[LIBERTAS]: set dnld_sent correctly for CF parts
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-iops.c
blob646a54e233d361451bfab4982a1da96956be82a2
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 */
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static void ide_insl (unsigned long port, void *addr, u32 count)
54 insl(port, addr, count);
57 static void ide_outb (u8 val, unsigned long port)
59 outb(val, port);
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
64 outb(addr, port);
67 static void ide_outw (u16 val, unsigned long port)
69 outw(val, port);
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
74 outsw(port, addr, count);
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
79 outsl(port, addr, count);
82 void default_hwif_iops (ide_hwif_t *hwif)
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
89 hwif->INB = ide_inb;
90 hwif->INW = ide_inw;
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
96 * MMIO operations, typically used for SATA controllers
99 static u8 ide_mm_inb (unsigned long port)
101 return (u8) readb((void __iomem *) port);
104 static u16 ide_mm_inw (unsigned long port)
106 return (u16) readw((void __iomem *) port);
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
111 __ide_mm_insw((void __iomem *) port, addr, count);
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
116 __ide_mm_insl((void __iomem *) port, addr, count);
119 static void ide_mm_outb (u8 value, unsigned long port)
121 writeb(value, (void __iomem *) port);
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
126 writeb(value, (void __iomem *) port);
129 static void ide_mm_outw (u16 value, unsigned long port)
131 writew(value, (void __iomem *) port);
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
136 __ide_mm_outsw((void __iomem *) port, addr, count);
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
141 __ide_mm_outsl((void __iomem *) port, addr, count);
144 void default_hwif_mmiops (ide_hwif_t *hwif)
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
159 EXPORT_SYMBOL(default_hwif_mmiops);
161 u32 ide_read_24 (ide_drive_t *drive)
163 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166 return (hcyl<<16)|(lcyl<<8)|sect;
169 void SELECT_DRIVE (ide_drive_t *drive)
171 if (HWIF(drive)->selectproc)
172 HWIF(drive)->selectproc(drive);
173 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
176 EXPORT_SYMBOL(SELECT_DRIVE);
178 void SELECT_INTERRUPT (ide_drive_t *drive)
180 if (HWIF(drive)->intrproc)
181 HWIF(drive)->intrproc(drive);
182 else
183 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
186 void SELECT_MASK (ide_drive_t *drive, int mask)
188 if (HWIF(drive)->maskproc)
189 HWIF(drive)->maskproc(drive, mask);
192 void QUIRK_LIST (ide_drive_t *drive)
194 if (HWIF(drive)->quirkproc)
195 drive->quirk_list = HWIF(drive)->quirkproc(drive);
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
207 (void) HWIF(drive)->INB(port);
208 (void) HWIF(drive)->INB(port);
209 (void) HWIF(drive)->INB(port);
213 * This is used for most PIO data transfers *from* the IDE interface
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
220 if (io_32bit) {
221 if (io_32bit & 2) {
222 unsigned long flags;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->INSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
227 } else
228 hwif->INSL(IDE_DATA_REG, buffer, wcount);
229 } else {
230 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
235 * This is used for most PIO data transfers *to* the IDE interface
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
239 ide_hwif_t *hwif = HWIF(drive);
240 u8 io_32bit = drive->io_32bit;
242 if (io_32bit) {
243 if (io_32bit & 2) {
244 unsigned long flags;
245 local_irq_save(flags);
246 ata_vlb_sync(drive, IDE_NSECTOR_REG);
247 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248 local_irq_restore(flags);
249 } else
250 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251 } else {
252 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
257 * The following routines are mainly used by the ATAPI drivers.
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
266 ide_hwif_t *hwif = HWIF(drive);
268 ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI || MACH_IS_Q40) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273 return;
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif->ata_input_data(drive, buffer, bytecount / 4);
277 if ((bytecount & 0x03) >= 2)
278 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
283 ide_hwif_t *hwif = HWIF(drive);
285 ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI || MACH_IS_Q40) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290 return;
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif->ata_output_data(drive, buffer, bytecount / 4);
294 if ((bytecount & 0x03) >= 2)
295 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
298 void default_hwif_transport(ide_hwif_t *hwif)
300 hwif->ata_input_data = ata_input_data;
301 hwif->ata_output_data = ata_output_data;
302 hwif->atapi_input_bytes = atapi_input_bytes;
303 hwif->atapi_output_bytes = atapi_output_bytes;
307 * Beginning of Taskfile OPCODE Library and feature sets.
309 void ide_fix_driveid (struct hd_driveid *id)
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313 int i;
314 u16 *stringcast;
316 id->config = __le16_to_cpu(id->config);
317 id->cyls = __le16_to_cpu(id->cyls);
318 id->reserved2 = __le16_to_cpu(id->reserved2);
319 id->heads = __le16_to_cpu(id->heads);
320 id->track_bytes = __le16_to_cpu(id->track_bytes);
321 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
322 id->sectors = __le16_to_cpu(id->sectors);
323 id->vendor0 = __le16_to_cpu(id->vendor0);
324 id->vendor1 = __le16_to_cpu(id->vendor1);
325 id->vendor2 = __le16_to_cpu(id->vendor2);
326 stringcast = (u16 *)&id->serial_no[0];
327 for (i = 0; i < (20/2); i++)
328 stringcast[i] = __le16_to_cpu(stringcast[i]);
329 id->buf_type = __le16_to_cpu(id->buf_type);
330 id->buf_size = __le16_to_cpu(id->buf_size);
331 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
332 stringcast = (u16 *)&id->fw_rev[0];
333 for (i = 0; i < (8/2); i++)
334 stringcast[i] = __le16_to_cpu(stringcast[i]);
335 stringcast = (u16 *)&id->model[0];
336 for (i = 0; i < (40/2); i++)
337 stringcast[i] = __le16_to_cpu(stringcast[i]);
338 id->dword_io = __le16_to_cpu(id->dword_io);
339 id->reserved50 = __le16_to_cpu(id->reserved50);
340 id->field_valid = __le16_to_cpu(id->field_valid);
341 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
342 id->cur_heads = __le16_to_cpu(id->cur_heads);
343 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
344 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
345 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
346 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
347 id->dma_1word = __le16_to_cpu(id->dma_1word);
348 id->dma_mword = __le16_to_cpu(id->dma_mword);
349 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
351 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
352 id->eide_pio = __le16_to_cpu(id->eide_pio);
353 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354 for (i = 0; i < 2; ++i)
355 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356 for (i = 0; i < 4; ++i)
357 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358 id->queue_depth = __le16_to_cpu(id->queue_depth);
359 for (i = 0; i < 4; ++i)
360 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
362 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
363 id->command_set_1 = __le16_to_cpu(id->command_set_1);
364 id->command_set_2 = __le16_to_cpu(id->command_set_2);
365 id->cfsse = __le16_to_cpu(id->cfsse);
366 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
367 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
368 id->csf_default = __le16_to_cpu(id->csf_default);
369 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
370 id->trseuc = __le16_to_cpu(id->trseuc);
371 id->trsEuc = __le16_to_cpu(id->trsEuc);
372 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
373 id->mprc = __le16_to_cpu(id->mprc);
374 id->hw_config = __le16_to_cpu(id->hw_config);
375 id->acoustic = __le16_to_cpu(id->acoustic);
376 id->msrqs = __le16_to_cpu(id->msrqs);
377 id->sxfert = __le16_to_cpu(id->sxfert);
378 id->sal = __le16_to_cpu(id->sal);
379 id->spg = __le32_to_cpu(id->spg);
380 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381 for (i = 0; i < 22; i++)
382 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
383 id->last_lun = __le16_to_cpu(id->last_lun);
384 id->word127 = __le16_to_cpu(id->word127);
385 id->dlf = __le16_to_cpu(id->dlf);
386 id->csfo = __le16_to_cpu(id->csfo);
387 for (i = 0; i < 26; i++)
388 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389 id->word156 = __le16_to_cpu(id->word156);
390 for (i = 0; i < 3; i++)
391 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392 id->cfa_power = __le16_to_cpu(id->cfa_power);
393 for (i = 0; i < 14; i++)
394 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395 for (i = 0; i < 31; i++)
396 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397 for (i = 0; i < 48; i++)
398 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399 id->integrity_word = __le16_to_cpu(id->integrity_word);
400 # else
401 # error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
411 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
413 if (byteswap) {
414 /* convert from big-endian to host byte order */
415 for (p = end ; p != s;) {
416 unsigned short *pp = (unsigned short *) (p -= 2);
417 *pp = ntohs(*pp);
420 /* strip leading blanks */
421 while (s != end && *s == ' ')
422 ++s;
423 /* compress internal blanks and strip trailing blanks */
424 while (s != end && *s) {
425 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426 *p++ = *(s-1);
428 /* wipe out trailing garbage */
429 while (p != end)
430 *p++ = '\0';
433 EXPORT_SYMBOL(ide_fixstring);
436 * Needed for PCI irq sharing
438 int drive_is_ready (ide_drive_t *drive)
440 ide_hwif_t *hwif = HWIF(drive);
441 u8 stat = 0;
443 if (drive->waiting_for_dma)
444 return hwif->ide_dma_test_irq(drive);
446 #if 0
447 /* need to guarantee 400ns since last command was issued */
448 udelay(1);
449 #endif
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
453 * We do a passive status test under shared PCI interrupts on
454 * cards that truly share the ATA side interrupt, but may also share
455 * an interrupt with another pci card/device. We make no assumptions
456 * about possible isa-pnp and pci-pnp issues yet.
458 if (IDE_CONTROL_REG)
459 stat = hwif->INB(IDE_ALTSTATUS_REG);
460 else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462 /* Note: this may clear a pending IRQ!! */
463 stat = hwif->INB(IDE_STATUS_REG);
465 if (stat & BUSY_STAT)
466 /* drive busy: definitely not interrupting */
467 return 0;
469 /* drive ready: *might* be interrupting */
470 return 1;
473 EXPORT_SYMBOL(drive_is_ready);
476 * Global for All, and taken from ide-pmac.c. Can be called
477 * with spinlock held & IRQs disabled, so don't schedule !
479 int wait_for_ready (ide_drive_t *drive, int timeout)
481 ide_hwif_t *hwif = HWIF(drive);
482 u8 stat = 0;
484 while(--timeout) {
485 stat = hwif->INB(IDE_STATUS_REG);
486 if (!(stat & BUSY_STAT)) {
487 if (drive->ready_stat == 0)
488 break;
489 else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
490 break;
492 mdelay(1);
494 if ((stat & ERR_STAT) || timeout <= 0) {
495 if (stat & ERR_STAT) {
496 printk(KERN_ERR "%s: wait_for_ready, "
497 "error status: %x\n", drive->name, stat);
499 return 1;
501 return 0;
505 * This routine busy-waits for the drive status to be not "busy".
506 * It then checks the status for all of the "good" bits and none
507 * of the "bad" bits, and if all is okay it returns 0. All other
508 * cases return 1 after invoking ide_error() -- caller should just return.
510 * This routine should get fixed to not hog the cpu during extra long waits..
511 * That could be done by busy-waiting for the first jiffy or two, and then
512 * setting a timer to wake up at half second intervals thereafter,
513 * until timeout is achieved, before timing out.
515 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
517 ide_hwif_t *hwif = HWIF(drive);
518 u8 stat;
519 int i;
520 unsigned long flags;
522 /* bail early if we've exceeded max_failures */
523 if (drive->max_failures && (drive->failures > drive->max_failures)) {
524 *startstop = ide_stopped;
525 return 1;
528 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
529 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
530 local_irq_set(flags);
531 timeout += jiffies;
532 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
533 if (time_after(jiffies, timeout)) {
535 * One last read after the timeout in case
536 * heavy interrupt load made us not make any
537 * progress during the timeout..
539 stat = hwif->INB(IDE_STATUS_REG);
540 if (!(stat & BUSY_STAT))
541 break;
543 local_irq_restore(flags);
544 *startstop = ide_error(drive, "status timeout", stat);
545 return 1;
548 local_irq_restore(flags);
551 * Allow status to settle, then read it again.
552 * A few rare drives vastly violate the 400ns spec here,
553 * so we'll wait up to 10usec for a "good" status
554 * rather than expensively fail things immediately.
555 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
557 for (i = 0; i < 10; i++) {
558 udelay(1);
559 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
560 return 0;
562 *startstop = ide_error(drive, "status error", stat);
563 return 1;
566 EXPORT_SYMBOL(ide_wait_stat);
569 * ide_in_drive_list - look for drive in black/white list
570 * @id: drive identifier
571 * @drive_table: list to inspect
573 * Look for a drive in the blacklist and the whitelist tables
574 * Returns 1 if the drive is found in the table.
577 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
579 for ( ; drive_table->id_model; drive_table++)
580 if ((!strcmp(drive_table->id_model, id->model)) &&
581 (!drive_table->id_firmware ||
582 strstr(id->fw_rev, drive_table->id_firmware)))
583 return 1;
584 return 0;
587 EXPORT_SYMBOL_GPL(ide_in_drive_list);
590 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
591 * We list them here and depend on the device side cable detection for them.
593 static const struct drive_list_entry ivb_list[] = {
594 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
595 { NULL , NULL }
599 * All hosts that use the 80c ribbon must use!
600 * The name is derived from upper byte of word 93 and the 80c ribbon.
602 u8 eighty_ninty_three (ide_drive_t *drive)
604 ide_hwif_t *hwif = drive->hwif;
605 struct hd_driveid *id = drive->id;
606 int ivb = ide_in_drive_list(id, ivb_list);
608 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
609 return 1;
611 if (ivb)
612 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
613 drive->name);
615 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
616 goto no_80w;
618 if (ide_dev_is_sata(id))
619 return 1;
622 * FIXME:
623 * - change master/slave IDENTIFY order
624 * - force bit13 (80c cable present) check also for !ivb devices
625 * (unless the slave device is pre-ATA3)
627 #ifndef CONFIG_IDEDMA_IVB
628 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
629 #else
630 if (id->hw_config & 0x6000)
631 #endif
632 return 1;
634 no_80w:
635 if (drive->udma33_warned == 1)
636 return 0;
638 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
639 "limiting max speed to UDMA33\n",
640 drive->name,
641 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
643 drive->udma33_warned = 1;
645 return 0;
648 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
650 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
651 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
652 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
653 if (eighty_ninty_three(drive) == 0) {
654 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
655 "be set\n", drive->name);
656 return 1;
660 return 0;
664 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
665 * 1 : Safe to update drive->id DMA registers.
666 * 0 : OOPs not allowed.
668 int set_transfer (ide_drive_t *drive, ide_task_t *args)
670 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
671 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
672 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
673 (drive->id->dma_ultra ||
674 drive->id->dma_mword ||
675 drive->id->dma_1word))
676 return 1;
678 return 0;
681 #ifdef CONFIG_BLK_DEV_IDEDMA
682 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
684 if (!drive->crc_count)
685 return drive->current_speed;
686 drive->crc_count = 0;
688 switch(drive->current_speed) {
689 case XFER_UDMA_7: return XFER_UDMA_6;
690 case XFER_UDMA_6: return XFER_UDMA_5;
691 case XFER_UDMA_5: return XFER_UDMA_4;
692 case XFER_UDMA_4: return XFER_UDMA_3;
693 case XFER_UDMA_3: return XFER_UDMA_2;
694 case XFER_UDMA_2: return XFER_UDMA_1;
695 case XFER_UDMA_1: return XFER_UDMA_0;
697 * OOPS we do not goto non Ultra DMA modes
698 * without iCRC's available we force
699 * the system to PIO and make the user
700 * invoke the ATA-1 ATA-2 DMA modes.
702 case XFER_UDMA_0:
703 default: return XFER_PIO_4;
706 #endif /* CONFIG_BLK_DEV_IDEDMA */
709 * Update the
711 int ide_driveid_update (ide_drive_t *drive)
713 ide_hwif_t *hwif = HWIF(drive);
714 struct hd_driveid *id;
715 #if 0
716 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
717 if (!id)
718 return 0;
720 taskfile_lib_get_identify(drive, (char *)&id);
722 ide_fix_driveid(id);
723 if (id) {
724 drive->id->dma_ultra = id->dma_ultra;
725 drive->id->dma_mword = id->dma_mword;
726 drive->id->dma_1word = id->dma_1word;
727 /* anything more ? */
728 kfree(id);
730 return 1;
731 #else
733 * Re-read drive->id for possible DMA mode
734 * change (copied from ide-probe.c)
736 unsigned long timeout, flags;
738 SELECT_MASK(drive, 1);
739 if (IDE_CONTROL_REG)
740 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
741 msleep(50);
742 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
743 timeout = jiffies + WAIT_WORSTCASE;
744 do {
745 if (time_after(jiffies, timeout)) {
746 SELECT_MASK(drive, 0);
747 return 0; /* drive timed-out */
749 msleep(50); /* give drive a breather */
750 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
751 msleep(50); /* wait for IRQ and DRQ_STAT */
752 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
753 SELECT_MASK(drive, 0);
754 printk("%s: CHECK for good STATUS\n", drive->name);
755 return 0;
757 local_irq_save(flags);
758 SELECT_MASK(drive, 0);
759 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
760 if (!id) {
761 local_irq_restore(flags);
762 return 0;
764 ata_input_data(drive, id, SECTOR_WORDS);
765 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
766 local_irq_enable();
767 local_irq_restore(flags);
768 ide_fix_driveid(id);
769 if (id) {
770 drive->id->dma_ultra = id->dma_ultra;
771 drive->id->dma_mword = id->dma_mword;
772 drive->id->dma_1word = id->dma_1word;
773 /* anything more ? */
774 kfree(id);
777 return 1;
778 #endif
782 * Similar to ide_wait_stat(), except it never calls ide_error internally.
783 * This is a kludge to handle the new ide_config_drive_speed() function,
784 * and should not otherwise be used anywhere. Eventually, the tuneproc's
785 * should be updated to return ide_startstop_t, in which case we can get
786 * rid of this abomination again. :) -ml
788 * It is gone..........
790 * const char *msg == consider adding for verbose errors.
792 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
794 ide_hwif_t *hwif = HWIF(drive);
795 int i, error = 1;
796 u8 stat;
798 // while (HWGROUP(drive)->busy)
799 // msleep(50);
801 #ifdef CONFIG_BLK_DEV_IDEDMA
802 if (hwif->ide_dma_check) /* check if host supports DMA */
803 hwif->dma_host_off(drive);
804 #endif
807 * Don't use ide_wait_cmd here - it will
808 * attempt to set_geometry and recalibrate,
809 * but for some reason these don't work at
810 * this point (lost interrupt).
813 * Select the drive, and issue the SETFEATURES command
815 disable_irq_nosync(hwif->irq);
818 * FIXME: we race against the running IRQ here if
819 * this is called from non IRQ context. If we use
820 * disable_irq() we hang on the error path. Work
821 * is needed.
824 udelay(1);
825 SELECT_DRIVE(drive);
826 SELECT_MASK(drive, 0);
827 udelay(1);
828 if (IDE_CONTROL_REG)
829 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
830 hwif->OUTB(speed, IDE_NSECTOR_REG);
831 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
832 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
833 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
834 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
835 udelay(1);
837 * Wait for drive to become non-BUSY
839 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
840 unsigned long flags, timeout;
841 local_irq_set(flags);
842 timeout = jiffies + WAIT_CMD;
843 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
844 if (time_after(jiffies, timeout))
845 break;
847 local_irq_restore(flags);
851 * Allow status to settle, then read it again.
852 * A few rare drives vastly violate the 400ns spec here,
853 * so we'll wait up to 10usec for a "good" status
854 * rather than expensively fail things immediately.
855 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
857 for (i = 0; i < 10; i++) {
858 udelay(1);
859 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), drive->ready_stat, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
860 error = 0;
861 break;
865 SELECT_MASK(drive, 0);
867 enable_irq(hwif->irq);
869 if (error) {
870 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
871 return error;
874 drive->id->dma_ultra &= ~0xFF00;
875 drive->id->dma_mword &= ~0x0F00;
876 drive->id->dma_1word &= ~0x0F00;
878 #ifdef CONFIG_BLK_DEV_IDEDMA
879 if (speed >= XFER_SW_DMA_0)
880 hwif->dma_host_on(drive);
881 else if (hwif->ide_dma_check) /* check if host supports DMA */
882 hwif->dma_off_quietly(drive);
883 #endif
885 switch(speed) {
886 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
887 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
888 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
889 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
890 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
891 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
892 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
893 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
894 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
895 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
896 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
897 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
898 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
899 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
900 default: break;
902 if (!drive->init_speed)
903 drive->init_speed = speed;
904 drive->current_speed = speed;
905 return error;
908 EXPORT_SYMBOL(ide_config_drive_speed);
912 * This should get invoked any time we exit the driver to
913 * wait for an interrupt response from a drive. handler() points
914 * at the appropriate code to handle the next interrupt, and a
915 * timer is started to prevent us from waiting forever in case
916 * something goes wrong (see the ide_timer_expiry() handler later on).
918 * See also ide_execute_command
920 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
921 unsigned int timeout, ide_expiry_t *expiry)
923 ide_hwgroup_t *hwgroup = HWGROUP(drive);
925 if (hwgroup->handler != NULL) {
926 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
927 "old=%p, new=%p\n",
928 drive->name, hwgroup->handler, handler);
930 hwgroup->handler = handler;
931 hwgroup->expiry = expiry;
932 hwgroup->timer.expires = jiffies + timeout;
933 hwgroup->req_gen_timer = hwgroup->req_gen;
934 add_timer(&hwgroup->timer);
937 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
938 unsigned int timeout, ide_expiry_t *expiry)
940 unsigned long flags;
941 spin_lock_irqsave(&ide_lock, flags);
942 __ide_set_handler(drive, handler, timeout, expiry);
943 spin_unlock_irqrestore(&ide_lock, flags);
946 EXPORT_SYMBOL(ide_set_handler);
949 * ide_execute_command - execute an IDE command
950 * @drive: IDE drive to issue the command against
951 * @command: command byte to write
952 * @handler: handler for next phase
953 * @timeout: timeout for command
954 * @expiry: handler to run on timeout
956 * Helper function to issue an IDE command. This handles the
957 * atomicity requirements, command timing and ensures that the
958 * handler and IRQ setup do not race. All IDE command kick off
959 * should go via this function or do equivalent locking.
962 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
964 unsigned long flags;
965 ide_hwgroup_t *hwgroup = HWGROUP(drive);
966 ide_hwif_t *hwif = HWIF(drive);
968 spin_lock_irqsave(&ide_lock, flags);
970 BUG_ON(hwgroup->handler);
971 hwgroup->handler = handler;
972 hwgroup->expiry = expiry;
973 hwgroup->timer.expires = jiffies + timeout;
974 hwgroup->req_gen_timer = hwgroup->req_gen;
975 add_timer(&hwgroup->timer);
976 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
977 /* Drive takes 400nS to respond, we must avoid the IRQ being
978 serviced before that.
980 FIXME: we could skip this delay with care on non shared
981 devices
983 ndelay(400);
984 spin_unlock_irqrestore(&ide_lock, flags);
987 EXPORT_SYMBOL(ide_execute_command);
990 /* needed below */
991 static ide_startstop_t do_reset1 (ide_drive_t *, int);
994 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
995 * during an atapi drive reset operation. If the drive has not yet responded,
996 * and we have not yet hit our maximum waiting time, then the timer is restarted
997 * for another 50ms.
999 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
1001 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1002 ide_hwif_t *hwif = HWIF(drive);
1003 u8 stat;
1005 SELECT_DRIVE(drive);
1006 udelay (10);
1008 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1009 printk("%s: ATAPI reset complete\n", drive->name);
1010 } else {
1011 if (time_before(jiffies, hwgroup->poll_timeout)) {
1012 BUG_ON(HWGROUP(drive)->handler != NULL);
1013 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1014 /* continue polling */
1015 return ide_started;
1017 /* end of polling */
1018 hwgroup->polling = 0;
1019 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1020 drive->name, stat);
1021 /* do it the old fashioned way */
1022 return do_reset1(drive, 1);
1024 /* done polling */
1025 hwgroup->polling = 0;
1026 hwgroup->resetting = 0;
1027 return ide_stopped;
1031 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1032 * during an ide reset operation. If the drives have not yet responded,
1033 * and we have not yet hit our maximum waiting time, then the timer is restarted
1034 * for another 50ms.
1036 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1038 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1039 ide_hwif_t *hwif = HWIF(drive);
1040 u8 tmp;
1042 if (hwif->reset_poll != NULL) {
1043 if (hwif->reset_poll(drive)) {
1044 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1045 hwif->name, drive->name);
1046 return ide_stopped;
1050 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1051 if (time_before(jiffies, hwgroup->poll_timeout)) {
1052 BUG_ON(HWGROUP(drive)->handler != NULL);
1053 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1054 /* continue polling */
1055 return ide_started;
1057 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1058 drive->failures++;
1059 } else {
1060 printk("%s: reset: ", hwif->name);
1061 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1062 printk("success\n");
1063 drive->failures = 0;
1064 } else {
1065 drive->failures++;
1066 printk("master: ");
1067 switch (tmp & 0x7f) {
1068 case 1: printk("passed");
1069 break;
1070 case 2: printk("formatter device error");
1071 break;
1072 case 3: printk("sector buffer error");
1073 break;
1074 case 4: printk("ECC circuitry error");
1075 break;
1076 case 5: printk("controlling MPU error");
1077 break;
1078 default:printk("error (0x%02x?)", tmp);
1080 if (tmp & 0x80)
1081 printk("; slave: failed");
1082 printk("\n");
1085 hwgroup->polling = 0; /* done polling */
1086 hwgroup->resetting = 0; /* done reset attempt */
1087 return ide_stopped;
1090 static void check_dma_crc(ide_drive_t *drive)
1092 #ifdef CONFIG_BLK_DEV_IDEDMA
1093 if (drive->crc_count) {
1094 drive->hwif->dma_off_quietly(drive);
1095 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1096 if (drive->current_speed >= XFER_SW_DMA_0)
1097 (void) HWIF(drive)->ide_dma_on(drive);
1098 } else
1099 ide_dma_off(drive);
1100 #endif
1103 static void ide_disk_pre_reset(ide_drive_t *drive)
1105 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1107 drive->special.all = 0;
1108 drive->special.b.set_geometry = legacy;
1109 drive->special.b.recalibrate = legacy;
1110 if (OK_TO_RESET_CONTROLLER)
1111 drive->mult_count = 0;
1112 if (!drive->keep_settings && !drive->using_dma)
1113 drive->mult_req = 0;
1114 if (drive->mult_req != drive->mult_count)
1115 drive->special.b.set_multmode = 1;
1118 static void pre_reset(ide_drive_t *drive)
1120 if (drive->media == ide_disk)
1121 ide_disk_pre_reset(drive);
1122 else
1123 drive->post_reset = 1;
1125 if (!drive->keep_settings) {
1126 if (drive->using_dma) {
1127 check_dma_crc(drive);
1128 } else {
1129 drive->unmask = 0;
1130 drive->io_32bit = 0;
1132 return;
1134 if (drive->using_dma)
1135 check_dma_crc(drive);
1137 if (HWIF(drive)->pre_reset != NULL)
1138 HWIF(drive)->pre_reset(drive);
1140 if (drive->current_speed != 0xff)
1141 drive->desired_speed = drive->current_speed;
1142 drive->current_speed = 0xff;
1146 * do_reset1() attempts to recover a confused drive by resetting it.
1147 * Unfortunately, resetting a disk drive actually resets all devices on
1148 * the same interface, so it can really be thought of as resetting the
1149 * interface rather than resetting the drive.
1151 * ATAPI devices have their own reset mechanism which allows them to be
1152 * individually reset without clobbering other devices on the same interface.
1154 * Unfortunately, the IDE interface does not generate an interrupt to let
1155 * us know when the reset operation has finished, so we must poll for this.
1156 * Equally poor, though, is the fact that this may a very long time to complete,
1157 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1158 * we set a timer to poll at 50ms intervals.
1160 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1162 unsigned int unit;
1163 unsigned long flags;
1164 ide_hwif_t *hwif;
1165 ide_hwgroup_t *hwgroup;
1167 spin_lock_irqsave(&ide_lock, flags);
1168 hwif = HWIF(drive);
1169 hwgroup = HWGROUP(drive);
1171 /* We must not reset with running handlers */
1172 BUG_ON(hwgroup->handler != NULL);
1174 /* For an ATAPI device, first try an ATAPI SRST. */
1175 if (drive->media != ide_disk && !do_not_try_atapi) {
1176 hwgroup->resetting = 1;
1177 pre_reset(drive);
1178 SELECT_DRIVE(drive);
1179 udelay (20);
1180 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1181 ndelay(400);
1182 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1183 hwgroup->polling = 1;
1184 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1185 spin_unlock_irqrestore(&ide_lock, flags);
1186 return ide_started;
1190 * First, reset any device state data we were maintaining
1191 * for any of the drives on this interface.
1193 for (unit = 0; unit < MAX_DRIVES; ++unit)
1194 pre_reset(&hwif->drives[unit]);
1196 #if OK_TO_RESET_CONTROLLER
1197 if (!IDE_CONTROL_REG) {
1198 spin_unlock_irqrestore(&ide_lock, flags);
1199 return ide_stopped;
1202 hwgroup->resetting = 1;
1204 * Note that we also set nIEN while resetting the device,
1205 * to mask unwanted interrupts from the interface during the reset.
1206 * However, due to the design of PC hardware, this will cause an
1207 * immediate interrupt due to the edge transition it produces.
1208 * This single interrupt gives us a "fast poll" for drives that
1209 * recover from reset very quickly, saving us the first 50ms wait time.
1211 /* set SRST and nIEN */
1212 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1213 /* more than enough time */
1214 udelay(10);
1215 if (drive->quirk_list == 2) {
1216 /* clear SRST and nIEN */
1217 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1218 } else {
1219 /* clear SRST, leave nIEN */
1220 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1222 /* more than enough time */
1223 udelay(10);
1224 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1225 hwgroup->polling = 1;
1226 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1229 * Some weird controller like resetting themselves to a strange
1230 * state when the disks are reset this way. At least, the Winbond
1231 * 553 documentation says that
1233 if (hwif->resetproc != NULL) {
1234 hwif->resetproc(drive);
1237 #endif /* OK_TO_RESET_CONTROLLER */
1239 spin_unlock_irqrestore(&ide_lock, flags);
1240 return ide_started;
1244 * ide_do_reset() is the entry point to the drive/interface reset code.
1247 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1249 return do_reset1(drive, 0);
1252 EXPORT_SYMBOL(ide_do_reset);
1255 * ide_wait_not_busy() waits for the currently selected device on the hwif
1256 * to report a non-busy status, see comments in probe_hwif().
1258 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1260 u8 stat = 0;
1262 while(timeout--) {
1264 * Turn this into a schedule() sleep once I'm sure
1265 * about locking issues (2.5 work ?).
1267 mdelay(1);
1268 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1269 if ((stat & BUSY_STAT) == 0)
1270 return 0;
1272 * Assume a value of 0xff means nothing is connected to
1273 * the interface and it doesn't implement the pull-down
1274 * resistor on D7.
1276 if (stat == 0xff)
1277 return -ENODEV;
1278 touch_softlockup_watchdog();
1279 touch_nmi_watchdog();
1281 return -EBUSY;
1284 EXPORT_SYMBOL_GPL(ide_wait_not_busy);