2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
41 int perf_max_events __read_mostly
= 1;
42 static int perf_reserved_percpu __read_mostly
;
43 static int perf_overcommit __read_mostly
= 1;
45 static atomic_t nr_events __read_mostly
;
46 static atomic_t nr_mmap_events __read_mostly
;
47 static atomic_t nr_comm_events __read_mostly
;
48 static atomic_t nr_task_events __read_mostly
;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly
= 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid
> -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid
> 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid
> 1;
74 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
81 static atomic64_t perf_event_id
;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock
);
89 * Architecture provided APIs - weak aliases:
91 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
96 void __weak
hw_perf_disable(void) { barrier(); }
97 void __weak
hw_perf_enable(void) { barrier(); }
99 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
100 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
103 hw_perf_group_sched_in(struct perf_event
*group_leader
,
104 struct perf_cpu_context
*cpuctx
,
105 struct perf_event_context
*ctx
, int cpu
)
110 void __weak
perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count
);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count
)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count
);
124 void perf_disable(void)
130 void perf_enable(void)
136 static void get_ctx(struct perf_event_context
*ctx
)
138 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
141 static void free_ctx(struct rcu_head
*head
)
143 struct perf_event_context
*ctx
;
145 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
149 static void put_ctx(struct perf_event_context
*ctx
)
151 if (atomic_dec_and_test(&ctx
->refcount
)) {
153 put_ctx(ctx
->parent_ctx
);
155 put_task_struct(ctx
->task
);
156 call_rcu(&ctx
->rcu_head
, free_ctx
);
160 static void unclone_ctx(struct perf_event_context
*ctx
)
162 if (ctx
->parent_ctx
) {
163 put_ctx(ctx
->parent_ctx
);
164 ctx
->parent_ctx
= NULL
;
169 * If we inherit events we want to return the parent event id
172 static u64
primary_event_id(struct perf_event
*event
)
177 id
= event
->parent
->id
;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context
*
188 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
190 struct perf_event_context
*ctx
;
194 ctx
= rcu_dereference(task
->perf_event_ctxp
);
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx
->lock
, *flags
);
207 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
208 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
212 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
213 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
228 struct perf_event_context
*ctx
;
231 ctx
= perf_lock_task_context(task
, &flags
);
234 spin_unlock_irqrestore(&ctx
->lock
, flags
);
239 static void perf_unpin_context(struct perf_event_context
*ctx
)
243 spin_lock_irqsave(&ctx
->lock
, flags
);
245 spin_unlock_irqrestore(&ctx
->lock
, flags
);
249 static inline u64
perf_clock(void)
251 return cpu_clock(smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context
*ctx
)
259 u64 now
= perf_clock();
261 ctx
->time
+= now
- ctx
->timestamp
;
262 ctx
->timestamp
= now
;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event
*event
)
270 struct perf_event_context
*ctx
= event
->ctx
;
273 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
274 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
280 run_end
= event
->tstamp_stopped
;
282 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
284 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
285 run_end
= event
->tstamp_stopped
;
289 event
->total_time_running
= run_end
- event
->tstamp_running
;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
297 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
299 struct perf_event
*group_leader
= event
->group_leader
;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader
== event
)
307 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
309 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
310 group_leader
->nr_siblings
++;
313 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
315 if (event
->attr
.inherit_stat
)
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
324 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
326 struct perf_event
*sibling
, *tmp
;
328 if (list_empty(&event
->group_entry
))
331 if (event
->attr
.inherit_stat
)
334 list_del_init(&event
->group_entry
);
335 list_del_rcu(&event
->event_entry
);
337 if (event
->group_leader
!= event
)
338 event
->group_leader
->nr_siblings
--;
340 update_event_times(event
);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
349 if (event
->state
> PERF_EVENT_STATE_OFF
)
350 event
->state
= PERF_EVENT_STATE_OFF
;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
359 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
360 sibling
->group_leader
= sibling
;
365 event_sched_out(struct perf_event
*event
,
366 struct perf_cpu_context
*cpuctx
,
367 struct perf_event_context
*ctx
)
369 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
372 event
->state
= PERF_EVENT_STATE_INACTIVE
;
373 if (event
->pending_disable
) {
374 event
->pending_disable
= 0;
375 event
->state
= PERF_EVENT_STATE_OFF
;
377 event
->tstamp_stopped
= ctx
->time
;
378 event
->pmu
->disable(event
);
381 if (!is_software_event(event
))
382 cpuctx
->active_oncpu
--;
384 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
385 cpuctx
->exclusive
= 0;
389 group_sched_out(struct perf_event
*group_event
,
390 struct perf_cpu_context
*cpuctx
,
391 struct perf_event_context
*ctx
)
393 struct perf_event
*event
;
395 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
398 event_sched_out(group_event
, cpuctx
, ctx
);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
404 event_sched_out(event
, cpuctx
, ctx
);
406 if (group_event
->attr
.exclusive
)
407 cpuctx
->exclusive
= 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info
)
418 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
419 struct perf_event
*event
= info
;
420 struct perf_event_context
*ctx
= event
->ctx
;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
430 spin_lock(&ctx
->lock
);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
437 event_sched_out(event
, cpuctx
, ctx
);
439 list_del_event(event
, ctx
);
443 * Allow more per task events with respect to the
446 cpuctx
->max_pertask
=
447 min(perf_max_events
- ctx
->nr_events
,
448 perf_max_events
- perf_reserved_percpu
);
452 spin_unlock(&ctx
->lock
);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event
*event
)
473 struct perf_event_context
*ctx
= event
->ctx
;
474 struct task_struct
*task
= ctx
->task
;
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event
->cpu
,
482 __perf_event_remove_from_context
,
488 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
491 spin_lock_irq(&ctx
->lock
);
493 * If the context is active we need to retry the smp call.
495 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
496 spin_unlock_irq(&ctx
->lock
);
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
505 if (!list_empty(&event
->group_entry
))
506 list_del_event(event
, ctx
);
507 spin_unlock_irq(&ctx
->lock
);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event
*leader
)
515 struct perf_event
*event
;
517 update_event_times(leader
);
518 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
519 update_event_times(event
);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info
)
527 struct perf_event
*event
= info
;
528 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
529 struct perf_event_context
*ctx
= event
->ctx
;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
538 spin_lock(&ctx
->lock
);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
545 update_context_time(ctx
);
546 update_group_times(event
);
547 if (event
== event
->group_leader
)
548 group_sched_out(event
, cpuctx
, ctx
);
550 event_sched_out(event
, cpuctx
, ctx
);
551 event
->state
= PERF_EVENT_STATE_OFF
;
554 spin_unlock(&ctx
->lock
);
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event
*event
)
572 struct perf_event_context
*ctx
= event
->ctx
;
573 struct task_struct
*task
= ctx
->task
;
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event
->cpu
, __perf_event_disable
,
585 task_oncpu_function_call(task
, __perf_event_disable
, event
);
587 spin_lock_irq(&ctx
->lock
);
589 * If the event is still active, we need to retry the cross-call.
591 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
592 spin_unlock_irq(&ctx
->lock
);
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
601 update_group_times(event
);
602 event
->state
= PERF_EVENT_STATE_OFF
;
605 spin_unlock_irq(&ctx
->lock
);
609 event_sched_in(struct perf_event
*event
,
610 struct perf_cpu_context
*cpuctx
,
611 struct perf_event_context
*ctx
,
614 if (event
->state
<= PERF_EVENT_STATE_OFF
)
617 event
->state
= PERF_EVENT_STATE_ACTIVE
;
618 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
624 if (event
->pmu
->enable(event
)) {
625 event
->state
= PERF_EVENT_STATE_INACTIVE
;
630 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
632 if (!is_software_event(event
))
633 cpuctx
->active_oncpu
++;
636 if (event
->attr
.exclusive
)
637 cpuctx
->exclusive
= 1;
643 group_sched_in(struct perf_event
*group_event
,
644 struct perf_cpu_context
*cpuctx
,
645 struct perf_event_context
*ctx
,
648 struct perf_event
*event
, *partial_group
;
651 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
654 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
656 return ret
< 0 ? ret
: 0;
658 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
665 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
666 partial_group
= event
;
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
679 if (event
== partial_group
)
681 event_sched_out(event
, cpuctx
, ctx
);
683 event_sched_out(group_event
, cpuctx
, ctx
);
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event
*leader
)
694 struct perf_event
*event
;
696 if (!is_software_event(leader
))
699 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
700 if (!is_software_event(event
))
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event
*event
,
710 struct perf_cpu_context
*cpuctx
,
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event
))
719 * If an exclusive group is already on, no other hardware
722 if (cpuctx
->exclusive
)
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
731 * Otherwise, try to add it if all previous groups were able
737 static void add_event_to_ctx(struct perf_event
*event
,
738 struct perf_event_context
*ctx
)
740 list_add_event(event
, ctx
);
741 event
->tstamp_enabled
= ctx
->time
;
742 event
->tstamp_running
= ctx
->time
;
743 event
->tstamp_stopped
= ctx
->time
;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info
)
753 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
754 struct perf_event
*event
= info
;
755 struct perf_event_context
*ctx
= event
->ctx
;
756 struct perf_event
*leader
= event
->group_leader
;
757 int cpu
= smp_processor_id();
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
768 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
770 cpuctx
->task_ctx
= ctx
;
773 spin_lock(&ctx
->lock
);
775 update_context_time(ctx
);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
783 add_event_to_ctx(event
, ctx
);
786 * Don't put the event on if it is disabled or if
787 * it is in a group and the group isn't on.
789 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
790 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
794 * An exclusive event can't go on if there are already active
795 * hardware events, and no hardware event can go on if there
796 * is already an exclusive event on.
798 if (!group_can_go_on(event
, cpuctx
, 1))
801 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
805 * This event couldn't go on. If it is in a group
806 * then we have to pull the whole group off.
807 * If the event group is pinned then put it in error state.
810 group_sched_out(leader
, cpuctx
, ctx
);
811 if (leader
->attr
.pinned
) {
812 update_group_times(leader
);
813 leader
->state
= PERF_EVENT_STATE_ERROR
;
817 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
818 cpuctx
->max_pertask
--;
823 spin_unlock(&ctx
->lock
);
827 * Attach a performance event to a context
829 * First we add the event to the list with the hardware enable bit
830 * in event->hw_config cleared.
832 * If the event is attached to a task which is on a CPU we use a smp
833 * call to enable it in the task context. The task might have been
834 * scheduled away, but we check this in the smp call again.
836 * Must be called with ctx->mutex held.
839 perf_install_in_context(struct perf_event_context
*ctx
,
840 struct perf_event
*event
,
843 struct task_struct
*task
= ctx
->task
;
847 * Per cpu events are installed via an smp call and
848 * the install is always successful.
850 smp_call_function_single(cpu
, __perf_install_in_context
,
856 task_oncpu_function_call(task
, __perf_install_in_context
,
859 spin_lock_irq(&ctx
->lock
);
861 * we need to retry the smp call.
863 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
864 spin_unlock_irq(&ctx
->lock
);
869 * The lock prevents that this context is scheduled in so we
870 * can add the event safely, if it the call above did not
873 if (list_empty(&event
->group_entry
))
874 add_event_to_ctx(event
, ctx
);
875 spin_unlock_irq(&ctx
->lock
);
879 * Put a event into inactive state and update time fields.
880 * Enabling the leader of a group effectively enables all
881 * the group members that aren't explicitly disabled, so we
882 * have to update their ->tstamp_enabled also.
883 * Note: this works for group members as well as group leaders
884 * since the non-leader members' sibling_lists will be empty.
886 static void __perf_event_mark_enabled(struct perf_event
*event
,
887 struct perf_event_context
*ctx
)
889 struct perf_event
*sub
;
891 event
->state
= PERF_EVENT_STATE_INACTIVE
;
892 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
893 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
894 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
895 sub
->tstamp_enabled
=
896 ctx
->time
- sub
->total_time_enabled
;
900 * Cross CPU call to enable a performance event
902 static void __perf_event_enable(void *info
)
904 struct perf_event
*event
= info
;
905 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
906 struct perf_event_context
*ctx
= event
->ctx
;
907 struct perf_event
*leader
= event
->group_leader
;
911 * If this is a per-task event, need to check whether this
912 * event's task is the current task on this cpu.
914 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
915 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
917 cpuctx
->task_ctx
= ctx
;
920 spin_lock(&ctx
->lock
);
922 update_context_time(ctx
);
924 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
926 __perf_event_mark_enabled(event
, ctx
);
929 * If the event is in a group and isn't the group leader,
930 * then don't put it on unless the group is on.
932 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
935 if (!group_can_go_on(event
, cpuctx
, 1)) {
940 err
= group_sched_in(event
, cpuctx
, ctx
,
943 err
= event_sched_in(event
, cpuctx
, ctx
,
950 * If this event can't go on and it's part of a
951 * group, then the whole group has to come off.
954 group_sched_out(leader
, cpuctx
, ctx
);
955 if (leader
->attr
.pinned
) {
956 update_group_times(leader
);
957 leader
->state
= PERF_EVENT_STATE_ERROR
;
962 spin_unlock(&ctx
->lock
);
968 * If event->ctx is a cloned context, callers must make sure that
969 * every task struct that event->ctx->task could possibly point to
970 * remains valid. This condition is satisfied when called through
971 * perf_event_for_each_child or perf_event_for_each as described
972 * for perf_event_disable.
974 void perf_event_enable(struct perf_event
*event
)
976 struct perf_event_context
*ctx
= event
->ctx
;
977 struct task_struct
*task
= ctx
->task
;
981 * Enable the event on the cpu that it's on
983 smp_call_function_single(event
->cpu
, __perf_event_enable
,
988 spin_lock_irq(&ctx
->lock
);
989 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
993 * If the event is in error state, clear that first.
994 * That way, if we see the event in error state below, we
995 * know that it has gone back into error state, as distinct
996 * from the task having been scheduled away before the
997 * cross-call arrived.
999 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1000 event
->state
= PERF_EVENT_STATE_OFF
;
1003 spin_unlock_irq(&ctx
->lock
);
1004 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1006 spin_lock_irq(&ctx
->lock
);
1009 * If the context is active and the event is still off,
1010 * we need to retry the cross-call.
1012 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1016 * Since we have the lock this context can't be scheduled
1017 * in, so we can change the state safely.
1019 if (event
->state
== PERF_EVENT_STATE_OFF
)
1020 __perf_event_mark_enabled(event
, ctx
);
1023 spin_unlock_irq(&ctx
->lock
);
1026 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1029 * not supported on inherited events
1031 if (event
->attr
.inherit
)
1034 atomic_add(refresh
, &event
->event_limit
);
1035 perf_event_enable(event
);
1040 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1041 struct perf_cpu_context
*cpuctx
)
1043 struct perf_event
*event
;
1045 spin_lock(&ctx
->lock
);
1047 if (likely(!ctx
->nr_events
))
1049 update_context_time(ctx
);
1052 if (ctx
->nr_active
) {
1053 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1054 group_sched_out(event
, cpuctx
, ctx
);
1058 spin_unlock(&ctx
->lock
);
1062 * Test whether two contexts are equivalent, i.e. whether they
1063 * have both been cloned from the same version of the same context
1064 * and they both have the same number of enabled events.
1065 * If the number of enabled events is the same, then the set
1066 * of enabled events should be the same, because these are both
1067 * inherited contexts, therefore we can't access individual events
1068 * in them directly with an fd; we can only enable/disable all
1069 * events via prctl, or enable/disable all events in a family
1070 * via ioctl, which will have the same effect on both contexts.
1072 static int context_equiv(struct perf_event_context
*ctx1
,
1073 struct perf_event_context
*ctx2
)
1075 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1076 && ctx1
->parent_gen
== ctx2
->parent_gen
1077 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1080 static void __perf_event_sync_stat(struct perf_event
*event
,
1081 struct perf_event
*next_event
)
1085 if (!event
->attr
.inherit_stat
)
1089 * Update the event value, we cannot use perf_event_read()
1090 * because we're in the middle of a context switch and have IRQs
1091 * disabled, which upsets smp_call_function_single(), however
1092 * we know the event must be on the current CPU, therefore we
1093 * don't need to use it.
1095 switch (event
->state
) {
1096 case PERF_EVENT_STATE_ACTIVE
:
1097 event
->pmu
->read(event
);
1100 case PERF_EVENT_STATE_INACTIVE
:
1101 update_event_times(event
);
1109 * In order to keep per-task stats reliable we need to flip the event
1110 * values when we flip the contexts.
1112 value
= atomic64_read(&next_event
->count
);
1113 value
= atomic64_xchg(&event
->count
, value
);
1114 atomic64_set(&next_event
->count
, value
);
1116 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1117 swap(event
->total_time_running
, next_event
->total_time_running
);
1120 * Since we swizzled the values, update the user visible data too.
1122 perf_event_update_userpage(event
);
1123 perf_event_update_userpage(next_event
);
1126 #define list_next_entry(pos, member) \
1127 list_entry(pos->member.next, typeof(*pos), member)
1129 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1130 struct perf_event_context
*next_ctx
)
1132 struct perf_event
*event
, *next_event
;
1137 update_context_time(ctx
);
1139 event
= list_first_entry(&ctx
->event_list
,
1140 struct perf_event
, event_entry
);
1142 next_event
= list_first_entry(&next_ctx
->event_list
,
1143 struct perf_event
, event_entry
);
1145 while (&event
->event_entry
!= &ctx
->event_list
&&
1146 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1148 __perf_event_sync_stat(event
, next_event
);
1150 event
= list_next_entry(event
, event_entry
);
1151 next_event
= list_next_entry(next_event
, event_entry
);
1156 * Called from scheduler to remove the events of the current task,
1157 * with interrupts disabled.
1159 * We stop each event and update the event value in event->count.
1161 * This does not protect us against NMI, but disable()
1162 * sets the disabled bit in the control field of event _before_
1163 * accessing the event control register. If a NMI hits, then it will
1164 * not restart the event.
1166 void perf_event_task_sched_out(struct task_struct
*task
,
1167 struct task_struct
*next
, int cpu
)
1169 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1170 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1171 struct perf_event_context
*next_ctx
;
1172 struct perf_event_context
*parent
;
1173 struct pt_regs
*regs
;
1176 regs
= task_pt_regs(task
);
1177 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1179 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1183 parent
= rcu_dereference(ctx
->parent_ctx
);
1184 next_ctx
= next
->perf_event_ctxp
;
1185 if (parent
&& next_ctx
&&
1186 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1188 * Looks like the two contexts are clones, so we might be
1189 * able to optimize the context switch. We lock both
1190 * contexts and check that they are clones under the
1191 * lock (including re-checking that neither has been
1192 * uncloned in the meantime). It doesn't matter which
1193 * order we take the locks because no other cpu could
1194 * be trying to lock both of these tasks.
1196 spin_lock(&ctx
->lock
);
1197 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1198 if (context_equiv(ctx
, next_ctx
)) {
1200 * XXX do we need a memory barrier of sorts
1201 * wrt to rcu_dereference() of perf_event_ctxp
1203 task
->perf_event_ctxp
= next_ctx
;
1204 next
->perf_event_ctxp
= ctx
;
1206 next_ctx
->task
= task
;
1209 perf_event_sync_stat(ctx
, next_ctx
);
1211 spin_unlock(&next_ctx
->lock
);
1212 spin_unlock(&ctx
->lock
);
1217 __perf_event_sched_out(ctx
, cpuctx
);
1218 cpuctx
->task_ctx
= NULL
;
1223 * Called with IRQs disabled
1225 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1227 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1229 if (!cpuctx
->task_ctx
)
1232 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1235 __perf_event_sched_out(ctx
, cpuctx
);
1236 cpuctx
->task_ctx
= NULL
;
1240 * Called with IRQs disabled
1242 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1244 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1248 __perf_event_sched_in(struct perf_event_context
*ctx
,
1249 struct perf_cpu_context
*cpuctx
, int cpu
)
1251 struct perf_event
*event
;
1254 spin_lock(&ctx
->lock
);
1256 if (likely(!ctx
->nr_events
))
1259 ctx
->timestamp
= perf_clock();
1264 * First go through the list and put on any pinned groups
1265 * in order to give them the best chance of going on.
1267 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1268 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1269 !event
->attr
.pinned
)
1271 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1274 if (group_can_go_on(event
, cpuctx
, 1))
1275 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1278 * If this pinned group hasn't been scheduled,
1279 * put it in error state.
1281 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1282 update_group_times(event
);
1283 event
->state
= PERF_EVENT_STATE_ERROR
;
1287 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1289 * Ignore events in OFF or ERROR state, and
1290 * ignore pinned events since we did them already.
1292 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1297 * Listen to the 'cpu' scheduling filter constraint
1300 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1303 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1304 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1309 spin_unlock(&ctx
->lock
);
1313 * Called from scheduler to add the events of the current task
1314 * with interrupts disabled.
1316 * We restore the event value and then enable it.
1318 * This does not protect us against NMI, but enable()
1319 * sets the enabled bit in the control field of event _before_
1320 * accessing the event control register. If a NMI hits, then it will
1321 * keep the event running.
1323 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1325 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1326 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1330 if (cpuctx
->task_ctx
== ctx
)
1332 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1333 cpuctx
->task_ctx
= ctx
;
1336 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1338 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1340 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1343 #define MAX_INTERRUPTS (~0ULL)
1345 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1347 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1349 struct hw_perf_event
*hwc
= &event
->hw
;
1350 u64 period
, sample_period
;
1353 events
*= hwc
->sample_period
;
1354 period
= div64_u64(events
, event
->attr
.sample_freq
);
1356 delta
= (s64
)(period
- hwc
->sample_period
);
1357 delta
= (delta
+ 7) / 8; /* low pass filter */
1359 sample_period
= hwc
->sample_period
+ delta
;
1364 hwc
->sample_period
= sample_period
;
1367 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1369 struct perf_event
*event
;
1370 struct hw_perf_event
*hwc
;
1371 u64 interrupts
, freq
;
1373 spin_lock(&ctx
->lock
);
1374 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1375 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1380 interrupts
= hwc
->interrupts
;
1381 hwc
->interrupts
= 0;
1384 * unthrottle events on the tick
1386 if (interrupts
== MAX_INTERRUPTS
) {
1387 perf_log_throttle(event
, 1);
1388 event
->pmu
->unthrottle(event
);
1389 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1392 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1396 * if the specified freq < HZ then we need to skip ticks
1398 if (event
->attr
.sample_freq
< HZ
) {
1399 freq
= event
->attr
.sample_freq
;
1401 hwc
->freq_count
+= freq
;
1402 hwc
->freq_interrupts
+= interrupts
;
1404 if (hwc
->freq_count
< HZ
)
1407 interrupts
= hwc
->freq_interrupts
;
1408 hwc
->freq_interrupts
= 0;
1409 hwc
->freq_count
-= HZ
;
1413 perf_adjust_period(event
, freq
* interrupts
);
1416 * In order to avoid being stalled by an (accidental) huge
1417 * sample period, force reset the sample period if we didn't
1418 * get any events in this freq period.
1422 event
->pmu
->disable(event
);
1423 atomic64_set(&hwc
->period_left
, 0);
1424 event
->pmu
->enable(event
);
1428 spin_unlock(&ctx
->lock
);
1432 * Round-robin a context's events:
1434 static void rotate_ctx(struct perf_event_context
*ctx
)
1436 struct perf_event
*event
;
1438 if (!ctx
->nr_events
)
1441 spin_lock(&ctx
->lock
);
1443 * Rotate the first entry last (works just fine for group events too):
1446 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1447 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1452 spin_unlock(&ctx
->lock
);
1455 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1457 struct perf_cpu_context
*cpuctx
;
1458 struct perf_event_context
*ctx
;
1460 if (!atomic_read(&nr_events
))
1463 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1464 ctx
= curr
->perf_event_ctxp
;
1466 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1468 perf_ctx_adjust_freq(ctx
);
1470 perf_event_cpu_sched_out(cpuctx
);
1472 __perf_event_task_sched_out(ctx
);
1474 rotate_ctx(&cpuctx
->ctx
);
1478 perf_event_cpu_sched_in(cpuctx
, cpu
);
1480 perf_event_task_sched_in(curr
, cpu
);
1484 * Enable all of a task's events that have been marked enable-on-exec.
1485 * This expects task == current.
1487 static void perf_event_enable_on_exec(struct task_struct
*task
)
1489 struct perf_event_context
*ctx
;
1490 struct perf_event
*event
;
1491 unsigned long flags
;
1494 local_irq_save(flags
);
1495 ctx
= task
->perf_event_ctxp
;
1496 if (!ctx
|| !ctx
->nr_events
)
1499 __perf_event_task_sched_out(ctx
);
1501 spin_lock(&ctx
->lock
);
1503 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1504 if (!event
->attr
.enable_on_exec
)
1506 event
->attr
.enable_on_exec
= 0;
1507 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1509 __perf_event_mark_enabled(event
, ctx
);
1514 * Unclone this context if we enabled any event.
1519 spin_unlock(&ctx
->lock
);
1521 perf_event_task_sched_in(task
, smp_processor_id());
1523 local_irq_restore(flags
);
1527 * Cross CPU call to read the hardware event
1529 static void __perf_event_read(void *info
)
1531 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1532 struct perf_event
*event
= info
;
1533 struct perf_event_context
*ctx
= event
->ctx
;
1536 * If this is a task context, we need to check whether it is
1537 * the current task context of this cpu. If not it has been
1538 * scheduled out before the smp call arrived. In that case
1539 * event->count would have been updated to a recent sample
1540 * when the event was scheduled out.
1542 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1545 spin_lock(&ctx
->lock
);
1546 update_context_time(ctx
);
1547 update_event_times(event
);
1548 spin_unlock(&ctx
->lock
);
1550 event
->pmu
->read(event
);
1553 static u64
perf_event_read(struct perf_event
*event
)
1556 * If event is enabled and currently active on a CPU, update the
1557 * value in the event structure:
1559 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1560 smp_call_function_single(event
->oncpu
,
1561 __perf_event_read
, event
, 1);
1562 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1563 struct perf_event_context
*ctx
= event
->ctx
;
1564 unsigned long flags
;
1566 spin_lock_irqsave(&ctx
->lock
, flags
);
1567 update_context_time(ctx
);
1568 update_event_times(event
);
1569 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1572 return atomic64_read(&event
->count
);
1576 * Initialize the perf_event context in a task_struct:
1579 __perf_event_init_context(struct perf_event_context
*ctx
,
1580 struct task_struct
*task
)
1582 spin_lock_init(&ctx
->lock
);
1583 mutex_init(&ctx
->mutex
);
1584 INIT_LIST_HEAD(&ctx
->group_list
);
1585 INIT_LIST_HEAD(&ctx
->event_list
);
1586 atomic_set(&ctx
->refcount
, 1);
1590 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1592 struct perf_event_context
*ctx
;
1593 struct perf_cpu_context
*cpuctx
;
1594 struct task_struct
*task
;
1595 unsigned long flags
;
1599 * If cpu is not a wildcard then this is a percpu event:
1602 /* Must be root to operate on a CPU event: */
1603 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1604 return ERR_PTR(-EACCES
);
1606 if (cpu
< 0 || cpu
> num_possible_cpus())
1607 return ERR_PTR(-EINVAL
);
1610 * We could be clever and allow to attach a event to an
1611 * offline CPU and activate it when the CPU comes up, but
1614 if (!cpu_isset(cpu
, cpu_online_map
))
1615 return ERR_PTR(-ENODEV
);
1617 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1628 task
= find_task_by_vpid(pid
);
1630 get_task_struct(task
);
1634 return ERR_PTR(-ESRCH
);
1637 * Can't attach events to a dying task.
1640 if (task
->flags
& PF_EXITING
)
1643 /* Reuse ptrace permission checks for now. */
1645 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1649 ctx
= perf_lock_task_context(task
, &flags
);
1652 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1656 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1660 __perf_event_init_context(ctx
, task
);
1662 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1664 * We raced with some other task; use
1665 * the context they set.
1670 get_task_struct(task
);
1673 put_task_struct(task
);
1677 put_task_struct(task
);
1678 return ERR_PTR(err
);
1681 static void perf_event_free_filter(struct perf_event
*event
);
1683 static void free_event_rcu(struct rcu_head
*head
)
1685 struct perf_event
*event
;
1687 event
= container_of(head
, struct perf_event
, rcu_head
);
1689 put_pid_ns(event
->ns
);
1690 perf_event_free_filter(event
);
1694 static void perf_pending_sync(struct perf_event
*event
);
1696 static void free_event(struct perf_event
*event
)
1698 perf_pending_sync(event
);
1700 if (!event
->parent
) {
1701 atomic_dec(&nr_events
);
1702 if (event
->attr
.mmap
)
1703 atomic_dec(&nr_mmap_events
);
1704 if (event
->attr
.comm
)
1705 atomic_dec(&nr_comm_events
);
1706 if (event
->attr
.task
)
1707 atomic_dec(&nr_task_events
);
1710 if (event
->output
) {
1711 fput(event
->output
->filp
);
1712 event
->output
= NULL
;
1716 event
->destroy(event
);
1718 put_ctx(event
->ctx
);
1719 call_rcu(&event
->rcu_head
, free_event_rcu
);
1722 int perf_event_release_kernel(struct perf_event
*event
)
1724 struct perf_event_context
*ctx
= event
->ctx
;
1726 WARN_ON_ONCE(ctx
->parent_ctx
);
1727 mutex_lock(&ctx
->mutex
);
1728 perf_event_remove_from_context(event
);
1729 mutex_unlock(&ctx
->mutex
);
1731 mutex_lock(&event
->owner
->perf_event_mutex
);
1732 list_del_init(&event
->owner_entry
);
1733 mutex_unlock(&event
->owner
->perf_event_mutex
);
1734 put_task_struct(event
->owner
);
1740 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1743 * Called when the last reference to the file is gone.
1745 static int perf_release(struct inode
*inode
, struct file
*file
)
1747 struct perf_event
*event
= file
->private_data
;
1749 file
->private_data
= NULL
;
1751 return perf_event_release_kernel(event
);
1754 static int perf_event_read_size(struct perf_event
*event
)
1756 int entry
= sizeof(u64
); /* value */
1760 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1761 size
+= sizeof(u64
);
1763 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1764 size
+= sizeof(u64
);
1766 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1767 entry
+= sizeof(u64
);
1769 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1770 nr
+= event
->group_leader
->nr_siblings
;
1771 size
+= sizeof(u64
);
1779 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
1781 struct perf_event
*child
;
1787 mutex_lock(&event
->child_mutex
);
1788 total
+= perf_event_read(event
);
1789 *enabled
+= event
->total_time_enabled
+
1790 atomic64_read(&event
->child_total_time_enabled
);
1791 *running
+= event
->total_time_running
+
1792 atomic64_read(&event
->child_total_time_running
);
1794 list_for_each_entry(child
, &event
->child_list
, child_list
) {
1795 total
+= perf_event_read(child
);
1796 *enabled
+= child
->total_time_enabled
;
1797 *running
+= child
->total_time_running
;
1799 mutex_unlock(&event
->child_mutex
);
1803 EXPORT_SYMBOL_GPL(perf_event_read_value
);
1805 static int perf_event_read_group(struct perf_event
*event
,
1806 u64 read_format
, char __user
*buf
)
1808 struct perf_event
*leader
= event
->group_leader
, *sub
;
1809 int n
= 0, size
= 0, ret
= -EFAULT
;
1810 struct perf_event_context
*ctx
= leader
->ctx
;
1812 u64 count
, enabled
, running
;
1814 mutex_lock(&ctx
->mutex
);
1815 count
= perf_event_read_value(leader
, &enabled
, &running
);
1817 values
[n
++] = 1 + leader
->nr_siblings
;
1818 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1819 values
[n
++] = enabled
;
1820 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1821 values
[n
++] = running
;
1822 values
[n
++] = count
;
1823 if (read_format
& PERF_FORMAT_ID
)
1824 values
[n
++] = primary_event_id(leader
);
1826 size
= n
* sizeof(u64
);
1828 if (copy_to_user(buf
, values
, size
))
1833 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1836 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
1837 if (read_format
& PERF_FORMAT_ID
)
1838 values
[n
++] = primary_event_id(sub
);
1840 size
= n
* sizeof(u64
);
1842 if (copy_to_user(buf
+ ret
, values
, size
)) {
1850 mutex_unlock(&ctx
->mutex
);
1855 static int perf_event_read_one(struct perf_event
*event
,
1856 u64 read_format
, char __user
*buf
)
1858 u64 enabled
, running
;
1862 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
1863 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1864 values
[n
++] = enabled
;
1865 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1866 values
[n
++] = running
;
1867 if (read_format
& PERF_FORMAT_ID
)
1868 values
[n
++] = primary_event_id(event
);
1870 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1873 return n
* sizeof(u64
);
1877 * Read the performance event - simple non blocking version for now
1880 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1882 u64 read_format
= event
->attr
.read_format
;
1886 * Return end-of-file for a read on a event that is in
1887 * error state (i.e. because it was pinned but it couldn't be
1888 * scheduled on to the CPU at some point).
1890 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1893 if (count
< perf_event_read_size(event
))
1896 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1897 if (read_format
& PERF_FORMAT_GROUP
)
1898 ret
= perf_event_read_group(event
, read_format
, buf
);
1900 ret
= perf_event_read_one(event
, read_format
, buf
);
1906 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1908 struct perf_event
*event
= file
->private_data
;
1910 return perf_read_hw(event
, buf
, count
);
1913 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1915 struct perf_event
*event
= file
->private_data
;
1916 struct perf_mmap_data
*data
;
1917 unsigned int events
= POLL_HUP
;
1920 data
= rcu_dereference(event
->data
);
1922 events
= atomic_xchg(&data
->poll
, 0);
1925 poll_wait(file
, &event
->waitq
, wait
);
1930 static void perf_event_reset(struct perf_event
*event
)
1932 (void)perf_event_read(event
);
1933 atomic64_set(&event
->count
, 0);
1934 perf_event_update_userpage(event
);
1938 * Holding the top-level event's child_mutex means that any
1939 * descendant process that has inherited this event will block
1940 * in sync_child_event if it goes to exit, thus satisfying the
1941 * task existence requirements of perf_event_enable/disable.
1943 static void perf_event_for_each_child(struct perf_event
*event
,
1944 void (*func
)(struct perf_event
*))
1946 struct perf_event
*child
;
1948 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1949 mutex_lock(&event
->child_mutex
);
1951 list_for_each_entry(child
, &event
->child_list
, child_list
)
1953 mutex_unlock(&event
->child_mutex
);
1956 static void perf_event_for_each(struct perf_event
*event
,
1957 void (*func
)(struct perf_event
*))
1959 struct perf_event_context
*ctx
= event
->ctx
;
1960 struct perf_event
*sibling
;
1962 WARN_ON_ONCE(ctx
->parent_ctx
);
1963 mutex_lock(&ctx
->mutex
);
1964 event
= event
->group_leader
;
1966 perf_event_for_each_child(event
, func
);
1968 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1969 perf_event_for_each_child(event
, func
);
1970 mutex_unlock(&ctx
->mutex
);
1973 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1975 struct perf_event_context
*ctx
= event
->ctx
;
1980 if (!event
->attr
.sample_period
)
1983 size
= copy_from_user(&value
, arg
, sizeof(value
));
1984 if (size
!= sizeof(value
))
1990 spin_lock_irq(&ctx
->lock
);
1991 if (event
->attr
.freq
) {
1992 if (value
> sysctl_perf_event_sample_rate
) {
1997 event
->attr
.sample_freq
= value
;
1999 event
->attr
.sample_period
= value
;
2000 event
->hw
.sample_period
= value
;
2003 spin_unlock_irq(&ctx
->lock
);
2008 static int perf_event_set_output(struct perf_event
*event
, int output_fd
);
2009 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2011 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2013 struct perf_event
*event
= file
->private_data
;
2014 void (*func
)(struct perf_event
*);
2018 case PERF_EVENT_IOC_ENABLE
:
2019 func
= perf_event_enable
;
2021 case PERF_EVENT_IOC_DISABLE
:
2022 func
= perf_event_disable
;
2024 case PERF_EVENT_IOC_RESET
:
2025 func
= perf_event_reset
;
2028 case PERF_EVENT_IOC_REFRESH
:
2029 return perf_event_refresh(event
, arg
);
2031 case PERF_EVENT_IOC_PERIOD
:
2032 return perf_event_period(event
, (u64 __user
*)arg
);
2034 case PERF_EVENT_IOC_SET_OUTPUT
:
2035 return perf_event_set_output(event
, arg
);
2037 case PERF_EVENT_IOC_SET_FILTER
:
2038 return perf_event_set_filter(event
, (void __user
*)arg
);
2044 if (flags
& PERF_IOC_FLAG_GROUP
)
2045 perf_event_for_each(event
, func
);
2047 perf_event_for_each_child(event
, func
);
2052 int perf_event_task_enable(void)
2054 struct perf_event
*event
;
2056 mutex_lock(¤t
->perf_event_mutex
);
2057 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2058 perf_event_for_each_child(event
, perf_event_enable
);
2059 mutex_unlock(¤t
->perf_event_mutex
);
2064 int perf_event_task_disable(void)
2066 struct perf_event
*event
;
2068 mutex_lock(¤t
->perf_event_mutex
);
2069 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2070 perf_event_for_each_child(event
, perf_event_disable
);
2071 mutex_unlock(¤t
->perf_event_mutex
);
2076 #ifndef PERF_EVENT_INDEX_OFFSET
2077 # define PERF_EVENT_INDEX_OFFSET 0
2080 static int perf_event_index(struct perf_event
*event
)
2082 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2085 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2089 * Callers need to ensure there can be no nesting of this function, otherwise
2090 * the seqlock logic goes bad. We can not serialize this because the arch
2091 * code calls this from NMI context.
2093 void perf_event_update_userpage(struct perf_event
*event
)
2095 struct perf_event_mmap_page
*userpg
;
2096 struct perf_mmap_data
*data
;
2099 data
= rcu_dereference(event
->data
);
2103 userpg
= data
->user_page
;
2106 * Disable preemption so as to not let the corresponding user-space
2107 * spin too long if we get preempted.
2112 userpg
->index
= perf_event_index(event
);
2113 userpg
->offset
= atomic64_read(&event
->count
);
2114 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2115 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2117 userpg
->time_enabled
= event
->total_time_enabled
+
2118 atomic64_read(&event
->child_total_time_enabled
);
2120 userpg
->time_running
= event
->total_time_running
+
2121 atomic64_read(&event
->child_total_time_running
);
2130 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2132 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2135 #ifndef CONFIG_PERF_USE_VMALLOC
2138 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2141 static struct page
*
2142 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2144 if (pgoff
> data
->nr_pages
)
2148 return virt_to_page(data
->user_page
);
2150 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2153 static struct perf_mmap_data
*
2154 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2156 struct perf_mmap_data
*data
;
2160 WARN_ON(atomic_read(&event
->mmap_count
));
2162 size
= sizeof(struct perf_mmap_data
);
2163 size
+= nr_pages
* sizeof(void *);
2165 data
= kzalloc(size
, GFP_KERNEL
);
2169 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2170 if (!data
->user_page
)
2171 goto fail_user_page
;
2173 for (i
= 0; i
< nr_pages
; i
++) {
2174 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2175 if (!data
->data_pages
[i
])
2176 goto fail_data_pages
;
2179 data
->data_order
= 0;
2180 data
->nr_pages
= nr_pages
;
2185 for (i
--; i
>= 0; i
--)
2186 free_page((unsigned long)data
->data_pages
[i
]);
2188 free_page((unsigned long)data
->user_page
);
2197 static void perf_mmap_free_page(unsigned long addr
)
2199 struct page
*page
= virt_to_page((void *)addr
);
2201 page
->mapping
= NULL
;
2205 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2209 perf_mmap_free_page((unsigned long)data
->user_page
);
2210 for (i
= 0; i
< data
->nr_pages
; i
++)
2211 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2218 * Back perf_mmap() with vmalloc memory.
2220 * Required for architectures that have d-cache aliasing issues.
2223 static struct page
*
2224 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2226 if (pgoff
> (1UL << data
->data_order
))
2229 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2232 static void perf_mmap_unmark_page(void *addr
)
2234 struct page
*page
= vmalloc_to_page(addr
);
2236 page
->mapping
= NULL
;
2239 static void perf_mmap_data_free_work(struct work_struct
*work
)
2241 struct perf_mmap_data
*data
;
2245 data
= container_of(work
, struct perf_mmap_data
, work
);
2246 nr
= 1 << data
->data_order
;
2248 base
= data
->user_page
;
2249 for (i
= 0; i
< nr
+ 1; i
++)
2250 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2256 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2258 schedule_work(&data
->work
);
2261 static struct perf_mmap_data
*
2262 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2264 struct perf_mmap_data
*data
;
2268 WARN_ON(atomic_read(&event
->mmap_count
));
2270 size
= sizeof(struct perf_mmap_data
);
2271 size
+= sizeof(void *);
2273 data
= kzalloc(size
, GFP_KERNEL
);
2277 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2279 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2283 data
->user_page
= all_buf
;
2284 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2285 data
->data_order
= ilog2(nr_pages
);
2299 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2301 struct perf_event
*event
= vma
->vm_file
->private_data
;
2302 struct perf_mmap_data
*data
;
2303 int ret
= VM_FAULT_SIGBUS
;
2305 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2306 if (vmf
->pgoff
== 0)
2312 data
= rcu_dereference(event
->data
);
2316 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2319 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2323 get_page(vmf
->page
);
2324 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2325 vmf
->page
->index
= vmf
->pgoff
;
2335 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2337 long max_size
= perf_data_size(data
);
2339 atomic_set(&data
->lock
, -1);
2341 if (event
->attr
.watermark
) {
2342 data
->watermark
= min_t(long, max_size
,
2343 event
->attr
.wakeup_watermark
);
2346 if (!data
->watermark
)
2347 data
->watermark
= max_size
/ 2;
2350 rcu_assign_pointer(event
->data
, data
);
2353 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2355 struct perf_mmap_data
*data
;
2357 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2358 perf_mmap_data_free(data
);
2361 static void perf_mmap_data_release(struct perf_event
*event
)
2363 struct perf_mmap_data
*data
= event
->data
;
2365 WARN_ON(atomic_read(&event
->mmap_count
));
2367 rcu_assign_pointer(event
->data
, NULL
);
2368 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2371 static void perf_mmap_open(struct vm_area_struct
*vma
)
2373 struct perf_event
*event
= vma
->vm_file
->private_data
;
2375 atomic_inc(&event
->mmap_count
);
2378 static void perf_mmap_close(struct vm_area_struct
*vma
)
2380 struct perf_event
*event
= vma
->vm_file
->private_data
;
2382 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2383 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2384 unsigned long size
= perf_data_size(event
->data
);
2385 struct user_struct
*user
= current_user();
2387 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2388 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2389 perf_mmap_data_release(event
);
2390 mutex_unlock(&event
->mmap_mutex
);
2394 static const struct vm_operations_struct perf_mmap_vmops
= {
2395 .open
= perf_mmap_open
,
2396 .close
= perf_mmap_close
,
2397 .fault
= perf_mmap_fault
,
2398 .page_mkwrite
= perf_mmap_fault
,
2401 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2403 struct perf_event
*event
= file
->private_data
;
2404 unsigned long user_locked
, user_lock_limit
;
2405 struct user_struct
*user
= current_user();
2406 unsigned long locked
, lock_limit
;
2407 struct perf_mmap_data
*data
;
2408 unsigned long vma_size
;
2409 unsigned long nr_pages
;
2410 long user_extra
, extra
;
2413 if (!(vma
->vm_flags
& VM_SHARED
))
2416 vma_size
= vma
->vm_end
- vma
->vm_start
;
2417 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2420 * If we have data pages ensure they're a power-of-two number, so we
2421 * can do bitmasks instead of modulo.
2423 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2426 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2429 if (vma
->vm_pgoff
!= 0)
2432 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2433 mutex_lock(&event
->mmap_mutex
);
2434 if (event
->output
) {
2439 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2440 if (nr_pages
!= event
->data
->nr_pages
)
2445 user_extra
= nr_pages
+ 1;
2446 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2449 * Increase the limit linearly with more CPUs:
2451 user_lock_limit
*= num_online_cpus();
2453 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2456 if (user_locked
> user_lock_limit
)
2457 extra
= user_locked
- user_lock_limit
;
2459 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2460 lock_limit
>>= PAGE_SHIFT
;
2461 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2463 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2464 !capable(CAP_IPC_LOCK
)) {
2469 WARN_ON(event
->data
);
2471 data
= perf_mmap_data_alloc(event
, nr_pages
);
2477 perf_mmap_data_init(event
, data
);
2479 atomic_set(&event
->mmap_count
, 1);
2480 atomic_long_add(user_extra
, &user
->locked_vm
);
2481 vma
->vm_mm
->locked_vm
+= extra
;
2482 event
->data
->nr_locked
= extra
;
2483 if (vma
->vm_flags
& VM_WRITE
)
2484 event
->data
->writable
= 1;
2487 mutex_unlock(&event
->mmap_mutex
);
2489 vma
->vm_flags
|= VM_RESERVED
;
2490 vma
->vm_ops
= &perf_mmap_vmops
;
2495 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2497 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2498 struct perf_event
*event
= filp
->private_data
;
2501 mutex_lock(&inode
->i_mutex
);
2502 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2503 mutex_unlock(&inode
->i_mutex
);
2511 static const struct file_operations perf_fops
= {
2512 .release
= perf_release
,
2515 .unlocked_ioctl
= perf_ioctl
,
2516 .compat_ioctl
= perf_ioctl
,
2518 .fasync
= perf_fasync
,
2524 * If there's data, ensure we set the poll() state and publish everything
2525 * to user-space before waking everybody up.
2528 void perf_event_wakeup(struct perf_event
*event
)
2530 wake_up_all(&event
->waitq
);
2532 if (event
->pending_kill
) {
2533 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2534 event
->pending_kill
= 0;
2541 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2543 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2544 * single linked list and use cmpxchg() to add entries lockless.
2547 static void perf_pending_event(struct perf_pending_entry
*entry
)
2549 struct perf_event
*event
= container_of(entry
,
2550 struct perf_event
, pending
);
2552 if (event
->pending_disable
) {
2553 event
->pending_disable
= 0;
2554 __perf_event_disable(event
);
2557 if (event
->pending_wakeup
) {
2558 event
->pending_wakeup
= 0;
2559 perf_event_wakeup(event
);
2563 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2565 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2569 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2570 void (*func
)(struct perf_pending_entry
*))
2572 struct perf_pending_entry
**head
;
2574 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2579 head
= &get_cpu_var(perf_pending_head
);
2582 entry
->next
= *head
;
2583 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2585 set_perf_event_pending();
2587 put_cpu_var(perf_pending_head
);
2590 static int __perf_pending_run(void)
2592 struct perf_pending_entry
*list
;
2595 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2596 while (list
!= PENDING_TAIL
) {
2597 void (*func
)(struct perf_pending_entry
*);
2598 struct perf_pending_entry
*entry
= list
;
2605 * Ensure we observe the unqueue before we issue the wakeup,
2606 * so that we won't be waiting forever.
2607 * -- see perf_not_pending().
2618 static inline int perf_not_pending(struct perf_event
*event
)
2621 * If we flush on whatever cpu we run, there is a chance we don't
2625 __perf_pending_run();
2629 * Ensure we see the proper queue state before going to sleep
2630 * so that we do not miss the wakeup. -- see perf_pending_handle()
2633 return event
->pending
.next
== NULL
;
2636 static void perf_pending_sync(struct perf_event
*event
)
2638 wait_event(event
->waitq
, perf_not_pending(event
));
2641 void perf_event_do_pending(void)
2643 __perf_pending_run();
2647 * Callchain support -- arch specific
2650 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2658 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2659 unsigned long offset
, unsigned long head
)
2663 if (!data
->writable
)
2666 mask
= perf_data_size(data
) - 1;
2668 offset
= (offset
- tail
) & mask
;
2669 head
= (head
- tail
) & mask
;
2671 if ((int)(head
- offset
) < 0)
2677 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2679 atomic_set(&handle
->data
->poll
, POLL_IN
);
2682 handle
->event
->pending_wakeup
= 1;
2683 perf_pending_queue(&handle
->event
->pending
,
2684 perf_pending_event
);
2686 perf_event_wakeup(handle
->event
);
2690 * Curious locking construct.
2692 * We need to ensure a later event_id doesn't publish a head when a former
2693 * event_id isn't done writing. However since we need to deal with NMIs we
2694 * cannot fully serialize things.
2696 * What we do is serialize between CPUs so we only have to deal with NMI
2697 * nesting on a single CPU.
2699 * We only publish the head (and generate a wakeup) when the outer-most
2700 * event_id completes.
2702 static void perf_output_lock(struct perf_output_handle
*handle
)
2704 struct perf_mmap_data
*data
= handle
->data
;
2705 int cur
, cpu
= get_cpu();
2710 cur
= atomic_cmpxchg(&data
->lock
, -1, cpu
);
2722 static void perf_output_unlock(struct perf_output_handle
*handle
)
2724 struct perf_mmap_data
*data
= handle
->data
;
2728 data
->done_head
= data
->head
;
2730 if (!handle
->locked
)
2735 * The xchg implies a full barrier that ensures all writes are done
2736 * before we publish the new head, matched by a rmb() in userspace when
2737 * reading this position.
2739 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2740 data
->user_page
->data_head
= head
;
2743 * NMI can happen here, which means we can miss a done_head update.
2746 cpu
= atomic_xchg(&data
->lock
, -1);
2747 WARN_ON_ONCE(cpu
!= smp_processor_id());
2750 * Therefore we have to validate we did not indeed do so.
2752 if (unlikely(atomic_long_read(&data
->done_head
))) {
2754 * Since we had it locked, we can lock it again.
2756 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2762 if (atomic_xchg(&data
->wakeup
, 0))
2763 perf_output_wakeup(handle
);
2768 void perf_output_copy(struct perf_output_handle
*handle
,
2769 const void *buf
, unsigned int len
)
2771 unsigned int pages_mask
;
2772 unsigned long offset
;
2776 offset
= handle
->offset
;
2777 pages_mask
= handle
->data
->nr_pages
- 1;
2778 pages
= handle
->data
->data_pages
;
2781 unsigned long page_offset
;
2782 unsigned long page_size
;
2785 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2786 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2787 page_offset
= offset
& (page_size
- 1);
2788 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2790 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2797 handle
->offset
= offset
;
2800 * Check we didn't copy past our reservation window, taking the
2801 * possible unsigned int wrap into account.
2803 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2806 int perf_output_begin(struct perf_output_handle
*handle
,
2807 struct perf_event
*event
, unsigned int size
,
2808 int nmi
, int sample
)
2810 struct perf_event
*output_event
;
2811 struct perf_mmap_data
*data
;
2812 unsigned long tail
, offset
, head
;
2815 struct perf_event_header header
;
2822 * For inherited events we send all the output towards the parent.
2825 event
= event
->parent
;
2827 output_event
= rcu_dereference(event
->output
);
2829 event
= output_event
;
2831 data
= rcu_dereference(event
->data
);
2835 handle
->data
= data
;
2836 handle
->event
= event
;
2838 handle
->sample
= sample
;
2840 if (!data
->nr_pages
)
2843 have_lost
= atomic_read(&data
->lost
);
2845 size
+= sizeof(lost_event
);
2847 perf_output_lock(handle
);
2851 * Userspace could choose to issue a mb() before updating the
2852 * tail pointer. So that all reads will be completed before the
2855 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2857 offset
= head
= atomic_long_read(&data
->head
);
2859 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2861 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2863 handle
->offset
= offset
;
2864 handle
->head
= head
;
2866 if (head
- tail
> data
->watermark
)
2867 atomic_set(&data
->wakeup
, 1);
2870 lost_event
.header
.type
= PERF_RECORD_LOST
;
2871 lost_event
.header
.misc
= 0;
2872 lost_event
.header
.size
= sizeof(lost_event
);
2873 lost_event
.id
= event
->id
;
2874 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2876 perf_output_put(handle
, lost_event
);
2882 atomic_inc(&data
->lost
);
2883 perf_output_unlock(handle
);
2890 void perf_output_end(struct perf_output_handle
*handle
)
2892 struct perf_event
*event
= handle
->event
;
2893 struct perf_mmap_data
*data
= handle
->data
;
2895 int wakeup_events
= event
->attr
.wakeup_events
;
2897 if (handle
->sample
&& wakeup_events
) {
2898 int events
= atomic_inc_return(&data
->events
);
2899 if (events
>= wakeup_events
) {
2900 atomic_sub(wakeup_events
, &data
->events
);
2901 atomic_set(&data
->wakeup
, 1);
2905 perf_output_unlock(handle
);
2909 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2912 * only top level events have the pid namespace they were created in
2915 event
= event
->parent
;
2917 return task_tgid_nr_ns(p
, event
->ns
);
2920 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2923 * only top level events have the pid namespace they were created in
2926 event
= event
->parent
;
2928 return task_pid_nr_ns(p
, event
->ns
);
2931 static void perf_output_read_one(struct perf_output_handle
*handle
,
2932 struct perf_event
*event
)
2934 u64 read_format
= event
->attr
.read_format
;
2938 values
[n
++] = atomic64_read(&event
->count
);
2939 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2940 values
[n
++] = event
->total_time_enabled
+
2941 atomic64_read(&event
->child_total_time_enabled
);
2943 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2944 values
[n
++] = event
->total_time_running
+
2945 atomic64_read(&event
->child_total_time_running
);
2947 if (read_format
& PERF_FORMAT_ID
)
2948 values
[n
++] = primary_event_id(event
);
2950 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2954 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2956 static void perf_output_read_group(struct perf_output_handle
*handle
,
2957 struct perf_event
*event
)
2959 struct perf_event
*leader
= event
->group_leader
, *sub
;
2960 u64 read_format
= event
->attr
.read_format
;
2964 values
[n
++] = 1 + leader
->nr_siblings
;
2966 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2967 values
[n
++] = leader
->total_time_enabled
;
2969 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2970 values
[n
++] = leader
->total_time_running
;
2972 if (leader
!= event
)
2973 leader
->pmu
->read(leader
);
2975 values
[n
++] = atomic64_read(&leader
->count
);
2976 if (read_format
& PERF_FORMAT_ID
)
2977 values
[n
++] = primary_event_id(leader
);
2979 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2981 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2985 sub
->pmu
->read(sub
);
2987 values
[n
++] = atomic64_read(&sub
->count
);
2988 if (read_format
& PERF_FORMAT_ID
)
2989 values
[n
++] = primary_event_id(sub
);
2991 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2995 static void perf_output_read(struct perf_output_handle
*handle
,
2996 struct perf_event
*event
)
2998 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
2999 perf_output_read_group(handle
, event
);
3001 perf_output_read_one(handle
, event
);
3004 void perf_output_sample(struct perf_output_handle
*handle
,
3005 struct perf_event_header
*header
,
3006 struct perf_sample_data
*data
,
3007 struct perf_event
*event
)
3009 u64 sample_type
= data
->type
;
3011 perf_output_put(handle
, *header
);
3013 if (sample_type
& PERF_SAMPLE_IP
)
3014 perf_output_put(handle
, data
->ip
);
3016 if (sample_type
& PERF_SAMPLE_TID
)
3017 perf_output_put(handle
, data
->tid_entry
);
3019 if (sample_type
& PERF_SAMPLE_TIME
)
3020 perf_output_put(handle
, data
->time
);
3022 if (sample_type
& PERF_SAMPLE_ADDR
)
3023 perf_output_put(handle
, data
->addr
);
3025 if (sample_type
& PERF_SAMPLE_ID
)
3026 perf_output_put(handle
, data
->id
);
3028 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3029 perf_output_put(handle
, data
->stream_id
);
3031 if (sample_type
& PERF_SAMPLE_CPU
)
3032 perf_output_put(handle
, data
->cpu_entry
);
3034 if (sample_type
& PERF_SAMPLE_PERIOD
)
3035 perf_output_put(handle
, data
->period
);
3037 if (sample_type
& PERF_SAMPLE_READ
)
3038 perf_output_read(handle
, event
);
3040 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3041 if (data
->callchain
) {
3044 if (data
->callchain
)
3045 size
+= data
->callchain
->nr
;
3047 size
*= sizeof(u64
);
3049 perf_output_copy(handle
, data
->callchain
, size
);
3052 perf_output_put(handle
, nr
);
3056 if (sample_type
& PERF_SAMPLE_RAW
) {
3058 perf_output_put(handle
, data
->raw
->size
);
3059 perf_output_copy(handle
, data
->raw
->data
,
3066 .size
= sizeof(u32
),
3069 perf_output_put(handle
, raw
);
3074 void perf_prepare_sample(struct perf_event_header
*header
,
3075 struct perf_sample_data
*data
,
3076 struct perf_event
*event
,
3077 struct pt_regs
*regs
)
3079 u64 sample_type
= event
->attr
.sample_type
;
3081 data
->type
= sample_type
;
3083 header
->type
= PERF_RECORD_SAMPLE
;
3084 header
->size
= sizeof(*header
);
3087 header
->misc
|= perf_misc_flags(regs
);
3089 if (sample_type
& PERF_SAMPLE_IP
) {
3090 data
->ip
= perf_instruction_pointer(regs
);
3092 header
->size
+= sizeof(data
->ip
);
3095 if (sample_type
& PERF_SAMPLE_TID
) {
3096 /* namespace issues */
3097 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3098 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3100 header
->size
+= sizeof(data
->tid_entry
);
3103 if (sample_type
& PERF_SAMPLE_TIME
) {
3104 data
->time
= perf_clock();
3106 header
->size
+= sizeof(data
->time
);
3109 if (sample_type
& PERF_SAMPLE_ADDR
)
3110 header
->size
+= sizeof(data
->addr
);
3112 if (sample_type
& PERF_SAMPLE_ID
) {
3113 data
->id
= primary_event_id(event
);
3115 header
->size
+= sizeof(data
->id
);
3118 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3119 data
->stream_id
= event
->id
;
3121 header
->size
+= sizeof(data
->stream_id
);
3124 if (sample_type
& PERF_SAMPLE_CPU
) {
3125 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3126 data
->cpu_entry
.reserved
= 0;
3128 header
->size
+= sizeof(data
->cpu_entry
);
3131 if (sample_type
& PERF_SAMPLE_PERIOD
)
3132 header
->size
+= sizeof(data
->period
);
3134 if (sample_type
& PERF_SAMPLE_READ
)
3135 header
->size
+= perf_event_read_size(event
);
3137 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3140 data
->callchain
= perf_callchain(regs
);
3142 if (data
->callchain
)
3143 size
+= data
->callchain
->nr
;
3145 header
->size
+= size
* sizeof(u64
);
3148 if (sample_type
& PERF_SAMPLE_RAW
) {
3149 int size
= sizeof(u32
);
3152 size
+= data
->raw
->size
;
3154 size
+= sizeof(u32
);
3156 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3157 header
->size
+= size
;
3161 static void perf_event_output(struct perf_event
*event
, int nmi
,
3162 struct perf_sample_data
*data
,
3163 struct pt_regs
*regs
)
3165 struct perf_output_handle handle
;
3166 struct perf_event_header header
;
3168 perf_prepare_sample(&header
, data
, event
, regs
);
3170 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3173 perf_output_sample(&handle
, &header
, data
, event
);
3175 perf_output_end(&handle
);
3182 struct perf_read_event
{
3183 struct perf_event_header header
;
3190 perf_event_read_event(struct perf_event
*event
,
3191 struct task_struct
*task
)
3193 struct perf_output_handle handle
;
3194 struct perf_read_event read_event
= {
3196 .type
= PERF_RECORD_READ
,
3198 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3200 .pid
= perf_event_pid(event
, task
),
3201 .tid
= perf_event_tid(event
, task
),
3205 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3209 perf_output_put(&handle
, read_event
);
3210 perf_output_read(&handle
, event
);
3212 perf_output_end(&handle
);
3216 * task tracking -- fork/exit
3218 * enabled by: attr.comm | attr.mmap | attr.task
3221 struct perf_task_event
{
3222 struct task_struct
*task
;
3223 struct perf_event_context
*task_ctx
;
3226 struct perf_event_header header
;
3236 static void perf_event_task_output(struct perf_event
*event
,
3237 struct perf_task_event
*task_event
)
3239 struct perf_output_handle handle
;
3241 struct task_struct
*task
= task_event
->task
;
3244 size
= task_event
->event_id
.header
.size
;
3245 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3250 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3251 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3253 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3254 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3256 task_event
->event_id
.time
= perf_clock();
3258 perf_output_put(&handle
, task_event
->event_id
);
3260 perf_output_end(&handle
);
3263 static int perf_event_task_match(struct perf_event
*event
)
3265 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3271 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3272 struct perf_task_event
*task_event
)
3274 struct perf_event
*event
;
3276 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3277 if (perf_event_task_match(event
))
3278 perf_event_task_output(event
, task_event
);
3282 static void perf_event_task_event(struct perf_task_event
*task_event
)
3284 struct perf_cpu_context
*cpuctx
;
3285 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3288 cpuctx
= &get_cpu_var(perf_cpu_context
);
3289 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3290 put_cpu_var(perf_cpu_context
);
3293 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3295 perf_event_task_ctx(ctx
, task_event
);
3299 static void perf_event_task(struct task_struct
*task
,
3300 struct perf_event_context
*task_ctx
,
3303 struct perf_task_event task_event
;
3305 if (!atomic_read(&nr_comm_events
) &&
3306 !atomic_read(&nr_mmap_events
) &&
3307 !atomic_read(&nr_task_events
))
3310 task_event
= (struct perf_task_event
){
3312 .task_ctx
= task_ctx
,
3315 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3317 .size
= sizeof(task_event
.event_id
),
3326 perf_event_task_event(&task_event
);
3329 void perf_event_fork(struct task_struct
*task
)
3331 perf_event_task(task
, NULL
, 1);
3338 struct perf_comm_event
{
3339 struct task_struct
*task
;
3344 struct perf_event_header header
;
3351 static void perf_event_comm_output(struct perf_event
*event
,
3352 struct perf_comm_event
*comm_event
)
3354 struct perf_output_handle handle
;
3355 int size
= comm_event
->event_id
.header
.size
;
3356 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3361 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3362 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3364 perf_output_put(&handle
, comm_event
->event_id
);
3365 perf_output_copy(&handle
, comm_event
->comm
,
3366 comm_event
->comm_size
);
3367 perf_output_end(&handle
);
3370 static int perf_event_comm_match(struct perf_event
*event
)
3372 if (event
->attr
.comm
)
3378 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3379 struct perf_comm_event
*comm_event
)
3381 struct perf_event
*event
;
3383 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3384 if (perf_event_comm_match(event
))
3385 perf_event_comm_output(event
, comm_event
);
3389 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3391 struct perf_cpu_context
*cpuctx
;
3392 struct perf_event_context
*ctx
;
3394 char comm
[TASK_COMM_LEN
];
3396 memset(comm
, 0, sizeof(comm
));
3397 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3398 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3400 comm_event
->comm
= comm
;
3401 comm_event
->comm_size
= size
;
3403 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3406 cpuctx
= &get_cpu_var(perf_cpu_context
);
3407 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3408 put_cpu_var(perf_cpu_context
);
3411 * doesn't really matter which of the child contexts the
3412 * events ends up in.
3414 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3416 perf_event_comm_ctx(ctx
, comm_event
);
3420 void perf_event_comm(struct task_struct
*task
)
3422 struct perf_comm_event comm_event
;
3424 if (task
->perf_event_ctxp
)
3425 perf_event_enable_on_exec(task
);
3427 if (!atomic_read(&nr_comm_events
))
3430 comm_event
= (struct perf_comm_event
){
3436 .type
= PERF_RECORD_COMM
,
3445 perf_event_comm_event(&comm_event
);
3452 struct perf_mmap_event
{
3453 struct vm_area_struct
*vma
;
3455 const char *file_name
;
3459 struct perf_event_header header
;
3469 static void perf_event_mmap_output(struct perf_event
*event
,
3470 struct perf_mmap_event
*mmap_event
)
3472 struct perf_output_handle handle
;
3473 int size
= mmap_event
->event_id
.header
.size
;
3474 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3479 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3480 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3482 perf_output_put(&handle
, mmap_event
->event_id
);
3483 perf_output_copy(&handle
, mmap_event
->file_name
,
3484 mmap_event
->file_size
);
3485 perf_output_end(&handle
);
3488 static int perf_event_mmap_match(struct perf_event
*event
,
3489 struct perf_mmap_event
*mmap_event
)
3491 if (event
->attr
.mmap
)
3497 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3498 struct perf_mmap_event
*mmap_event
)
3500 struct perf_event
*event
;
3502 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3503 if (perf_event_mmap_match(event
, mmap_event
))
3504 perf_event_mmap_output(event
, mmap_event
);
3508 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3510 struct perf_cpu_context
*cpuctx
;
3511 struct perf_event_context
*ctx
;
3512 struct vm_area_struct
*vma
= mmap_event
->vma
;
3513 struct file
*file
= vma
->vm_file
;
3519 memset(tmp
, 0, sizeof(tmp
));
3523 * d_path works from the end of the buffer backwards, so we
3524 * need to add enough zero bytes after the string to handle
3525 * the 64bit alignment we do later.
3527 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3529 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3532 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3534 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3538 if (arch_vma_name(mmap_event
->vma
)) {
3539 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3545 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3549 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3554 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3556 mmap_event
->file_name
= name
;
3557 mmap_event
->file_size
= size
;
3559 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3562 cpuctx
= &get_cpu_var(perf_cpu_context
);
3563 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3564 put_cpu_var(perf_cpu_context
);
3567 * doesn't really matter which of the child contexts the
3568 * events ends up in.
3570 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3572 perf_event_mmap_ctx(ctx
, mmap_event
);
3578 void __perf_event_mmap(struct vm_area_struct
*vma
)
3580 struct perf_mmap_event mmap_event
;
3582 if (!atomic_read(&nr_mmap_events
))
3585 mmap_event
= (struct perf_mmap_event
){
3591 .type
= PERF_RECORD_MMAP
,
3597 .start
= vma
->vm_start
,
3598 .len
= vma
->vm_end
- vma
->vm_start
,
3599 .pgoff
= vma
->vm_pgoff
,
3603 perf_event_mmap_event(&mmap_event
);
3607 * IRQ throttle logging
3610 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3612 struct perf_output_handle handle
;
3616 struct perf_event_header header
;
3620 } throttle_event
= {
3622 .type
= PERF_RECORD_THROTTLE
,
3624 .size
= sizeof(throttle_event
),
3626 .time
= perf_clock(),
3627 .id
= primary_event_id(event
),
3628 .stream_id
= event
->id
,
3632 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3634 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3638 perf_output_put(&handle
, throttle_event
);
3639 perf_output_end(&handle
);
3643 * Generic event overflow handling, sampling.
3646 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3647 int throttle
, struct perf_sample_data
*data
,
3648 struct pt_regs
*regs
)
3650 int events
= atomic_read(&event
->event_limit
);
3651 struct hw_perf_event
*hwc
= &event
->hw
;
3654 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3659 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3661 if (HZ
* hwc
->interrupts
>
3662 (u64
)sysctl_perf_event_sample_rate
) {
3663 hwc
->interrupts
= MAX_INTERRUPTS
;
3664 perf_log_throttle(event
, 0);
3669 * Keep re-disabling events even though on the previous
3670 * pass we disabled it - just in case we raced with a
3671 * sched-in and the event got enabled again:
3677 if (event
->attr
.freq
) {
3678 u64 now
= perf_clock();
3679 s64 delta
= now
- hwc
->freq_stamp
;
3681 hwc
->freq_stamp
= now
;
3683 if (delta
> 0 && delta
< TICK_NSEC
)
3684 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3688 * XXX event_limit might not quite work as expected on inherited
3692 event
->pending_kill
= POLL_IN
;
3693 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3695 event
->pending_kill
= POLL_HUP
;
3697 event
->pending_disable
= 1;
3698 perf_pending_queue(&event
->pending
,
3699 perf_pending_event
);
3701 perf_event_disable(event
);
3704 if (event
->overflow_handler
)
3705 event
->overflow_handler(event
, nmi
, data
, regs
);
3707 perf_event_output(event
, nmi
, data
, regs
);
3712 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3713 struct perf_sample_data
*data
,
3714 struct pt_regs
*regs
)
3716 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3720 * Generic software event infrastructure
3724 * We directly increment event->count and keep a second value in
3725 * event->hw.period_left to count intervals. This period event
3726 * is kept in the range [-sample_period, 0] so that we can use the
3730 static u64
perf_swevent_set_period(struct perf_event
*event
)
3732 struct hw_perf_event
*hwc
= &event
->hw
;
3733 u64 period
= hwc
->last_period
;
3737 hwc
->last_period
= hwc
->sample_period
;
3740 old
= val
= atomic64_read(&hwc
->period_left
);
3744 nr
= div64_u64(period
+ val
, period
);
3745 offset
= nr
* period
;
3747 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3753 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
3754 int nmi
, struct perf_sample_data
*data
,
3755 struct pt_regs
*regs
)
3757 struct hw_perf_event
*hwc
= &event
->hw
;
3760 data
->period
= event
->hw
.last_period
;
3762 overflow
= perf_swevent_set_period(event
);
3764 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3767 for (; overflow
; overflow
--) {
3768 if (__perf_event_overflow(event
, nmi
, throttle
,
3771 * We inhibit the overflow from happening when
3772 * hwc->interrupts == MAX_INTERRUPTS.
3780 static void perf_swevent_unthrottle(struct perf_event
*event
)
3783 * Nothing to do, we already reset hwc->interrupts.
3787 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3788 int nmi
, struct perf_sample_data
*data
,
3789 struct pt_regs
*regs
)
3791 struct hw_perf_event
*hwc
= &event
->hw
;
3793 atomic64_add(nr
, &event
->count
);
3798 if (!hwc
->sample_period
)
3801 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
3802 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
3804 if (atomic64_add_negative(nr
, &hwc
->period_left
))
3807 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
3810 static int perf_swevent_is_counting(struct perf_event
*event
)
3813 * The event is active, we're good!
3815 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3819 * The event is off/error, not counting.
3821 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3825 * The event is inactive, if the context is active
3826 * we're part of a group that didn't make it on the 'pmu',
3829 if (event
->ctx
->is_active
)
3833 * We're inactive and the context is too, this means the
3834 * task is scheduled out, we're counting events that happen
3835 * to us, like migration events.
3840 static int perf_tp_event_match(struct perf_event
*event
,
3841 struct perf_sample_data
*data
);
3843 static int perf_exclude_event(struct perf_event
*event
,
3844 struct pt_regs
*regs
)
3847 if (event
->attr
.exclude_user
&& user_mode(regs
))
3850 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3857 static int perf_swevent_match(struct perf_event
*event
,
3858 enum perf_type_id type
,
3860 struct perf_sample_data
*data
,
3861 struct pt_regs
*regs
)
3863 if (!perf_swevent_is_counting(event
))
3866 if (event
->attr
.type
!= type
)
3869 if (event
->attr
.config
!= event_id
)
3872 if (perf_exclude_event(event
, regs
))
3875 if (event
->attr
.type
== PERF_TYPE_TRACEPOINT
&&
3876 !perf_tp_event_match(event
, data
))
3882 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3883 enum perf_type_id type
,
3884 u32 event_id
, u64 nr
, int nmi
,
3885 struct perf_sample_data
*data
,
3886 struct pt_regs
*regs
)
3888 struct perf_event
*event
;
3890 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3891 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
3892 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3896 int perf_swevent_get_recursion_context(void)
3898 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3905 else if (in_softirq())
3910 if (cpuctx
->recursion
[rctx
]) {
3911 put_cpu_var(perf_cpu_context
);
3915 cpuctx
->recursion
[rctx
]++;
3920 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
3922 void perf_swevent_put_recursion_context(int rctx
)
3924 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
3926 cpuctx
->recursion
[rctx
]--;
3927 put_cpu_var(perf_cpu_context
);
3929 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context
);
3931 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3933 struct perf_sample_data
*data
,
3934 struct pt_regs
*regs
)
3936 struct perf_cpu_context
*cpuctx
;
3937 struct perf_event_context
*ctx
;
3939 cpuctx
= &__get_cpu_var(perf_cpu_context
);
3941 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3942 nr
, nmi
, data
, regs
);
3944 * doesn't really matter which of the child contexts the
3945 * events ends up in.
3947 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3949 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3953 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3954 struct pt_regs
*regs
, u64 addr
)
3956 struct perf_sample_data data
;
3959 rctx
= perf_swevent_get_recursion_context();
3966 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
3968 perf_swevent_put_recursion_context(rctx
);
3971 static void perf_swevent_read(struct perf_event
*event
)
3975 static int perf_swevent_enable(struct perf_event
*event
)
3977 struct hw_perf_event
*hwc
= &event
->hw
;
3979 if (hwc
->sample_period
) {
3980 hwc
->last_period
= hwc
->sample_period
;
3981 perf_swevent_set_period(event
);
3986 static void perf_swevent_disable(struct perf_event
*event
)
3990 static const struct pmu perf_ops_generic
= {
3991 .enable
= perf_swevent_enable
,
3992 .disable
= perf_swevent_disable
,
3993 .read
= perf_swevent_read
,
3994 .unthrottle
= perf_swevent_unthrottle
,
3998 * hrtimer based swevent callback
4001 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4003 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4004 struct perf_sample_data data
;
4005 struct pt_regs
*regs
;
4006 struct perf_event
*event
;
4009 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4010 event
->pmu
->read(event
);
4014 data
.period
= event
->hw
.last_period
;
4015 regs
= get_irq_regs();
4017 * In case we exclude kernel IPs or are somehow not in interrupt
4018 * context, provide the next best thing, the user IP.
4020 if ((event
->attr
.exclude_kernel
|| !regs
) &&
4021 !event
->attr
.exclude_user
)
4022 regs
= task_pt_regs(current
);
4025 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4026 if (perf_event_overflow(event
, 0, &data
, regs
))
4027 ret
= HRTIMER_NORESTART
;
4030 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4031 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4036 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4038 struct hw_perf_event
*hwc
= &event
->hw
;
4040 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4041 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4042 if (hwc
->sample_period
) {
4045 if (hwc
->remaining
) {
4046 if (hwc
->remaining
< 0)
4049 period
= hwc
->remaining
;
4052 period
= max_t(u64
, 10000, hwc
->sample_period
);
4054 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4055 ns_to_ktime(period
), 0,
4056 HRTIMER_MODE_REL
, 0);
4060 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4062 struct hw_perf_event
*hwc
= &event
->hw
;
4064 if (hwc
->sample_period
) {
4065 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4066 hwc
->remaining
= ktime_to_ns(remaining
);
4068 hrtimer_cancel(&hwc
->hrtimer
);
4073 * Software event: cpu wall time clock
4076 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4078 int cpu
= raw_smp_processor_id();
4082 now
= cpu_clock(cpu
);
4083 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4084 atomic64_add(now
- prev
, &event
->count
);
4087 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4089 struct hw_perf_event
*hwc
= &event
->hw
;
4090 int cpu
= raw_smp_processor_id();
4092 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4093 perf_swevent_start_hrtimer(event
);
4098 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4100 perf_swevent_cancel_hrtimer(event
);
4101 cpu_clock_perf_event_update(event
);
4104 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4106 cpu_clock_perf_event_update(event
);
4109 static const struct pmu perf_ops_cpu_clock
= {
4110 .enable
= cpu_clock_perf_event_enable
,
4111 .disable
= cpu_clock_perf_event_disable
,
4112 .read
= cpu_clock_perf_event_read
,
4116 * Software event: task time clock
4119 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4124 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4126 atomic64_add(delta
, &event
->count
);
4129 static int task_clock_perf_event_enable(struct perf_event
*event
)
4131 struct hw_perf_event
*hwc
= &event
->hw
;
4134 now
= event
->ctx
->time
;
4136 atomic64_set(&hwc
->prev_count
, now
);
4138 perf_swevent_start_hrtimer(event
);
4143 static void task_clock_perf_event_disable(struct perf_event
*event
)
4145 perf_swevent_cancel_hrtimer(event
);
4146 task_clock_perf_event_update(event
, event
->ctx
->time
);
4150 static void task_clock_perf_event_read(struct perf_event
*event
)
4155 update_context_time(event
->ctx
);
4156 time
= event
->ctx
->time
;
4158 u64 now
= perf_clock();
4159 u64 delta
= now
- event
->ctx
->timestamp
;
4160 time
= event
->ctx
->time
+ delta
;
4163 task_clock_perf_event_update(event
, time
);
4166 static const struct pmu perf_ops_task_clock
= {
4167 .enable
= task_clock_perf_event_enable
,
4168 .disable
= task_clock_perf_event_disable
,
4169 .read
= task_clock_perf_event_read
,
4172 #ifdef CONFIG_EVENT_PROFILE
4174 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4177 struct perf_raw_record raw
= {
4182 struct perf_sample_data data
= {
4187 struct pt_regs
*regs
= get_irq_regs();
4190 regs
= task_pt_regs(current
);
4192 /* Trace events already protected against recursion */
4193 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4196 EXPORT_SYMBOL_GPL(perf_tp_event
);
4198 static int perf_tp_event_match(struct perf_event
*event
,
4199 struct perf_sample_data
*data
)
4201 void *record
= data
->raw
->data
;
4203 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4208 static void tp_perf_event_destroy(struct perf_event
*event
)
4210 ftrace_profile_disable(event
->attr
.config
);
4213 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4216 * Raw tracepoint data is a severe data leak, only allow root to
4219 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4220 perf_paranoid_tracepoint_raw() &&
4221 !capable(CAP_SYS_ADMIN
))
4222 return ERR_PTR(-EPERM
);
4224 if (ftrace_profile_enable(event
->attr
.config
))
4227 event
->destroy
= tp_perf_event_destroy
;
4229 return &perf_ops_generic
;
4232 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4237 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4240 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4241 if (IS_ERR(filter_str
))
4242 return PTR_ERR(filter_str
);
4244 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4250 static void perf_event_free_filter(struct perf_event
*event
)
4252 ftrace_profile_free_filter(event
);
4257 static int perf_tp_event_match(struct perf_event
*event
,
4258 struct perf_sample_data
*data
)
4263 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4268 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4273 static void perf_event_free_filter(struct perf_event
*event
)
4277 #endif /* CONFIG_EVENT_PROFILE */
4279 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4280 static void bp_perf_event_destroy(struct perf_event
*event
)
4282 release_bp_slot(event
);
4285 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4289 err
= register_perf_hw_breakpoint(bp
);
4291 return ERR_PTR(err
);
4293 bp
->destroy
= bp_perf_event_destroy
;
4295 return &perf_ops_bp
;
4298 void perf_bp_event(struct perf_event
*bp
, void *data
)
4300 struct perf_sample_data sample
;
4301 struct pt_regs
*regs
= data
;
4304 sample
.addr
= bp
->attr
.bp_addr
;
4306 if (!perf_exclude_event(bp
, regs
))
4307 perf_swevent_add(bp
, 1, 1, &sample
, regs
);
4310 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4315 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4320 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4322 static void sw_perf_event_destroy(struct perf_event
*event
)
4324 u64 event_id
= event
->attr
.config
;
4326 WARN_ON(event
->parent
);
4328 atomic_dec(&perf_swevent_enabled
[event_id
]);
4331 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4333 const struct pmu
*pmu
= NULL
;
4334 u64 event_id
= event
->attr
.config
;
4337 * Software events (currently) can't in general distinguish
4338 * between user, kernel and hypervisor events.
4339 * However, context switches and cpu migrations are considered
4340 * to be kernel events, and page faults are never hypervisor
4344 case PERF_COUNT_SW_CPU_CLOCK
:
4345 pmu
= &perf_ops_cpu_clock
;
4348 case PERF_COUNT_SW_TASK_CLOCK
:
4350 * If the user instantiates this as a per-cpu event,
4351 * use the cpu_clock event instead.
4353 if (event
->ctx
->task
)
4354 pmu
= &perf_ops_task_clock
;
4356 pmu
= &perf_ops_cpu_clock
;
4359 case PERF_COUNT_SW_PAGE_FAULTS
:
4360 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4361 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4362 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4363 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4364 case PERF_COUNT_SW_ALIGNMENT_FAULTS
:
4365 case PERF_COUNT_SW_EMULATION_FAULTS
:
4366 if (!event
->parent
) {
4367 atomic_inc(&perf_swevent_enabled
[event_id
]);
4368 event
->destroy
= sw_perf_event_destroy
;
4370 pmu
= &perf_ops_generic
;
4378 * Allocate and initialize a event structure
4380 static struct perf_event
*
4381 perf_event_alloc(struct perf_event_attr
*attr
,
4383 struct perf_event_context
*ctx
,
4384 struct perf_event
*group_leader
,
4385 struct perf_event
*parent_event
,
4386 perf_overflow_handler_t overflow_handler
,
4389 const struct pmu
*pmu
;
4390 struct perf_event
*event
;
4391 struct hw_perf_event
*hwc
;
4394 event
= kzalloc(sizeof(*event
), gfpflags
);
4396 return ERR_PTR(-ENOMEM
);
4399 * Single events are their own group leaders, with an
4400 * empty sibling list:
4403 group_leader
= event
;
4405 mutex_init(&event
->child_mutex
);
4406 INIT_LIST_HEAD(&event
->child_list
);
4408 INIT_LIST_HEAD(&event
->group_entry
);
4409 INIT_LIST_HEAD(&event
->event_entry
);
4410 INIT_LIST_HEAD(&event
->sibling_list
);
4411 init_waitqueue_head(&event
->waitq
);
4413 mutex_init(&event
->mmap_mutex
);
4416 event
->attr
= *attr
;
4417 event
->group_leader
= group_leader
;
4422 event
->parent
= parent_event
;
4424 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4425 event
->id
= atomic64_inc_return(&perf_event_id
);
4427 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4429 if (!overflow_handler
&& parent_event
)
4430 overflow_handler
= parent_event
->overflow_handler
;
4432 event
->overflow_handler
= overflow_handler
;
4435 event
->state
= PERF_EVENT_STATE_OFF
;
4440 hwc
->sample_period
= attr
->sample_period
;
4441 if (attr
->freq
&& attr
->sample_freq
)
4442 hwc
->sample_period
= 1;
4443 hwc
->last_period
= hwc
->sample_period
;
4445 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4448 * we currently do not support PERF_FORMAT_GROUP on inherited events
4450 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4453 switch (attr
->type
) {
4455 case PERF_TYPE_HARDWARE
:
4456 case PERF_TYPE_HW_CACHE
:
4457 pmu
= hw_perf_event_init(event
);
4460 case PERF_TYPE_SOFTWARE
:
4461 pmu
= sw_perf_event_init(event
);
4464 case PERF_TYPE_TRACEPOINT
:
4465 pmu
= tp_perf_event_init(event
);
4468 case PERF_TYPE_BREAKPOINT
:
4469 pmu
= bp_perf_event_init(event
);
4480 else if (IS_ERR(pmu
))
4485 put_pid_ns(event
->ns
);
4487 return ERR_PTR(err
);
4492 if (!event
->parent
) {
4493 atomic_inc(&nr_events
);
4494 if (event
->attr
.mmap
)
4495 atomic_inc(&nr_mmap_events
);
4496 if (event
->attr
.comm
)
4497 atomic_inc(&nr_comm_events
);
4498 if (event
->attr
.task
)
4499 atomic_inc(&nr_task_events
);
4505 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4506 struct perf_event_attr
*attr
)
4511 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4515 * zero the full structure, so that a short copy will be nice.
4517 memset(attr
, 0, sizeof(*attr
));
4519 ret
= get_user(size
, &uattr
->size
);
4523 if (size
> PAGE_SIZE
) /* silly large */
4526 if (!size
) /* abi compat */
4527 size
= PERF_ATTR_SIZE_VER0
;
4529 if (size
< PERF_ATTR_SIZE_VER0
)
4533 * If we're handed a bigger struct than we know of,
4534 * ensure all the unknown bits are 0 - i.e. new
4535 * user-space does not rely on any kernel feature
4536 * extensions we dont know about yet.
4538 if (size
> sizeof(*attr
)) {
4539 unsigned char __user
*addr
;
4540 unsigned char __user
*end
;
4543 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4544 end
= (void __user
*)uattr
+ size
;
4546 for (; addr
< end
; addr
++) {
4547 ret
= get_user(val
, addr
);
4553 size
= sizeof(*attr
);
4556 ret
= copy_from_user(attr
, uattr
, size
);
4561 * If the type exists, the corresponding creation will verify
4564 if (attr
->type
>= PERF_TYPE_MAX
)
4567 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4570 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4573 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4580 put_user(sizeof(*attr
), &uattr
->size
);
4585 static int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4587 struct perf_event
*output_event
= NULL
;
4588 struct file
*output_file
= NULL
;
4589 struct perf_event
*old_output
;
4590 int fput_needed
= 0;
4596 output_file
= fget_light(output_fd
, &fput_needed
);
4600 if (output_file
->f_op
!= &perf_fops
)
4603 output_event
= output_file
->private_data
;
4605 /* Don't chain output fds */
4606 if (output_event
->output
)
4609 /* Don't set an output fd when we already have an output channel */
4613 atomic_long_inc(&output_file
->f_count
);
4616 mutex_lock(&event
->mmap_mutex
);
4617 old_output
= event
->output
;
4618 rcu_assign_pointer(event
->output
, output_event
);
4619 mutex_unlock(&event
->mmap_mutex
);
4623 * we need to make sure no existing perf_output_*()
4624 * is still referencing this event.
4627 fput(old_output
->filp
);
4632 fput_light(output_file
, fput_needed
);
4637 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4639 * @attr_uptr: event_id type attributes for monitoring/sampling
4642 * @group_fd: group leader event fd
4644 SYSCALL_DEFINE5(perf_event_open
,
4645 struct perf_event_attr __user
*, attr_uptr
,
4646 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4648 struct perf_event
*event
, *group_leader
;
4649 struct perf_event_attr attr
;
4650 struct perf_event_context
*ctx
;
4651 struct file
*event_file
= NULL
;
4652 struct file
*group_file
= NULL
;
4653 int fput_needed
= 0;
4654 int fput_needed2
= 0;
4657 /* for future expandability... */
4658 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4661 err
= perf_copy_attr(attr_uptr
, &attr
);
4665 if (!attr
.exclude_kernel
) {
4666 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4671 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4676 * Get the target context (task or percpu):
4678 ctx
= find_get_context(pid
, cpu
);
4680 return PTR_ERR(ctx
);
4683 * Look up the group leader (we will attach this event to it):
4685 group_leader
= NULL
;
4686 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4688 group_file
= fget_light(group_fd
, &fput_needed
);
4690 goto err_put_context
;
4691 if (group_file
->f_op
!= &perf_fops
)
4692 goto err_put_context
;
4694 group_leader
= group_file
->private_data
;
4696 * Do not allow a recursive hierarchy (this new sibling
4697 * becoming part of another group-sibling):
4699 if (group_leader
->group_leader
!= group_leader
)
4700 goto err_put_context
;
4702 * Do not allow to attach to a group in a different
4703 * task or CPU context:
4705 if (group_leader
->ctx
!= ctx
)
4706 goto err_put_context
;
4708 * Only a group leader can be exclusive or pinned
4710 if (attr
.exclusive
|| attr
.pinned
)
4711 goto err_put_context
;
4714 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4715 NULL
, NULL
, GFP_KERNEL
);
4716 err
= PTR_ERR(event
);
4718 goto err_put_context
;
4720 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, 0);
4722 goto err_free_put_context
;
4724 event_file
= fget_light(err
, &fput_needed2
);
4726 goto err_free_put_context
;
4728 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4729 err
= perf_event_set_output(event
, group_fd
);
4731 goto err_fput_free_put_context
;
4734 event
->filp
= event_file
;
4735 WARN_ON_ONCE(ctx
->parent_ctx
);
4736 mutex_lock(&ctx
->mutex
);
4737 perf_install_in_context(ctx
, event
, cpu
);
4739 mutex_unlock(&ctx
->mutex
);
4741 event
->owner
= current
;
4742 get_task_struct(current
);
4743 mutex_lock(¤t
->perf_event_mutex
);
4744 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4745 mutex_unlock(¤t
->perf_event_mutex
);
4747 err_fput_free_put_context
:
4748 fput_light(event_file
, fput_needed2
);
4750 err_free_put_context
:
4758 fput_light(group_file
, fput_needed
);
4764 * perf_event_create_kernel_counter
4766 * @attr: attributes of the counter to create
4767 * @cpu: cpu in which the counter is bound
4768 * @pid: task to profile
4771 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
4773 perf_overflow_handler_t overflow_handler
)
4775 struct perf_event
*event
;
4776 struct perf_event_context
*ctx
;
4780 * Get the target context (task or percpu):
4783 ctx
= find_get_context(pid
, cpu
);
4789 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
4790 NULL
, overflow_handler
, GFP_KERNEL
);
4791 if (IS_ERR(event
)) {
4792 err
= PTR_ERR(event
);
4793 goto err_put_context
;
4797 WARN_ON_ONCE(ctx
->parent_ctx
);
4798 mutex_lock(&ctx
->mutex
);
4799 perf_install_in_context(ctx
, event
, cpu
);
4801 mutex_unlock(&ctx
->mutex
);
4803 event
->owner
= current
;
4804 get_task_struct(current
);
4805 mutex_lock(¤t
->perf_event_mutex
);
4806 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4807 mutex_unlock(¤t
->perf_event_mutex
);
4814 return ERR_PTR(err
);
4816 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
4819 * inherit a event from parent task to child task:
4821 static struct perf_event
*
4822 inherit_event(struct perf_event
*parent_event
,
4823 struct task_struct
*parent
,
4824 struct perf_event_context
*parent_ctx
,
4825 struct task_struct
*child
,
4826 struct perf_event
*group_leader
,
4827 struct perf_event_context
*child_ctx
)
4829 struct perf_event
*child_event
;
4832 * Instead of creating recursive hierarchies of events,
4833 * we link inherited events back to the original parent,
4834 * which has a filp for sure, which we use as the reference
4837 if (parent_event
->parent
)
4838 parent_event
= parent_event
->parent
;
4840 child_event
= perf_event_alloc(&parent_event
->attr
,
4841 parent_event
->cpu
, child_ctx
,
4842 group_leader
, parent_event
,
4844 if (IS_ERR(child_event
))
4849 * Make the child state follow the state of the parent event,
4850 * not its attr.disabled bit. We hold the parent's mutex,
4851 * so we won't race with perf_event_{en, dis}able_family.
4853 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4854 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4856 child_event
->state
= PERF_EVENT_STATE_OFF
;
4858 if (parent_event
->attr
.freq
)
4859 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4861 child_event
->overflow_handler
= parent_event
->overflow_handler
;
4864 * Link it up in the child's context:
4866 add_event_to_ctx(child_event
, child_ctx
);
4869 * Get a reference to the parent filp - we will fput it
4870 * when the child event exits. This is safe to do because
4871 * we are in the parent and we know that the filp still
4872 * exists and has a nonzero count:
4874 atomic_long_inc(&parent_event
->filp
->f_count
);
4877 * Link this into the parent event's child list
4879 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4880 mutex_lock(&parent_event
->child_mutex
);
4881 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4882 mutex_unlock(&parent_event
->child_mutex
);
4887 static int inherit_group(struct perf_event
*parent_event
,
4888 struct task_struct
*parent
,
4889 struct perf_event_context
*parent_ctx
,
4890 struct task_struct
*child
,
4891 struct perf_event_context
*child_ctx
)
4893 struct perf_event
*leader
;
4894 struct perf_event
*sub
;
4895 struct perf_event
*child_ctr
;
4897 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4898 child
, NULL
, child_ctx
);
4900 return PTR_ERR(leader
);
4901 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4902 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4903 child
, leader
, child_ctx
);
4904 if (IS_ERR(child_ctr
))
4905 return PTR_ERR(child_ctr
);
4910 static void sync_child_event(struct perf_event
*child_event
,
4911 struct task_struct
*child
)
4913 struct perf_event
*parent_event
= child_event
->parent
;
4916 if (child_event
->attr
.inherit_stat
)
4917 perf_event_read_event(child_event
, child
);
4919 child_val
= atomic64_read(&child_event
->count
);
4922 * Add back the child's count to the parent's count:
4924 atomic64_add(child_val
, &parent_event
->count
);
4925 atomic64_add(child_event
->total_time_enabled
,
4926 &parent_event
->child_total_time_enabled
);
4927 atomic64_add(child_event
->total_time_running
,
4928 &parent_event
->child_total_time_running
);
4931 * Remove this event from the parent's list
4933 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4934 mutex_lock(&parent_event
->child_mutex
);
4935 list_del_init(&child_event
->child_list
);
4936 mutex_unlock(&parent_event
->child_mutex
);
4939 * Release the parent event, if this was the last
4942 fput(parent_event
->filp
);
4946 __perf_event_exit_task(struct perf_event
*child_event
,
4947 struct perf_event_context
*child_ctx
,
4948 struct task_struct
*child
)
4950 struct perf_event
*parent_event
;
4952 perf_event_remove_from_context(child_event
);
4954 parent_event
= child_event
->parent
;
4956 * It can happen that parent exits first, and has events
4957 * that are still around due to the child reference. These
4958 * events need to be zapped - but otherwise linger.
4961 sync_child_event(child_event
, child
);
4962 free_event(child_event
);
4967 * When a child task exits, feed back event values to parent events.
4969 void perf_event_exit_task(struct task_struct
*child
)
4971 struct perf_event
*child_event
, *tmp
;
4972 struct perf_event_context
*child_ctx
;
4973 unsigned long flags
;
4975 if (likely(!child
->perf_event_ctxp
)) {
4976 perf_event_task(child
, NULL
, 0);
4980 local_irq_save(flags
);
4982 * We can't reschedule here because interrupts are disabled,
4983 * and either child is current or it is a task that can't be
4984 * scheduled, so we are now safe from rescheduling changing
4987 child_ctx
= child
->perf_event_ctxp
;
4988 __perf_event_task_sched_out(child_ctx
);
4991 * Take the context lock here so that if find_get_context is
4992 * reading child->perf_event_ctxp, we wait until it has
4993 * incremented the context's refcount before we do put_ctx below.
4995 spin_lock(&child_ctx
->lock
);
4996 child
->perf_event_ctxp
= NULL
;
4998 * If this context is a clone; unclone it so it can't get
4999 * swapped to another process while we're removing all
5000 * the events from it.
5002 unclone_ctx(child_ctx
);
5003 update_context_time(child_ctx
);
5004 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5007 * Report the task dead after unscheduling the events so that we
5008 * won't get any samples after PERF_RECORD_EXIT. We can however still
5009 * get a few PERF_RECORD_READ events.
5011 perf_event_task(child
, child_ctx
, 0);
5014 * We can recurse on the same lock type through:
5016 * __perf_event_exit_task()
5017 * sync_child_event()
5018 * fput(parent_event->filp)
5020 * mutex_lock(&ctx->mutex)
5022 * But since its the parent context it won't be the same instance.
5024 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
5027 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
5029 __perf_event_exit_task(child_event
, child_ctx
, child
);
5032 * If the last event was a group event, it will have appended all
5033 * its siblings to the list, but we obtained 'tmp' before that which
5034 * will still point to the list head terminating the iteration.
5036 if (!list_empty(&child_ctx
->group_list
))
5039 mutex_unlock(&child_ctx
->mutex
);
5045 * free an unexposed, unused context as created by inheritance by
5046 * init_task below, used by fork() in case of fail.
5048 void perf_event_free_task(struct task_struct
*task
)
5050 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5051 struct perf_event
*event
, *tmp
;
5056 mutex_lock(&ctx
->mutex
);
5058 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
5059 struct perf_event
*parent
= event
->parent
;
5061 if (WARN_ON_ONCE(!parent
))
5064 mutex_lock(&parent
->child_mutex
);
5065 list_del_init(&event
->child_list
);
5066 mutex_unlock(&parent
->child_mutex
);
5070 list_del_event(event
, ctx
);
5074 if (!list_empty(&ctx
->group_list
))
5077 mutex_unlock(&ctx
->mutex
);
5083 * Initialize the perf_event context in task_struct
5085 int perf_event_init_task(struct task_struct
*child
)
5087 struct perf_event_context
*child_ctx
= NULL
, *parent_ctx
;
5088 struct perf_event_context
*cloned_ctx
;
5089 struct perf_event
*event
;
5090 struct task_struct
*parent
= current
;
5091 int inherited_all
= 1;
5094 child
->perf_event_ctxp
= NULL
;
5096 mutex_init(&child
->perf_event_mutex
);
5097 INIT_LIST_HEAD(&child
->perf_event_list
);
5099 if (likely(!parent
->perf_event_ctxp
))
5103 * If the parent's context is a clone, pin it so it won't get
5106 parent_ctx
= perf_pin_task_context(parent
);
5109 * No need to check if parent_ctx != NULL here; since we saw
5110 * it non-NULL earlier, the only reason for it to become NULL
5111 * is if we exit, and since we're currently in the middle of
5112 * a fork we can't be exiting at the same time.
5116 * Lock the parent list. No need to lock the child - not PID
5117 * hashed yet and not running, so nobody can access it.
5119 mutex_lock(&parent_ctx
->mutex
);
5122 * We dont have to disable NMIs - we are only looking at
5123 * the list, not manipulating it:
5125 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
5127 if (!event
->attr
.inherit
) {
5132 if (!child
->perf_event_ctxp
) {
5134 * This is executed from the parent task context, so
5135 * inherit events that have been marked for cloning.
5136 * First allocate and initialize a context for the
5140 child_ctx
= kzalloc(sizeof(struct perf_event_context
),
5147 __perf_event_init_context(child_ctx
, child
);
5148 child
->perf_event_ctxp
= child_ctx
;
5149 get_task_struct(child
);
5152 ret
= inherit_group(event
, parent
, parent_ctx
,
5160 if (inherited_all
) {
5162 * Mark the child context as a clone of the parent
5163 * context, or of whatever the parent is a clone of.
5164 * Note that if the parent is a clone, it could get
5165 * uncloned at any point, but that doesn't matter
5166 * because the list of events and the generation
5167 * count can't have changed since we took the mutex.
5169 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5171 child_ctx
->parent_ctx
= cloned_ctx
;
5172 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5174 child_ctx
->parent_ctx
= parent_ctx
;
5175 child_ctx
->parent_gen
= parent_ctx
->generation
;
5177 get_ctx(child_ctx
->parent_ctx
);
5181 mutex_unlock(&parent_ctx
->mutex
);
5183 perf_unpin_context(parent_ctx
);
5188 static void __cpuinit
perf_event_init_cpu(int cpu
)
5190 struct perf_cpu_context
*cpuctx
;
5192 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5193 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5195 spin_lock(&perf_resource_lock
);
5196 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5197 spin_unlock(&perf_resource_lock
);
5199 hw_perf_event_setup(cpu
);
5202 #ifdef CONFIG_HOTPLUG_CPU
5203 static void __perf_event_exit_cpu(void *info
)
5205 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5206 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5207 struct perf_event
*event
, *tmp
;
5209 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
5210 __perf_event_remove_from_context(event
);
5212 static void perf_event_exit_cpu(int cpu
)
5214 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5215 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5217 mutex_lock(&ctx
->mutex
);
5218 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5219 mutex_unlock(&ctx
->mutex
);
5222 static inline void perf_event_exit_cpu(int cpu
) { }
5225 static int __cpuinit
5226 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5228 unsigned int cpu
= (long)hcpu
;
5232 case CPU_UP_PREPARE
:
5233 case CPU_UP_PREPARE_FROZEN
:
5234 perf_event_init_cpu(cpu
);
5238 case CPU_ONLINE_FROZEN
:
5239 hw_perf_event_setup_online(cpu
);
5242 case CPU_DOWN_PREPARE
:
5243 case CPU_DOWN_PREPARE_FROZEN
:
5244 perf_event_exit_cpu(cpu
);
5255 * This has to have a higher priority than migration_notifier in sched.c.
5257 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5258 .notifier_call
= perf_cpu_notify
,
5262 void __init
perf_event_init(void)
5264 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5265 (void *)(long)smp_processor_id());
5266 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5267 (void *)(long)smp_processor_id());
5268 register_cpu_notifier(&perf_cpu_nb
);
5271 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5273 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5277 perf_set_reserve_percpu(struct sysdev_class
*class,
5281 struct perf_cpu_context
*cpuctx
;
5285 err
= strict_strtoul(buf
, 10, &val
);
5288 if (val
> perf_max_events
)
5291 spin_lock(&perf_resource_lock
);
5292 perf_reserved_percpu
= val
;
5293 for_each_online_cpu(cpu
) {
5294 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5295 spin_lock_irq(&cpuctx
->ctx
.lock
);
5296 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5297 perf_max_events
- perf_reserved_percpu
);
5298 cpuctx
->max_pertask
= mpt
;
5299 spin_unlock_irq(&cpuctx
->ctx
.lock
);
5301 spin_unlock(&perf_resource_lock
);
5306 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5308 return sprintf(buf
, "%d\n", perf_overcommit
);
5312 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5317 err
= strict_strtoul(buf
, 10, &val
);
5323 spin_lock(&perf_resource_lock
);
5324 perf_overcommit
= val
;
5325 spin_unlock(&perf_resource_lock
);
5330 static SYSDEV_CLASS_ATTR(
5333 perf_show_reserve_percpu
,
5334 perf_set_reserve_percpu
5337 static SYSDEV_CLASS_ATTR(
5340 perf_show_overcommit
,
5344 static struct attribute
*perfclass_attrs
[] = {
5345 &attr_reserve_percpu
.attr
,
5346 &attr_overcommit
.attr
,
5350 static struct attribute_group perfclass_attr_group
= {
5351 .attrs
= perfclass_attrs
,
5352 .name
= "perf_events",
5355 static int __init
perf_event_sysfs_init(void)
5357 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5358 &perfclass_attr_group
);
5360 device_initcall(perf_event_sysfs_init
);