md: add honouring of suspend_{lo,hi} to raid1.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blobe73e53c7582f9a3d872622b277187e31de3db206
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
249 static inline u64 perf_clock(void)
251 return cpu_clock(smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context *ctx)
259 u64 now = perf_clock();
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event *event)
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
282 event->total_time_enabled = run_end - event->tstamp_enabled;
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
289 event->total_time_running = run_end - event->tstamp_running;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
299 struct perf_event *group_leader = event->group_leader;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
326 struct perf_event *sibling, *tmp;
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
340 update_event_times(event);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
393 struct perf_event *event;
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
398 event_sched_out(group_event, cpuctx, ctx);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info)
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
430 spin_lock(&ctx->lock);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
435 perf_disable();
437 event_sched_out(event, cpuctx, ctx);
439 list_del_event(event, ctx);
441 if (!ctx->task) {
443 * Allow more per task events with respect to the
444 * reservation:
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
451 perf_enable();
452 spin_unlock(&ctx->lock);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event *event)
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
476 if (!task) {
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
491 spin_lock_irq(&ctx->lock);
493 * If the context is active we need to retry the smp call.
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 spin_unlock_irq(&ctx->lock);
497 goto retry;
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 spin_unlock_irq(&ctx->lock);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event *leader)
515 struct perf_event *event;
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info)
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
538 spin_lock(&ctx->lock);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
554 spin_unlock(&ctx->lock);
558 * Disable a event.
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event *event)
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
575 if (!task) {
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
587 spin_lock_irq(&ctx->lock);
589 * If the event is still active, we need to retry the cross-call.
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 spin_unlock_irq(&ctx->lock);
593 goto retry;
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
605 spin_unlock_irq(&ctx->lock);
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
648 struct perf_event *event, *partial_group;
649 int ret;
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
671 return 0;
673 group_error:
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
683 event_sched_out(group_event, cpuctx, ctx);
685 return -EAGAIN;
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event *leader)
694 struct perf_event *event;
696 if (!is_software_event(leader))
697 return 0;
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
703 return 1;
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event))
717 return 1;
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
722 if (cpuctx->exclusive)
723 return 0;
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
734 return can_add_hw;
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info)
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
773 spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
781 perf_disable();
783 add_event_to_ctx(event, ctx);
786 * Don't put the event on if it is disabled or if
787 * it is in a group and the group isn't on.
789 if (event->state != PERF_EVENT_STATE_INACTIVE ||
790 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
791 goto unlock;
794 * An exclusive event can't go on if there are already active
795 * hardware events, and no hardware event can go on if there
796 * is already an exclusive event on.
798 if (!group_can_go_on(event, cpuctx, 1))
799 err = -EEXIST;
800 else
801 err = event_sched_in(event, cpuctx, ctx, cpu);
803 if (err) {
805 * This event couldn't go on. If it is in a group
806 * then we have to pull the whole group off.
807 * If the event group is pinned then put it in error state.
809 if (leader != event)
810 group_sched_out(leader, cpuctx, ctx);
811 if (leader->attr.pinned) {
812 update_group_times(leader);
813 leader->state = PERF_EVENT_STATE_ERROR;
817 if (!err && !ctx->task && cpuctx->max_pertask)
818 cpuctx->max_pertask--;
820 unlock:
821 perf_enable();
823 spin_unlock(&ctx->lock);
827 * Attach a performance event to a context
829 * First we add the event to the list with the hardware enable bit
830 * in event->hw_config cleared.
832 * If the event is attached to a task which is on a CPU we use a smp
833 * call to enable it in the task context. The task might have been
834 * scheduled away, but we check this in the smp call again.
836 * Must be called with ctx->mutex held.
838 static void
839 perf_install_in_context(struct perf_event_context *ctx,
840 struct perf_event *event,
841 int cpu)
843 struct task_struct *task = ctx->task;
845 if (!task) {
847 * Per cpu events are installed via an smp call and
848 * the install is always successful.
850 smp_call_function_single(cpu, __perf_install_in_context,
851 event, 1);
852 return;
855 retry:
856 task_oncpu_function_call(task, __perf_install_in_context,
857 event);
859 spin_lock_irq(&ctx->lock);
861 * we need to retry the smp call.
863 if (ctx->is_active && list_empty(&event->group_entry)) {
864 spin_unlock_irq(&ctx->lock);
865 goto retry;
869 * The lock prevents that this context is scheduled in so we
870 * can add the event safely, if it the call above did not
871 * succeed.
873 if (list_empty(&event->group_entry))
874 add_event_to_ctx(event, ctx);
875 spin_unlock_irq(&ctx->lock);
879 * Put a event into inactive state and update time fields.
880 * Enabling the leader of a group effectively enables all
881 * the group members that aren't explicitly disabled, so we
882 * have to update their ->tstamp_enabled also.
883 * Note: this works for group members as well as group leaders
884 * since the non-leader members' sibling_lists will be empty.
886 static void __perf_event_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
889 struct perf_event *sub;
891 event->state = PERF_EVENT_STATE_INACTIVE;
892 event->tstamp_enabled = ctx->time - event->total_time_enabled;
893 list_for_each_entry(sub, &event->sibling_list, group_entry)
894 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
895 sub->tstamp_enabled =
896 ctx->time - sub->total_time_enabled;
900 * Cross CPU call to enable a performance event
902 static void __perf_event_enable(void *info)
904 struct perf_event *event = info;
905 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
906 struct perf_event_context *ctx = event->ctx;
907 struct perf_event *leader = event->group_leader;
908 int err;
911 * If this is a per-task event, need to check whether this
912 * event's task is the current task on this cpu.
914 if (ctx->task && cpuctx->task_ctx != ctx) {
915 if (cpuctx->task_ctx || ctx->task != current)
916 return;
917 cpuctx->task_ctx = ctx;
920 spin_lock(&ctx->lock);
921 ctx->is_active = 1;
922 update_context_time(ctx);
924 if (event->state >= PERF_EVENT_STATE_INACTIVE)
925 goto unlock;
926 __perf_event_mark_enabled(event, ctx);
929 * If the event is in a group and isn't the group leader,
930 * then don't put it on unless the group is on.
932 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
933 goto unlock;
935 if (!group_can_go_on(event, cpuctx, 1)) {
936 err = -EEXIST;
937 } else {
938 perf_disable();
939 if (event == leader)
940 err = group_sched_in(event, cpuctx, ctx,
941 smp_processor_id());
942 else
943 err = event_sched_in(event, cpuctx, ctx,
944 smp_processor_id());
945 perf_enable();
948 if (err) {
950 * If this event can't go on and it's part of a
951 * group, then the whole group has to come off.
953 if (leader != event)
954 group_sched_out(leader, cpuctx, ctx);
955 if (leader->attr.pinned) {
956 update_group_times(leader);
957 leader->state = PERF_EVENT_STATE_ERROR;
961 unlock:
962 spin_unlock(&ctx->lock);
966 * Enable a event.
968 * If event->ctx is a cloned context, callers must make sure that
969 * every task struct that event->ctx->task could possibly point to
970 * remains valid. This condition is satisfied when called through
971 * perf_event_for_each_child or perf_event_for_each as described
972 * for perf_event_disable.
974 void perf_event_enable(struct perf_event *event)
976 struct perf_event_context *ctx = event->ctx;
977 struct task_struct *task = ctx->task;
979 if (!task) {
981 * Enable the event on the cpu that it's on
983 smp_call_function_single(event->cpu, __perf_event_enable,
984 event, 1);
985 return;
988 spin_lock_irq(&ctx->lock);
989 if (event->state >= PERF_EVENT_STATE_INACTIVE)
990 goto out;
993 * If the event is in error state, clear that first.
994 * That way, if we see the event in error state below, we
995 * know that it has gone back into error state, as distinct
996 * from the task having been scheduled away before the
997 * cross-call arrived.
999 if (event->state == PERF_EVENT_STATE_ERROR)
1000 event->state = PERF_EVENT_STATE_OFF;
1002 retry:
1003 spin_unlock_irq(&ctx->lock);
1004 task_oncpu_function_call(task, __perf_event_enable, event);
1006 spin_lock_irq(&ctx->lock);
1009 * If the context is active and the event is still off,
1010 * we need to retry the cross-call.
1012 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1013 goto retry;
1016 * Since we have the lock this context can't be scheduled
1017 * in, so we can change the state safely.
1019 if (event->state == PERF_EVENT_STATE_OFF)
1020 __perf_event_mark_enabled(event, ctx);
1022 out:
1023 spin_unlock_irq(&ctx->lock);
1026 static int perf_event_refresh(struct perf_event *event, int refresh)
1029 * not supported on inherited events
1031 if (event->attr.inherit)
1032 return -EINVAL;
1034 atomic_add(refresh, &event->event_limit);
1035 perf_event_enable(event);
1037 return 0;
1040 void __perf_event_sched_out(struct perf_event_context *ctx,
1041 struct perf_cpu_context *cpuctx)
1043 struct perf_event *event;
1045 spin_lock(&ctx->lock);
1046 ctx->is_active = 0;
1047 if (likely(!ctx->nr_events))
1048 goto out;
1049 update_context_time(ctx);
1051 perf_disable();
1052 if (ctx->nr_active) {
1053 list_for_each_entry(event, &ctx->group_list, group_entry)
1054 group_sched_out(event, cpuctx, ctx);
1056 perf_enable();
1057 out:
1058 spin_unlock(&ctx->lock);
1062 * Test whether two contexts are equivalent, i.e. whether they
1063 * have both been cloned from the same version of the same context
1064 * and they both have the same number of enabled events.
1065 * If the number of enabled events is the same, then the set
1066 * of enabled events should be the same, because these are both
1067 * inherited contexts, therefore we can't access individual events
1068 * in them directly with an fd; we can only enable/disable all
1069 * events via prctl, or enable/disable all events in a family
1070 * via ioctl, which will have the same effect on both contexts.
1072 static int context_equiv(struct perf_event_context *ctx1,
1073 struct perf_event_context *ctx2)
1075 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1076 && ctx1->parent_gen == ctx2->parent_gen
1077 && !ctx1->pin_count && !ctx2->pin_count;
1080 static void __perf_event_sync_stat(struct perf_event *event,
1081 struct perf_event *next_event)
1083 u64 value;
1085 if (!event->attr.inherit_stat)
1086 return;
1089 * Update the event value, we cannot use perf_event_read()
1090 * because we're in the middle of a context switch and have IRQs
1091 * disabled, which upsets smp_call_function_single(), however
1092 * we know the event must be on the current CPU, therefore we
1093 * don't need to use it.
1095 switch (event->state) {
1096 case PERF_EVENT_STATE_ACTIVE:
1097 event->pmu->read(event);
1098 /* fall-through */
1100 case PERF_EVENT_STATE_INACTIVE:
1101 update_event_times(event);
1102 break;
1104 default:
1105 break;
1109 * In order to keep per-task stats reliable we need to flip the event
1110 * values when we flip the contexts.
1112 value = atomic64_read(&next_event->count);
1113 value = atomic64_xchg(&event->count, value);
1114 atomic64_set(&next_event->count, value);
1116 swap(event->total_time_enabled, next_event->total_time_enabled);
1117 swap(event->total_time_running, next_event->total_time_running);
1120 * Since we swizzled the values, update the user visible data too.
1122 perf_event_update_userpage(event);
1123 perf_event_update_userpage(next_event);
1126 #define list_next_entry(pos, member) \
1127 list_entry(pos->member.next, typeof(*pos), member)
1129 static void perf_event_sync_stat(struct perf_event_context *ctx,
1130 struct perf_event_context *next_ctx)
1132 struct perf_event *event, *next_event;
1134 if (!ctx->nr_stat)
1135 return;
1137 update_context_time(ctx);
1139 event = list_first_entry(&ctx->event_list,
1140 struct perf_event, event_entry);
1142 next_event = list_first_entry(&next_ctx->event_list,
1143 struct perf_event, event_entry);
1145 while (&event->event_entry != &ctx->event_list &&
1146 &next_event->event_entry != &next_ctx->event_list) {
1148 __perf_event_sync_stat(event, next_event);
1150 event = list_next_entry(event, event_entry);
1151 next_event = list_next_entry(next_event, event_entry);
1156 * Called from scheduler to remove the events of the current task,
1157 * with interrupts disabled.
1159 * We stop each event and update the event value in event->count.
1161 * This does not protect us against NMI, but disable()
1162 * sets the disabled bit in the control field of event _before_
1163 * accessing the event control register. If a NMI hits, then it will
1164 * not restart the event.
1166 void perf_event_task_sched_out(struct task_struct *task,
1167 struct task_struct *next, int cpu)
1169 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1170 struct perf_event_context *ctx = task->perf_event_ctxp;
1171 struct perf_event_context *next_ctx;
1172 struct perf_event_context *parent;
1173 struct pt_regs *regs;
1174 int do_switch = 1;
1176 regs = task_pt_regs(task);
1177 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1179 if (likely(!ctx || !cpuctx->task_ctx))
1180 return;
1182 rcu_read_lock();
1183 parent = rcu_dereference(ctx->parent_ctx);
1184 next_ctx = next->perf_event_ctxp;
1185 if (parent && next_ctx &&
1186 rcu_dereference(next_ctx->parent_ctx) == parent) {
1188 * Looks like the two contexts are clones, so we might be
1189 * able to optimize the context switch. We lock both
1190 * contexts and check that they are clones under the
1191 * lock (including re-checking that neither has been
1192 * uncloned in the meantime). It doesn't matter which
1193 * order we take the locks because no other cpu could
1194 * be trying to lock both of these tasks.
1196 spin_lock(&ctx->lock);
1197 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1198 if (context_equiv(ctx, next_ctx)) {
1200 * XXX do we need a memory barrier of sorts
1201 * wrt to rcu_dereference() of perf_event_ctxp
1203 task->perf_event_ctxp = next_ctx;
1204 next->perf_event_ctxp = ctx;
1205 ctx->task = next;
1206 next_ctx->task = task;
1207 do_switch = 0;
1209 perf_event_sync_stat(ctx, next_ctx);
1211 spin_unlock(&next_ctx->lock);
1212 spin_unlock(&ctx->lock);
1214 rcu_read_unlock();
1216 if (do_switch) {
1217 __perf_event_sched_out(ctx, cpuctx);
1218 cpuctx->task_ctx = NULL;
1223 * Called with IRQs disabled
1225 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1227 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1229 if (!cpuctx->task_ctx)
1230 return;
1232 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1233 return;
1235 __perf_event_sched_out(ctx, cpuctx);
1236 cpuctx->task_ctx = NULL;
1240 * Called with IRQs disabled
1242 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1244 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1247 static void
1248 __perf_event_sched_in(struct perf_event_context *ctx,
1249 struct perf_cpu_context *cpuctx, int cpu)
1251 struct perf_event *event;
1252 int can_add_hw = 1;
1254 spin_lock(&ctx->lock);
1255 ctx->is_active = 1;
1256 if (likely(!ctx->nr_events))
1257 goto out;
1259 ctx->timestamp = perf_clock();
1261 perf_disable();
1264 * First go through the list and put on any pinned groups
1265 * in order to give them the best chance of going on.
1267 list_for_each_entry(event, &ctx->group_list, group_entry) {
1268 if (event->state <= PERF_EVENT_STATE_OFF ||
1269 !event->attr.pinned)
1270 continue;
1271 if (event->cpu != -1 && event->cpu != cpu)
1272 continue;
1274 if (group_can_go_on(event, cpuctx, 1))
1275 group_sched_in(event, cpuctx, ctx, cpu);
1278 * If this pinned group hasn't been scheduled,
1279 * put it in error state.
1281 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1282 update_group_times(event);
1283 event->state = PERF_EVENT_STATE_ERROR;
1287 list_for_each_entry(event, &ctx->group_list, group_entry) {
1289 * Ignore events in OFF or ERROR state, and
1290 * ignore pinned events since we did them already.
1292 if (event->state <= PERF_EVENT_STATE_OFF ||
1293 event->attr.pinned)
1294 continue;
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1300 if (event->cpu != -1 && event->cpu != cpu)
1301 continue;
1303 if (group_can_go_on(event, cpuctx, can_add_hw))
1304 if (group_sched_in(event, cpuctx, ctx, cpu))
1305 can_add_hw = 0;
1307 perf_enable();
1308 out:
1309 spin_unlock(&ctx->lock);
1313 * Called from scheduler to add the events of the current task
1314 * with interrupts disabled.
1316 * We restore the event value and then enable it.
1318 * This does not protect us against NMI, but enable()
1319 * sets the enabled bit in the control field of event _before_
1320 * accessing the event control register. If a NMI hits, then it will
1321 * keep the event running.
1323 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1325 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1326 struct perf_event_context *ctx = task->perf_event_ctxp;
1328 if (likely(!ctx))
1329 return;
1330 if (cpuctx->task_ctx == ctx)
1331 return;
1332 __perf_event_sched_in(ctx, cpuctx, cpu);
1333 cpuctx->task_ctx = ctx;
1336 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1338 struct perf_event_context *ctx = &cpuctx->ctx;
1340 __perf_event_sched_in(ctx, cpuctx, cpu);
1343 #define MAX_INTERRUPTS (~0ULL)
1345 static void perf_log_throttle(struct perf_event *event, int enable);
1347 static void perf_adjust_period(struct perf_event *event, u64 events)
1349 struct hw_perf_event *hwc = &event->hw;
1350 u64 period, sample_period;
1351 s64 delta;
1353 events *= hwc->sample_period;
1354 period = div64_u64(events, event->attr.sample_freq);
1356 delta = (s64)(period - hwc->sample_period);
1357 delta = (delta + 7) / 8; /* low pass filter */
1359 sample_period = hwc->sample_period + delta;
1361 if (!sample_period)
1362 sample_period = 1;
1364 hwc->sample_period = sample_period;
1367 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1369 struct perf_event *event;
1370 struct hw_perf_event *hwc;
1371 u64 interrupts, freq;
1373 spin_lock(&ctx->lock);
1374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1375 if (event->state != PERF_EVENT_STATE_ACTIVE)
1376 continue;
1378 hwc = &event->hw;
1380 interrupts = hwc->interrupts;
1381 hwc->interrupts = 0;
1384 * unthrottle events on the tick
1386 if (interrupts == MAX_INTERRUPTS) {
1387 perf_log_throttle(event, 1);
1388 event->pmu->unthrottle(event);
1389 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1392 if (!event->attr.freq || !event->attr.sample_freq)
1393 continue;
1396 * if the specified freq < HZ then we need to skip ticks
1398 if (event->attr.sample_freq < HZ) {
1399 freq = event->attr.sample_freq;
1401 hwc->freq_count += freq;
1402 hwc->freq_interrupts += interrupts;
1404 if (hwc->freq_count < HZ)
1405 continue;
1407 interrupts = hwc->freq_interrupts;
1408 hwc->freq_interrupts = 0;
1409 hwc->freq_count -= HZ;
1410 } else
1411 freq = HZ;
1413 perf_adjust_period(event, freq * interrupts);
1416 * In order to avoid being stalled by an (accidental) huge
1417 * sample period, force reset the sample period if we didn't
1418 * get any events in this freq period.
1420 if (!interrupts) {
1421 perf_disable();
1422 event->pmu->disable(event);
1423 atomic64_set(&hwc->period_left, 0);
1424 event->pmu->enable(event);
1425 perf_enable();
1428 spin_unlock(&ctx->lock);
1432 * Round-robin a context's events:
1434 static void rotate_ctx(struct perf_event_context *ctx)
1436 struct perf_event *event;
1438 if (!ctx->nr_events)
1439 return;
1441 spin_lock(&ctx->lock);
1443 * Rotate the first entry last (works just fine for group events too):
1445 perf_disable();
1446 list_for_each_entry(event, &ctx->group_list, group_entry) {
1447 list_move_tail(&event->group_entry, &ctx->group_list);
1448 break;
1450 perf_enable();
1452 spin_unlock(&ctx->lock);
1455 void perf_event_task_tick(struct task_struct *curr, int cpu)
1457 struct perf_cpu_context *cpuctx;
1458 struct perf_event_context *ctx;
1460 if (!atomic_read(&nr_events))
1461 return;
1463 cpuctx = &per_cpu(perf_cpu_context, cpu);
1464 ctx = curr->perf_event_ctxp;
1466 perf_ctx_adjust_freq(&cpuctx->ctx);
1467 if (ctx)
1468 perf_ctx_adjust_freq(ctx);
1470 perf_event_cpu_sched_out(cpuctx);
1471 if (ctx)
1472 __perf_event_task_sched_out(ctx);
1474 rotate_ctx(&cpuctx->ctx);
1475 if (ctx)
1476 rotate_ctx(ctx);
1478 perf_event_cpu_sched_in(cpuctx, cpu);
1479 if (ctx)
1480 perf_event_task_sched_in(curr, cpu);
1484 * Enable all of a task's events that have been marked enable-on-exec.
1485 * This expects task == current.
1487 static void perf_event_enable_on_exec(struct task_struct *task)
1489 struct perf_event_context *ctx;
1490 struct perf_event *event;
1491 unsigned long flags;
1492 int enabled = 0;
1494 local_irq_save(flags);
1495 ctx = task->perf_event_ctxp;
1496 if (!ctx || !ctx->nr_events)
1497 goto out;
1499 __perf_event_task_sched_out(ctx);
1501 spin_lock(&ctx->lock);
1503 list_for_each_entry(event, &ctx->group_list, group_entry) {
1504 if (!event->attr.enable_on_exec)
1505 continue;
1506 event->attr.enable_on_exec = 0;
1507 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1508 continue;
1509 __perf_event_mark_enabled(event, ctx);
1510 enabled = 1;
1514 * Unclone this context if we enabled any event.
1516 if (enabled)
1517 unclone_ctx(ctx);
1519 spin_unlock(&ctx->lock);
1521 perf_event_task_sched_in(task, smp_processor_id());
1522 out:
1523 local_irq_restore(flags);
1527 * Cross CPU call to read the hardware event
1529 static void __perf_event_read(void *info)
1531 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1532 struct perf_event *event = info;
1533 struct perf_event_context *ctx = event->ctx;
1536 * If this is a task context, we need to check whether it is
1537 * the current task context of this cpu. If not it has been
1538 * scheduled out before the smp call arrived. In that case
1539 * event->count would have been updated to a recent sample
1540 * when the event was scheduled out.
1542 if (ctx->task && cpuctx->task_ctx != ctx)
1543 return;
1545 spin_lock(&ctx->lock);
1546 update_context_time(ctx);
1547 update_event_times(event);
1548 spin_unlock(&ctx->lock);
1550 event->pmu->read(event);
1553 static u64 perf_event_read(struct perf_event *event)
1556 * If event is enabled and currently active on a CPU, update the
1557 * value in the event structure:
1559 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1560 smp_call_function_single(event->oncpu,
1561 __perf_event_read, event, 1);
1562 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1563 struct perf_event_context *ctx = event->ctx;
1564 unsigned long flags;
1566 spin_lock_irqsave(&ctx->lock, flags);
1567 update_context_time(ctx);
1568 update_event_times(event);
1569 spin_unlock_irqrestore(&ctx->lock, flags);
1572 return atomic64_read(&event->count);
1576 * Initialize the perf_event context in a task_struct:
1578 static void
1579 __perf_event_init_context(struct perf_event_context *ctx,
1580 struct task_struct *task)
1582 spin_lock_init(&ctx->lock);
1583 mutex_init(&ctx->mutex);
1584 INIT_LIST_HEAD(&ctx->group_list);
1585 INIT_LIST_HEAD(&ctx->event_list);
1586 atomic_set(&ctx->refcount, 1);
1587 ctx->task = task;
1590 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1592 struct perf_event_context *ctx;
1593 struct perf_cpu_context *cpuctx;
1594 struct task_struct *task;
1595 unsigned long flags;
1596 int err;
1599 * If cpu is not a wildcard then this is a percpu event:
1601 if (cpu != -1) {
1602 /* Must be root to operate on a CPU event: */
1603 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1604 return ERR_PTR(-EACCES);
1606 if (cpu < 0 || cpu > num_possible_cpus())
1607 return ERR_PTR(-EINVAL);
1610 * We could be clever and allow to attach a event to an
1611 * offline CPU and activate it when the CPU comes up, but
1612 * that's for later.
1614 if (!cpu_isset(cpu, cpu_online_map))
1615 return ERR_PTR(-ENODEV);
1617 cpuctx = &per_cpu(perf_cpu_context, cpu);
1618 ctx = &cpuctx->ctx;
1619 get_ctx(ctx);
1621 return ctx;
1624 rcu_read_lock();
1625 if (!pid)
1626 task = current;
1627 else
1628 task = find_task_by_vpid(pid);
1629 if (task)
1630 get_task_struct(task);
1631 rcu_read_unlock();
1633 if (!task)
1634 return ERR_PTR(-ESRCH);
1637 * Can't attach events to a dying task.
1639 err = -ESRCH;
1640 if (task->flags & PF_EXITING)
1641 goto errout;
1643 /* Reuse ptrace permission checks for now. */
1644 err = -EACCES;
1645 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1646 goto errout;
1648 retry:
1649 ctx = perf_lock_task_context(task, &flags);
1650 if (ctx) {
1651 unclone_ctx(ctx);
1652 spin_unlock_irqrestore(&ctx->lock, flags);
1655 if (!ctx) {
1656 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1657 err = -ENOMEM;
1658 if (!ctx)
1659 goto errout;
1660 __perf_event_init_context(ctx, task);
1661 get_ctx(ctx);
1662 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1664 * We raced with some other task; use
1665 * the context they set.
1667 kfree(ctx);
1668 goto retry;
1670 get_task_struct(task);
1673 put_task_struct(task);
1674 return ctx;
1676 errout:
1677 put_task_struct(task);
1678 return ERR_PTR(err);
1681 static void perf_event_free_filter(struct perf_event *event);
1683 static void free_event_rcu(struct rcu_head *head)
1685 struct perf_event *event;
1687 event = container_of(head, struct perf_event, rcu_head);
1688 if (event->ns)
1689 put_pid_ns(event->ns);
1690 perf_event_free_filter(event);
1691 kfree(event);
1694 static void perf_pending_sync(struct perf_event *event);
1696 static void free_event(struct perf_event *event)
1698 perf_pending_sync(event);
1700 if (!event->parent) {
1701 atomic_dec(&nr_events);
1702 if (event->attr.mmap)
1703 atomic_dec(&nr_mmap_events);
1704 if (event->attr.comm)
1705 atomic_dec(&nr_comm_events);
1706 if (event->attr.task)
1707 atomic_dec(&nr_task_events);
1710 if (event->output) {
1711 fput(event->output->filp);
1712 event->output = NULL;
1715 if (event->destroy)
1716 event->destroy(event);
1718 put_ctx(event->ctx);
1719 call_rcu(&event->rcu_head, free_event_rcu);
1722 int perf_event_release_kernel(struct perf_event *event)
1724 struct perf_event_context *ctx = event->ctx;
1726 WARN_ON_ONCE(ctx->parent_ctx);
1727 mutex_lock(&ctx->mutex);
1728 perf_event_remove_from_context(event);
1729 mutex_unlock(&ctx->mutex);
1731 mutex_lock(&event->owner->perf_event_mutex);
1732 list_del_init(&event->owner_entry);
1733 mutex_unlock(&event->owner->perf_event_mutex);
1734 put_task_struct(event->owner);
1736 free_event(event);
1738 return 0;
1740 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1743 * Called when the last reference to the file is gone.
1745 static int perf_release(struct inode *inode, struct file *file)
1747 struct perf_event *event = file->private_data;
1749 file->private_data = NULL;
1751 return perf_event_release_kernel(event);
1754 static int perf_event_read_size(struct perf_event *event)
1756 int entry = sizeof(u64); /* value */
1757 int size = 0;
1758 int nr = 1;
1760 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1761 size += sizeof(u64);
1763 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1764 size += sizeof(u64);
1766 if (event->attr.read_format & PERF_FORMAT_ID)
1767 entry += sizeof(u64);
1769 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1770 nr += event->group_leader->nr_siblings;
1771 size += sizeof(u64);
1774 size += entry * nr;
1776 return size;
1779 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1781 struct perf_event *child;
1782 u64 total = 0;
1784 *enabled = 0;
1785 *running = 0;
1787 mutex_lock(&event->child_mutex);
1788 total += perf_event_read(event);
1789 *enabled += event->total_time_enabled +
1790 atomic64_read(&event->child_total_time_enabled);
1791 *running += event->total_time_running +
1792 atomic64_read(&event->child_total_time_running);
1794 list_for_each_entry(child, &event->child_list, child_list) {
1795 total += perf_event_read(child);
1796 *enabled += child->total_time_enabled;
1797 *running += child->total_time_running;
1799 mutex_unlock(&event->child_mutex);
1801 return total;
1803 EXPORT_SYMBOL_GPL(perf_event_read_value);
1805 static int perf_event_read_group(struct perf_event *event,
1806 u64 read_format, char __user *buf)
1808 struct perf_event *leader = event->group_leader, *sub;
1809 int n = 0, size = 0, ret = -EFAULT;
1810 struct perf_event_context *ctx = leader->ctx;
1811 u64 values[5];
1812 u64 count, enabled, running;
1814 mutex_lock(&ctx->mutex);
1815 count = perf_event_read_value(leader, &enabled, &running);
1817 values[n++] = 1 + leader->nr_siblings;
1818 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1819 values[n++] = enabled;
1820 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1821 values[n++] = running;
1822 values[n++] = count;
1823 if (read_format & PERF_FORMAT_ID)
1824 values[n++] = primary_event_id(leader);
1826 size = n * sizeof(u64);
1828 if (copy_to_user(buf, values, size))
1829 goto unlock;
1831 ret = size;
1833 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1834 n = 0;
1836 values[n++] = perf_event_read_value(sub, &enabled, &running);
1837 if (read_format & PERF_FORMAT_ID)
1838 values[n++] = primary_event_id(sub);
1840 size = n * sizeof(u64);
1842 if (copy_to_user(buf + ret, values, size)) {
1843 ret = -EFAULT;
1844 goto unlock;
1847 ret += size;
1849 unlock:
1850 mutex_unlock(&ctx->mutex);
1852 return ret;
1855 static int perf_event_read_one(struct perf_event *event,
1856 u64 read_format, char __user *buf)
1858 u64 enabled, running;
1859 u64 values[4];
1860 int n = 0;
1862 values[n++] = perf_event_read_value(event, &enabled, &running);
1863 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1864 values[n++] = enabled;
1865 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1866 values[n++] = running;
1867 if (read_format & PERF_FORMAT_ID)
1868 values[n++] = primary_event_id(event);
1870 if (copy_to_user(buf, values, n * sizeof(u64)))
1871 return -EFAULT;
1873 return n * sizeof(u64);
1877 * Read the performance event - simple non blocking version for now
1879 static ssize_t
1880 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1882 u64 read_format = event->attr.read_format;
1883 int ret;
1886 * Return end-of-file for a read on a event that is in
1887 * error state (i.e. because it was pinned but it couldn't be
1888 * scheduled on to the CPU at some point).
1890 if (event->state == PERF_EVENT_STATE_ERROR)
1891 return 0;
1893 if (count < perf_event_read_size(event))
1894 return -ENOSPC;
1896 WARN_ON_ONCE(event->ctx->parent_ctx);
1897 if (read_format & PERF_FORMAT_GROUP)
1898 ret = perf_event_read_group(event, read_format, buf);
1899 else
1900 ret = perf_event_read_one(event, read_format, buf);
1902 return ret;
1905 static ssize_t
1906 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1908 struct perf_event *event = file->private_data;
1910 return perf_read_hw(event, buf, count);
1913 static unsigned int perf_poll(struct file *file, poll_table *wait)
1915 struct perf_event *event = file->private_data;
1916 struct perf_mmap_data *data;
1917 unsigned int events = POLL_HUP;
1919 rcu_read_lock();
1920 data = rcu_dereference(event->data);
1921 if (data)
1922 events = atomic_xchg(&data->poll, 0);
1923 rcu_read_unlock();
1925 poll_wait(file, &event->waitq, wait);
1927 return events;
1930 static void perf_event_reset(struct perf_event *event)
1932 (void)perf_event_read(event);
1933 atomic64_set(&event->count, 0);
1934 perf_event_update_userpage(event);
1938 * Holding the top-level event's child_mutex means that any
1939 * descendant process that has inherited this event will block
1940 * in sync_child_event if it goes to exit, thus satisfying the
1941 * task existence requirements of perf_event_enable/disable.
1943 static void perf_event_for_each_child(struct perf_event *event,
1944 void (*func)(struct perf_event *))
1946 struct perf_event *child;
1948 WARN_ON_ONCE(event->ctx->parent_ctx);
1949 mutex_lock(&event->child_mutex);
1950 func(event);
1951 list_for_each_entry(child, &event->child_list, child_list)
1952 func(child);
1953 mutex_unlock(&event->child_mutex);
1956 static void perf_event_for_each(struct perf_event *event,
1957 void (*func)(struct perf_event *))
1959 struct perf_event_context *ctx = event->ctx;
1960 struct perf_event *sibling;
1962 WARN_ON_ONCE(ctx->parent_ctx);
1963 mutex_lock(&ctx->mutex);
1964 event = event->group_leader;
1966 perf_event_for_each_child(event, func);
1967 func(event);
1968 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1969 perf_event_for_each_child(event, func);
1970 mutex_unlock(&ctx->mutex);
1973 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1975 struct perf_event_context *ctx = event->ctx;
1976 unsigned long size;
1977 int ret = 0;
1978 u64 value;
1980 if (!event->attr.sample_period)
1981 return -EINVAL;
1983 size = copy_from_user(&value, arg, sizeof(value));
1984 if (size != sizeof(value))
1985 return -EFAULT;
1987 if (!value)
1988 return -EINVAL;
1990 spin_lock_irq(&ctx->lock);
1991 if (event->attr.freq) {
1992 if (value > sysctl_perf_event_sample_rate) {
1993 ret = -EINVAL;
1994 goto unlock;
1997 event->attr.sample_freq = value;
1998 } else {
1999 event->attr.sample_period = value;
2000 event->hw.sample_period = value;
2002 unlock:
2003 spin_unlock_irq(&ctx->lock);
2005 return ret;
2008 static int perf_event_set_output(struct perf_event *event, int output_fd);
2009 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2011 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2013 struct perf_event *event = file->private_data;
2014 void (*func)(struct perf_event *);
2015 u32 flags = arg;
2017 switch (cmd) {
2018 case PERF_EVENT_IOC_ENABLE:
2019 func = perf_event_enable;
2020 break;
2021 case PERF_EVENT_IOC_DISABLE:
2022 func = perf_event_disable;
2023 break;
2024 case PERF_EVENT_IOC_RESET:
2025 func = perf_event_reset;
2026 break;
2028 case PERF_EVENT_IOC_REFRESH:
2029 return perf_event_refresh(event, arg);
2031 case PERF_EVENT_IOC_PERIOD:
2032 return perf_event_period(event, (u64 __user *)arg);
2034 case PERF_EVENT_IOC_SET_OUTPUT:
2035 return perf_event_set_output(event, arg);
2037 case PERF_EVENT_IOC_SET_FILTER:
2038 return perf_event_set_filter(event, (void __user *)arg);
2040 default:
2041 return -ENOTTY;
2044 if (flags & PERF_IOC_FLAG_GROUP)
2045 perf_event_for_each(event, func);
2046 else
2047 perf_event_for_each_child(event, func);
2049 return 0;
2052 int perf_event_task_enable(void)
2054 struct perf_event *event;
2056 mutex_lock(&current->perf_event_mutex);
2057 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2058 perf_event_for_each_child(event, perf_event_enable);
2059 mutex_unlock(&current->perf_event_mutex);
2061 return 0;
2064 int perf_event_task_disable(void)
2066 struct perf_event *event;
2068 mutex_lock(&current->perf_event_mutex);
2069 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2070 perf_event_for_each_child(event, perf_event_disable);
2071 mutex_unlock(&current->perf_event_mutex);
2073 return 0;
2076 #ifndef PERF_EVENT_INDEX_OFFSET
2077 # define PERF_EVENT_INDEX_OFFSET 0
2078 #endif
2080 static int perf_event_index(struct perf_event *event)
2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 return 0;
2085 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2089 * Callers need to ensure there can be no nesting of this function, otherwise
2090 * the seqlock logic goes bad. We can not serialize this because the arch
2091 * code calls this from NMI context.
2093 void perf_event_update_userpage(struct perf_event *event)
2095 struct perf_event_mmap_page *userpg;
2096 struct perf_mmap_data *data;
2098 rcu_read_lock();
2099 data = rcu_dereference(event->data);
2100 if (!data)
2101 goto unlock;
2103 userpg = data->user_page;
2106 * Disable preemption so as to not let the corresponding user-space
2107 * spin too long if we get preempted.
2109 preempt_disable();
2110 ++userpg->lock;
2111 barrier();
2112 userpg->index = perf_event_index(event);
2113 userpg->offset = atomic64_read(&event->count);
2114 if (event->state == PERF_EVENT_STATE_ACTIVE)
2115 userpg->offset -= atomic64_read(&event->hw.prev_count);
2117 userpg->time_enabled = event->total_time_enabled +
2118 atomic64_read(&event->child_total_time_enabled);
2120 userpg->time_running = event->total_time_running +
2121 atomic64_read(&event->child_total_time_running);
2123 barrier();
2124 ++userpg->lock;
2125 preempt_enable();
2126 unlock:
2127 rcu_read_unlock();
2130 static unsigned long perf_data_size(struct perf_mmap_data *data)
2132 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2135 #ifndef CONFIG_PERF_USE_VMALLOC
2138 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2141 static struct page *
2142 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2144 if (pgoff > data->nr_pages)
2145 return NULL;
2147 if (pgoff == 0)
2148 return virt_to_page(data->user_page);
2150 return virt_to_page(data->data_pages[pgoff - 1]);
2153 static struct perf_mmap_data *
2154 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2156 struct perf_mmap_data *data;
2157 unsigned long size;
2158 int i;
2160 WARN_ON(atomic_read(&event->mmap_count));
2162 size = sizeof(struct perf_mmap_data);
2163 size += nr_pages * sizeof(void *);
2165 data = kzalloc(size, GFP_KERNEL);
2166 if (!data)
2167 goto fail;
2169 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2170 if (!data->user_page)
2171 goto fail_user_page;
2173 for (i = 0; i < nr_pages; i++) {
2174 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2175 if (!data->data_pages[i])
2176 goto fail_data_pages;
2179 data->data_order = 0;
2180 data->nr_pages = nr_pages;
2182 return data;
2184 fail_data_pages:
2185 for (i--; i >= 0; i--)
2186 free_page((unsigned long)data->data_pages[i]);
2188 free_page((unsigned long)data->user_page);
2190 fail_user_page:
2191 kfree(data);
2193 fail:
2194 return NULL;
2197 static void perf_mmap_free_page(unsigned long addr)
2199 struct page *page = virt_to_page((void *)addr);
2201 page->mapping = NULL;
2202 __free_page(page);
2205 static void perf_mmap_data_free(struct perf_mmap_data *data)
2207 int i;
2209 perf_mmap_free_page((unsigned long)data->user_page);
2210 for (i = 0; i < data->nr_pages; i++)
2211 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2212 kfree(data);
2215 #else
2218 * Back perf_mmap() with vmalloc memory.
2220 * Required for architectures that have d-cache aliasing issues.
2223 static struct page *
2224 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2226 if (pgoff > (1UL << data->data_order))
2227 return NULL;
2229 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2232 static void perf_mmap_unmark_page(void *addr)
2234 struct page *page = vmalloc_to_page(addr);
2236 page->mapping = NULL;
2239 static void perf_mmap_data_free_work(struct work_struct *work)
2241 struct perf_mmap_data *data;
2242 void *base;
2243 int i, nr;
2245 data = container_of(work, struct perf_mmap_data, work);
2246 nr = 1 << data->data_order;
2248 base = data->user_page;
2249 for (i = 0; i < nr + 1; i++)
2250 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2252 vfree(base);
2253 kfree(data);
2256 static void perf_mmap_data_free(struct perf_mmap_data *data)
2258 schedule_work(&data->work);
2261 static struct perf_mmap_data *
2262 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2264 struct perf_mmap_data *data;
2265 unsigned long size;
2266 void *all_buf;
2268 WARN_ON(atomic_read(&event->mmap_count));
2270 size = sizeof(struct perf_mmap_data);
2271 size += sizeof(void *);
2273 data = kzalloc(size, GFP_KERNEL);
2274 if (!data)
2275 goto fail;
2277 INIT_WORK(&data->work, perf_mmap_data_free_work);
2279 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2280 if (!all_buf)
2281 goto fail_all_buf;
2283 data->user_page = all_buf;
2284 data->data_pages[0] = all_buf + PAGE_SIZE;
2285 data->data_order = ilog2(nr_pages);
2286 data->nr_pages = 1;
2288 return data;
2290 fail_all_buf:
2291 kfree(data);
2293 fail:
2294 return NULL;
2297 #endif
2299 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 struct perf_event *event = vma->vm_file->private_data;
2302 struct perf_mmap_data *data;
2303 int ret = VM_FAULT_SIGBUS;
2305 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2306 if (vmf->pgoff == 0)
2307 ret = 0;
2308 return ret;
2311 rcu_read_lock();
2312 data = rcu_dereference(event->data);
2313 if (!data)
2314 goto unlock;
2316 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2317 goto unlock;
2319 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2320 if (!vmf->page)
2321 goto unlock;
2323 get_page(vmf->page);
2324 vmf->page->mapping = vma->vm_file->f_mapping;
2325 vmf->page->index = vmf->pgoff;
2327 ret = 0;
2328 unlock:
2329 rcu_read_unlock();
2331 return ret;
2334 static void
2335 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2337 long max_size = perf_data_size(data);
2339 atomic_set(&data->lock, -1);
2341 if (event->attr.watermark) {
2342 data->watermark = min_t(long, max_size,
2343 event->attr.wakeup_watermark);
2346 if (!data->watermark)
2347 data->watermark = max_size / 2;
2350 rcu_assign_pointer(event->data, data);
2353 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2355 struct perf_mmap_data *data;
2357 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2358 perf_mmap_data_free(data);
2361 static void perf_mmap_data_release(struct perf_event *event)
2363 struct perf_mmap_data *data = event->data;
2365 WARN_ON(atomic_read(&event->mmap_count));
2367 rcu_assign_pointer(event->data, NULL);
2368 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2371 static void perf_mmap_open(struct vm_area_struct *vma)
2373 struct perf_event *event = vma->vm_file->private_data;
2375 atomic_inc(&event->mmap_count);
2378 static void perf_mmap_close(struct vm_area_struct *vma)
2380 struct perf_event *event = vma->vm_file->private_data;
2382 WARN_ON_ONCE(event->ctx->parent_ctx);
2383 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2384 unsigned long size = perf_data_size(event->data);
2385 struct user_struct *user = current_user();
2387 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2388 vma->vm_mm->locked_vm -= event->data->nr_locked;
2389 perf_mmap_data_release(event);
2390 mutex_unlock(&event->mmap_mutex);
2394 static const struct vm_operations_struct perf_mmap_vmops = {
2395 .open = perf_mmap_open,
2396 .close = perf_mmap_close,
2397 .fault = perf_mmap_fault,
2398 .page_mkwrite = perf_mmap_fault,
2401 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2403 struct perf_event *event = file->private_data;
2404 unsigned long user_locked, user_lock_limit;
2405 struct user_struct *user = current_user();
2406 unsigned long locked, lock_limit;
2407 struct perf_mmap_data *data;
2408 unsigned long vma_size;
2409 unsigned long nr_pages;
2410 long user_extra, extra;
2411 int ret = 0;
2413 if (!(vma->vm_flags & VM_SHARED))
2414 return -EINVAL;
2416 vma_size = vma->vm_end - vma->vm_start;
2417 nr_pages = (vma_size / PAGE_SIZE) - 1;
2420 * If we have data pages ensure they're a power-of-two number, so we
2421 * can do bitmasks instead of modulo.
2423 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2424 return -EINVAL;
2426 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2427 return -EINVAL;
2429 if (vma->vm_pgoff != 0)
2430 return -EINVAL;
2432 WARN_ON_ONCE(event->ctx->parent_ctx);
2433 mutex_lock(&event->mmap_mutex);
2434 if (event->output) {
2435 ret = -EINVAL;
2436 goto unlock;
2439 if (atomic_inc_not_zero(&event->mmap_count)) {
2440 if (nr_pages != event->data->nr_pages)
2441 ret = -EINVAL;
2442 goto unlock;
2445 user_extra = nr_pages + 1;
2446 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2449 * Increase the limit linearly with more CPUs:
2451 user_lock_limit *= num_online_cpus();
2453 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2455 extra = 0;
2456 if (user_locked > user_lock_limit)
2457 extra = user_locked - user_lock_limit;
2459 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2460 lock_limit >>= PAGE_SHIFT;
2461 locked = vma->vm_mm->locked_vm + extra;
2463 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2464 !capable(CAP_IPC_LOCK)) {
2465 ret = -EPERM;
2466 goto unlock;
2469 WARN_ON(event->data);
2471 data = perf_mmap_data_alloc(event, nr_pages);
2472 ret = -ENOMEM;
2473 if (!data)
2474 goto unlock;
2476 ret = 0;
2477 perf_mmap_data_init(event, data);
2479 atomic_set(&event->mmap_count, 1);
2480 atomic_long_add(user_extra, &user->locked_vm);
2481 vma->vm_mm->locked_vm += extra;
2482 event->data->nr_locked = extra;
2483 if (vma->vm_flags & VM_WRITE)
2484 event->data->writable = 1;
2486 unlock:
2487 mutex_unlock(&event->mmap_mutex);
2489 vma->vm_flags |= VM_RESERVED;
2490 vma->vm_ops = &perf_mmap_vmops;
2492 return ret;
2495 static int perf_fasync(int fd, struct file *filp, int on)
2497 struct inode *inode = filp->f_path.dentry->d_inode;
2498 struct perf_event *event = filp->private_data;
2499 int retval;
2501 mutex_lock(&inode->i_mutex);
2502 retval = fasync_helper(fd, filp, on, &event->fasync);
2503 mutex_unlock(&inode->i_mutex);
2505 if (retval < 0)
2506 return retval;
2508 return 0;
2511 static const struct file_operations perf_fops = {
2512 .release = perf_release,
2513 .read = perf_read,
2514 .poll = perf_poll,
2515 .unlocked_ioctl = perf_ioctl,
2516 .compat_ioctl = perf_ioctl,
2517 .mmap = perf_mmap,
2518 .fasync = perf_fasync,
2522 * Perf event wakeup
2524 * If there's data, ensure we set the poll() state and publish everything
2525 * to user-space before waking everybody up.
2528 void perf_event_wakeup(struct perf_event *event)
2530 wake_up_all(&event->waitq);
2532 if (event->pending_kill) {
2533 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2534 event->pending_kill = 0;
2539 * Pending wakeups
2541 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2543 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2544 * single linked list and use cmpxchg() to add entries lockless.
2547 static void perf_pending_event(struct perf_pending_entry *entry)
2549 struct perf_event *event = container_of(entry,
2550 struct perf_event, pending);
2552 if (event->pending_disable) {
2553 event->pending_disable = 0;
2554 __perf_event_disable(event);
2557 if (event->pending_wakeup) {
2558 event->pending_wakeup = 0;
2559 perf_event_wakeup(event);
2563 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2565 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2566 PENDING_TAIL,
2569 static void perf_pending_queue(struct perf_pending_entry *entry,
2570 void (*func)(struct perf_pending_entry *))
2572 struct perf_pending_entry **head;
2574 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2575 return;
2577 entry->func = func;
2579 head = &get_cpu_var(perf_pending_head);
2581 do {
2582 entry->next = *head;
2583 } while (cmpxchg(head, entry->next, entry) != entry->next);
2585 set_perf_event_pending();
2587 put_cpu_var(perf_pending_head);
2590 static int __perf_pending_run(void)
2592 struct perf_pending_entry *list;
2593 int nr = 0;
2595 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2596 while (list != PENDING_TAIL) {
2597 void (*func)(struct perf_pending_entry *);
2598 struct perf_pending_entry *entry = list;
2600 list = list->next;
2602 func = entry->func;
2603 entry->next = NULL;
2605 * Ensure we observe the unqueue before we issue the wakeup,
2606 * so that we won't be waiting forever.
2607 * -- see perf_not_pending().
2609 smp_wmb();
2611 func(entry);
2612 nr++;
2615 return nr;
2618 static inline int perf_not_pending(struct perf_event *event)
2621 * If we flush on whatever cpu we run, there is a chance we don't
2622 * need to wait.
2624 get_cpu();
2625 __perf_pending_run();
2626 put_cpu();
2629 * Ensure we see the proper queue state before going to sleep
2630 * so that we do not miss the wakeup. -- see perf_pending_handle()
2632 smp_rmb();
2633 return event->pending.next == NULL;
2636 static void perf_pending_sync(struct perf_event *event)
2638 wait_event(event->waitq, perf_not_pending(event));
2641 void perf_event_do_pending(void)
2643 __perf_pending_run();
2647 * Callchain support -- arch specific
2650 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2652 return NULL;
2656 * Output
2658 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2659 unsigned long offset, unsigned long head)
2661 unsigned long mask;
2663 if (!data->writable)
2664 return true;
2666 mask = perf_data_size(data) - 1;
2668 offset = (offset - tail) & mask;
2669 head = (head - tail) & mask;
2671 if ((int)(head - offset) < 0)
2672 return false;
2674 return true;
2677 static void perf_output_wakeup(struct perf_output_handle *handle)
2679 atomic_set(&handle->data->poll, POLL_IN);
2681 if (handle->nmi) {
2682 handle->event->pending_wakeup = 1;
2683 perf_pending_queue(&handle->event->pending,
2684 perf_pending_event);
2685 } else
2686 perf_event_wakeup(handle->event);
2690 * Curious locking construct.
2692 * We need to ensure a later event_id doesn't publish a head when a former
2693 * event_id isn't done writing. However since we need to deal with NMIs we
2694 * cannot fully serialize things.
2696 * What we do is serialize between CPUs so we only have to deal with NMI
2697 * nesting on a single CPU.
2699 * We only publish the head (and generate a wakeup) when the outer-most
2700 * event_id completes.
2702 static void perf_output_lock(struct perf_output_handle *handle)
2704 struct perf_mmap_data *data = handle->data;
2705 int cur, cpu = get_cpu();
2707 handle->locked = 0;
2709 for (;;) {
2710 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2711 if (cur == -1) {
2712 handle->locked = 1;
2713 break;
2715 if (cur == cpu)
2716 break;
2718 cpu_relax();
2722 static void perf_output_unlock(struct perf_output_handle *handle)
2724 struct perf_mmap_data *data = handle->data;
2725 unsigned long head;
2726 int cpu;
2728 data->done_head = data->head;
2730 if (!handle->locked)
2731 goto out;
2733 again:
2735 * The xchg implies a full barrier that ensures all writes are done
2736 * before we publish the new head, matched by a rmb() in userspace when
2737 * reading this position.
2739 while ((head = atomic_long_xchg(&data->done_head, 0)))
2740 data->user_page->data_head = head;
2743 * NMI can happen here, which means we can miss a done_head update.
2746 cpu = atomic_xchg(&data->lock, -1);
2747 WARN_ON_ONCE(cpu != smp_processor_id());
2750 * Therefore we have to validate we did not indeed do so.
2752 if (unlikely(atomic_long_read(&data->done_head))) {
2754 * Since we had it locked, we can lock it again.
2756 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2757 cpu_relax();
2759 goto again;
2762 if (atomic_xchg(&data->wakeup, 0))
2763 perf_output_wakeup(handle);
2764 out:
2765 put_cpu();
2768 void perf_output_copy(struct perf_output_handle *handle,
2769 const void *buf, unsigned int len)
2771 unsigned int pages_mask;
2772 unsigned long offset;
2773 unsigned int size;
2774 void **pages;
2776 offset = handle->offset;
2777 pages_mask = handle->data->nr_pages - 1;
2778 pages = handle->data->data_pages;
2780 do {
2781 unsigned long page_offset;
2782 unsigned long page_size;
2783 int nr;
2785 nr = (offset >> PAGE_SHIFT) & pages_mask;
2786 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2787 page_offset = offset & (page_size - 1);
2788 size = min_t(unsigned int, page_size - page_offset, len);
2790 memcpy(pages[nr] + page_offset, buf, size);
2792 len -= size;
2793 buf += size;
2794 offset += size;
2795 } while (len);
2797 handle->offset = offset;
2800 * Check we didn't copy past our reservation window, taking the
2801 * possible unsigned int wrap into account.
2803 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2806 int perf_output_begin(struct perf_output_handle *handle,
2807 struct perf_event *event, unsigned int size,
2808 int nmi, int sample)
2810 struct perf_event *output_event;
2811 struct perf_mmap_data *data;
2812 unsigned long tail, offset, head;
2813 int have_lost;
2814 struct {
2815 struct perf_event_header header;
2816 u64 id;
2817 u64 lost;
2818 } lost_event;
2820 rcu_read_lock();
2822 * For inherited events we send all the output towards the parent.
2824 if (event->parent)
2825 event = event->parent;
2827 output_event = rcu_dereference(event->output);
2828 if (output_event)
2829 event = output_event;
2831 data = rcu_dereference(event->data);
2832 if (!data)
2833 goto out;
2835 handle->data = data;
2836 handle->event = event;
2837 handle->nmi = nmi;
2838 handle->sample = sample;
2840 if (!data->nr_pages)
2841 goto fail;
2843 have_lost = atomic_read(&data->lost);
2844 if (have_lost)
2845 size += sizeof(lost_event);
2847 perf_output_lock(handle);
2849 do {
2851 * Userspace could choose to issue a mb() before updating the
2852 * tail pointer. So that all reads will be completed before the
2853 * write is issued.
2855 tail = ACCESS_ONCE(data->user_page->data_tail);
2856 smp_rmb();
2857 offset = head = atomic_long_read(&data->head);
2858 head += size;
2859 if (unlikely(!perf_output_space(data, tail, offset, head)))
2860 goto fail;
2861 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2863 handle->offset = offset;
2864 handle->head = head;
2866 if (head - tail > data->watermark)
2867 atomic_set(&data->wakeup, 1);
2869 if (have_lost) {
2870 lost_event.header.type = PERF_RECORD_LOST;
2871 lost_event.header.misc = 0;
2872 lost_event.header.size = sizeof(lost_event);
2873 lost_event.id = event->id;
2874 lost_event.lost = atomic_xchg(&data->lost, 0);
2876 perf_output_put(handle, lost_event);
2879 return 0;
2881 fail:
2882 atomic_inc(&data->lost);
2883 perf_output_unlock(handle);
2884 out:
2885 rcu_read_unlock();
2887 return -ENOSPC;
2890 void perf_output_end(struct perf_output_handle *handle)
2892 struct perf_event *event = handle->event;
2893 struct perf_mmap_data *data = handle->data;
2895 int wakeup_events = event->attr.wakeup_events;
2897 if (handle->sample && wakeup_events) {
2898 int events = atomic_inc_return(&data->events);
2899 if (events >= wakeup_events) {
2900 atomic_sub(wakeup_events, &data->events);
2901 atomic_set(&data->wakeup, 1);
2905 perf_output_unlock(handle);
2906 rcu_read_unlock();
2909 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2912 * only top level events have the pid namespace they were created in
2914 if (event->parent)
2915 event = event->parent;
2917 return task_tgid_nr_ns(p, event->ns);
2920 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2923 * only top level events have the pid namespace they were created in
2925 if (event->parent)
2926 event = event->parent;
2928 return task_pid_nr_ns(p, event->ns);
2931 static void perf_output_read_one(struct perf_output_handle *handle,
2932 struct perf_event *event)
2934 u64 read_format = event->attr.read_format;
2935 u64 values[4];
2936 int n = 0;
2938 values[n++] = atomic64_read(&event->count);
2939 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2940 values[n++] = event->total_time_enabled +
2941 atomic64_read(&event->child_total_time_enabled);
2943 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2944 values[n++] = event->total_time_running +
2945 atomic64_read(&event->child_total_time_running);
2947 if (read_format & PERF_FORMAT_ID)
2948 values[n++] = primary_event_id(event);
2950 perf_output_copy(handle, values, n * sizeof(u64));
2954 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2956 static void perf_output_read_group(struct perf_output_handle *handle,
2957 struct perf_event *event)
2959 struct perf_event *leader = event->group_leader, *sub;
2960 u64 read_format = event->attr.read_format;
2961 u64 values[5];
2962 int n = 0;
2964 values[n++] = 1 + leader->nr_siblings;
2966 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2967 values[n++] = leader->total_time_enabled;
2969 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2970 values[n++] = leader->total_time_running;
2972 if (leader != event)
2973 leader->pmu->read(leader);
2975 values[n++] = atomic64_read(&leader->count);
2976 if (read_format & PERF_FORMAT_ID)
2977 values[n++] = primary_event_id(leader);
2979 perf_output_copy(handle, values, n * sizeof(u64));
2981 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2982 n = 0;
2984 if (sub != event)
2985 sub->pmu->read(sub);
2987 values[n++] = atomic64_read(&sub->count);
2988 if (read_format & PERF_FORMAT_ID)
2989 values[n++] = primary_event_id(sub);
2991 perf_output_copy(handle, values, n * sizeof(u64));
2995 static void perf_output_read(struct perf_output_handle *handle,
2996 struct perf_event *event)
2998 if (event->attr.read_format & PERF_FORMAT_GROUP)
2999 perf_output_read_group(handle, event);
3000 else
3001 perf_output_read_one(handle, event);
3004 void perf_output_sample(struct perf_output_handle *handle,
3005 struct perf_event_header *header,
3006 struct perf_sample_data *data,
3007 struct perf_event *event)
3009 u64 sample_type = data->type;
3011 perf_output_put(handle, *header);
3013 if (sample_type & PERF_SAMPLE_IP)
3014 perf_output_put(handle, data->ip);
3016 if (sample_type & PERF_SAMPLE_TID)
3017 perf_output_put(handle, data->tid_entry);
3019 if (sample_type & PERF_SAMPLE_TIME)
3020 perf_output_put(handle, data->time);
3022 if (sample_type & PERF_SAMPLE_ADDR)
3023 perf_output_put(handle, data->addr);
3025 if (sample_type & PERF_SAMPLE_ID)
3026 perf_output_put(handle, data->id);
3028 if (sample_type & PERF_SAMPLE_STREAM_ID)
3029 perf_output_put(handle, data->stream_id);
3031 if (sample_type & PERF_SAMPLE_CPU)
3032 perf_output_put(handle, data->cpu_entry);
3034 if (sample_type & PERF_SAMPLE_PERIOD)
3035 perf_output_put(handle, data->period);
3037 if (sample_type & PERF_SAMPLE_READ)
3038 perf_output_read(handle, event);
3040 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3041 if (data->callchain) {
3042 int size = 1;
3044 if (data->callchain)
3045 size += data->callchain->nr;
3047 size *= sizeof(u64);
3049 perf_output_copy(handle, data->callchain, size);
3050 } else {
3051 u64 nr = 0;
3052 perf_output_put(handle, nr);
3056 if (sample_type & PERF_SAMPLE_RAW) {
3057 if (data->raw) {
3058 perf_output_put(handle, data->raw->size);
3059 perf_output_copy(handle, data->raw->data,
3060 data->raw->size);
3061 } else {
3062 struct {
3063 u32 size;
3064 u32 data;
3065 } raw = {
3066 .size = sizeof(u32),
3067 .data = 0,
3069 perf_output_put(handle, raw);
3074 void perf_prepare_sample(struct perf_event_header *header,
3075 struct perf_sample_data *data,
3076 struct perf_event *event,
3077 struct pt_regs *regs)
3079 u64 sample_type = event->attr.sample_type;
3081 data->type = sample_type;
3083 header->type = PERF_RECORD_SAMPLE;
3084 header->size = sizeof(*header);
3086 header->misc = 0;
3087 header->misc |= perf_misc_flags(regs);
3089 if (sample_type & PERF_SAMPLE_IP) {
3090 data->ip = perf_instruction_pointer(regs);
3092 header->size += sizeof(data->ip);
3095 if (sample_type & PERF_SAMPLE_TID) {
3096 /* namespace issues */
3097 data->tid_entry.pid = perf_event_pid(event, current);
3098 data->tid_entry.tid = perf_event_tid(event, current);
3100 header->size += sizeof(data->tid_entry);
3103 if (sample_type & PERF_SAMPLE_TIME) {
3104 data->time = perf_clock();
3106 header->size += sizeof(data->time);
3109 if (sample_type & PERF_SAMPLE_ADDR)
3110 header->size += sizeof(data->addr);
3112 if (sample_type & PERF_SAMPLE_ID) {
3113 data->id = primary_event_id(event);
3115 header->size += sizeof(data->id);
3118 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3119 data->stream_id = event->id;
3121 header->size += sizeof(data->stream_id);
3124 if (sample_type & PERF_SAMPLE_CPU) {
3125 data->cpu_entry.cpu = raw_smp_processor_id();
3126 data->cpu_entry.reserved = 0;
3128 header->size += sizeof(data->cpu_entry);
3131 if (sample_type & PERF_SAMPLE_PERIOD)
3132 header->size += sizeof(data->period);
3134 if (sample_type & PERF_SAMPLE_READ)
3135 header->size += perf_event_read_size(event);
3137 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3138 int size = 1;
3140 data->callchain = perf_callchain(regs);
3142 if (data->callchain)
3143 size += data->callchain->nr;
3145 header->size += size * sizeof(u64);
3148 if (sample_type & PERF_SAMPLE_RAW) {
3149 int size = sizeof(u32);
3151 if (data->raw)
3152 size += data->raw->size;
3153 else
3154 size += sizeof(u32);
3156 WARN_ON_ONCE(size & (sizeof(u64)-1));
3157 header->size += size;
3161 static void perf_event_output(struct perf_event *event, int nmi,
3162 struct perf_sample_data *data,
3163 struct pt_regs *regs)
3165 struct perf_output_handle handle;
3166 struct perf_event_header header;
3168 perf_prepare_sample(&header, data, event, regs);
3170 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3171 return;
3173 perf_output_sample(&handle, &header, data, event);
3175 perf_output_end(&handle);
3179 * read event_id
3182 struct perf_read_event {
3183 struct perf_event_header header;
3185 u32 pid;
3186 u32 tid;
3189 static void
3190 perf_event_read_event(struct perf_event *event,
3191 struct task_struct *task)
3193 struct perf_output_handle handle;
3194 struct perf_read_event read_event = {
3195 .header = {
3196 .type = PERF_RECORD_READ,
3197 .misc = 0,
3198 .size = sizeof(read_event) + perf_event_read_size(event),
3200 .pid = perf_event_pid(event, task),
3201 .tid = perf_event_tid(event, task),
3203 int ret;
3205 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3206 if (ret)
3207 return;
3209 perf_output_put(&handle, read_event);
3210 perf_output_read(&handle, event);
3212 perf_output_end(&handle);
3216 * task tracking -- fork/exit
3218 * enabled by: attr.comm | attr.mmap | attr.task
3221 struct perf_task_event {
3222 struct task_struct *task;
3223 struct perf_event_context *task_ctx;
3225 struct {
3226 struct perf_event_header header;
3228 u32 pid;
3229 u32 ppid;
3230 u32 tid;
3231 u32 ptid;
3232 u64 time;
3233 } event_id;
3236 static void perf_event_task_output(struct perf_event *event,
3237 struct perf_task_event *task_event)
3239 struct perf_output_handle handle;
3240 int size;
3241 struct task_struct *task = task_event->task;
3242 int ret;
3244 size = task_event->event_id.header.size;
3245 ret = perf_output_begin(&handle, event, size, 0, 0);
3247 if (ret)
3248 return;
3250 task_event->event_id.pid = perf_event_pid(event, task);
3251 task_event->event_id.ppid = perf_event_pid(event, current);
3253 task_event->event_id.tid = perf_event_tid(event, task);
3254 task_event->event_id.ptid = perf_event_tid(event, current);
3256 task_event->event_id.time = perf_clock();
3258 perf_output_put(&handle, task_event->event_id);
3260 perf_output_end(&handle);
3263 static int perf_event_task_match(struct perf_event *event)
3265 if (event->attr.comm || event->attr.mmap || event->attr.task)
3266 return 1;
3268 return 0;
3271 static void perf_event_task_ctx(struct perf_event_context *ctx,
3272 struct perf_task_event *task_event)
3274 struct perf_event *event;
3276 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3277 if (perf_event_task_match(event))
3278 perf_event_task_output(event, task_event);
3282 static void perf_event_task_event(struct perf_task_event *task_event)
3284 struct perf_cpu_context *cpuctx;
3285 struct perf_event_context *ctx = task_event->task_ctx;
3287 rcu_read_lock();
3288 cpuctx = &get_cpu_var(perf_cpu_context);
3289 perf_event_task_ctx(&cpuctx->ctx, task_event);
3290 put_cpu_var(perf_cpu_context);
3292 if (!ctx)
3293 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3294 if (ctx)
3295 perf_event_task_ctx(ctx, task_event);
3296 rcu_read_unlock();
3299 static void perf_event_task(struct task_struct *task,
3300 struct perf_event_context *task_ctx,
3301 int new)
3303 struct perf_task_event task_event;
3305 if (!atomic_read(&nr_comm_events) &&
3306 !atomic_read(&nr_mmap_events) &&
3307 !atomic_read(&nr_task_events))
3308 return;
3310 task_event = (struct perf_task_event){
3311 .task = task,
3312 .task_ctx = task_ctx,
3313 .event_id = {
3314 .header = {
3315 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3316 .misc = 0,
3317 .size = sizeof(task_event.event_id),
3319 /* .pid */
3320 /* .ppid */
3321 /* .tid */
3322 /* .ptid */
3326 perf_event_task_event(&task_event);
3329 void perf_event_fork(struct task_struct *task)
3331 perf_event_task(task, NULL, 1);
3335 * comm tracking
3338 struct perf_comm_event {
3339 struct task_struct *task;
3340 char *comm;
3341 int comm_size;
3343 struct {
3344 struct perf_event_header header;
3346 u32 pid;
3347 u32 tid;
3348 } event_id;
3351 static void perf_event_comm_output(struct perf_event *event,
3352 struct perf_comm_event *comm_event)
3354 struct perf_output_handle handle;
3355 int size = comm_event->event_id.header.size;
3356 int ret = perf_output_begin(&handle, event, size, 0, 0);
3358 if (ret)
3359 return;
3361 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3362 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3364 perf_output_put(&handle, comm_event->event_id);
3365 perf_output_copy(&handle, comm_event->comm,
3366 comm_event->comm_size);
3367 perf_output_end(&handle);
3370 static int perf_event_comm_match(struct perf_event *event)
3372 if (event->attr.comm)
3373 return 1;
3375 return 0;
3378 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3379 struct perf_comm_event *comm_event)
3381 struct perf_event *event;
3383 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3384 if (perf_event_comm_match(event))
3385 perf_event_comm_output(event, comm_event);
3389 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3391 struct perf_cpu_context *cpuctx;
3392 struct perf_event_context *ctx;
3393 unsigned int size;
3394 char comm[TASK_COMM_LEN];
3396 memset(comm, 0, sizeof(comm));
3397 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3398 size = ALIGN(strlen(comm)+1, sizeof(u64));
3400 comm_event->comm = comm;
3401 comm_event->comm_size = size;
3403 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3405 rcu_read_lock();
3406 cpuctx = &get_cpu_var(perf_cpu_context);
3407 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3408 put_cpu_var(perf_cpu_context);
3411 * doesn't really matter which of the child contexts the
3412 * events ends up in.
3414 ctx = rcu_dereference(current->perf_event_ctxp);
3415 if (ctx)
3416 perf_event_comm_ctx(ctx, comm_event);
3417 rcu_read_unlock();
3420 void perf_event_comm(struct task_struct *task)
3422 struct perf_comm_event comm_event;
3424 if (task->perf_event_ctxp)
3425 perf_event_enable_on_exec(task);
3427 if (!atomic_read(&nr_comm_events))
3428 return;
3430 comm_event = (struct perf_comm_event){
3431 .task = task,
3432 /* .comm */
3433 /* .comm_size */
3434 .event_id = {
3435 .header = {
3436 .type = PERF_RECORD_COMM,
3437 .misc = 0,
3438 /* .size */
3440 /* .pid */
3441 /* .tid */
3445 perf_event_comm_event(&comm_event);
3449 * mmap tracking
3452 struct perf_mmap_event {
3453 struct vm_area_struct *vma;
3455 const char *file_name;
3456 int file_size;
3458 struct {
3459 struct perf_event_header header;
3461 u32 pid;
3462 u32 tid;
3463 u64 start;
3464 u64 len;
3465 u64 pgoff;
3466 } event_id;
3469 static void perf_event_mmap_output(struct perf_event *event,
3470 struct perf_mmap_event *mmap_event)
3472 struct perf_output_handle handle;
3473 int size = mmap_event->event_id.header.size;
3474 int ret = perf_output_begin(&handle, event, size, 0, 0);
3476 if (ret)
3477 return;
3479 mmap_event->event_id.pid = perf_event_pid(event, current);
3480 mmap_event->event_id.tid = perf_event_tid(event, current);
3482 perf_output_put(&handle, mmap_event->event_id);
3483 perf_output_copy(&handle, mmap_event->file_name,
3484 mmap_event->file_size);
3485 perf_output_end(&handle);
3488 static int perf_event_mmap_match(struct perf_event *event,
3489 struct perf_mmap_event *mmap_event)
3491 if (event->attr.mmap)
3492 return 1;
3494 return 0;
3497 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3498 struct perf_mmap_event *mmap_event)
3500 struct perf_event *event;
3502 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3503 if (perf_event_mmap_match(event, mmap_event))
3504 perf_event_mmap_output(event, mmap_event);
3508 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3510 struct perf_cpu_context *cpuctx;
3511 struct perf_event_context *ctx;
3512 struct vm_area_struct *vma = mmap_event->vma;
3513 struct file *file = vma->vm_file;
3514 unsigned int size;
3515 char tmp[16];
3516 char *buf = NULL;
3517 const char *name;
3519 memset(tmp, 0, sizeof(tmp));
3521 if (file) {
3523 * d_path works from the end of the buffer backwards, so we
3524 * need to add enough zero bytes after the string to handle
3525 * the 64bit alignment we do later.
3527 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3528 if (!buf) {
3529 name = strncpy(tmp, "//enomem", sizeof(tmp));
3530 goto got_name;
3532 name = d_path(&file->f_path, buf, PATH_MAX);
3533 if (IS_ERR(name)) {
3534 name = strncpy(tmp, "//toolong", sizeof(tmp));
3535 goto got_name;
3537 } else {
3538 if (arch_vma_name(mmap_event->vma)) {
3539 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3540 sizeof(tmp));
3541 goto got_name;
3544 if (!vma->vm_mm) {
3545 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3546 goto got_name;
3549 name = strncpy(tmp, "//anon", sizeof(tmp));
3550 goto got_name;
3553 got_name:
3554 size = ALIGN(strlen(name)+1, sizeof(u64));
3556 mmap_event->file_name = name;
3557 mmap_event->file_size = size;
3559 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3561 rcu_read_lock();
3562 cpuctx = &get_cpu_var(perf_cpu_context);
3563 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3564 put_cpu_var(perf_cpu_context);
3567 * doesn't really matter which of the child contexts the
3568 * events ends up in.
3570 ctx = rcu_dereference(current->perf_event_ctxp);
3571 if (ctx)
3572 perf_event_mmap_ctx(ctx, mmap_event);
3573 rcu_read_unlock();
3575 kfree(buf);
3578 void __perf_event_mmap(struct vm_area_struct *vma)
3580 struct perf_mmap_event mmap_event;
3582 if (!atomic_read(&nr_mmap_events))
3583 return;
3585 mmap_event = (struct perf_mmap_event){
3586 .vma = vma,
3587 /* .file_name */
3588 /* .file_size */
3589 .event_id = {
3590 .header = {
3591 .type = PERF_RECORD_MMAP,
3592 .misc = 0,
3593 /* .size */
3595 /* .pid */
3596 /* .tid */
3597 .start = vma->vm_start,
3598 .len = vma->vm_end - vma->vm_start,
3599 .pgoff = vma->vm_pgoff,
3603 perf_event_mmap_event(&mmap_event);
3607 * IRQ throttle logging
3610 static void perf_log_throttle(struct perf_event *event, int enable)
3612 struct perf_output_handle handle;
3613 int ret;
3615 struct {
3616 struct perf_event_header header;
3617 u64 time;
3618 u64 id;
3619 u64 stream_id;
3620 } throttle_event = {
3621 .header = {
3622 .type = PERF_RECORD_THROTTLE,
3623 .misc = 0,
3624 .size = sizeof(throttle_event),
3626 .time = perf_clock(),
3627 .id = primary_event_id(event),
3628 .stream_id = event->id,
3631 if (enable)
3632 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3634 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3635 if (ret)
3636 return;
3638 perf_output_put(&handle, throttle_event);
3639 perf_output_end(&handle);
3643 * Generic event overflow handling, sampling.
3646 static int __perf_event_overflow(struct perf_event *event, int nmi,
3647 int throttle, struct perf_sample_data *data,
3648 struct pt_regs *regs)
3650 int events = atomic_read(&event->event_limit);
3651 struct hw_perf_event *hwc = &event->hw;
3652 int ret = 0;
3654 throttle = (throttle && event->pmu->unthrottle != NULL);
3656 if (!throttle) {
3657 hwc->interrupts++;
3658 } else {
3659 if (hwc->interrupts != MAX_INTERRUPTS) {
3660 hwc->interrupts++;
3661 if (HZ * hwc->interrupts >
3662 (u64)sysctl_perf_event_sample_rate) {
3663 hwc->interrupts = MAX_INTERRUPTS;
3664 perf_log_throttle(event, 0);
3665 ret = 1;
3667 } else {
3669 * Keep re-disabling events even though on the previous
3670 * pass we disabled it - just in case we raced with a
3671 * sched-in and the event got enabled again:
3673 ret = 1;
3677 if (event->attr.freq) {
3678 u64 now = perf_clock();
3679 s64 delta = now - hwc->freq_stamp;
3681 hwc->freq_stamp = now;
3683 if (delta > 0 && delta < TICK_NSEC)
3684 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3688 * XXX event_limit might not quite work as expected on inherited
3689 * events
3692 event->pending_kill = POLL_IN;
3693 if (events && atomic_dec_and_test(&event->event_limit)) {
3694 ret = 1;
3695 event->pending_kill = POLL_HUP;
3696 if (nmi) {
3697 event->pending_disable = 1;
3698 perf_pending_queue(&event->pending,
3699 perf_pending_event);
3700 } else
3701 perf_event_disable(event);
3704 if (event->overflow_handler)
3705 event->overflow_handler(event, nmi, data, regs);
3706 else
3707 perf_event_output(event, nmi, data, regs);
3709 return ret;
3712 int perf_event_overflow(struct perf_event *event, int nmi,
3713 struct perf_sample_data *data,
3714 struct pt_regs *regs)
3716 return __perf_event_overflow(event, nmi, 1, data, regs);
3720 * Generic software event infrastructure
3724 * We directly increment event->count and keep a second value in
3725 * event->hw.period_left to count intervals. This period event
3726 * is kept in the range [-sample_period, 0] so that we can use the
3727 * sign as trigger.
3730 static u64 perf_swevent_set_period(struct perf_event *event)
3732 struct hw_perf_event *hwc = &event->hw;
3733 u64 period = hwc->last_period;
3734 u64 nr, offset;
3735 s64 old, val;
3737 hwc->last_period = hwc->sample_period;
3739 again:
3740 old = val = atomic64_read(&hwc->period_left);
3741 if (val < 0)
3742 return 0;
3744 nr = div64_u64(period + val, period);
3745 offset = nr * period;
3746 val -= offset;
3747 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3748 goto again;
3750 return nr;
3753 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3754 int nmi, struct perf_sample_data *data,
3755 struct pt_regs *regs)
3757 struct hw_perf_event *hwc = &event->hw;
3758 int throttle = 0;
3760 data->period = event->hw.last_period;
3761 if (!overflow)
3762 overflow = perf_swevent_set_period(event);
3764 if (hwc->interrupts == MAX_INTERRUPTS)
3765 return;
3767 for (; overflow; overflow--) {
3768 if (__perf_event_overflow(event, nmi, throttle,
3769 data, regs)) {
3771 * We inhibit the overflow from happening when
3772 * hwc->interrupts == MAX_INTERRUPTS.
3774 break;
3776 throttle = 1;
3780 static void perf_swevent_unthrottle(struct perf_event *event)
3783 * Nothing to do, we already reset hwc->interrupts.
3787 static void perf_swevent_add(struct perf_event *event, u64 nr,
3788 int nmi, struct perf_sample_data *data,
3789 struct pt_regs *regs)
3791 struct hw_perf_event *hwc = &event->hw;
3793 atomic64_add(nr, &event->count);
3795 if (!regs)
3796 return;
3798 if (!hwc->sample_period)
3799 return;
3801 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3802 return perf_swevent_overflow(event, 1, nmi, data, regs);
3804 if (atomic64_add_negative(nr, &hwc->period_left))
3805 return;
3807 perf_swevent_overflow(event, 0, nmi, data, regs);
3810 static int perf_swevent_is_counting(struct perf_event *event)
3813 * The event is active, we're good!
3815 if (event->state == PERF_EVENT_STATE_ACTIVE)
3816 return 1;
3819 * The event is off/error, not counting.
3821 if (event->state != PERF_EVENT_STATE_INACTIVE)
3822 return 0;
3825 * The event is inactive, if the context is active
3826 * we're part of a group that didn't make it on the 'pmu',
3827 * not counting.
3829 if (event->ctx->is_active)
3830 return 0;
3833 * We're inactive and the context is too, this means the
3834 * task is scheduled out, we're counting events that happen
3835 * to us, like migration events.
3837 return 1;
3840 static int perf_tp_event_match(struct perf_event *event,
3841 struct perf_sample_data *data);
3843 static int perf_exclude_event(struct perf_event *event,
3844 struct pt_regs *regs)
3846 if (regs) {
3847 if (event->attr.exclude_user && user_mode(regs))
3848 return 1;
3850 if (event->attr.exclude_kernel && !user_mode(regs))
3851 return 1;
3854 return 0;
3857 static int perf_swevent_match(struct perf_event *event,
3858 enum perf_type_id type,
3859 u32 event_id,
3860 struct perf_sample_data *data,
3861 struct pt_regs *regs)
3863 if (!perf_swevent_is_counting(event))
3864 return 0;
3866 if (event->attr.type != type)
3867 return 0;
3869 if (event->attr.config != event_id)
3870 return 0;
3872 if (perf_exclude_event(event, regs))
3873 return 0;
3875 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3876 !perf_tp_event_match(event, data))
3877 return 0;
3879 return 1;
3882 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3883 enum perf_type_id type,
3884 u32 event_id, u64 nr, int nmi,
3885 struct perf_sample_data *data,
3886 struct pt_regs *regs)
3888 struct perf_event *event;
3890 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3891 if (perf_swevent_match(event, type, event_id, data, regs))
3892 perf_swevent_add(event, nr, nmi, data, regs);
3896 int perf_swevent_get_recursion_context(void)
3898 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3899 int rctx;
3901 if (in_nmi())
3902 rctx = 3;
3903 else if (in_irq())
3904 rctx = 2;
3905 else if (in_softirq())
3906 rctx = 1;
3907 else
3908 rctx = 0;
3910 if (cpuctx->recursion[rctx]) {
3911 put_cpu_var(perf_cpu_context);
3912 return -1;
3915 cpuctx->recursion[rctx]++;
3916 barrier();
3918 return rctx;
3920 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3922 void perf_swevent_put_recursion_context(int rctx)
3924 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3925 barrier();
3926 cpuctx->recursion[rctx]--;
3927 put_cpu_var(perf_cpu_context);
3929 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
3931 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3932 u64 nr, int nmi,
3933 struct perf_sample_data *data,
3934 struct pt_regs *regs)
3936 struct perf_cpu_context *cpuctx;
3937 struct perf_event_context *ctx;
3939 cpuctx = &__get_cpu_var(perf_cpu_context);
3940 rcu_read_lock();
3941 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3942 nr, nmi, data, regs);
3944 * doesn't really matter which of the child contexts the
3945 * events ends up in.
3947 ctx = rcu_dereference(current->perf_event_ctxp);
3948 if (ctx)
3949 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3950 rcu_read_unlock();
3953 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3954 struct pt_regs *regs, u64 addr)
3956 struct perf_sample_data data;
3957 int rctx;
3959 rctx = perf_swevent_get_recursion_context();
3960 if (rctx < 0)
3961 return;
3963 data.addr = addr;
3964 data.raw = NULL;
3966 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3968 perf_swevent_put_recursion_context(rctx);
3971 static void perf_swevent_read(struct perf_event *event)
3975 static int perf_swevent_enable(struct perf_event *event)
3977 struct hw_perf_event *hwc = &event->hw;
3979 if (hwc->sample_period) {
3980 hwc->last_period = hwc->sample_period;
3981 perf_swevent_set_period(event);
3983 return 0;
3986 static void perf_swevent_disable(struct perf_event *event)
3990 static const struct pmu perf_ops_generic = {
3991 .enable = perf_swevent_enable,
3992 .disable = perf_swevent_disable,
3993 .read = perf_swevent_read,
3994 .unthrottle = perf_swevent_unthrottle,
3998 * hrtimer based swevent callback
4001 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4003 enum hrtimer_restart ret = HRTIMER_RESTART;
4004 struct perf_sample_data data;
4005 struct pt_regs *regs;
4006 struct perf_event *event;
4007 u64 period;
4009 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4010 event->pmu->read(event);
4012 data.addr = 0;
4013 data.raw = NULL;
4014 data.period = event->hw.last_period;
4015 regs = get_irq_regs();
4017 * In case we exclude kernel IPs or are somehow not in interrupt
4018 * context, provide the next best thing, the user IP.
4020 if ((event->attr.exclude_kernel || !regs) &&
4021 !event->attr.exclude_user)
4022 regs = task_pt_regs(current);
4024 if (regs) {
4025 if (!(event->attr.exclude_idle && current->pid == 0))
4026 if (perf_event_overflow(event, 0, &data, regs))
4027 ret = HRTIMER_NORESTART;
4030 period = max_t(u64, 10000, event->hw.sample_period);
4031 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4033 return ret;
4036 static void perf_swevent_start_hrtimer(struct perf_event *event)
4038 struct hw_perf_event *hwc = &event->hw;
4040 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 hwc->hrtimer.function = perf_swevent_hrtimer;
4042 if (hwc->sample_period) {
4043 u64 period;
4045 if (hwc->remaining) {
4046 if (hwc->remaining < 0)
4047 period = 10000;
4048 else
4049 period = hwc->remaining;
4050 hwc->remaining = 0;
4051 } else {
4052 period = max_t(u64, 10000, hwc->sample_period);
4054 __hrtimer_start_range_ns(&hwc->hrtimer,
4055 ns_to_ktime(period), 0,
4056 HRTIMER_MODE_REL, 0);
4060 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4062 struct hw_perf_event *hwc = &event->hw;
4064 if (hwc->sample_period) {
4065 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4066 hwc->remaining = ktime_to_ns(remaining);
4068 hrtimer_cancel(&hwc->hrtimer);
4073 * Software event: cpu wall time clock
4076 static void cpu_clock_perf_event_update(struct perf_event *event)
4078 int cpu = raw_smp_processor_id();
4079 s64 prev;
4080 u64 now;
4082 now = cpu_clock(cpu);
4083 prev = atomic64_xchg(&event->hw.prev_count, now);
4084 atomic64_add(now - prev, &event->count);
4087 static int cpu_clock_perf_event_enable(struct perf_event *event)
4089 struct hw_perf_event *hwc = &event->hw;
4090 int cpu = raw_smp_processor_id();
4092 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4093 perf_swevent_start_hrtimer(event);
4095 return 0;
4098 static void cpu_clock_perf_event_disable(struct perf_event *event)
4100 perf_swevent_cancel_hrtimer(event);
4101 cpu_clock_perf_event_update(event);
4104 static void cpu_clock_perf_event_read(struct perf_event *event)
4106 cpu_clock_perf_event_update(event);
4109 static const struct pmu perf_ops_cpu_clock = {
4110 .enable = cpu_clock_perf_event_enable,
4111 .disable = cpu_clock_perf_event_disable,
4112 .read = cpu_clock_perf_event_read,
4116 * Software event: task time clock
4119 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4121 u64 prev;
4122 s64 delta;
4124 prev = atomic64_xchg(&event->hw.prev_count, now);
4125 delta = now - prev;
4126 atomic64_add(delta, &event->count);
4129 static int task_clock_perf_event_enable(struct perf_event *event)
4131 struct hw_perf_event *hwc = &event->hw;
4132 u64 now;
4134 now = event->ctx->time;
4136 atomic64_set(&hwc->prev_count, now);
4138 perf_swevent_start_hrtimer(event);
4140 return 0;
4143 static void task_clock_perf_event_disable(struct perf_event *event)
4145 perf_swevent_cancel_hrtimer(event);
4146 task_clock_perf_event_update(event, event->ctx->time);
4150 static void task_clock_perf_event_read(struct perf_event *event)
4152 u64 time;
4154 if (!in_nmi()) {
4155 update_context_time(event->ctx);
4156 time = event->ctx->time;
4157 } else {
4158 u64 now = perf_clock();
4159 u64 delta = now - event->ctx->timestamp;
4160 time = event->ctx->time + delta;
4163 task_clock_perf_event_update(event, time);
4166 static const struct pmu perf_ops_task_clock = {
4167 .enable = task_clock_perf_event_enable,
4168 .disable = task_clock_perf_event_disable,
4169 .read = task_clock_perf_event_read,
4172 #ifdef CONFIG_EVENT_PROFILE
4174 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4175 int entry_size)
4177 struct perf_raw_record raw = {
4178 .size = entry_size,
4179 .data = record,
4182 struct perf_sample_data data = {
4183 .addr = addr,
4184 .raw = &raw,
4187 struct pt_regs *regs = get_irq_regs();
4189 if (!regs)
4190 regs = task_pt_regs(current);
4192 /* Trace events already protected against recursion */
4193 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4194 &data, regs);
4196 EXPORT_SYMBOL_GPL(perf_tp_event);
4198 static int perf_tp_event_match(struct perf_event *event,
4199 struct perf_sample_data *data)
4201 void *record = data->raw->data;
4203 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4204 return 1;
4205 return 0;
4208 static void tp_perf_event_destroy(struct perf_event *event)
4210 ftrace_profile_disable(event->attr.config);
4213 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4216 * Raw tracepoint data is a severe data leak, only allow root to
4217 * have these.
4219 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4220 perf_paranoid_tracepoint_raw() &&
4221 !capable(CAP_SYS_ADMIN))
4222 return ERR_PTR(-EPERM);
4224 if (ftrace_profile_enable(event->attr.config))
4225 return NULL;
4227 event->destroy = tp_perf_event_destroy;
4229 return &perf_ops_generic;
4232 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4234 char *filter_str;
4235 int ret;
4237 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4238 return -EINVAL;
4240 filter_str = strndup_user(arg, PAGE_SIZE);
4241 if (IS_ERR(filter_str))
4242 return PTR_ERR(filter_str);
4244 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4246 kfree(filter_str);
4247 return ret;
4250 static void perf_event_free_filter(struct perf_event *event)
4252 ftrace_profile_free_filter(event);
4255 #else
4257 static int perf_tp_event_match(struct perf_event *event,
4258 struct perf_sample_data *data)
4260 return 1;
4263 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4265 return NULL;
4268 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4270 return -ENOENT;
4273 static void perf_event_free_filter(struct perf_event *event)
4277 #endif /* CONFIG_EVENT_PROFILE */
4279 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4280 static void bp_perf_event_destroy(struct perf_event *event)
4282 release_bp_slot(event);
4285 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4287 int err;
4289 err = register_perf_hw_breakpoint(bp);
4290 if (err)
4291 return ERR_PTR(err);
4293 bp->destroy = bp_perf_event_destroy;
4295 return &perf_ops_bp;
4298 void perf_bp_event(struct perf_event *bp, void *data)
4300 struct perf_sample_data sample;
4301 struct pt_regs *regs = data;
4303 sample.raw = NULL;
4304 sample.addr = bp->attr.bp_addr;
4306 if (!perf_exclude_event(bp, regs))
4307 perf_swevent_add(bp, 1, 1, &sample, regs);
4309 #else
4310 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4312 return NULL;
4315 void perf_bp_event(struct perf_event *bp, void *regs)
4318 #endif
4320 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4322 static void sw_perf_event_destroy(struct perf_event *event)
4324 u64 event_id = event->attr.config;
4326 WARN_ON(event->parent);
4328 atomic_dec(&perf_swevent_enabled[event_id]);
4331 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4333 const struct pmu *pmu = NULL;
4334 u64 event_id = event->attr.config;
4337 * Software events (currently) can't in general distinguish
4338 * between user, kernel and hypervisor events.
4339 * However, context switches and cpu migrations are considered
4340 * to be kernel events, and page faults are never hypervisor
4341 * events.
4343 switch (event_id) {
4344 case PERF_COUNT_SW_CPU_CLOCK:
4345 pmu = &perf_ops_cpu_clock;
4347 break;
4348 case PERF_COUNT_SW_TASK_CLOCK:
4350 * If the user instantiates this as a per-cpu event,
4351 * use the cpu_clock event instead.
4353 if (event->ctx->task)
4354 pmu = &perf_ops_task_clock;
4355 else
4356 pmu = &perf_ops_cpu_clock;
4358 break;
4359 case PERF_COUNT_SW_PAGE_FAULTS:
4360 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4361 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4362 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4363 case PERF_COUNT_SW_CPU_MIGRATIONS:
4364 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4365 case PERF_COUNT_SW_EMULATION_FAULTS:
4366 if (!event->parent) {
4367 atomic_inc(&perf_swevent_enabled[event_id]);
4368 event->destroy = sw_perf_event_destroy;
4370 pmu = &perf_ops_generic;
4371 break;
4374 return pmu;
4378 * Allocate and initialize a event structure
4380 static struct perf_event *
4381 perf_event_alloc(struct perf_event_attr *attr,
4382 int cpu,
4383 struct perf_event_context *ctx,
4384 struct perf_event *group_leader,
4385 struct perf_event *parent_event,
4386 perf_overflow_handler_t overflow_handler,
4387 gfp_t gfpflags)
4389 const struct pmu *pmu;
4390 struct perf_event *event;
4391 struct hw_perf_event *hwc;
4392 long err;
4394 event = kzalloc(sizeof(*event), gfpflags);
4395 if (!event)
4396 return ERR_PTR(-ENOMEM);
4399 * Single events are their own group leaders, with an
4400 * empty sibling list:
4402 if (!group_leader)
4403 group_leader = event;
4405 mutex_init(&event->child_mutex);
4406 INIT_LIST_HEAD(&event->child_list);
4408 INIT_LIST_HEAD(&event->group_entry);
4409 INIT_LIST_HEAD(&event->event_entry);
4410 INIT_LIST_HEAD(&event->sibling_list);
4411 init_waitqueue_head(&event->waitq);
4413 mutex_init(&event->mmap_mutex);
4415 event->cpu = cpu;
4416 event->attr = *attr;
4417 event->group_leader = group_leader;
4418 event->pmu = NULL;
4419 event->ctx = ctx;
4420 event->oncpu = -1;
4422 event->parent = parent_event;
4424 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4425 event->id = atomic64_inc_return(&perf_event_id);
4427 event->state = PERF_EVENT_STATE_INACTIVE;
4429 if (!overflow_handler && parent_event)
4430 overflow_handler = parent_event->overflow_handler;
4432 event->overflow_handler = overflow_handler;
4434 if (attr->disabled)
4435 event->state = PERF_EVENT_STATE_OFF;
4437 pmu = NULL;
4439 hwc = &event->hw;
4440 hwc->sample_period = attr->sample_period;
4441 if (attr->freq && attr->sample_freq)
4442 hwc->sample_period = 1;
4443 hwc->last_period = hwc->sample_period;
4445 atomic64_set(&hwc->period_left, hwc->sample_period);
4448 * we currently do not support PERF_FORMAT_GROUP on inherited events
4450 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4451 goto done;
4453 switch (attr->type) {
4454 case PERF_TYPE_RAW:
4455 case PERF_TYPE_HARDWARE:
4456 case PERF_TYPE_HW_CACHE:
4457 pmu = hw_perf_event_init(event);
4458 break;
4460 case PERF_TYPE_SOFTWARE:
4461 pmu = sw_perf_event_init(event);
4462 break;
4464 case PERF_TYPE_TRACEPOINT:
4465 pmu = tp_perf_event_init(event);
4466 break;
4468 case PERF_TYPE_BREAKPOINT:
4469 pmu = bp_perf_event_init(event);
4470 break;
4473 default:
4474 break;
4476 done:
4477 err = 0;
4478 if (!pmu)
4479 err = -EINVAL;
4480 else if (IS_ERR(pmu))
4481 err = PTR_ERR(pmu);
4483 if (err) {
4484 if (event->ns)
4485 put_pid_ns(event->ns);
4486 kfree(event);
4487 return ERR_PTR(err);
4490 event->pmu = pmu;
4492 if (!event->parent) {
4493 atomic_inc(&nr_events);
4494 if (event->attr.mmap)
4495 atomic_inc(&nr_mmap_events);
4496 if (event->attr.comm)
4497 atomic_inc(&nr_comm_events);
4498 if (event->attr.task)
4499 atomic_inc(&nr_task_events);
4502 return event;
4505 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4506 struct perf_event_attr *attr)
4508 u32 size;
4509 int ret;
4511 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4512 return -EFAULT;
4515 * zero the full structure, so that a short copy will be nice.
4517 memset(attr, 0, sizeof(*attr));
4519 ret = get_user(size, &uattr->size);
4520 if (ret)
4521 return ret;
4523 if (size > PAGE_SIZE) /* silly large */
4524 goto err_size;
4526 if (!size) /* abi compat */
4527 size = PERF_ATTR_SIZE_VER0;
4529 if (size < PERF_ATTR_SIZE_VER0)
4530 goto err_size;
4533 * If we're handed a bigger struct than we know of,
4534 * ensure all the unknown bits are 0 - i.e. new
4535 * user-space does not rely on any kernel feature
4536 * extensions we dont know about yet.
4538 if (size > sizeof(*attr)) {
4539 unsigned char __user *addr;
4540 unsigned char __user *end;
4541 unsigned char val;
4543 addr = (void __user *)uattr + sizeof(*attr);
4544 end = (void __user *)uattr + size;
4546 for (; addr < end; addr++) {
4547 ret = get_user(val, addr);
4548 if (ret)
4549 return ret;
4550 if (val)
4551 goto err_size;
4553 size = sizeof(*attr);
4556 ret = copy_from_user(attr, uattr, size);
4557 if (ret)
4558 return -EFAULT;
4561 * If the type exists, the corresponding creation will verify
4562 * the attr->config.
4564 if (attr->type >= PERF_TYPE_MAX)
4565 return -EINVAL;
4567 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4568 return -EINVAL;
4570 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4571 return -EINVAL;
4573 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4574 return -EINVAL;
4576 out:
4577 return ret;
4579 err_size:
4580 put_user(sizeof(*attr), &uattr->size);
4581 ret = -E2BIG;
4582 goto out;
4585 static int perf_event_set_output(struct perf_event *event, int output_fd)
4587 struct perf_event *output_event = NULL;
4588 struct file *output_file = NULL;
4589 struct perf_event *old_output;
4590 int fput_needed = 0;
4591 int ret = -EINVAL;
4593 if (!output_fd)
4594 goto set;
4596 output_file = fget_light(output_fd, &fput_needed);
4597 if (!output_file)
4598 return -EBADF;
4600 if (output_file->f_op != &perf_fops)
4601 goto out;
4603 output_event = output_file->private_data;
4605 /* Don't chain output fds */
4606 if (output_event->output)
4607 goto out;
4609 /* Don't set an output fd when we already have an output channel */
4610 if (event->data)
4611 goto out;
4613 atomic_long_inc(&output_file->f_count);
4615 set:
4616 mutex_lock(&event->mmap_mutex);
4617 old_output = event->output;
4618 rcu_assign_pointer(event->output, output_event);
4619 mutex_unlock(&event->mmap_mutex);
4621 if (old_output) {
4623 * we need to make sure no existing perf_output_*()
4624 * is still referencing this event.
4626 synchronize_rcu();
4627 fput(old_output->filp);
4630 ret = 0;
4631 out:
4632 fput_light(output_file, fput_needed);
4633 return ret;
4637 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4639 * @attr_uptr: event_id type attributes for monitoring/sampling
4640 * @pid: target pid
4641 * @cpu: target cpu
4642 * @group_fd: group leader event fd
4644 SYSCALL_DEFINE5(perf_event_open,
4645 struct perf_event_attr __user *, attr_uptr,
4646 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4648 struct perf_event *event, *group_leader;
4649 struct perf_event_attr attr;
4650 struct perf_event_context *ctx;
4651 struct file *event_file = NULL;
4652 struct file *group_file = NULL;
4653 int fput_needed = 0;
4654 int fput_needed2 = 0;
4655 int err;
4657 /* for future expandability... */
4658 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4659 return -EINVAL;
4661 err = perf_copy_attr(attr_uptr, &attr);
4662 if (err)
4663 return err;
4665 if (!attr.exclude_kernel) {
4666 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4667 return -EACCES;
4670 if (attr.freq) {
4671 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4672 return -EINVAL;
4676 * Get the target context (task or percpu):
4678 ctx = find_get_context(pid, cpu);
4679 if (IS_ERR(ctx))
4680 return PTR_ERR(ctx);
4683 * Look up the group leader (we will attach this event to it):
4685 group_leader = NULL;
4686 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4687 err = -EINVAL;
4688 group_file = fget_light(group_fd, &fput_needed);
4689 if (!group_file)
4690 goto err_put_context;
4691 if (group_file->f_op != &perf_fops)
4692 goto err_put_context;
4694 group_leader = group_file->private_data;
4696 * Do not allow a recursive hierarchy (this new sibling
4697 * becoming part of another group-sibling):
4699 if (group_leader->group_leader != group_leader)
4700 goto err_put_context;
4702 * Do not allow to attach to a group in a different
4703 * task or CPU context:
4705 if (group_leader->ctx != ctx)
4706 goto err_put_context;
4708 * Only a group leader can be exclusive or pinned
4710 if (attr.exclusive || attr.pinned)
4711 goto err_put_context;
4714 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4715 NULL, NULL, GFP_KERNEL);
4716 err = PTR_ERR(event);
4717 if (IS_ERR(event))
4718 goto err_put_context;
4720 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4721 if (err < 0)
4722 goto err_free_put_context;
4724 event_file = fget_light(err, &fput_needed2);
4725 if (!event_file)
4726 goto err_free_put_context;
4728 if (flags & PERF_FLAG_FD_OUTPUT) {
4729 err = perf_event_set_output(event, group_fd);
4730 if (err)
4731 goto err_fput_free_put_context;
4734 event->filp = event_file;
4735 WARN_ON_ONCE(ctx->parent_ctx);
4736 mutex_lock(&ctx->mutex);
4737 perf_install_in_context(ctx, event, cpu);
4738 ++ctx->generation;
4739 mutex_unlock(&ctx->mutex);
4741 event->owner = current;
4742 get_task_struct(current);
4743 mutex_lock(&current->perf_event_mutex);
4744 list_add_tail(&event->owner_entry, &current->perf_event_list);
4745 mutex_unlock(&current->perf_event_mutex);
4747 err_fput_free_put_context:
4748 fput_light(event_file, fput_needed2);
4750 err_free_put_context:
4751 if (err < 0)
4752 kfree(event);
4754 err_put_context:
4755 if (err < 0)
4756 put_ctx(ctx);
4758 fput_light(group_file, fput_needed);
4760 return err;
4764 * perf_event_create_kernel_counter
4766 * @attr: attributes of the counter to create
4767 * @cpu: cpu in which the counter is bound
4768 * @pid: task to profile
4770 struct perf_event *
4771 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4772 pid_t pid,
4773 perf_overflow_handler_t overflow_handler)
4775 struct perf_event *event;
4776 struct perf_event_context *ctx;
4777 int err;
4780 * Get the target context (task or percpu):
4783 ctx = find_get_context(pid, cpu);
4784 if (IS_ERR(ctx)) {
4785 err = PTR_ERR(ctx);
4786 goto err_exit;
4789 event = perf_event_alloc(attr, cpu, ctx, NULL,
4790 NULL, overflow_handler, GFP_KERNEL);
4791 if (IS_ERR(event)) {
4792 err = PTR_ERR(event);
4793 goto err_put_context;
4796 event->filp = NULL;
4797 WARN_ON_ONCE(ctx->parent_ctx);
4798 mutex_lock(&ctx->mutex);
4799 perf_install_in_context(ctx, event, cpu);
4800 ++ctx->generation;
4801 mutex_unlock(&ctx->mutex);
4803 event->owner = current;
4804 get_task_struct(current);
4805 mutex_lock(&current->perf_event_mutex);
4806 list_add_tail(&event->owner_entry, &current->perf_event_list);
4807 mutex_unlock(&current->perf_event_mutex);
4809 return event;
4811 err_put_context:
4812 put_ctx(ctx);
4813 err_exit:
4814 return ERR_PTR(err);
4816 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4819 * inherit a event from parent task to child task:
4821 static struct perf_event *
4822 inherit_event(struct perf_event *parent_event,
4823 struct task_struct *parent,
4824 struct perf_event_context *parent_ctx,
4825 struct task_struct *child,
4826 struct perf_event *group_leader,
4827 struct perf_event_context *child_ctx)
4829 struct perf_event *child_event;
4832 * Instead of creating recursive hierarchies of events,
4833 * we link inherited events back to the original parent,
4834 * which has a filp for sure, which we use as the reference
4835 * count:
4837 if (parent_event->parent)
4838 parent_event = parent_event->parent;
4840 child_event = perf_event_alloc(&parent_event->attr,
4841 parent_event->cpu, child_ctx,
4842 group_leader, parent_event,
4843 NULL, GFP_KERNEL);
4844 if (IS_ERR(child_event))
4845 return child_event;
4846 get_ctx(child_ctx);
4849 * Make the child state follow the state of the parent event,
4850 * not its attr.disabled bit. We hold the parent's mutex,
4851 * so we won't race with perf_event_{en, dis}able_family.
4853 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4854 child_event->state = PERF_EVENT_STATE_INACTIVE;
4855 else
4856 child_event->state = PERF_EVENT_STATE_OFF;
4858 if (parent_event->attr.freq)
4859 child_event->hw.sample_period = parent_event->hw.sample_period;
4861 child_event->overflow_handler = parent_event->overflow_handler;
4864 * Link it up in the child's context:
4866 add_event_to_ctx(child_event, child_ctx);
4869 * Get a reference to the parent filp - we will fput it
4870 * when the child event exits. This is safe to do because
4871 * we are in the parent and we know that the filp still
4872 * exists and has a nonzero count:
4874 atomic_long_inc(&parent_event->filp->f_count);
4877 * Link this into the parent event's child list
4879 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4880 mutex_lock(&parent_event->child_mutex);
4881 list_add_tail(&child_event->child_list, &parent_event->child_list);
4882 mutex_unlock(&parent_event->child_mutex);
4884 return child_event;
4887 static int inherit_group(struct perf_event *parent_event,
4888 struct task_struct *parent,
4889 struct perf_event_context *parent_ctx,
4890 struct task_struct *child,
4891 struct perf_event_context *child_ctx)
4893 struct perf_event *leader;
4894 struct perf_event *sub;
4895 struct perf_event *child_ctr;
4897 leader = inherit_event(parent_event, parent, parent_ctx,
4898 child, NULL, child_ctx);
4899 if (IS_ERR(leader))
4900 return PTR_ERR(leader);
4901 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4902 child_ctr = inherit_event(sub, parent, parent_ctx,
4903 child, leader, child_ctx);
4904 if (IS_ERR(child_ctr))
4905 return PTR_ERR(child_ctr);
4907 return 0;
4910 static void sync_child_event(struct perf_event *child_event,
4911 struct task_struct *child)
4913 struct perf_event *parent_event = child_event->parent;
4914 u64 child_val;
4916 if (child_event->attr.inherit_stat)
4917 perf_event_read_event(child_event, child);
4919 child_val = atomic64_read(&child_event->count);
4922 * Add back the child's count to the parent's count:
4924 atomic64_add(child_val, &parent_event->count);
4925 atomic64_add(child_event->total_time_enabled,
4926 &parent_event->child_total_time_enabled);
4927 atomic64_add(child_event->total_time_running,
4928 &parent_event->child_total_time_running);
4931 * Remove this event from the parent's list
4933 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4934 mutex_lock(&parent_event->child_mutex);
4935 list_del_init(&child_event->child_list);
4936 mutex_unlock(&parent_event->child_mutex);
4939 * Release the parent event, if this was the last
4940 * reference to it.
4942 fput(parent_event->filp);
4945 static void
4946 __perf_event_exit_task(struct perf_event *child_event,
4947 struct perf_event_context *child_ctx,
4948 struct task_struct *child)
4950 struct perf_event *parent_event;
4952 perf_event_remove_from_context(child_event);
4954 parent_event = child_event->parent;
4956 * It can happen that parent exits first, and has events
4957 * that are still around due to the child reference. These
4958 * events need to be zapped - but otherwise linger.
4960 if (parent_event) {
4961 sync_child_event(child_event, child);
4962 free_event(child_event);
4967 * When a child task exits, feed back event values to parent events.
4969 void perf_event_exit_task(struct task_struct *child)
4971 struct perf_event *child_event, *tmp;
4972 struct perf_event_context *child_ctx;
4973 unsigned long flags;
4975 if (likely(!child->perf_event_ctxp)) {
4976 perf_event_task(child, NULL, 0);
4977 return;
4980 local_irq_save(flags);
4982 * We can't reschedule here because interrupts are disabled,
4983 * and either child is current or it is a task that can't be
4984 * scheduled, so we are now safe from rescheduling changing
4985 * our context.
4987 child_ctx = child->perf_event_ctxp;
4988 __perf_event_task_sched_out(child_ctx);
4991 * Take the context lock here so that if find_get_context is
4992 * reading child->perf_event_ctxp, we wait until it has
4993 * incremented the context's refcount before we do put_ctx below.
4995 spin_lock(&child_ctx->lock);
4996 child->perf_event_ctxp = NULL;
4998 * If this context is a clone; unclone it so it can't get
4999 * swapped to another process while we're removing all
5000 * the events from it.
5002 unclone_ctx(child_ctx);
5003 update_context_time(child_ctx);
5004 spin_unlock_irqrestore(&child_ctx->lock, flags);
5007 * Report the task dead after unscheduling the events so that we
5008 * won't get any samples after PERF_RECORD_EXIT. We can however still
5009 * get a few PERF_RECORD_READ events.
5011 perf_event_task(child, child_ctx, 0);
5014 * We can recurse on the same lock type through:
5016 * __perf_event_exit_task()
5017 * sync_child_event()
5018 * fput(parent_event->filp)
5019 * perf_release()
5020 * mutex_lock(&ctx->mutex)
5022 * But since its the parent context it won't be the same instance.
5024 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5026 again:
5027 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5028 group_entry)
5029 __perf_event_exit_task(child_event, child_ctx, child);
5032 * If the last event was a group event, it will have appended all
5033 * its siblings to the list, but we obtained 'tmp' before that which
5034 * will still point to the list head terminating the iteration.
5036 if (!list_empty(&child_ctx->group_list))
5037 goto again;
5039 mutex_unlock(&child_ctx->mutex);
5041 put_ctx(child_ctx);
5045 * free an unexposed, unused context as created by inheritance by
5046 * init_task below, used by fork() in case of fail.
5048 void perf_event_free_task(struct task_struct *task)
5050 struct perf_event_context *ctx = task->perf_event_ctxp;
5051 struct perf_event *event, *tmp;
5053 if (!ctx)
5054 return;
5056 mutex_lock(&ctx->mutex);
5057 again:
5058 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5059 struct perf_event *parent = event->parent;
5061 if (WARN_ON_ONCE(!parent))
5062 continue;
5064 mutex_lock(&parent->child_mutex);
5065 list_del_init(&event->child_list);
5066 mutex_unlock(&parent->child_mutex);
5068 fput(parent->filp);
5070 list_del_event(event, ctx);
5071 free_event(event);
5074 if (!list_empty(&ctx->group_list))
5075 goto again;
5077 mutex_unlock(&ctx->mutex);
5079 put_ctx(ctx);
5083 * Initialize the perf_event context in task_struct
5085 int perf_event_init_task(struct task_struct *child)
5087 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5088 struct perf_event_context *cloned_ctx;
5089 struct perf_event *event;
5090 struct task_struct *parent = current;
5091 int inherited_all = 1;
5092 int ret = 0;
5094 child->perf_event_ctxp = NULL;
5096 mutex_init(&child->perf_event_mutex);
5097 INIT_LIST_HEAD(&child->perf_event_list);
5099 if (likely(!parent->perf_event_ctxp))
5100 return 0;
5103 * If the parent's context is a clone, pin it so it won't get
5104 * swapped under us.
5106 parent_ctx = perf_pin_task_context(parent);
5109 * No need to check if parent_ctx != NULL here; since we saw
5110 * it non-NULL earlier, the only reason for it to become NULL
5111 * is if we exit, and since we're currently in the middle of
5112 * a fork we can't be exiting at the same time.
5116 * Lock the parent list. No need to lock the child - not PID
5117 * hashed yet and not running, so nobody can access it.
5119 mutex_lock(&parent_ctx->mutex);
5122 * We dont have to disable NMIs - we are only looking at
5123 * the list, not manipulating it:
5125 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5127 if (!event->attr.inherit) {
5128 inherited_all = 0;
5129 continue;
5132 if (!child->perf_event_ctxp) {
5134 * This is executed from the parent task context, so
5135 * inherit events that have been marked for cloning.
5136 * First allocate and initialize a context for the
5137 * child.
5140 child_ctx = kzalloc(sizeof(struct perf_event_context),
5141 GFP_KERNEL);
5142 if (!child_ctx) {
5143 ret = -ENOMEM;
5144 goto exit;
5147 __perf_event_init_context(child_ctx, child);
5148 child->perf_event_ctxp = child_ctx;
5149 get_task_struct(child);
5152 ret = inherit_group(event, parent, parent_ctx,
5153 child, child_ctx);
5154 if (ret) {
5155 inherited_all = 0;
5156 break;
5160 if (inherited_all) {
5162 * Mark the child context as a clone of the parent
5163 * context, or of whatever the parent is a clone of.
5164 * Note that if the parent is a clone, it could get
5165 * uncloned at any point, but that doesn't matter
5166 * because the list of events and the generation
5167 * count can't have changed since we took the mutex.
5169 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5170 if (cloned_ctx) {
5171 child_ctx->parent_ctx = cloned_ctx;
5172 child_ctx->parent_gen = parent_ctx->parent_gen;
5173 } else {
5174 child_ctx->parent_ctx = parent_ctx;
5175 child_ctx->parent_gen = parent_ctx->generation;
5177 get_ctx(child_ctx->parent_ctx);
5180 exit:
5181 mutex_unlock(&parent_ctx->mutex);
5183 perf_unpin_context(parent_ctx);
5185 return ret;
5188 static void __cpuinit perf_event_init_cpu(int cpu)
5190 struct perf_cpu_context *cpuctx;
5192 cpuctx = &per_cpu(perf_cpu_context, cpu);
5193 __perf_event_init_context(&cpuctx->ctx, NULL);
5195 spin_lock(&perf_resource_lock);
5196 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5197 spin_unlock(&perf_resource_lock);
5199 hw_perf_event_setup(cpu);
5202 #ifdef CONFIG_HOTPLUG_CPU
5203 static void __perf_event_exit_cpu(void *info)
5205 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5206 struct perf_event_context *ctx = &cpuctx->ctx;
5207 struct perf_event *event, *tmp;
5209 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5210 __perf_event_remove_from_context(event);
5212 static void perf_event_exit_cpu(int cpu)
5214 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5215 struct perf_event_context *ctx = &cpuctx->ctx;
5217 mutex_lock(&ctx->mutex);
5218 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5219 mutex_unlock(&ctx->mutex);
5221 #else
5222 static inline void perf_event_exit_cpu(int cpu) { }
5223 #endif
5225 static int __cpuinit
5226 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5228 unsigned int cpu = (long)hcpu;
5230 switch (action) {
5232 case CPU_UP_PREPARE:
5233 case CPU_UP_PREPARE_FROZEN:
5234 perf_event_init_cpu(cpu);
5235 break;
5237 case CPU_ONLINE:
5238 case CPU_ONLINE_FROZEN:
5239 hw_perf_event_setup_online(cpu);
5240 break;
5242 case CPU_DOWN_PREPARE:
5243 case CPU_DOWN_PREPARE_FROZEN:
5244 perf_event_exit_cpu(cpu);
5245 break;
5247 default:
5248 break;
5251 return NOTIFY_OK;
5255 * This has to have a higher priority than migration_notifier in sched.c.
5257 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5258 .notifier_call = perf_cpu_notify,
5259 .priority = 20,
5262 void __init perf_event_init(void)
5264 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5265 (void *)(long)smp_processor_id());
5266 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5267 (void *)(long)smp_processor_id());
5268 register_cpu_notifier(&perf_cpu_nb);
5271 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5273 return sprintf(buf, "%d\n", perf_reserved_percpu);
5276 static ssize_t
5277 perf_set_reserve_percpu(struct sysdev_class *class,
5278 const char *buf,
5279 size_t count)
5281 struct perf_cpu_context *cpuctx;
5282 unsigned long val;
5283 int err, cpu, mpt;
5285 err = strict_strtoul(buf, 10, &val);
5286 if (err)
5287 return err;
5288 if (val > perf_max_events)
5289 return -EINVAL;
5291 spin_lock(&perf_resource_lock);
5292 perf_reserved_percpu = val;
5293 for_each_online_cpu(cpu) {
5294 cpuctx = &per_cpu(perf_cpu_context, cpu);
5295 spin_lock_irq(&cpuctx->ctx.lock);
5296 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5297 perf_max_events - perf_reserved_percpu);
5298 cpuctx->max_pertask = mpt;
5299 spin_unlock_irq(&cpuctx->ctx.lock);
5301 spin_unlock(&perf_resource_lock);
5303 return count;
5306 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5308 return sprintf(buf, "%d\n", perf_overcommit);
5311 static ssize_t
5312 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5314 unsigned long val;
5315 int err;
5317 err = strict_strtoul(buf, 10, &val);
5318 if (err)
5319 return err;
5320 if (val > 1)
5321 return -EINVAL;
5323 spin_lock(&perf_resource_lock);
5324 perf_overcommit = val;
5325 spin_unlock(&perf_resource_lock);
5327 return count;
5330 static SYSDEV_CLASS_ATTR(
5331 reserve_percpu,
5332 0644,
5333 perf_show_reserve_percpu,
5334 perf_set_reserve_percpu
5337 static SYSDEV_CLASS_ATTR(
5338 overcommit,
5339 0644,
5340 perf_show_overcommit,
5341 perf_set_overcommit
5344 static struct attribute *perfclass_attrs[] = {
5345 &attr_reserve_percpu.attr,
5346 &attr_overcommit.attr,
5347 NULL
5350 static struct attribute_group perfclass_attr_group = {
5351 .attrs = perfclass_attrs,
5352 .name = "perf_events",
5355 static int __init perf_event_sysfs_init(void)
5357 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5358 &perfclass_attr_group);
5360 device_initcall(perf_event_sysfs_init);