1816 pte = mfn_pte(phys, prot);
1817 break;
1820 __native_set_fixmap(idx, pte);
1822 #ifdef CONFIG_X86_64
1823 /* Replicate changes to map the vsyscall page into the user
1824 pagetable vsyscall mapping. */
1825 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1826 unsigned long vaddr = __fix_to_virt(idx);
1827 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1829 #endif
1832 static __init void xen_post_allocator_init(void)
1834 pv_mmu_ops.set_pte = xen_set_pte;
1835 pv_mmu_ops.set_pmd = xen_set_pmd;
1836 pv_mmu_ops.set_pud = xen_set_pud;
1837 #if PAGETABLE_LEVELS == 4
1838 pv_mmu_ops.set_pgd = xen_set_pgd;
1839 #endif
1841 /* This will work as long as patching hasn't happened yet
1842 (which it hasn't) */
1843 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1844 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1845 pv_mmu_ops.release_pte = xen_release_pte;
1846 pv_mmu_ops.release_pmd = xen_release_pmd;
1847 #if PAGETABLE_LEVELS == 4
1848 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1849 pv_mmu_ops.release_pud = xen_release_pud;
1850 #endif
1852 #ifdef CONFIG_X86_64
1853 SetPagePinned(virt_to_page(level3_user_vsyscall));
1854 #endif
1855 xen_mark_init_mm_pinned();
1858 static void xen_leave_lazy_mmu(void)
1860 preempt_disable();
1861 xen_mc_flush();
1862 paravirt_leave_lazy_mmu();
1863 preempt_enable();
1866 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1867 .read_cr2 = xen_read_cr2,
1868 .write_cr2 = xen_write_cr2,
1870 .read_cr3 = xen_read_cr3,
1871 .write_cr3 = xen_write_cr3,
1873 .flush_tlb_user = xen_flush_tlb,
1874 .flush_tlb_kernel = xen_flush_tlb,
1875 .flush_tlb_single = xen_flush_tlb_single,
1876 .flush_tlb_others = xen_flush_tlb_others,
1878 .pte_update = paravirt_nop,
1879 .pte_update_defer = paravirt_nop,
1881 .pgd_alloc = xen_pgd_alloc,
1882 .pgd_free = xen_pgd_free,
1884 .alloc_pte = xen_alloc_pte_init,
1885 .release_pte = xen_release_pte_init,
1886 .alloc_pmd = xen_alloc_pmd_init,
1887 .alloc_pmd_clone = paravirt_nop,
1888 .release_pmd = xen_release_pmd_init,
1890 #ifdef CONFIG_X86_64
1891 .set_pte = xen_set_pte,
1892 #else
1893 .set_pte = xen_set_pte_init,
1894 #endif
1895 .set_pte_at = xen_set_pte_at,
1896 .set_pmd = xen_set_pmd_hyper,
1898 .ptep_modify_prot_start = __ptep_modify_prot_start,
1899 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1901 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1902 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1904 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1905 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1907 #ifdef CONFIG_X86_PAE
1908 .set_pte_atomic = xen_set_pte_atomic,
1909 .pte_clear = xen_pte_clear,
1910 .pmd_clear = xen_pmd_clear,
1911 #endif /* CONFIG_X86_PAE */
1912 .set_pud = xen_set_pud_hyper,
1914 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1915 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1917 #if PAGETABLE_LEVELS == 4
1918 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1919 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1920 .set_pgd = xen_set_pgd_hyper,
1922 .alloc_pud = xen_alloc_pmd_init,
1923 .release_pud = xen_release_pmd_init,
1924 #endif /* PAGETABLE_LEVELS == 4 */
1926 .activate_mm = xen_activate_mm,
1927 .dup_mmap = xen_dup_mmap,
1928 .exit_mmap = xen_exit_mmap,
1930 .lazy_mode = {
1931 .enter = paravirt_enter_lazy_mmu,
1932 .leave = xen_leave_lazy_mmu,
1935 .set_fixmap = xen_set_fixmap,
1938 void __init xen_init_mmu_ops(void)
1940 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
1941 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
1942 pv_mmu_ops = xen_mmu_ops;
1945 #ifdef CONFIG_XEN_DEBUG_FS
1947 static struct dentry *d_mmu_debug;
1949 static int __init xen_mmu_debugfs(void)
1951 struct dentry *d_xen = xen_init_debugfs();
1953 if (d_xen == NULL)
1954 return -ENOMEM;
1956 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1958 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1960 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1961 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1962 &mmu_stats.pgd_update_pinned);
1963 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1964 &mmu_stats.pgd_update_pinned);
1966 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1967 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1968 &mmu_stats.pud_update_pinned);
1969 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1970 &mmu_stats.pud_update_pinned);
1972 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1973 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1974 &mmu_stats.pmd_update_pinned);
1975 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1976 &mmu_stats.pmd_update_pinned);
1978 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1979 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1980 // &mmu_stats.pte_update_pinned);
1981 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1982 &mmu_stats.pte_update_pinned);
1984 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1985 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1986 &mmu_stats.mmu_update_extended);
1987 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1988 mmu_stats.mmu_update_histo, 20);
1990 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1991 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1992 &mmu_stats.set_pte_at_batched);
1993 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1994 &mmu_stats.set_pte_at_current);
1995 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1996 &mmu_stats.set_pte_at_kernel);
1998 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1999 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2000 &mmu_stats.prot_commit_batched);
2002 return 0;
2004 fs_initcall(xen_mmu_debugfs);
2006 #endif /* CONFIG_XEN_DEBUG_FS */