drm/i915: Apply i830 errata for cursor alignment
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob53f3a98cc1ae4ff999c233079a977b9fd1d4d202
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "drm_dp_helper.h"
39 #include "drm_crtc_helper.h"
41 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
44 static void intel_update_watermarks(struct drm_device *dev);
45 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
60 typedef struct {
61 int min, max;
62 } intel_range_t;
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 int, int, intel_clock_t *);
78 #define I8XX_DOT_MIN 25000
79 #define I8XX_DOT_MAX 350000
80 #define I8XX_VCO_MIN 930000
81 #define I8XX_VCO_MAX 1400000
82 #define I8XX_N_MIN 3
83 #define I8XX_N_MAX 16
84 #define I8XX_M_MIN 96
85 #define I8XX_M_MAX 140
86 #define I8XX_M1_MIN 18
87 #define I8XX_M1_MAX 26
88 #define I8XX_M2_MIN 6
89 #define I8XX_M2_MAX 16
90 #define I8XX_P_MIN 4
91 #define I8XX_P_MAX 128
92 #define I8XX_P1_MIN 2
93 #define I8XX_P1_MAX 33
94 #define I8XX_P1_LVDS_MIN 1
95 #define I8XX_P1_LVDS_MAX 6
96 #define I8XX_P2_SLOW 4
97 #define I8XX_P2_FAST 2
98 #define I8XX_P2_LVDS_SLOW 14
99 #define I8XX_P2_LVDS_FAST 7
100 #define I8XX_P2_SLOW_LIMIT 165000
102 #define I9XX_DOT_MIN 20000
103 #define I9XX_DOT_MAX 400000
104 #define I9XX_VCO_MIN 1400000
105 #define I9XX_VCO_MAX 2800000
106 #define PINEVIEW_VCO_MIN 1700000
107 #define PINEVIEW_VCO_MAX 3500000
108 #define I9XX_N_MIN 1
109 #define I9XX_N_MAX 6
110 /* Pineview's Ncounter is a ring counter */
111 #define PINEVIEW_N_MIN 3
112 #define PINEVIEW_N_MAX 6
113 #define I9XX_M_MIN 70
114 #define I9XX_M_MAX 120
115 #define PINEVIEW_M_MIN 2
116 #define PINEVIEW_M_MAX 256
117 #define I9XX_M1_MIN 10
118 #define I9XX_M1_MAX 22
119 #define I9XX_M2_MIN 5
120 #define I9XX_M2_MAX 9
121 /* Pineview M1 is reserved, and must be 0 */
122 #define PINEVIEW_M1_MIN 0
123 #define PINEVIEW_M1_MAX 0
124 #define PINEVIEW_M2_MIN 0
125 #define PINEVIEW_M2_MAX 254
126 #define I9XX_P_SDVO_DAC_MIN 5
127 #define I9XX_P_SDVO_DAC_MAX 80
128 #define I9XX_P_LVDS_MIN 7
129 #define I9XX_P_LVDS_MAX 98
130 #define PINEVIEW_P_LVDS_MIN 7
131 #define PINEVIEW_P_LVDS_MAX 112
132 #define I9XX_P1_MIN 1
133 #define I9XX_P1_MAX 8
134 #define I9XX_P2_SDVO_DAC_SLOW 10
135 #define I9XX_P2_SDVO_DAC_FAST 5
136 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
137 #define I9XX_P2_LVDS_SLOW 14
138 #define I9XX_P2_LVDS_FAST 7
139 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
141 /*The parameter is for SDVO on G4x platform*/
142 #define G4X_DOT_SDVO_MIN 25000
143 #define G4X_DOT_SDVO_MAX 270000
144 #define G4X_VCO_MIN 1750000
145 #define G4X_VCO_MAX 3500000
146 #define G4X_N_SDVO_MIN 1
147 #define G4X_N_SDVO_MAX 4
148 #define G4X_M_SDVO_MIN 104
149 #define G4X_M_SDVO_MAX 138
150 #define G4X_M1_SDVO_MIN 17
151 #define G4X_M1_SDVO_MAX 23
152 #define G4X_M2_SDVO_MIN 5
153 #define G4X_M2_SDVO_MAX 11
154 #define G4X_P_SDVO_MIN 10
155 #define G4X_P_SDVO_MAX 30
156 #define G4X_P1_SDVO_MIN 1
157 #define G4X_P1_SDVO_MAX 3
158 #define G4X_P2_SDVO_SLOW 10
159 #define G4X_P2_SDVO_FAST 10
160 #define G4X_P2_SDVO_LIMIT 270000
162 /*The parameter is for HDMI_DAC on G4x platform*/
163 #define G4X_DOT_HDMI_DAC_MIN 22000
164 #define G4X_DOT_HDMI_DAC_MAX 400000
165 #define G4X_N_HDMI_DAC_MIN 1
166 #define G4X_N_HDMI_DAC_MAX 4
167 #define G4X_M_HDMI_DAC_MIN 104
168 #define G4X_M_HDMI_DAC_MAX 138
169 #define G4X_M1_HDMI_DAC_MIN 16
170 #define G4X_M1_HDMI_DAC_MAX 23
171 #define G4X_M2_HDMI_DAC_MIN 5
172 #define G4X_M2_HDMI_DAC_MAX 11
173 #define G4X_P_HDMI_DAC_MIN 5
174 #define G4X_P_HDMI_DAC_MAX 80
175 #define G4X_P1_HDMI_DAC_MIN 1
176 #define G4X_P1_HDMI_DAC_MAX 8
177 #define G4X_P2_HDMI_DAC_SLOW 10
178 #define G4X_P2_HDMI_DAC_FAST 5
179 #define G4X_P2_HDMI_DAC_LIMIT 165000
181 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
203 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
204 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
205 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
206 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
211 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
212 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
215 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
219 /*The parameter is for DISPLAY PORT on G4x platform*/
220 #define G4X_DOT_DISPLAY_PORT_MIN 161670
221 #define G4X_DOT_DISPLAY_PORT_MAX 227000
222 #define G4X_N_DISPLAY_PORT_MIN 1
223 #define G4X_N_DISPLAY_PORT_MAX 2
224 #define G4X_M_DISPLAY_PORT_MIN 97
225 #define G4X_M_DISPLAY_PORT_MAX 108
226 #define G4X_M1_DISPLAY_PORT_MIN 0x10
227 #define G4X_M1_DISPLAY_PORT_MAX 0x12
228 #define G4X_M2_DISPLAY_PORT_MIN 0x05
229 #define G4X_M2_DISPLAY_PORT_MAX 0x06
230 #define G4X_P_DISPLAY_PORT_MIN 10
231 #define G4X_P_DISPLAY_PORT_MAX 20
232 #define G4X_P1_DISPLAY_PORT_MIN 1
233 #define G4X_P1_DISPLAY_PORT_MAX 2
234 #define G4X_P2_DISPLAY_PORT_SLOW 10
235 #define G4X_P2_DISPLAY_PORT_FAST 10
236 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238 /* Ironlake / Sandybridge */
239 /* as we calculate clock using (register_value + 2) for
240 N/M1/M2, so here the range value for them is (actual_value-2).
242 #define IRONLAKE_DOT_MIN 25000
243 #define IRONLAKE_DOT_MAX 350000
244 #define IRONLAKE_VCO_MIN 1760000
245 #define IRONLAKE_VCO_MAX 3510000
246 #define IRONLAKE_M1_MIN 12
247 #define IRONLAKE_M1_MAX 22
248 #define IRONLAKE_M2_MIN 5
249 #define IRONLAKE_M2_MAX 9
250 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
252 /* We have parameter ranges for different type of outputs. */
254 /* DAC & HDMI Refclk 120Mhz */
255 #define IRONLAKE_DAC_N_MIN 1
256 #define IRONLAKE_DAC_N_MAX 5
257 #define IRONLAKE_DAC_M_MIN 79
258 #define IRONLAKE_DAC_M_MAX 127
259 #define IRONLAKE_DAC_P_MIN 5
260 #define IRONLAKE_DAC_P_MAX 80
261 #define IRONLAKE_DAC_P1_MIN 1
262 #define IRONLAKE_DAC_P1_MAX 8
263 #define IRONLAKE_DAC_P2_SLOW 10
264 #define IRONLAKE_DAC_P2_FAST 5
266 /* LVDS single-channel 120Mhz refclk */
267 #define IRONLAKE_LVDS_S_N_MIN 1
268 #define IRONLAKE_LVDS_S_N_MAX 3
269 #define IRONLAKE_LVDS_S_M_MIN 79
270 #define IRONLAKE_LVDS_S_M_MAX 118
271 #define IRONLAKE_LVDS_S_P_MIN 28
272 #define IRONLAKE_LVDS_S_P_MAX 112
273 #define IRONLAKE_LVDS_S_P1_MIN 2
274 #define IRONLAKE_LVDS_S_P1_MAX 8
275 #define IRONLAKE_LVDS_S_P2_SLOW 14
276 #define IRONLAKE_LVDS_S_P2_FAST 14
278 /* LVDS dual-channel 120Mhz refclk */
279 #define IRONLAKE_LVDS_D_N_MIN 1
280 #define IRONLAKE_LVDS_D_N_MAX 3
281 #define IRONLAKE_LVDS_D_M_MIN 79
282 #define IRONLAKE_LVDS_D_M_MAX 127
283 #define IRONLAKE_LVDS_D_P_MIN 14
284 #define IRONLAKE_LVDS_D_P_MAX 56
285 #define IRONLAKE_LVDS_D_P1_MIN 2
286 #define IRONLAKE_LVDS_D_P1_MAX 8
287 #define IRONLAKE_LVDS_D_P2_SLOW 7
288 #define IRONLAKE_LVDS_D_P2_FAST 7
290 /* LVDS single-channel 100Mhz refclk */
291 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
292 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
293 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
294 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
295 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
296 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
297 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
298 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
299 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
300 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
302 /* LVDS dual-channel 100Mhz refclk */
303 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
304 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
305 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
306 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
307 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
308 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
309 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
310 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
311 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
312 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
314 /* DisplayPort */
315 #define IRONLAKE_DP_N_MIN 1
316 #define IRONLAKE_DP_N_MAX 2
317 #define IRONLAKE_DP_M_MIN 81
318 #define IRONLAKE_DP_M_MAX 90
319 #define IRONLAKE_DP_P_MIN 10
320 #define IRONLAKE_DP_P_MAX 20
321 #define IRONLAKE_DP_P2_FAST 10
322 #define IRONLAKE_DP_P2_SLOW 10
323 #define IRONLAKE_DP_P2_LIMIT 0
324 #define IRONLAKE_DP_P1_MIN 1
325 #define IRONLAKE_DP_P1_MAX 2
327 /* FDI */
328 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
330 static bool
331 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
332 int target, int refclk, intel_clock_t *best_clock);
333 static bool
334 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
335 int target, int refclk, intel_clock_t *best_clock);
337 static bool
338 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
339 int target, int refclk, intel_clock_t *best_clock);
340 static bool
341 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
342 int target, int refclk, intel_clock_t *best_clock);
344 static const intel_limit_t intel_limits_i8xx_dvo = {
345 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
346 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
347 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
348 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
349 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
350 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
351 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
352 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
353 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
354 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
355 .find_pll = intel_find_best_PLL,
358 static const intel_limit_t intel_limits_i8xx_lvds = {
359 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
360 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
361 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
362 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
363 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
364 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
365 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
366 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
367 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
368 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
369 .find_pll = intel_find_best_PLL,
372 static const intel_limit_t intel_limits_i9xx_sdvo = {
373 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
374 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
375 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
376 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
377 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
378 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
379 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
380 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
381 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
382 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
383 .find_pll = intel_find_best_PLL,
386 static const intel_limit_t intel_limits_i9xx_lvds = {
387 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
388 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
389 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
390 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
391 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
392 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
393 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
394 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
395 /* The single-channel range is 25-112Mhz, and dual-channel
396 * is 80-224Mhz. Prefer single channel as much as possible.
398 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
399 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
400 .find_pll = intel_find_best_PLL,
403 /* below parameter and function is for G4X Chipset Family*/
404 static const intel_limit_t intel_limits_g4x_sdvo = {
405 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
406 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
407 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
408 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
409 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
410 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
411 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
412 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
413 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
414 .p2_slow = G4X_P2_SDVO_SLOW,
415 .p2_fast = G4X_P2_SDVO_FAST
417 .find_pll = intel_g4x_find_best_PLL,
420 static const intel_limit_t intel_limits_g4x_hdmi = {
421 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
422 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
423 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
424 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
425 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
426 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
427 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
428 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
429 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
430 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
431 .p2_fast = G4X_P2_HDMI_DAC_FAST
433 .find_pll = intel_g4x_find_best_PLL,
436 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
437 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
438 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
439 .vco = { .min = G4X_VCO_MIN,
440 .max = G4X_VCO_MAX },
441 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
442 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
443 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
444 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
445 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
447 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
448 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
449 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
450 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
451 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
452 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
453 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
454 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
455 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
457 .find_pll = intel_g4x_find_best_PLL,
460 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
461 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
462 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
463 .vco = { .min = G4X_VCO_MIN,
464 .max = G4X_VCO_MAX },
465 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
466 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
467 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
468 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
469 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
471 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
472 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
473 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
474 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
475 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
476 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
477 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
478 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
479 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
481 .find_pll = intel_g4x_find_best_PLL,
484 static const intel_limit_t intel_limits_g4x_display_port = {
485 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
486 .max = G4X_DOT_DISPLAY_PORT_MAX },
487 .vco = { .min = G4X_VCO_MIN,
488 .max = G4X_VCO_MAX},
489 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
490 .max = G4X_N_DISPLAY_PORT_MAX },
491 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
492 .max = G4X_M_DISPLAY_PORT_MAX },
493 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
494 .max = G4X_M1_DISPLAY_PORT_MAX },
495 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
496 .max = G4X_M2_DISPLAY_PORT_MAX },
497 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
498 .max = G4X_P_DISPLAY_PORT_MAX },
499 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
500 .max = G4X_P1_DISPLAY_PORT_MAX},
501 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
502 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
503 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
504 .find_pll = intel_find_pll_g4x_dp,
507 static const intel_limit_t intel_limits_pineview_sdvo = {
508 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
509 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
510 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
511 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
512 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
513 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
514 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
515 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
516 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
517 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
518 .find_pll = intel_find_best_PLL,
521 static const intel_limit_t intel_limits_pineview_lvds = {
522 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
523 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
524 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
525 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
526 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
527 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
528 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
529 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
530 /* Pineview only supports single-channel mode. */
531 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
532 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
533 .find_pll = intel_find_best_PLL,
536 static const intel_limit_t intel_limits_ironlake_dac = {
537 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
538 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
539 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
540 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
541 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
542 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
543 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
544 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
545 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
546 .p2_slow = IRONLAKE_DAC_P2_SLOW,
547 .p2_fast = IRONLAKE_DAC_P2_FAST },
548 .find_pll = intel_g4x_find_best_PLL,
551 static const intel_limit_t intel_limits_ironlake_single_lvds = {
552 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
553 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
554 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
555 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
556 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
557 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
558 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
559 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
560 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
561 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
562 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
563 .find_pll = intel_g4x_find_best_PLL,
566 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
567 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
568 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
569 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
570 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
571 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
572 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
573 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
574 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
575 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
576 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
577 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
578 .find_pll = intel_g4x_find_best_PLL,
581 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
582 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
583 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
584 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
585 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
586 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
587 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
588 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
589 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
590 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
591 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
592 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
593 .find_pll = intel_g4x_find_best_PLL,
596 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
597 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
598 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
599 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
600 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
601 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
602 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
603 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
604 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
605 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
606 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
607 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
608 .find_pll = intel_g4x_find_best_PLL,
611 static const intel_limit_t intel_limits_ironlake_display_port = {
612 .dot = { .min = IRONLAKE_DOT_MIN,
613 .max = IRONLAKE_DOT_MAX },
614 .vco = { .min = IRONLAKE_VCO_MIN,
615 .max = IRONLAKE_VCO_MAX},
616 .n = { .min = IRONLAKE_DP_N_MIN,
617 .max = IRONLAKE_DP_N_MAX },
618 .m = { .min = IRONLAKE_DP_M_MIN,
619 .max = IRONLAKE_DP_M_MAX },
620 .m1 = { .min = IRONLAKE_M1_MIN,
621 .max = IRONLAKE_M1_MAX },
622 .m2 = { .min = IRONLAKE_M2_MIN,
623 .max = IRONLAKE_M2_MAX },
624 .p = { .min = IRONLAKE_DP_P_MIN,
625 .max = IRONLAKE_DP_P_MAX },
626 .p1 = { .min = IRONLAKE_DP_P1_MIN,
627 .max = IRONLAKE_DP_P1_MAX},
628 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
629 .p2_slow = IRONLAKE_DP_P2_SLOW,
630 .p2_fast = IRONLAKE_DP_P2_FAST },
631 .find_pll = intel_find_pll_ironlake_dp,
634 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
636 struct drm_device *dev = crtc->dev;
637 struct drm_i915_private *dev_priv = dev->dev_private;
638 const intel_limit_t *limit;
639 int refclk = 120;
641 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
642 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
643 refclk = 100;
645 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
646 LVDS_CLKB_POWER_UP) {
647 /* LVDS dual channel */
648 if (refclk == 100)
649 limit = &intel_limits_ironlake_dual_lvds_100m;
650 else
651 limit = &intel_limits_ironlake_dual_lvds;
652 } else {
653 if (refclk == 100)
654 limit = &intel_limits_ironlake_single_lvds_100m;
655 else
656 limit = &intel_limits_ironlake_single_lvds;
658 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
659 HAS_eDP)
660 limit = &intel_limits_ironlake_display_port;
661 else
662 limit = &intel_limits_ironlake_dac;
664 return limit;
667 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
669 struct drm_device *dev = crtc->dev;
670 struct drm_i915_private *dev_priv = dev->dev_private;
671 const intel_limit_t *limit;
673 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
674 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
675 LVDS_CLKB_POWER_UP)
676 /* LVDS with dual channel */
677 limit = &intel_limits_g4x_dual_channel_lvds;
678 else
679 /* LVDS with dual channel */
680 limit = &intel_limits_g4x_single_channel_lvds;
681 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
682 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
683 limit = &intel_limits_g4x_hdmi;
684 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
685 limit = &intel_limits_g4x_sdvo;
686 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
687 limit = &intel_limits_g4x_display_port;
688 } else /* The option is for other outputs */
689 limit = &intel_limits_i9xx_sdvo;
691 return limit;
694 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
696 struct drm_device *dev = crtc->dev;
697 const intel_limit_t *limit;
699 if (HAS_PCH_SPLIT(dev))
700 limit = intel_ironlake_limit(crtc);
701 else if (IS_G4X(dev)) {
702 limit = intel_g4x_limit(crtc);
703 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
704 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705 limit = &intel_limits_i9xx_lvds;
706 else
707 limit = &intel_limits_i9xx_sdvo;
708 } else if (IS_PINEVIEW(dev)) {
709 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710 limit = &intel_limits_pineview_lvds;
711 else
712 limit = &intel_limits_pineview_sdvo;
713 } else {
714 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
715 limit = &intel_limits_i8xx_lvds;
716 else
717 limit = &intel_limits_i8xx_dvo;
719 return limit;
722 /* m1 is reserved as 0 in Pineview, n is a ring counter */
723 static void pineview_clock(int refclk, intel_clock_t *clock)
725 clock->m = clock->m2 + 2;
726 clock->p = clock->p1 * clock->p2;
727 clock->vco = refclk * clock->m / clock->n;
728 clock->dot = clock->vco / clock->p;
731 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
733 if (IS_PINEVIEW(dev)) {
734 pineview_clock(refclk, clock);
735 return;
737 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
738 clock->p = clock->p1 * clock->p2;
739 clock->vco = refclk * clock->m / (clock->n + 2);
740 clock->dot = clock->vco / clock->p;
744 * Returns whether any output on the specified pipe is of the specified type
746 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
748 struct drm_device *dev = crtc->dev;
749 struct drm_mode_config *mode_config = &dev->mode_config;
750 struct drm_encoder *l_entry;
752 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
753 if (l_entry && l_entry->crtc == crtc) {
754 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
755 if (intel_encoder->type == type)
756 return true;
759 return false;
762 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
764 * Returns whether the given set of divisors are valid for a given refclk with
765 * the given connectors.
768 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
770 const intel_limit_t *limit = intel_limit (crtc);
771 struct drm_device *dev = crtc->dev;
773 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
774 INTELPllInvalid ("p1 out of range\n");
775 if (clock->p < limit->p.min || limit->p.max < clock->p)
776 INTELPllInvalid ("p out of range\n");
777 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
778 INTELPllInvalid ("m2 out of range\n");
779 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
780 INTELPllInvalid ("m1 out of range\n");
781 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
782 INTELPllInvalid ("m1 <= m2\n");
783 if (clock->m < limit->m.min || limit->m.max < clock->m)
784 INTELPllInvalid ("m out of range\n");
785 if (clock->n < limit->n.min || limit->n.max < clock->n)
786 INTELPllInvalid ("n out of range\n");
787 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
788 INTELPllInvalid ("vco out of range\n");
789 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
790 * connector, etc., rather than just a single range.
792 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
793 INTELPllInvalid ("dot out of range\n");
795 return true;
798 static bool
799 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
800 int target, int refclk, intel_clock_t *best_clock)
803 struct drm_device *dev = crtc->dev;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 intel_clock_t clock;
806 int err = target;
808 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
809 (I915_READ(LVDS)) != 0) {
811 * For LVDS, if the panel is on, just rely on its current
812 * settings for dual-channel. We haven't figured out how to
813 * reliably set up different single/dual channel state, if we
814 * even can.
816 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
817 LVDS_CLKB_POWER_UP)
818 clock.p2 = limit->p2.p2_fast;
819 else
820 clock.p2 = limit->p2.p2_slow;
821 } else {
822 if (target < limit->p2.dot_limit)
823 clock.p2 = limit->p2.p2_slow;
824 else
825 clock.p2 = limit->p2.p2_fast;
828 memset (best_clock, 0, sizeof (*best_clock));
830 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
831 clock.m1++) {
832 for (clock.m2 = limit->m2.min;
833 clock.m2 <= limit->m2.max; clock.m2++) {
834 /* m1 is always 0 in Pineview */
835 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
836 break;
837 for (clock.n = limit->n.min;
838 clock.n <= limit->n.max; clock.n++) {
839 for (clock.p1 = limit->p1.min;
840 clock.p1 <= limit->p1.max; clock.p1++) {
841 int this_err;
843 intel_clock(dev, refclk, &clock);
845 if (!intel_PLL_is_valid(crtc, &clock))
846 continue;
848 this_err = abs(clock.dot - target);
849 if (this_err < err) {
850 *best_clock = clock;
851 err = this_err;
858 return (err != target);
861 static bool
862 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *best_clock)
865 struct drm_device *dev = crtc->dev;
866 struct drm_i915_private *dev_priv = dev->dev_private;
867 intel_clock_t clock;
868 int max_n;
869 bool found;
870 /* approximately equals target * 0.00585 */
871 int err_most = (target >> 8) + (target >> 9);
872 found = false;
874 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
875 int lvds_reg;
877 if (HAS_PCH_SPLIT(dev))
878 lvds_reg = PCH_LVDS;
879 else
880 lvds_reg = LVDS;
881 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
882 LVDS_CLKB_POWER_UP)
883 clock.p2 = limit->p2.p2_fast;
884 else
885 clock.p2 = limit->p2.p2_slow;
886 } else {
887 if (target < limit->p2.dot_limit)
888 clock.p2 = limit->p2.p2_slow;
889 else
890 clock.p2 = limit->p2.p2_fast;
893 memset(best_clock, 0, sizeof(*best_clock));
894 max_n = limit->n.max;
895 /* based on hardware requirement, prefer smaller n to precision */
896 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897 /* based on hardware requirement, prefere larger m1,m2 */
898 for (clock.m1 = limit->m1.max;
899 clock.m1 >= limit->m1.min; clock.m1--) {
900 for (clock.m2 = limit->m2.max;
901 clock.m2 >= limit->m2.min; clock.m2--) {
902 for (clock.p1 = limit->p1.max;
903 clock.p1 >= limit->p1.min; clock.p1--) {
904 int this_err;
906 intel_clock(dev, refclk, &clock);
907 if (!intel_PLL_is_valid(crtc, &clock))
908 continue;
909 this_err = abs(clock.dot - target) ;
910 if (this_err < err_most) {
911 *best_clock = clock;
912 err_most = this_err;
913 max_n = clock.n;
914 found = true;
920 return found;
923 static bool
924 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
925 int target, int refclk, intel_clock_t *best_clock)
927 struct drm_device *dev = crtc->dev;
928 intel_clock_t clock;
930 /* return directly when it is eDP */
931 if (HAS_eDP)
932 return true;
934 if (target < 200000) {
935 clock.n = 1;
936 clock.p1 = 2;
937 clock.p2 = 10;
938 clock.m1 = 12;
939 clock.m2 = 9;
940 } else {
941 clock.n = 2;
942 clock.p1 = 1;
943 clock.p2 = 10;
944 clock.m1 = 14;
945 clock.m2 = 8;
947 intel_clock(dev, refclk, &clock);
948 memcpy(best_clock, &clock, sizeof(intel_clock_t));
949 return true;
952 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
953 static bool
954 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
955 int target, int refclk, intel_clock_t *best_clock)
957 intel_clock_t clock;
958 if (target < 200000) {
959 clock.p1 = 2;
960 clock.p2 = 10;
961 clock.n = 2;
962 clock.m1 = 23;
963 clock.m2 = 8;
964 } else {
965 clock.p1 = 1;
966 clock.p2 = 10;
967 clock.n = 1;
968 clock.m1 = 14;
969 clock.m2 = 2;
971 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
972 clock.p = (clock.p1 * clock.p2);
973 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
974 clock.vco = 0;
975 memcpy(best_clock, &clock, sizeof(intel_clock_t));
976 return true;
979 void
980 intel_wait_for_vblank(struct drm_device *dev)
982 /* Wait for 20ms, i.e. one cycle at 50hz. */
983 if (in_dbg_master())
984 mdelay(20); /* The kernel debugger cannot call msleep() */
985 else
986 msleep(20);
989 /* Parameters have changed, update FBC info */
990 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
992 struct drm_device *dev = crtc->dev;
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 struct drm_framebuffer *fb = crtc->fb;
995 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
996 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
998 int plane, i;
999 u32 fbc_ctl, fbc_ctl2;
1001 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1003 if (fb->pitch < dev_priv->cfb_pitch)
1004 dev_priv->cfb_pitch = fb->pitch;
1006 /* FBC_CTL wants 64B units */
1007 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1008 dev_priv->cfb_fence = obj_priv->fence_reg;
1009 dev_priv->cfb_plane = intel_crtc->plane;
1010 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1012 /* Clear old tags */
1013 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1014 I915_WRITE(FBC_TAG + (i * 4), 0);
1016 /* Set it up... */
1017 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1018 if (obj_priv->tiling_mode != I915_TILING_NONE)
1019 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1020 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1021 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1023 /* enable it... */
1024 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1025 if (IS_I945GM(dev))
1026 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1027 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1028 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1029 if (obj_priv->tiling_mode != I915_TILING_NONE)
1030 fbc_ctl |= dev_priv->cfb_fence;
1031 I915_WRITE(FBC_CONTROL, fbc_ctl);
1033 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1034 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1037 void i8xx_disable_fbc(struct drm_device *dev)
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040 u32 fbc_ctl;
1042 if (!I915_HAS_FBC(dev))
1043 return;
1045 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1046 return; /* Already off, just return */
1048 /* Disable compression */
1049 fbc_ctl = I915_READ(FBC_CONTROL);
1050 fbc_ctl &= ~FBC_CTL_EN;
1051 I915_WRITE(FBC_CONTROL, fbc_ctl);
1053 /* Wait for compressing bit to clear */
1054 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10, 0)) {
1055 DRM_DEBUG_KMS("FBC idle timed out\n");
1056 return;
1059 intel_wait_for_vblank(dev);
1061 DRM_DEBUG_KMS("disabled FBC\n");
1064 static bool i8xx_fbc_enabled(struct drm_device *dev)
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1068 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1071 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1073 struct drm_device *dev = crtc->dev;
1074 struct drm_i915_private *dev_priv = dev->dev_private;
1075 struct drm_framebuffer *fb = crtc->fb;
1076 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1077 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1079 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1080 DPFC_CTL_PLANEB);
1081 unsigned long stall_watermark = 200;
1082 u32 dpfc_ctl;
1084 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1085 dev_priv->cfb_fence = obj_priv->fence_reg;
1086 dev_priv->cfb_plane = intel_crtc->plane;
1088 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1089 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1090 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1091 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1092 } else {
1093 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1096 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1097 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1098 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1099 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1100 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1102 /* enable it... */
1103 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1105 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1108 void g4x_disable_fbc(struct drm_device *dev)
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 u32 dpfc_ctl;
1113 /* Disable compression */
1114 dpfc_ctl = I915_READ(DPFC_CONTROL);
1115 dpfc_ctl &= ~DPFC_CTL_EN;
1116 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1117 intel_wait_for_vblank(dev);
1119 DRM_DEBUG_KMS("disabled FBC\n");
1122 static bool g4x_fbc_enabled(struct drm_device *dev)
1124 struct drm_i915_private *dev_priv = dev->dev_private;
1126 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1129 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1131 struct drm_device *dev = crtc->dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 struct drm_framebuffer *fb = crtc->fb;
1134 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1135 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1137 int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1138 DPFC_CTL_PLANEB;
1139 unsigned long stall_watermark = 200;
1140 u32 dpfc_ctl;
1142 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1143 dev_priv->cfb_fence = obj_priv->fence_reg;
1144 dev_priv->cfb_plane = intel_crtc->plane;
1146 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1147 dpfc_ctl &= DPFC_RESERVED;
1148 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1149 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1150 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1151 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1152 } else {
1153 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1156 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1157 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1158 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1159 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1160 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1161 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1162 /* enable it... */
1163 I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1164 DPFC_CTL_EN);
1166 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1169 void ironlake_disable_fbc(struct drm_device *dev)
1171 struct drm_i915_private *dev_priv = dev->dev_private;
1172 u32 dpfc_ctl;
1174 /* Disable compression */
1175 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1176 dpfc_ctl &= ~DPFC_CTL_EN;
1177 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1178 intel_wait_for_vblank(dev);
1180 DRM_DEBUG_KMS("disabled FBC\n");
1183 static bool ironlake_fbc_enabled(struct drm_device *dev)
1185 struct drm_i915_private *dev_priv = dev->dev_private;
1187 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1190 bool intel_fbc_enabled(struct drm_device *dev)
1192 struct drm_i915_private *dev_priv = dev->dev_private;
1194 if (!dev_priv->display.fbc_enabled)
1195 return false;
1197 return dev_priv->display.fbc_enabled(dev);
1200 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1202 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1204 if (!dev_priv->display.enable_fbc)
1205 return;
1207 dev_priv->display.enable_fbc(crtc, interval);
1210 void intel_disable_fbc(struct drm_device *dev)
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1214 if (!dev_priv->display.disable_fbc)
1215 return;
1217 dev_priv->display.disable_fbc(dev);
1221 * intel_update_fbc - enable/disable FBC as needed
1222 * @crtc: CRTC to point the compressor at
1223 * @mode: mode in use
1225 * Set up the framebuffer compression hardware at mode set time. We
1226 * enable it if possible:
1227 * - plane A only (on pre-965)
1228 * - no pixel mulitply/line duplication
1229 * - no alpha buffer discard
1230 * - no dual wide
1231 * - framebuffer <= 2048 in width, 1536 in height
1233 * We can't assume that any compression will take place (worst case),
1234 * so the compressed buffer has to be the same size as the uncompressed
1235 * one. It also must reside (along with the line length buffer) in
1236 * stolen memory.
1238 * We need to enable/disable FBC on a global basis.
1240 static void intel_update_fbc(struct drm_crtc *crtc,
1241 struct drm_display_mode *mode)
1243 struct drm_device *dev = crtc->dev;
1244 struct drm_i915_private *dev_priv = dev->dev_private;
1245 struct drm_framebuffer *fb = crtc->fb;
1246 struct intel_framebuffer *intel_fb;
1247 struct drm_i915_gem_object *obj_priv;
1248 struct drm_crtc *tmp_crtc;
1249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1250 int plane = intel_crtc->plane;
1251 int crtcs_enabled = 0;
1253 DRM_DEBUG_KMS("\n");
1255 if (!i915_powersave)
1256 return;
1258 if (!I915_HAS_FBC(dev))
1259 return;
1261 if (!crtc->fb)
1262 return;
1264 intel_fb = to_intel_framebuffer(fb);
1265 obj_priv = to_intel_bo(intel_fb->obj);
1268 * If FBC is already on, we just have to verify that we can
1269 * keep it that way...
1270 * Need to disable if:
1271 * - more than one pipe is active
1272 * - changing FBC params (stride, fence, mode)
1273 * - new fb is too large to fit in compressed buffer
1274 * - going to an unsupported config (interlace, pixel multiply, etc.)
1276 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1277 if (tmp_crtc->enabled)
1278 crtcs_enabled++;
1280 DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1281 if (crtcs_enabled > 1) {
1282 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1283 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1284 goto out_disable;
1286 if (intel_fb->obj->size > dev_priv->cfb_size) {
1287 DRM_DEBUG_KMS("framebuffer too large, disabling "
1288 "compression\n");
1289 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1290 goto out_disable;
1292 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1293 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1294 DRM_DEBUG_KMS("mode incompatible with compression, "
1295 "disabling\n");
1296 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1297 goto out_disable;
1299 if ((mode->hdisplay > 2048) ||
1300 (mode->vdisplay > 1536)) {
1301 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1302 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1303 goto out_disable;
1305 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1306 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1307 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1308 goto out_disable;
1310 if (obj_priv->tiling_mode != I915_TILING_X) {
1311 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1312 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1313 goto out_disable;
1316 /* If the kernel debugger is active, always disable compression */
1317 if (in_dbg_master())
1318 goto out_disable;
1320 if (intel_fbc_enabled(dev)) {
1321 /* We can re-enable it in this case, but need to update pitch */
1322 if ((fb->pitch > dev_priv->cfb_pitch) ||
1323 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1324 (plane != dev_priv->cfb_plane))
1325 intel_disable_fbc(dev);
1328 /* Now try to turn it back on if possible */
1329 if (!intel_fbc_enabled(dev))
1330 intel_enable_fbc(crtc, 500);
1332 return;
1334 out_disable:
1335 /* Multiple disables should be harmless */
1336 if (intel_fbc_enabled(dev)) {
1337 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1338 intel_disable_fbc(dev);
1343 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1345 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1346 u32 alignment;
1347 int ret;
1349 switch (obj_priv->tiling_mode) {
1350 case I915_TILING_NONE:
1351 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1352 alignment = 128 * 1024;
1353 else if (IS_I965G(dev))
1354 alignment = 4 * 1024;
1355 else
1356 alignment = 64 * 1024;
1357 break;
1358 case I915_TILING_X:
1359 /* pin() will align the object as required by fence */
1360 alignment = 0;
1361 break;
1362 case I915_TILING_Y:
1363 /* FIXME: Is this true? */
1364 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1365 return -EINVAL;
1366 default:
1367 BUG();
1370 ret = i915_gem_object_pin(obj, alignment);
1371 if (ret != 0)
1372 return ret;
1374 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1375 * fence, whereas 965+ only requires a fence if using
1376 * framebuffer compression. For simplicity, we always install
1377 * a fence as the cost is not that onerous.
1379 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1380 obj_priv->tiling_mode != I915_TILING_NONE) {
1381 ret = i915_gem_object_get_fence_reg(obj);
1382 if (ret != 0) {
1383 i915_gem_object_unpin(obj);
1384 return ret;
1388 return 0;
1391 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1392 static int
1393 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1394 int x, int y)
1396 struct drm_device *dev = crtc->dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1399 struct intel_framebuffer *intel_fb;
1400 struct drm_i915_gem_object *obj_priv;
1401 struct drm_gem_object *obj;
1402 int plane = intel_crtc->plane;
1403 unsigned long Start, Offset;
1404 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1405 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1406 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1407 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1408 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1409 u32 dspcntr;
1411 switch (plane) {
1412 case 0:
1413 case 1:
1414 break;
1415 default:
1416 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1417 return -EINVAL;
1420 intel_fb = to_intel_framebuffer(fb);
1421 obj = intel_fb->obj;
1422 obj_priv = to_intel_bo(obj);
1424 dspcntr = I915_READ(dspcntr_reg);
1425 /* Mask out pixel format bits in case we change it */
1426 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1427 switch (fb->bits_per_pixel) {
1428 case 8:
1429 dspcntr |= DISPPLANE_8BPP;
1430 break;
1431 case 16:
1432 if (fb->depth == 15)
1433 dspcntr |= DISPPLANE_15_16BPP;
1434 else
1435 dspcntr |= DISPPLANE_16BPP;
1436 break;
1437 case 24:
1438 case 32:
1439 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1440 break;
1441 default:
1442 DRM_ERROR("Unknown color depth\n");
1443 return -EINVAL;
1445 if (IS_I965G(dev)) {
1446 if (obj_priv->tiling_mode != I915_TILING_NONE)
1447 dspcntr |= DISPPLANE_TILED;
1448 else
1449 dspcntr &= ~DISPPLANE_TILED;
1452 if (IS_IRONLAKE(dev))
1453 /* must disable */
1454 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1456 I915_WRITE(dspcntr_reg, dspcntr);
1458 Start = obj_priv->gtt_offset;
1459 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1461 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1462 I915_WRITE(dspstride, fb->pitch);
1463 if (IS_I965G(dev)) {
1464 I915_WRITE(dspbase, Offset);
1465 I915_READ(dspbase);
1466 I915_WRITE(dspsurf, Start);
1467 I915_READ(dspsurf);
1468 I915_WRITE(dsptileoff, (y << 16) | x);
1469 } else {
1470 I915_WRITE(dspbase, Start + Offset);
1471 I915_READ(dspbase);
1474 if ((IS_I965G(dev) || plane == 0))
1475 intel_update_fbc(crtc, &crtc->mode);
1477 intel_wait_for_vblank(dev);
1478 intel_increase_pllclock(crtc, true);
1480 return 0;
1483 static int
1484 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1485 struct drm_framebuffer *old_fb)
1487 struct drm_device *dev = crtc->dev;
1488 struct drm_i915_private *dev_priv = dev->dev_private;
1489 struct drm_i915_master_private *master_priv;
1490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1491 struct intel_framebuffer *intel_fb;
1492 struct drm_i915_gem_object *obj_priv;
1493 struct drm_gem_object *obj;
1494 int pipe = intel_crtc->pipe;
1495 int plane = intel_crtc->plane;
1496 unsigned long Start, Offset;
1497 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1498 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1499 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1500 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1501 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1502 u32 dspcntr;
1503 int ret;
1505 /* no fb bound */
1506 if (!crtc->fb) {
1507 DRM_DEBUG_KMS("No FB bound\n");
1508 return 0;
1511 switch (plane) {
1512 case 0:
1513 case 1:
1514 break;
1515 default:
1516 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1517 return -EINVAL;
1520 intel_fb = to_intel_framebuffer(crtc->fb);
1521 obj = intel_fb->obj;
1522 obj_priv = to_intel_bo(obj);
1524 mutex_lock(&dev->struct_mutex);
1525 ret = intel_pin_and_fence_fb_obj(dev, obj);
1526 if (ret != 0) {
1527 mutex_unlock(&dev->struct_mutex);
1528 return ret;
1531 ret = i915_gem_object_set_to_display_plane(obj);
1532 if (ret != 0) {
1533 i915_gem_object_unpin(obj);
1534 mutex_unlock(&dev->struct_mutex);
1535 return ret;
1538 dspcntr = I915_READ(dspcntr_reg);
1539 /* Mask out pixel format bits in case we change it */
1540 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1541 switch (crtc->fb->bits_per_pixel) {
1542 case 8:
1543 dspcntr |= DISPPLANE_8BPP;
1544 break;
1545 case 16:
1546 if (crtc->fb->depth == 15)
1547 dspcntr |= DISPPLANE_15_16BPP;
1548 else
1549 dspcntr |= DISPPLANE_16BPP;
1550 break;
1551 case 24:
1552 case 32:
1553 if (crtc->fb->depth == 30)
1554 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1555 else
1556 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1557 break;
1558 default:
1559 DRM_ERROR("Unknown color depth\n");
1560 i915_gem_object_unpin(obj);
1561 mutex_unlock(&dev->struct_mutex);
1562 return -EINVAL;
1564 if (IS_I965G(dev)) {
1565 if (obj_priv->tiling_mode != I915_TILING_NONE)
1566 dspcntr |= DISPPLANE_TILED;
1567 else
1568 dspcntr &= ~DISPPLANE_TILED;
1571 if (HAS_PCH_SPLIT(dev))
1572 /* must disable */
1573 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1575 I915_WRITE(dspcntr_reg, dspcntr);
1577 Start = obj_priv->gtt_offset;
1578 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1580 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1581 Start, Offset, x, y, crtc->fb->pitch);
1582 I915_WRITE(dspstride, crtc->fb->pitch);
1583 if (IS_I965G(dev)) {
1584 I915_WRITE(dspsurf, Start);
1585 I915_WRITE(dsptileoff, (y << 16) | x);
1586 I915_WRITE(dspbase, Offset);
1587 } else {
1588 I915_WRITE(dspbase, Start + Offset);
1590 POSTING_READ(dspbase);
1592 if ((IS_I965G(dev) || plane == 0))
1593 intel_update_fbc(crtc, &crtc->mode);
1595 intel_wait_for_vblank(dev);
1597 if (old_fb) {
1598 intel_fb = to_intel_framebuffer(old_fb);
1599 obj_priv = to_intel_bo(intel_fb->obj);
1600 i915_gem_object_unpin(intel_fb->obj);
1602 intel_increase_pllclock(crtc, true);
1604 mutex_unlock(&dev->struct_mutex);
1606 if (!dev->primary->master)
1607 return 0;
1609 master_priv = dev->primary->master->driver_priv;
1610 if (!master_priv->sarea_priv)
1611 return 0;
1613 if (pipe) {
1614 master_priv->sarea_priv->pipeB_x = x;
1615 master_priv->sarea_priv->pipeB_y = y;
1616 } else {
1617 master_priv->sarea_priv->pipeA_x = x;
1618 master_priv->sarea_priv->pipeA_y = y;
1621 return 0;
1624 /* Disable the VGA plane that we never use */
1625 static void i915_disable_vga (struct drm_device *dev)
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 u8 sr1;
1629 u32 vga_reg;
1631 if (HAS_PCH_SPLIT(dev))
1632 vga_reg = CPU_VGACNTRL;
1633 else
1634 vga_reg = VGACNTRL;
1636 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1637 return;
1639 I915_WRITE8(VGA_SR_INDEX, 1);
1640 sr1 = I915_READ8(VGA_SR_DATA);
1641 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1642 udelay(100);
1644 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1647 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1649 struct drm_device *dev = crtc->dev;
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 u32 dpa_ctl;
1653 DRM_DEBUG_KMS("\n");
1654 dpa_ctl = I915_READ(DP_A);
1655 dpa_ctl &= ~DP_PLL_ENABLE;
1656 I915_WRITE(DP_A, dpa_ctl);
1659 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1661 struct drm_device *dev = crtc->dev;
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663 u32 dpa_ctl;
1665 dpa_ctl = I915_READ(DP_A);
1666 dpa_ctl |= DP_PLL_ENABLE;
1667 I915_WRITE(DP_A, dpa_ctl);
1668 POSTING_READ(DP_A);
1669 udelay(200);
1673 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1675 struct drm_device *dev = crtc->dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 u32 dpa_ctl;
1679 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1680 dpa_ctl = I915_READ(DP_A);
1681 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1683 if (clock < 200000) {
1684 u32 temp;
1685 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1686 /* workaround for 160Mhz:
1687 1) program 0x4600c bits 15:0 = 0x8124
1688 2) program 0x46010 bit 0 = 1
1689 3) program 0x46034 bit 24 = 1
1690 4) program 0x64000 bit 14 = 1
1692 temp = I915_READ(0x4600c);
1693 temp &= 0xffff0000;
1694 I915_WRITE(0x4600c, temp | 0x8124);
1696 temp = I915_READ(0x46010);
1697 I915_WRITE(0x46010, temp | 1);
1699 temp = I915_READ(0x46034);
1700 I915_WRITE(0x46034, temp | (1 << 24));
1701 } else {
1702 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1704 I915_WRITE(DP_A, dpa_ctl);
1706 udelay(500);
1709 /* The FDI link training functions for ILK/Ibexpeak. */
1710 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1712 struct drm_device *dev = crtc->dev;
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1715 int pipe = intel_crtc->pipe;
1716 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1717 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1718 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1719 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1720 u32 temp, tries = 0;
1722 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1723 for train result */
1724 temp = I915_READ(fdi_rx_imr_reg);
1725 temp &= ~FDI_RX_SYMBOL_LOCK;
1726 temp &= ~FDI_RX_BIT_LOCK;
1727 I915_WRITE(fdi_rx_imr_reg, temp);
1728 I915_READ(fdi_rx_imr_reg);
1729 udelay(150);
1731 /* enable CPU FDI TX and PCH FDI RX */
1732 temp = I915_READ(fdi_tx_reg);
1733 temp |= FDI_TX_ENABLE;
1734 temp &= ~(7 << 19);
1735 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1736 temp &= ~FDI_LINK_TRAIN_NONE;
1737 temp |= FDI_LINK_TRAIN_PATTERN_1;
1738 I915_WRITE(fdi_tx_reg, temp);
1739 I915_READ(fdi_tx_reg);
1741 temp = I915_READ(fdi_rx_reg);
1742 temp &= ~FDI_LINK_TRAIN_NONE;
1743 temp |= FDI_LINK_TRAIN_PATTERN_1;
1744 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1745 I915_READ(fdi_rx_reg);
1746 udelay(150);
1748 for (tries = 0; tries < 5; tries++) {
1749 temp = I915_READ(fdi_rx_iir_reg);
1750 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1752 if ((temp & FDI_RX_BIT_LOCK)) {
1753 DRM_DEBUG_KMS("FDI train 1 done.\n");
1754 I915_WRITE(fdi_rx_iir_reg,
1755 temp | FDI_RX_BIT_LOCK);
1756 break;
1759 if (tries == 5)
1760 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1762 /* Train 2 */
1763 temp = I915_READ(fdi_tx_reg);
1764 temp &= ~FDI_LINK_TRAIN_NONE;
1765 temp |= FDI_LINK_TRAIN_PATTERN_2;
1766 I915_WRITE(fdi_tx_reg, temp);
1768 temp = I915_READ(fdi_rx_reg);
1769 temp &= ~FDI_LINK_TRAIN_NONE;
1770 temp |= FDI_LINK_TRAIN_PATTERN_2;
1771 I915_WRITE(fdi_rx_reg, temp);
1772 udelay(150);
1774 tries = 0;
1776 for (tries = 0; tries < 5; tries++) {
1777 temp = I915_READ(fdi_rx_iir_reg);
1778 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1780 if (temp & FDI_RX_SYMBOL_LOCK) {
1781 I915_WRITE(fdi_rx_iir_reg,
1782 temp | FDI_RX_SYMBOL_LOCK);
1783 DRM_DEBUG_KMS("FDI train 2 done.\n");
1784 break;
1787 if (tries == 5)
1788 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1790 DRM_DEBUG_KMS("FDI train done\n");
1793 static int snb_b_fdi_train_param [] = {
1794 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1795 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1796 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1797 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1800 /* The FDI link training functions for SNB/Cougarpoint. */
1801 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1803 struct drm_device *dev = crtc->dev;
1804 struct drm_i915_private *dev_priv = dev->dev_private;
1805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1806 int pipe = intel_crtc->pipe;
1807 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1808 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1809 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1810 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1811 u32 temp, i;
1813 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1814 for train result */
1815 temp = I915_READ(fdi_rx_imr_reg);
1816 temp &= ~FDI_RX_SYMBOL_LOCK;
1817 temp &= ~FDI_RX_BIT_LOCK;
1818 I915_WRITE(fdi_rx_imr_reg, temp);
1819 I915_READ(fdi_rx_imr_reg);
1820 udelay(150);
1822 /* enable CPU FDI TX and PCH FDI RX */
1823 temp = I915_READ(fdi_tx_reg);
1824 temp |= FDI_TX_ENABLE;
1825 temp &= ~(7 << 19);
1826 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1827 temp &= ~FDI_LINK_TRAIN_NONE;
1828 temp |= FDI_LINK_TRAIN_PATTERN_1;
1829 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1830 /* SNB-B */
1831 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1832 I915_WRITE(fdi_tx_reg, temp);
1833 I915_READ(fdi_tx_reg);
1835 temp = I915_READ(fdi_rx_reg);
1836 if (HAS_PCH_CPT(dev)) {
1837 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1838 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1839 } else {
1840 temp &= ~FDI_LINK_TRAIN_NONE;
1841 temp |= FDI_LINK_TRAIN_PATTERN_1;
1843 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1844 I915_READ(fdi_rx_reg);
1845 udelay(150);
1847 for (i = 0; i < 4; i++ ) {
1848 temp = I915_READ(fdi_tx_reg);
1849 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1850 temp |= snb_b_fdi_train_param[i];
1851 I915_WRITE(fdi_tx_reg, temp);
1852 udelay(500);
1854 temp = I915_READ(fdi_rx_iir_reg);
1855 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1857 if (temp & FDI_RX_BIT_LOCK) {
1858 I915_WRITE(fdi_rx_iir_reg,
1859 temp | FDI_RX_BIT_LOCK);
1860 DRM_DEBUG_KMS("FDI train 1 done.\n");
1861 break;
1864 if (i == 4)
1865 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1867 /* Train 2 */
1868 temp = I915_READ(fdi_tx_reg);
1869 temp &= ~FDI_LINK_TRAIN_NONE;
1870 temp |= FDI_LINK_TRAIN_PATTERN_2;
1871 if (IS_GEN6(dev)) {
1872 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1873 /* SNB-B */
1874 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1876 I915_WRITE(fdi_tx_reg, temp);
1878 temp = I915_READ(fdi_rx_reg);
1879 if (HAS_PCH_CPT(dev)) {
1880 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1881 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1882 } else {
1883 temp &= ~FDI_LINK_TRAIN_NONE;
1884 temp |= FDI_LINK_TRAIN_PATTERN_2;
1886 I915_WRITE(fdi_rx_reg, temp);
1887 udelay(150);
1889 for (i = 0; i < 4; i++ ) {
1890 temp = I915_READ(fdi_tx_reg);
1891 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1892 temp |= snb_b_fdi_train_param[i];
1893 I915_WRITE(fdi_tx_reg, temp);
1894 udelay(500);
1896 temp = I915_READ(fdi_rx_iir_reg);
1897 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1899 if (temp & FDI_RX_SYMBOL_LOCK) {
1900 I915_WRITE(fdi_rx_iir_reg,
1901 temp | FDI_RX_SYMBOL_LOCK);
1902 DRM_DEBUG_KMS("FDI train 2 done.\n");
1903 break;
1906 if (i == 4)
1907 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1909 DRM_DEBUG_KMS("FDI train done.\n");
1912 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1914 struct drm_device *dev = crtc->dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1917 int pipe = intel_crtc->pipe;
1918 int plane = intel_crtc->plane;
1919 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1920 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1921 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1922 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1923 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1924 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1925 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1926 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1927 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1928 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1929 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1930 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1931 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1932 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1933 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1934 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1935 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1936 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1937 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1938 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1939 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1940 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1941 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1942 u32 temp;
1943 u32 pipe_bpc;
1945 temp = I915_READ(pipeconf_reg);
1946 pipe_bpc = temp & PIPE_BPC_MASK;
1948 /* XXX: When our outputs are all unaware of DPMS modes other than off
1949 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1951 switch (mode) {
1952 case DRM_MODE_DPMS_ON:
1953 case DRM_MODE_DPMS_STANDBY:
1954 case DRM_MODE_DPMS_SUSPEND:
1955 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
1957 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1958 temp = I915_READ(PCH_LVDS);
1959 if ((temp & LVDS_PORT_EN) == 0) {
1960 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1961 POSTING_READ(PCH_LVDS);
1965 if (HAS_eDP) {
1966 /* enable eDP PLL */
1967 ironlake_enable_pll_edp(crtc);
1968 } else {
1970 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1971 temp = I915_READ(fdi_rx_reg);
1973 * make the BPC in FDI Rx be consistent with that in
1974 * pipeconf reg.
1976 temp &= ~(0x7 << 16);
1977 temp |= (pipe_bpc << 11);
1978 temp &= ~(7 << 19);
1979 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1980 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1981 I915_READ(fdi_rx_reg);
1982 udelay(200);
1984 /* Switch from Rawclk to PCDclk */
1985 temp = I915_READ(fdi_rx_reg);
1986 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1987 I915_READ(fdi_rx_reg);
1988 udelay(200);
1990 /* Enable CPU FDI TX PLL, always on for Ironlake */
1991 temp = I915_READ(fdi_tx_reg);
1992 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1993 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1994 I915_READ(fdi_tx_reg);
1995 udelay(100);
1999 /* Enable panel fitting for LVDS */
2000 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
2001 || HAS_eDP || intel_pch_has_edp(crtc)) {
2002 if (dev_priv->pch_pf_size) {
2003 temp = I915_READ(pf_ctl_reg);
2004 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
2005 I915_WRITE(pf_win_pos, dev_priv->pch_pf_pos);
2006 I915_WRITE(pf_win_size, dev_priv->pch_pf_size);
2007 } else
2008 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2011 /* Enable CPU pipe */
2012 temp = I915_READ(pipeconf_reg);
2013 if ((temp & PIPEACONF_ENABLE) == 0) {
2014 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2015 I915_READ(pipeconf_reg);
2016 udelay(100);
2019 /* configure and enable CPU plane */
2020 temp = I915_READ(dspcntr_reg);
2021 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2022 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2023 /* Flush the plane changes */
2024 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2027 if (!HAS_eDP) {
2028 /* For PCH output, training FDI link */
2029 if (IS_GEN6(dev))
2030 gen6_fdi_link_train(crtc);
2031 else
2032 ironlake_fdi_link_train(crtc);
2034 /* enable PCH DPLL */
2035 temp = I915_READ(pch_dpll_reg);
2036 if ((temp & DPLL_VCO_ENABLE) == 0) {
2037 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
2038 I915_READ(pch_dpll_reg);
2040 udelay(200);
2042 if (HAS_PCH_CPT(dev)) {
2043 /* Be sure PCH DPLL SEL is set */
2044 temp = I915_READ(PCH_DPLL_SEL);
2045 if (trans_dpll_sel == 0 &&
2046 (temp & TRANSA_DPLL_ENABLE) == 0)
2047 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2048 else if (trans_dpll_sel == 1 &&
2049 (temp & TRANSB_DPLL_ENABLE) == 0)
2050 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2051 I915_WRITE(PCH_DPLL_SEL, temp);
2052 I915_READ(PCH_DPLL_SEL);
2055 /* set transcoder timing */
2056 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
2057 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
2058 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
2060 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2061 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2062 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2064 /* enable normal train */
2065 temp = I915_READ(fdi_tx_reg);
2066 temp &= ~FDI_LINK_TRAIN_NONE;
2067 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2068 FDI_TX_ENHANCE_FRAME_ENABLE);
2069 I915_READ(fdi_tx_reg);
2071 temp = I915_READ(fdi_rx_reg);
2072 if (HAS_PCH_CPT(dev)) {
2073 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2074 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2075 } else {
2076 temp &= ~FDI_LINK_TRAIN_NONE;
2077 temp |= FDI_LINK_TRAIN_NONE;
2079 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2080 I915_READ(fdi_rx_reg);
2082 /* wait one idle pattern time */
2083 udelay(100);
2085 /* For PCH DP, enable TRANS_DP_CTL */
2086 if (HAS_PCH_CPT(dev) &&
2087 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2088 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2089 int reg;
2091 reg = I915_READ(trans_dp_ctl);
2092 reg &= ~(TRANS_DP_PORT_SEL_MASK |
2093 TRANS_DP_SYNC_MASK);
2094 reg |= (TRANS_DP_OUTPUT_ENABLE |
2095 TRANS_DP_ENH_FRAMING);
2097 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2098 reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2099 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2100 reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2102 switch (intel_trans_dp_port_sel(crtc)) {
2103 case PCH_DP_B:
2104 reg |= TRANS_DP_PORT_SEL_B;
2105 break;
2106 case PCH_DP_C:
2107 reg |= TRANS_DP_PORT_SEL_C;
2108 break;
2109 case PCH_DP_D:
2110 reg |= TRANS_DP_PORT_SEL_D;
2111 break;
2112 default:
2113 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2114 reg |= TRANS_DP_PORT_SEL_B;
2115 break;
2118 I915_WRITE(trans_dp_ctl, reg);
2119 POSTING_READ(trans_dp_ctl);
2122 /* enable PCH transcoder */
2123 temp = I915_READ(transconf_reg);
2125 * make the BPC in transcoder be consistent with
2126 * that in pipeconf reg.
2128 temp &= ~PIPE_BPC_MASK;
2129 temp |= pipe_bpc;
2130 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2131 I915_READ(transconf_reg);
2133 if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 10, 0))
2134 DRM_ERROR("failed to enable transcoder\n");
2137 intel_crtc_load_lut(crtc);
2139 intel_update_fbc(crtc, &crtc->mode);
2140 break;
2142 case DRM_MODE_DPMS_OFF:
2143 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2145 drm_vblank_off(dev, pipe);
2146 /* Disable display plane */
2147 temp = I915_READ(dspcntr_reg);
2148 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2149 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2150 /* Flush the plane changes */
2151 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2152 I915_READ(dspbase_reg);
2155 if (dev_priv->cfb_plane == plane &&
2156 dev_priv->display.disable_fbc)
2157 dev_priv->display.disable_fbc(dev);
2159 i915_disable_vga(dev);
2161 /* disable cpu pipe, disable after all planes disabled */
2162 temp = I915_READ(pipeconf_reg);
2163 if ((temp & PIPEACONF_ENABLE) != 0) {
2164 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2166 /* wait for cpu pipe off, pipe state */
2167 if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50, 1))
2168 DRM_ERROR("failed to turn off cpu pipe\n");
2169 } else
2170 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2172 udelay(100);
2174 /* Disable PF */
2175 temp = I915_READ(pf_ctl_reg);
2176 if ((temp & PF_ENABLE) != 0) {
2177 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2178 I915_READ(pf_ctl_reg);
2180 I915_WRITE(pf_win_size, 0);
2181 POSTING_READ(pf_win_size);
2184 /* disable CPU FDI tx and PCH FDI rx */
2185 temp = I915_READ(fdi_tx_reg);
2186 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2187 I915_READ(fdi_tx_reg);
2189 temp = I915_READ(fdi_rx_reg);
2190 /* BPC in FDI rx is consistent with that in pipeconf */
2191 temp &= ~(0x07 << 16);
2192 temp |= (pipe_bpc << 11);
2193 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2194 I915_READ(fdi_rx_reg);
2196 udelay(100);
2198 /* still set train pattern 1 */
2199 temp = I915_READ(fdi_tx_reg);
2200 temp &= ~FDI_LINK_TRAIN_NONE;
2201 temp |= FDI_LINK_TRAIN_PATTERN_1;
2202 I915_WRITE(fdi_tx_reg, temp);
2203 POSTING_READ(fdi_tx_reg);
2205 temp = I915_READ(fdi_rx_reg);
2206 if (HAS_PCH_CPT(dev)) {
2207 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2208 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2209 } else {
2210 temp &= ~FDI_LINK_TRAIN_NONE;
2211 temp |= FDI_LINK_TRAIN_PATTERN_1;
2213 I915_WRITE(fdi_rx_reg, temp);
2214 POSTING_READ(fdi_rx_reg);
2216 udelay(100);
2218 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2219 temp = I915_READ(PCH_LVDS);
2220 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2221 I915_READ(PCH_LVDS);
2222 udelay(100);
2225 /* disable PCH transcoder */
2226 temp = I915_READ(transconf_reg);
2227 if ((temp & TRANS_ENABLE) != 0) {
2228 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2230 /* wait for PCH transcoder off, transcoder state */
2231 if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50, 1))
2232 DRM_ERROR("failed to disable transcoder\n");
2235 temp = I915_READ(transconf_reg);
2236 /* BPC in transcoder is consistent with that in pipeconf */
2237 temp &= ~PIPE_BPC_MASK;
2238 temp |= pipe_bpc;
2239 I915_WRITE(transconf_reg, temp);
2240 I915_READ(transconf_reg);
2241 udelay(100);
2243 if (HAS_PCH_CPT(dev)) {
2244 /* disable TRANS_DP_CTL */
2245 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2246 int reg;
2248 reg = I915_READ(trans_dp_ctl);
2249 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2250 I915_WRITE(trans_dp_ctl, reg);
2251 POSTING_READ(trans_dp_ctl);
2253 /* disable DPLL_SEL */
2254 temp = I915_READ(PCH_DPLL_SEL);
2255 if (trans_dpll_sel == 0)
2256 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2257 else
2258 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2259 I915_WRITE(PCH_DPLL_SEL, temp);
2260 I915_READ(PCH_DPLL_SEL);
2264 /* disable PCH DPLL */
2265 temp = I915_READ(pch_dpll_reg);
2266 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2267 I915_READ(pch_dpll_reg);
2269 if (HAS_eDP) {
2270 ironlake_disable_pll_edp(crtc);
2273 /* Switch from PCDclk to Rawclk */
2274 temp = I915_READ(fdi_rx_reg);
2275 temp &= ~FDI_SEL_PCDCLK;
2276 I915_WRITE(fdi_rx_reg, temp);
2277 I915_READ(fdi_rx_reg);
2279 /* Disable CPU FDI TX PLL */
2280 temp = I915_READ(fdi_tx_reg);
2281 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2282 I915_READ(fdi_tx_reg);
2283 udelay(100);
2285 temp = I915_READ(fdi_rx_reg);
2286 temp &= ~FDI_RX_PLL_ENABLE;
2287 I915_WRITE(fdi_rx_reg, temp);
2288 I915_READ(fdi_rx_reg);
2290 /* Wait for the clocks to turn off. */
2291 udelay(100);
2292 break;
2296 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2298 struct intel_overlay *overlay;
2299 int ret;
2301 if (!enable && intel_crtc->overlay) {
2302 overlay = intel_crtc->overlay;
2303 mutex_lock(&overlay->dev->struct_mutex);
2304 for (;;) {
2305 ret = intel_overlay_switch_off(overlay);
2306 if (ret == 0)
2307 break;
2309 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2310 if (ret != 0) {
2311 /* overlay doesn't react anymore. Usually
2312 * results in a black screen and an unkillable
2313 * X server. */
2314 BUG();
2315 overlay->hw_wedged = HW_WEDGED;
2316 break;
2319 mutex_unlock(&overlay->dev->struct_mutex);
2321 /* Let userspace switch the overlay on again. In most cases userspace
2322 * has to recompute where to put it anyway. */
2324 return;
2327 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2329 struct drm_device *dev = crtc->dev;
2330 struct drm_i915_private *dev_priv = dev->dev_private;
2331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2332 int pipe = intel_crtc->pipe;
2333 int plane = intel_crtc->plane;
2334 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2335 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2336 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2337 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2338 u32 temp;
2340 /* XXX: When our outputs are all unaware of DPMS modes other than off
2341 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2343 switch (mode) {
2344 case DRM_MODE_DPMS_ON:
2345 case DRM_MODE_DPMS_STANDBY:
2346 case DRM_MODE_DPMS_SUSPEND:
2347 /* Enable the DPLL */
2348 temp = I915_READ(dpll_reg);
2349 if ((temp & DPLL_VCO_ENABLE) == 0) {
2350 I915_WRITE(dpll_reg, temp);
2351 I915_READ(dpll_reg);
2352 /* Wait for the clocks to stabilize. */
2353 udelay(150);
2354 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2355 I915_READ(dpll_reg);
2356 /* Wait for the clocks to stabilize. */
2357 udelay(150);
2358 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2359 I915_READ(dpll_reg);
2360 /* Wait for the clocks to stabilize. */
2361 udelay(150);
2364 /* Enable the pipe */
2365 temp = I915_READ(pipeconf_reg);
2366 if ((temp & PIPEACONF_ENABLE) == 0)
2367 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2369 /* Enable the plane */
2370 temp = I915_READ(dspcntr_reg);
2371 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2372 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2373 /* Flush the plane changes */
2374 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2377 intel_crtc_load_lut(crtc);
2379 if ((IS_I965G(dev) || plane == 0))
2380 intel_update_fbc(crtc, &crtc->mode);
2382 /* Give the overlay scaler a chance to enable if it's on this pipe */
2383 intel_crtc_dpms_overlay(intel_crtc, true);
2384 break;
2385 case DRM_MODE_DPMS_OFF:
2386 /* Give the overlay scaler a chance to disable if it's on this pipe */
2387 intel_crtc_dpms_overlay(intel_crtc, false);
2388 drm_vblank_off(dev, pipe);
2390 if (dev_priv->cfb_plane == plane &&
2391 dev_priv->display.disable_fbc)
2392 dev_priv->display.disable_fbc(dev);
2394 /* Disable the VGA plane that we never use */
2395 i915_disable_vga(dev);
2397 /* Disable display plane */
2398 temp = I915_READ(dspcntr_reg);
2399 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2400 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2401 /* Flush the plane changes */
2402 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2403 I915_READ(dspbase_reg);
2406 if (!IS_I9XX(dev)) {
2407 /* Wait for vblank for the disable to take effect */
2408 intel_wait_for_vblank(dev);
2411 /* Don't disable pipe A or pipe A PLLs if needed */
2412 if (pipeconf_reg == PIPEACONF &&
2413 (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2414 goto skip_pipe_off;
2416 /* Next, disable display pipes */
2417 temp = I915_READ(pipeconf_reg);
2418 if ((temp & PIPEACONF_ENABLE) != 0) {
2419 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2420 I915_READ(pipeconf_reg);
2423 /* Wait for vblank for the disable to take effect. */
2424 intel_wait_for_vblank(dev);
2426 temp = I915_READ(dpll_reg);
2427 if ((temp & DPLL_VCO_ENABLE) != 0) {
2428 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2429 I915_READ(dpll_reg);
2431 skip_pipe_off:
2432 /* Wait for the clocks to turn off. */
2433 udelay(150);
2434 break;
2439 * Sets the power management mode of the pipe and plane.
2441 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2443 struct drm_device *dev = crtc->dev;
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 struct drm_i915_master_private *master_priv;
2446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2447 int pipe = intel_crtc->pipe;
2448 bool enabled;
2450 intel_crtc->dpms_mode = mode;
2451 intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON;
2453 /* When switching on the display, ensure that SR is disabled
2454 * with multiple pipes prior to enabling to new pipe.
2456 * When switching off the display, make sure the cursor is
2457 * properly hidden prior to disabling the pipe.
2459 if (mode == DRM_MODE_DPMS_ON)
2460 intel_update_watermarks(dev);
2461 else
2462 intel_crtc_update_cursor(crtc);
2464 dev_priv->display.dpms(crtc, mode);
2466 if (mode == DRM_MODE_DPMS_ON)
2467 intel_crtc_update_cursor(crtc);
2468 else
2469 intel_update_watermarks(dev);
2471 if (!dev->primary->master)
2472 return;
2474 master_priv = dev->primary->master->driver_priv;
2475 if (!master_priv->sarea_priv)
2476 return;
2478 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2480 switch (pipe) {
2481 case 0:
2482 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2483 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2484 break;
2485 case 1:
2486 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2487 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2488 break;
2489 default:
2490 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2491 break;
2495 static void intel_crtc_prepare (struct drm_crtc *crtc)
2497 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2498 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2501 static void intel_crtc_commit (struct drm_crtc *crtc)
2503 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2504 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2507 void intel_encoder_prepare (struct drm_encoder *encoder)
2509 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2510 /* lvds has its own version of prepare see intel_lvds_prepare */
2511 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2514 void intel_encoder_commit (struct drm_encoder *encoder)
2516 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2517 /* lvds has its own version of commit see intel_lvds_commit */
2518 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2521 void intel_encoder_destroy(struct drm_encoder *encoder)
2523 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
2525 if (intel_encoder->ddc_bus)
2526 intel_i2c_destroy(intel_encoder->ddc_bus);
2528 if (intel_encoder->i2c_bus)
2529 intel_i2c_destroy(intel_encoder->i2c_bus);
2531 drm_encoder_cleanup(encoder);
2532 kfree(intel_encoder);
2535 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2536 struct drm_display_mode *mode,
2537 struct drm_display_mode *adjusted_mode)
2539 struct drm_device *dev = crtc->dev;
2540 if (HAS_PCH_SPLIT(dev)) {
2541 /* FDI link clock is fixed at 2.7G */
2542 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2543 return false;
2545 return true;
2548 static int i945_get_display_clock_speed(struct drm_device *dev)
2550 return 400000;
2553 static int i915_get_display_clock_speed(struct drm_device *dev)
2555 return 333000;
2558 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2560 return 200000;
2563 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2565 u16 gcfgc = 0;
2567 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2569 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2570 return 133000;
2571 else {
2572 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2573 case GC_DISPLAY_CLOCK_333_MHZ:
2574 return 333000;
2575 default:
2576 case GC_DISPLAY_CLOCK_190_200_MHZ:
2577 return 190000;
2582 static int i865_get_display_clock_speed(struct drm_device *dev)
2584 return 266000;
2587 static int i855_get_display_clock_speed(struct drm_device *dev)
2589 u16 hpllcc = 0;
2590 /* Assume that the hardware is in the high speed state. This
2591 * should be the default.
2593 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2594 case GC_CLOCK_133_200:
2595 case GC_CLOCK_100_200:
2596 return 200000;
2597 case GC_CLOCK_166_250:
2598 return 250000;
2599 case GC_CLOCK_100_133:
2600 return 133000;
2603 /* Shouldn't happen */
2604 return 0;
2607 static int i830_get_display_clock_speed(struct drm_device *dev)
2609 return 133000;
2613 * Return the pipe currently connected to the panel fitter,
2614 * or -1 if the panel fitter is not present or not in use
2616 int intel_panel_fitter_pipe (struct drm_device *dev)
2618 struct drm_i915_private *dev_priv = dev->dev_private;
2619 u32 pfit_control;
2621 /* i830 doesn't have a panel fitter */
2622 if (IS_I830(dev))
2623 return -1;
2625 pfit_control = I915_READ(PFIT_CONTROL);
2627 /* See if the panel fitter is in use */
2628 if ((pfit_control & PFIT_ENABLE) == 0)
2629 return -1;
2631 /* 965 can place panel fitter on either pipe */
2632 if (IS_I965G(dev))
2633 return (pfit_control >> 29) & 0x3;
2635 /* older chips can only use pipe 1 */
2636 return 1;
2639 struct fdi_m_n {
2640 u32 tu;
2641 u32 gmch_m;
2642 u32 gmch_n;
2643 u32 link_m;
2644 u32 link_n;
2647 static void
2648 fdi_reduce_ratio(u32 *num, u32 *den)
2650 while (*num > 0xffffff || *den > 0xffffff) {
2651 *num >>= 1;
2652 *den >>= 1;
2656 #define DATA_N 0x800000
2657 #define LINK_N 0x80000
2659 static void
2660 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2661 int link_clock, struct fdi_m_n *m_n)
2663 u64 temp;
2665 m_n->tu = 64; /* default size */
2667 temp = (u64) DATA_N * pixel_clock;
2668 temp = div_u64(temp, link_clock);
2669 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2670 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2671 m_n->gmch_n = DATA_N;
2672 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2674 temp = (u64) LINK_N * pixel_clock;
2675 m_n->link_m = div_u64(temp, link_clock);
2676 m_n->link_n = LINK_N;
2677 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2681 struct intel_watermark_params {
2682 unsigned long fifo_size;
2683 unsigned long max_wm;
2684 unsigned long default_wm;
2685 unsigned long guard_size;
2686 unsigned long cacheline_size;
2689 /* Pineview has different values for various configs */
2690 static struct intel_watermark_params pineview_display_wm = {
2691 PINEVIEW_DISPLAY_FIFO,
2692 PINEVIEW_MAX_WM,
2693 PINEVIEW_DFT_WM,
2694 PINEVIEW_GUARD_WM,
2695 PINEVIEW_FIFO_LINE_SIZE
2697 static struct intel_watermark_params pineview_display_hplloff_wm = {
2698 PINEVIEW_DISPLAY_FIFO,
2699 PINEVIEW_MAX_WM,
2700 PINEVIEW_DFT_HPLLOFF_WM,
2701 PINEVIEW_GUARD_WM,
2702 PINEVIEW_FIFO_LINE_SIZE
2704 static struct intel_watermark_params pineview_cursor_wm = {
2705 PINEVIEW_CURSOR_FIFO,
2706 PINEVIEW_CURSOR_MAX_WM,
2707 PINEVIEW_CURSOR_DFT_WM,
2708 PINEVIEW_CURSOR_GUARD_WM,
2709 PINEVIEW_FIFO_LINE_SIZE,
2711 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2712 PINEVIEW_CURSOR_FIFO,
2713 PINEVIEW_CURSOR_MAX_WM,
2714 PINEVIEW_CURSOR_DFT_WM,
2715 PINEVIEW_CURSOR_GUARD_WM,
2716 PINEVIEW_FIFO_LINE_SIZE
2718 static struct intel_watermark_params g4x_wm_info = {
2719 G4X_FIFO_SIZE,
2720 G4X_MAX_WM,
2721 G4X_MAX_WM,
2723 G4X_FIFO_LINE_SIZE,
2725 static struct intel_watermark_params g4x_cursor_wm_info = {
2726 I965_CURSOR_FIFO,
2727 I965_CURSOR_MAX_WM,
2728 I965_CURSOR_DFT_WM,
2730 G4X_FIFO_LINE_SIZE,
2732 static struct intel_watermark_params i965_cursor_wm_info = {
2733 I965_CURSOR_FIFO,
2734 I965_CURSOR_MAX_WM,
2735 I965_CURSOR_DFT_WM,
2737 I915_FIFO_LINE_SIZE,
2739 static struct intel_watermark_params i945_wm_info = {
2740 I945_FIFO_SIZE,
2741 I915_MAX_WM,
2744 I915_FIFO_LINE_SIZE
2746 static struct intel_watermark_params i915_wm_info = {
2747 I915_FIFO_SIZE,
2748 I915_MAX_WM,
2751 I915_FIFO_LINE_SIZE
2753 static struct intel_watermark_params i855_wm_info = {
2754 I855GM_FIFO_SIZE,
2755 I915_MAX_WM,
2758 I830_FIFO_LINE_SIZE
2760 static struct intel_watermark_params i830_wm_info = {
2761 I830_FIFO_SIZE,
2762 I915_MAX_WM,
2765 I830_FIFO_LINE_SIZE
2768 static struct intel_watermark_params ironlake_display_wm_info = {
2769 ILK_DISPLAY_FIFO,
2770 ILK_DISPLAY_MAXWM,
2771 ILK_DISPLAY_DFTWM,
2773 ILK_FIFO_LINE_SIZE
2776 static struct intel_watermark_params ironlake_cursor_wm_info = {
2777 ILK_CURSOR_FIFO,
2778 ILK_CURSOR_MAXWM,
2779 ILK_CURSOR_DFTWM,
2781 ILK_FIFO_LINE_SIZE
2784 static struct intel_watermark_params ironlake_display_srwm_info = {
2785 ILK_DISPLAY_SR_FIFO,
2786 ILK_DISPLAY_MAX_SRWM,
2787 ILK_DISPLAY_DFT_SRWM,
2789 ILK_FIFO_LINE_SIZE
2792 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2793 ILK_CURSOR_SR_FIFO,
2794 ILK_CURSOR_MAX_SRWM,
2795 ILK_CURSOR_DFT_SRWM,
2797 ILK_FIFO_LINE_SIZE
2801 * intel_calculate_wm - calculate watermark level
2802 * @clock_in_khz: pixel clock
2803 * @wm: chip FIFO params
2804 * @pixel_size: display pixel size
2805 * @latency_ns: memory latency for the platform
2807 * Calculate the watermark level (the level at which the display plane will
2808 * start fetching from memory again). Each chip has a different display
2809 * FIFO size and allocation, so the caller needs to figure that out and pass
2810 * in the correct intel_watermark_params structure.
2812 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2813 * on the pixel size. When it reaches the watermark level, it'll start
2814 * fetching FIFO line sized based chunks from memory until the FIFO fills
2815 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2816 * will occur, and a display engine hang could result.
2818 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2819 struct intel_watermark_params *wm,
2820 int pixel_size,
2821 unsigned long latency_ns)
2823 long entries_required, wm_size;
2826 * Note: we need to make sure we don't overflow for various clock &
2827 * latency values.
2828 * clocks go from a few thousand to several hundred thousand.
2829 * latency is usually a few thousand
2831 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2832 1000;
2833 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2835 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2837 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2839 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2841 /* Don't promote wm_size to unsigned... */
2842 if (wm_size > (long)wm->max_wm)
2843 wm_size = wm->max_wm;
2844 if (wm_size <= 0) {
2845 wm_size = wm->default_wm;
2846 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2847 " entries required = %ld, available = %lu.\n",
2848 entries_required + wm->guard_size,
2849 wm->fifo_size);
2852 return wm_size;
2855 struct cxsr_latency {
2856 int is_desktop;
2857 int is_ddr3;
2858 unsigned long fsb_freq;
2859 unsigned long mem_freq;
2860 unsigned long display_sr;
2861 unsigned long display_hpll_disable;
2862 unsigned long cursor_sr;
2863 unsigned long cursor_hpll_disable;
2866 static const struct cxsr_latency cxsr_latency_table[] = {
2867 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2868 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2869 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2870 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2871 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2873 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2874 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2875 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2876 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2877 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2879 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2880 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2881 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2882 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2883 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2885 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2886 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2887 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2888 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2889 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2891 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2892 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2893 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2894 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2895 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2897 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2898 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2899 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2900 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2901 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2904 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2905 int is_ddr3,
2906 int fsb,
2907 int mem)
2909 const struct cxsr_latency *latency;
2910 int i;
2912 if (fsb == 0 || mem == 0)
2913 return NULL;
2915 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2916 latency = &cxsr_latency_table[i];
2917 if (is_desktop == latency->is_desktop &&
2918 is_ddr3 == latency->is_ddr3 &&
2919 fsb == latency->fsb_freq && mem == latency->mem_freq)
2920 return latency;
2923 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2925 return NULL;
2928 static void pineview_disable_cxsr(struct drm_device *dev)
2930 struct drm_i915_private *dev_priv = dev->dev_private;
2932 /* deactivate cxsr */
2933 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2937 * Latency for FIFO fetches is dependent on several factors:
2938 * - memory configuration (speed, channels)
2939 * - chipset
2940 * - current MCH state
2941 * It can be fairly high in some situations, so here we assume a fairly
2942 * pessimal value. It's a tradeoff between extra memory fetches (if we
2943 * set this value too high, the FIFO will fetch frequently to stay full)
2944 * and power consumption (set it too low to save power and we might see
2945 * FIFO underruns and display "flicker").
2947 * A value of 5us seems to be a good balance; safe for very low end
2948 * platforms but not overly aggressive on lower latency configs.
2950 static const int latency_ns = 5000;
2952 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2954 struct drm_i915_private *dev_priv = dev->dev_private;
2955 uint32_t dsparb = I915_READ(DSPARB);
2956 int size;
2958 size = dsparb & 0x7f;
2959 if (plane)
2960 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2962 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2963 plane ? "B" : "A", size);
2965 return size;
2968 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2970 struct drm_i915_private *dev_priv = dev->dev_private;
2971 uint32_t dsparb = I915_READ(DSPARB);
2972 int size;
2974 size = dsparb & 0x1ff;
2975 if (plane)
2976 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2977 size >>= 1; /* Convert to cachelines */
2979 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2980 plane ? "B" : "A", size);
2982 return size;
2985 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2987 struct drm_i915_private *dev_priv = dev->dev_private;
2988 uint32_t dsparb = I915_READ(DSPARB);
2989 int size;
2991 size = dsparb & 0x7f;
2992 size >>= 2; /* Convert to cachelines */
2994 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2995 plane ? "B" : "A",
2996 size);
2998 return size;
3001 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3003 struct drm_i915_private *dev_priv = dev->dev_private;
3004 uint32_t dsparb = I915_READ(DSPARB);
3005 int size;
3007 size = dsparb & 0x7f;
3008 size >>= 1; /* Convert to cachelines */
3010 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3011 plane ? "B" : "A", size);
3013 return size;
3016 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3017 int planeb_clock, int sr_hdisplay, int unused,
3018 int pixel_size)
3020 struct drm_i915_private *dev_priv = dev->dev_private;
3021 const struct cxsr_latency *latency;
3022 u32 reg;
3023 unsigned long wm;
3024 int sr_clock;
3026 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3027 dev_priv->fsb_freq, dev_priv->mem_freq);
3028 if (!latency) {
3029 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3030 pineview_disable_cxsr(dev);
3031 return;
3034 if (!planea_clock || !planeb_clock) {
3035 sr_clock = planea_clock ? planea_clock : planeb_clock;
3037 /* Display SR */
3038 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3039 pixel_size, latency->display_sr);
3040 reg = I915_READ(DSPFW1);
3041 reg &= ~DSPFW_SR_MASK;
3042 reg |= wm << DSPFW_SR_SHIFT;
3043 I915_WRITE(DSPFW1, reg);
3044 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3046 /* cursor SR */
3047 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3048 pixel_size, latency->cursor_sr);
3049 reg = I915_READ(DSPFW3);
3050 reg &= ~DSPFW_CURSOR_SR_MASK;
3051 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3052 I915_WRITE(DSPFW3, reg);
3054 /* Display HPLL off SR */
3055 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3056 pixel_size, latency->display_hpll_disable);
3057 reg = I915_READ(DSPFW3);
3058 reg &= ~DSPFW_HPLL_SR_MASK;
3059 reg |= wm & DSPFW_HPLL_SR_MASK;
3060 I915_WRITE(DSPFW3, reg);
3062 /* cursor HPLL off SR */
3063 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3064 pixel_size, latency->cursor_hpll_disable);
3065 reg = I915_READ(DSPFW3);
3066 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3067 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3068 I915_WRITE(DSPFW3, reg);
3069 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3071 /* activate cxsr */
3072 I915_WRITE(DSPFW3,
3073 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3074 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3075 } else {
3076 pineview_disable_cxsr(dev);
3077 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3081 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3082 int planeb_clock, int sr_hdisplay, int sr_htotal,
3083 int pixel_size)
3085 struct drm_i915_private *dev_priv = dev->dev_private;
3086 int total_size, cacheline_size;
3087 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3088 struct intel_watermark_params planea_params, planeb_params;
3089 unsigned long line_time_us;
3090 int sr_clock, sr_entries = 0, entries_required;
3092 /* Create copies of the base settings for each pipe */
3093 planea_params = planeb_params = g4x_wm_info;
3095 /* Grab a couple of global values before we overwrite them */
3096 total_size = planea_params.fifo_size;
3097 cacheline_size = planea_params.cacheline_size;
3100 * Note: we need to make sure we don't overflow for various clock &
3101 * latency values.
3102 * clocks go from a few thousand to several hundred thousand.
3103 * latency is usually a few thousand
3105 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3106 1000;
3107 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3108 planea_wm = entries_required + planea_params.guard_size;
3110 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3111 1000;
3112 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3113 planeb_wm = entries_required + planeb_params.guard_size;
3115 cursora_wm = cursorb_wm = 16;
3116 cursor_sr = 32;
3118 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3120 /* Calc sr entries for one plane configs */
3121 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3122 /* self-refresh has much higher latency */
3123 static const int sr_latency_ns = 12000;
3125 sr_clock = planea_clock ? planea_clock : planeb_clock;
3126 line_time_us = ((sr_htotal * 1000) / sr_clock);
3128 /* Use ns/us then divide to preserve precision */
3129 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3130 pixel_size * sr_hdisplay;
3131 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3133 entries_required = (((sr_latency_ns / line_time_us) +
3134 1000) / 1000) * pixel_size * 64;
3135 entries_required = DIV_ROUND_UP(entries_required,
3136 g4x_cursor_wm_info.cacheline_size);
3137 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3139 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3140 cursor_sr = g4x_cursor_wm_info.max_wm;
3141 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3142 "cursor %d\n", sr_entries, cursor_sr);
3144 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3145 } else {
3146 /* Turn off self refresh if both pipes are enabled */
3147 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3148 & ~FW_BLC_SELF_EN);
3151 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3152 planea_wm, planeb_wm, sr_entries);
3154 planea_wm &= 0x3f;
3155 planeb_wm &= 0x3f;
3157 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3158 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3159 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3160 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3161 (cursora_wm << DSPFW_CURSORA_SHIFT));
3162 /* HPLL off in SR has some issues on G4x... disable it */
3163 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3164 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3167 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3168 int planeb_clock, int sr_hdisplay, int sr_htotal,
3169 int pixel_size)
3171 struct drm_i915_private *dev_priv = dev->dev_private;
3172 unsigned long line_time_us;
3173 int sr_clock, sr_entries, srwm = 1;
3174 int cursor_sr = 16;
3176 /* Calc sr entries for one plane configs */
3177 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3178 /* self-refresh has much higher latency */
3179 static const int sr_latency_ns = 12000;
3181 sr_clock = planea_clock ? planea_clock : planeb_clock;
3182 line_time_us = ((sr_htotal * 1000) / sr_clock);
3184 /* Use ns/us then divide to preserve precision */
3185 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3186 pixel_size * sr_hdisplay;
3187 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3188 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3189 srwm = I965_FIFO_SIZE - sr_entries;
3190 if (srwm < 0)
3191 srwm = 1;
3192 srwm &= 0x1ff;
3194 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3195 pixel_size * 64;
3196 sr_entries = DIV_ROUND_UP(sr_entries,
3197 i965_cursor_wm_info.cacheline_size);
3198 cursor_sr = i965_cursor_wm_info.fifo_size -
3199 (sr_entries + i965_cursor_wm_info.guard_size);
3201 if (cursor_sr > i965_cursor_wm_info.max_wm)
3202 cursor_sr = i965_cursor_wm_info.max_wm;
3204 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3205 "cursor %d\n", srwm, cursor_sr);
3207 if (IS_I965GM(dev))
3208 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3209 } else {
3210 /* Turn off self refresh if both pipes are enabled */
3211 if (IS_I965GM(dev))
3212 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3213 & ~FW_BLC_SELF_EN);
3216 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3217 srwm);
3219 /* 965 has limitations... */
3220 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3221 (8 << 0));
3222 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3223 /* update cursor SR watermark */
3224 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3227 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3228 int planeb_clock, int sr_hdisplay, int sr_htotal,
3229 int pixel_size)
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 uint32_t fwater_lo;
3233 uint32_t fwater_hi;
3234 int total_size, cacheline_size, cwm, srwm = 1;
3235 int planea_wm, planeb_wm;
3236 struct intel_watermark_params planea_params, planeb_params;
3237 unsigned long line_time_us;
3238 int sr_clock, sr_entries = 0;
3240 /* Create copies of the base settings for each pipe */
3241 if (IS_I965GM(dev) || IS_I945GM(dev))
3242 planea_params = planeb_params = i945_wm_info;
3243 else if (IS_I9XX(dev))
3244 planea_params = planeb_params = i915_wm_info;
3245 else
3246 planea_params = planeb_params = i855_wm_info;
3248 /* Grab a couple of global values before we overwrite them */
3249 total_size = planea_params.fifo_size;
3250 cacheline_size = planea_params.cacheline_size;
3252 /* Update per-plane FIFO sizes */
3253 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3254 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3256 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3257 pixel_size, latency_ns);
3258 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3259 pixel_size, latency_ns);
3260 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3263 * Overlay gets an aggressive default since video jitter is bad.
3265 cwm = 2;
3267 /* Calc sr entries for one plane configs */
3268 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3269 (!planea_clock || !planeb_clock)) {
3270 /* self-refresh has much higher latency */
3271 static const int sr_latency_ns = 6000;
3273 sr_clock = planea_clock ? planea_clock : planeb_clock;
3274 line_time_us = ((sr_htotal * 1000) / sr_clock);
3276 /* Use ns/us then divide to preserve precision */
3277 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3278 pixel_size * sr_hdisplay;
3279 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3280 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3281 srwm = total_size - sr_entries;
3282 if (srwm < 0)
3283 srwm = 1;
3285 if (IS_I945G(dev) || IS_I945GM(dev))
3286 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3287 else if (IS_I915GM(dev)) {
3288 /* 915M has a smaller SRWM field */
3289 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3290 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3292 } else {
3293 /* Turn off self refresh if both pipes are enabled */
3294 if (IS_I945G(dev) || IS_I945GM(dev)) {
3295 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3296 & ~FW_BLC_SELF_EN);
3297 } else if (IS_I915GM(dev)) {
3298 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3302 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3303 planea_wm, planeb_wm, cwm, srwm);
3305 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3306 fwater_hi = (cwm & 0x1f);
3308 /* Set request length to 8 cachelines per fetch */
3309 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3310 fwater_hi = fwater_hi | (1 << 8);
3312 I915_WRITE(FW_BLC, fwater_lo);
3313 I915_WRITE(FW_BLC2, fwater_hi);
3316 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3317 int unused2, int unused3, int pixel_size)
3319 struct drm_i915_private *dev_priv = dev->dev_private;
3320 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3321 int planea_wm;
3323 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3325 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3326 pixel_size, latency_ns);
3327 fwater_lo |= (3<<8) | planea_wm;
3329 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3331 I915_WRITE(FW_BLC, fwater_lo);
3334 #define ILK_LP0_PLANE_LATENCY 700
3335 #define ILK_LP0_CURSOR_LATENCY 1300
3337 static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
3338 int planeb_clock, int sr_hdisplay, int sr_htotal,
3339 int pixel_size)
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3343 int sr_wm, cursor_wm;
3344 unsigned long line_time_us;
3345 int sr_clock, entries_required;
3346 u32 reg_value;
3347 int line_count;
3348 int planea_htotal = 0, planeb_htotal = 0;
3349 struct drm_crtc *crtc;
3351 /* Need htotal for all active display plane */
3352 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3354 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3355 if (intel_crtc->plane == 0)
3356 planea_htotal = crtc->mode.htotal;
3357 else
3358 planeb_htotal = crtc->mode.htotal;
3362 /* Calculate and update the watermark for plane A */
3363 if (planea_clock) {
3364 entries_required = ((planea_clock / 1000) * pixel_size *
3365 ILK_LP0_PLANE_LATENCY) / 1000;
3366 entries_required = DIV_ROUND_UP(entries_required,
3367 ironlake_display_wm_info.cacheline_size);
3368 planea_wm = entries_required +
3369 ironlake_display_wm_info.guard_size;
3371 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3372 planea_wm = ironlake_display_wm_info.max_wm;
3374 /* Use the large buffer method to calculate cursor watermark */
3375 line_time_us = (planea_htotal * 1000) / planea_clock;
3377 /* Use ns/us then divide to preserve precision */
3378 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3380 /* calculate the cursor watermark for cursor A */
3381 entries_required = line_count * 64 * pixel_size;
3382 entries_required = DIV_ROUND_UP(entries_required,
3383 ironlake_cursor_wm_info.cacheline_size);
3384 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3385 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3386 cursora_wm = ironlake_cursor_wm_info.max_wm;
3388 reg_value = I915_READ(WM0_PIPEA_ILK);
3389 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3390 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3391 (cursora_wm & WM0_PIPE_CURSOR_MASK);
3392 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3393 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3394 "cursor: %d\n", planea_wm, cursora_wm);
3396 /* Calculate and update the watermark for plane B */
3397 if (planeb_clock) {
3398 entries_required = ((planeb_clock / 1000) * pixel_size *
3399 ILK_LP0_PLANE_LATENCY) / 1000;
3400 entries_required = DIV_ROUND_UP(entries_required,
3401 ironlake_display_wm_info.cacheline_size);
3402 planeb_wm = entries_required +
3403 ironlake_display_wm_info.guard_size;
3405 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3406 planeb_wm = ironlake_display_wm_info.max_wm;
3408 /* Use the large buffer method to calculate cursor watermark */
3409 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3411 /* Use ns/us then divide to preserve precision */
3412 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3414 /* calculate the cursor watermark for cursor B */
3415 entries_required = line_count * 64 * pixel_size;
3416 entries_required = DIV_ROUND_UP(entries_required,
3417 ironlake_cursor_wm_info.cacheline_size);
3418 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3419 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3420 cursorb_wm = ironlake_cursor_wm_info.max_wm;
3422 reg_value = I915_READ(WM0_PIPEB_ILK);
3423 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3424 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3425 (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3426 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3427 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3428 "cursor: %d\n", planeb_wm, cursorb_wm);
3432 * Calculate and update the self-refresh watermark only when one
3433 * display plane is used.
3435 if (!planea_clock || !planeb_clock) {
3437 /* Read the self-refresh latency. The unit is 0.5us */
3438 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3440 sr_clock = planea_clock ? planea_clock : planeb_clock;
3441 line_time_us = ((sr_htotal * 1000) / sr_clock);
3443 /* Use ns/us then divide to preserve precision */
3444 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3445 / 1000;
3447 /* calculate the self-refresh watermark for display plane */
3448 entries_required = line_count * sr_hdisplay * pixel_size;
3449 entries_required = DIV_ROUND_UP(entries_required,
3450 ironlake_display_srwm_info.cacheline_size);
3451 sr_wm = entries_required +
3452 ironlake_display_srwm_info.guard_size;
3454 /* calculate the self-refresh watermark for display cursor */
3455 entries_required = line_count * pixel_size * 64;
3456 entries_required = DIV_ROUND_UP(entries_required,
3457 ironlake_cursor_srwm_info.cacheline_size);
3458 cursor_wm = entries_required +
3459 ironlake_cursor_srwm_info.guard_size;
3461 /* configure watermark and enable self-refresh */
3462 reg_value = I915_READ(WM1_LP_ILK);
3463 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3464 WM1_LP_CURSOR_MASK);
3465 reg_value |= WM1_LP_SR_EN |
3466 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3467 (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3469 I915_WRITE(WM1_LP_ILK, reg_value);
3470 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3471 "cursor %d\n", sr_wm, cursor_wm);
3473 } else {
3474 /* Turn off self refresh if both pipes are enabled */
3475 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3479 * intel_update_watermarks - update FIFO watermark values based on current modes
3481 * Calculate watermark values for the various WM regs based on current mode
3482 * and plane configuration.
3484 * There are several cases to deal with here:
3485 * - normal (i.e. non-self-refresh)
3486 * - self-refresh (SR) mode
3487 * - lines are large relative to FIFO size (buffer can hold up to 2)
3488 * - lines are small relative to FIFO size (buffer can hold more than 2
3489 * lines), so need to account for TLB latency
3491 * The normal calculation is:
3492 * watermark = dotclock * bytes per pixel * latency
3493 * where latency is platform & configuration dependent (we assume pessimal
3494 * values here).
3496 * The SR calculation is:
3497 * watermark = (trunc(latency/line time)+1) * surface width *
3498 * bytes per pixel
3499 * where
3500 * line time = htotal / dotclock
3501 * surface width = hdisplay for normal plane and 64 for cursor
3502 * and latency is assumed to be high, as above.
3504 * The final value programmed to the register should always be rounded up,
3505 * and include an extra 2 entries to account for clock crossings.
3507 * We don't use the sprite, so we can ignore that. And on Crestline we have
3508 * to set the non-SR watermarks to 8.
3510 static void intel_update_watermarks(struct drm_device *dev)
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 struct drm_crtc *crtc;
3514 int sr_hdisplay = 0;
3515 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3516 int enabled = 0, pixel_size = 0;
3517 int sr_htotal = 0;
3519 if (!dev_priv->display.update_wm)
3520 return;
3522 /* Get the clock config from both planes */
3523 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3525 if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
3526 enabled++;
3527 if (intel_crtc->plane == 0) {
3528 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3529 intel_crtc->pipe, crtc->mode.clock);
3530 planea_clock = crtc->mode.clock;
3531 } else {
3532 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3533 intel_crtc->pipe, crtc->mode.clock);
3534 planeb_clock = crtc->mode.clock;
3536 sr_hdisplay = crtc->mode.hdisplay;
3537 sr_clock = crtc->mode.clock;
3538 sr_htotal = crtc->mode.htotal;
3539 if (crtc->fb)
3540 pixel_size = crtc->fb->bits_per_pixel / 8;
3541 else
3542 pixel_size = 4; /* by default */
3546 if (enabled <= 0)
3547 return;
3549 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3550 sr_hdisplay, sr_htotal, pixel_size);
3553 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3554 struct drm_display_mode *mode,
3555 struct drm_display_mode *adjusted_mode,
3556 int x, int y,
3557 struct drm_framebuffer *old_fb)
3559 struct drm_device *dev = crtc->dev;
3560 struct drm_i915_private *dev_priv = dev->dev_private;
3561 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3562 int pipe = intel_crtc->pipe;
3563 int plane = intel_crtc->plane;
3564 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3565 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3566 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3567 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3568 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3569 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3570 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3571 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3572 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3573 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3574 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3575 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3576 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3577 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3578 int refclk, num_connectors = 0;
3579 intel_clock_t clock, reduced_clock;
3580 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3581 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3582 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3583 bool is_edp = false;
3584 struct drm_mode_config *mode_config = &dev->mode_config;
3585 struct drm_encoder *encoder;
3586 struct intel_encoder *intel_encoder = NULL;
3587 const intel_limit_t *limit;
3588 int ret;
3589 struct fdi_m_n m_n = {0};
3590 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3591 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3592 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3593 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3594 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3595 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3596 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3597 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3598 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3599 int lvds_reg = LVDS;
3600 u32 temp;
3601 int sdvo_pixel_multiply;
3602 int target_clock;
3604 drm_vblank_pre_modeset(dev, pipe);
3606 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3608 if (!encoder || encoder->crtc != crtc)
3609 continue;
3611 intel_encoder = enc_to_intel_encoder(encoder);
3613 switch (intel_encoder->type) {
3614 case INTEL_OUTPUT_LVDS:
3615 is_lvds = true;
3616 break;
3617 case INTEL_OUTPUT_SDVO:
3618 case INTEL_OUTPUT_HDMI:
3619 is_sdvo = true;
3620 if (intel_encoder->needs_tv_clock)
3621 is_tv = true;
3622 break;
3623 case INTEL_OUTPUT_DVO:
3624 is_dvo = true;
3625 break;
3626 case INTEL_OUTPUT_TVOUT:
3627 is_tv = true;
3628 break;
3629 case INTEL_OUTPUT_ANALOG:
3630 is_crt = true;
3631 break;
3632 case INTEL_OUTPUT_DISPLAYPORT:
3633 is_dp = true;
3634 break;
3635 case INTEL_OUTPUT_EDP:
3636 is_edp = true;
3637 break;
3640 num_connectors++;
3643 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3644 refclk = dev_priv->lvds_ssc_freq * 1000;
3645 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3646 refclk / 1000);
3647 } else if (IS_I9XX(dev)) {
3648 refclk = 96000;
3649 if (HAS_PCH_SPLIT(dev))
3650 refclk = 120000; /* 120Mhz refclk */
3651 } else {
3652 refclk = 48000;
3657 * Returns a set of divisors for the desired target clock with the given
3658 * refclk, or FALSE. The returned values represent the clock equation:
3659 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3661 limit = intel_limit(crtc);
3662 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3663 if (!ok) {
3664 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3665 drm_vblank_post_modeset(dev, pipe);
3666 return -EINVAL;
3669 /* Ensure that the cursor is valid for the new mode before changing... */
3670 intel_crtc_update_cursor(crtc);
3672 if (is_lvds && dev_priv->lvds_downclock_avail) {
3673 has_reduced_clock = limit->find_pll(limit, crtc,
3674 dev_priv->lvds_downclock,
3675 refclk,
3676 &reduced_clock);
3677 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3679 * If the different P is found, it means that we can't
3680 * switch the display clock by using the FP0/FP1.
3681 * In such case we will disable the LVDS downclock
3682 * feature.
3684 DRM_DEBUG_KMS("Different P is found for "
3685 "LVDS clock/downclock\n");
3686 has_reduced_clock = 0;
3689 /* SDVO TV has fixed PLL values depend on its clock range,
3690 this mirrors vbios setting. */
3691 if (is_sdvo && is_tv) {
3692 if (adjusted_mode->clock >= 100000
3693 && adjusted_mode->clock < 140500) {
3694 clock.p1 = 2;
3695 clock.p2 = 10;
3696 clock.n = 3;
3697 clock.m1 = 16;
3698 clock.m2 = 8;
3699 } else if (adjusted_mode->clock >= 140500
3700 && adjusted_mode->clock <= 200000) {
3701 clock.p1 = 1;
3702 clock.p2 = 10;
3703 clock.n = 6;
3704 clock.m1 = 12;
3705 clock.m2 = 8;
3709 /* FDI link */
3710 if (HAS_PCH_SPLIT(dev)) {
3711 int lane = 0, link_bw, bpp;
3712 /* eDP doesn't require FDI link, so just set DP M/N
3713 according to current link config */
3714 if (is_edp) {
3715 target_clock = mode->clock;
3716 intel_edp_link_config(intel_encoder,
3717 &lane, &link_bw);
3718 } else {
3719 /* DP over FDI requires target mode clock
3720 instead of link clock */
3721 if (is_dp)
3722 target_clock = mode->clock;
3723 else
3724 target_clock = adjusted_mode->clock;
3725 link_bw = 270000;
3728 /* determine panel color depth */
3729 temp = I915_READ(pipeconf_reg);
3730 temp &= ~PIPE_BPC_MASK;
3731 if (is_lvds) {
3732 int lvds_reg = I915_READ(PCH_LVDS);
3733 /* the BPC will be 6 if it is 18-bit LVDS panel */
3734 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3735 temp |= PIPE_8BPC;
3736 else
3737 temp |= PIPE_6BPC;
3738 } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
3739 switch (dev_priv->edp_bpp/3) {
3740 case 8:
3741 temp |= PIPE_8BPC;
3742 break;
3743 case 10:
3744 temp |= PIPE_10BPC;
3745 break;
3746 case 6:
3747 temp |= PIPE_6BPC;
3748 break;
3749 case 12:
3750 temp |= PIPE_12BPC;
3751 break;
3753 } else
3754 temp |= PIPE_8BPC;
3755 I915_WRITE(pipeconf_reg, temp);
3756 I915_READ(pipeconf_reg);
3758 switch (temp & PIPE_BPC_MASK) {
3759 case PIPE_8BPC:
3760 bpp = 24;
3761 break;
3762 case PIPE_10BPC:
3763 bpp = 30;
3764 break;
3765 case PIPE_6BPC:
3766 bpp = 18;
3767 break;
3768 case PIPE_12BPC:
3769 bpp = 36;
3770 break;
3771 default:
3772 DRM_ERROR("unknown pipe bpc value\n");
3773 bpp = 24;
3776 if (!lane) {
3778 * Account for spread spectrum to avoid
3779 * oversubscribing the link. Max center spread
3780 * is 2.5%; use 5% for safety's sake.
3782 u32 bps = target_clock * bpp * 21 / 20;
3783 lane = bps / (link_bw * 8) + 1;
3786 intel_crtc->fdi_lanes = lane;
3788 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3791 /* Ironlake: try to setup display ref clock before DPLL
3792 * enabling. This is only under driver's control after
3793 * PCH B stepping, previous chipset stepping should be
3794 * ignoring this setting.
3796 if (HAS_PCH_SPLIT(dev)) {
3797 temp = I915_READ(PCH_DREF_CONTROL);
3798 /* Always enable nonspread source */
3799 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3800 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3801 I915_WRITE(PCH_DREF_CONTROL, temp);
3802 POSTING_READ(PCH_DREF_CONTROL);
3804 temp &= ~DREF_SSC_SOURCE_MASK;
3805 temp |= DREF_SSC_SOURCE_ENABLE;
3806 I915_WRITE(PCH_DREF_CONTROL, temp);
3807 POSTING_READ(PCH_DREF_CONTROL);
3809 udelay(200);
3811 if (is_edp) {
3812 if (dev_priv->lvds_use_ssc) {
3813 temp |= DREF_SSC1_ENABLE;
3814 I915_WRITE(PCH_DREF_CONTROL, temp);
3815 POSTING_READ(PCH_DREF_CONTROL);
3817 udelay(200);
3819 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3820 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3821 I915_WRITE(PCH_DREF_CONTROL, temp);
3822 POSTING_READ(PCH_DREF_CONTROL);
3823 } else {
3824 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3825 I915_WRITE(PCH_DREF_CONTROL, temp);
3826 POSTING_READ(PCH_DREF_CONTROL);
3831 if (IS_PINEVIEW(dev)) {
3832 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3833 if (has_reduced_clock)
3834 fp2 = (1 << reduced_clock.n) << 16 |
3835 reduced_clock.m1 << 8 | reduced_clock.m2;
3836 } else {
3837 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3838 if (has_reduced_clock)
3839 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3840 reduced_clock.m2;
3843 if (!HAS_PCH_SPLIT(dev))
3844 dpll = DPLL_VGA_MODE_DIS;
3846 if (IS_I9XX(dev)) {
3847 if (is_lvds)
3848 dpll |= DPLLB_MODE_LVDS;
3849 else
3850 dpll |= DPLLB_MODE_DAC_SERIAL;
3851 if (is_sdvo) {
3852 dpll |= DPLL_DVO_HIGH_SPEED;
3853 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3854 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3855 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3856 else if (HAS_PCH_SPLIT(dev))
3857 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3859 if (is_dp)
3860 dpll |= DPLL_DVO_HIGH_SPEED;
3862 /* compute bitmask from p1 value */
3863 if (IS_PINEVIEW(dev))
3864 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3865 else {
3866 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3867 /* also FPA1 */
3868 if (HAS_PCH_SPLIT(dev))
3869 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3870 if (IS_G4X(dev) && has_reduced_clock)
3871 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3873 switch (clock.p2) {
3874 case 5:
3875 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3876 break;
3877 case 7:
3878 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3879 break;
3880 case 10:
3881 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3882 break;
3883 case 14:
3884 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3885 break;
3887 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3888 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3889 } else {
3890 if (is_lvds) {
3891 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3892 } else {
3893 if (clock.p1 == 2)
3894 dpll |= PLL_P1_DIVIDE_BY_TWO;
3895 else
3896 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3897 if (clock.p2 == 4)
3898 dpll |= PLL_P2_DIVIDE_BY_4;
3902 if (is_sdvo && is_tv)
3903 dpll |= PLL_REF_INPUT_TVCLKINBC;
3904 else if (is_tv)
3905 /* XXX: just matching BIOS for now */
3906 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3907 dpll |= 3;
3908 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3909 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3910 else
3911 dpll |= PLL_REF_INPUT_DREFCLK;
3913 /* setup pipeconf */
3914 pipeconf = I915_READ(pipeconf_reg);
3916 /* Set up the display plane register */
3917 dspcntr = DISPPLANE_GAMMA_ENABLE;
3919 /* Ironlake's plane is forced to pipe, bit 24 is to
3920 enable color space conversion */
3921 if (!HAS_PCH_SPLIT(dev)) {
3922 if (pipe == 0)
3923 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3924 else
3925 dspcntr |= DISPPLANE_SEL_PIPE_B;
3928 if (pipe == 0 && !IS_I965G(dev)) {
3929 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3930 * core speed.
3932 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3933 * pipe == 0 check?
3935 if (mode->clock >
3936 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3937 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3938 else
3939 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3942 dspcntr |= DISPLAY_PLANE_ENABLE;
3943 pipeconf |= PIPEACONF_ENABLE;
3944 dpll |= DPLL_VCO_ENABLE;
3947 /* Disable the panel fitter if it was on our pipe */
3948 if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3949 I915_WRITE(PFIT_CONTROL, 0);
3951 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3952 drm_mode_debug_printmodeline(mode);
3954 /* assign to Ironlake registers */
3955 if (HAS_PCH_SPLIT(dev)) {
3956 fp_reg = pch_fp_reg;
3957 dpll_reg = pch_dpll_reg;
3960 if (is_edp) {
3961 ironlake_disable_pll_edp(crtc);
3962 } else if ((dpll & DPLL_VCO_ENABLE)) {
3963 I915_WRITE(fp_reg, fp);
3964 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3965 I915_READ(dpll_reg);
3966 udelay(150);
3969 /* enable transcoder DPLL */
3970 if (HAS_PCH_CPT(dev)) {
3971 temp = I915_READ(PCH_DPLL_SEL);
3972 if (trans_dpll_sel == 0)
3973 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3974 else
3975 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3976 I915_WRITE(PCH_DPLL_SEL, temp);
3977 I915_READ(PCH_DPLL_SEL);
3978 udelay(150);
3981 if (HAS_PCH_SPLIT(dev)) {
3982 pipeconf &= ~PIPE_ENABLE_DITHER;
3983 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3986 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3987 * This is an exception to the general rule that mode_set doesn't turn
3988 * things on.
3990 if (is_lvds) {
3991 u32 lvds;
3993 if (HAS_PCH_SPLIT(dev))
3994 lvds_reg = PCH_LVDS;
3996 lvds = I915_READ(lvds_reg);
3997 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3998 if (pipe == 1) {
3999 if (HAS_PCH_CPT(dev))
4000 lvds |= PORT_TRANS_B_SEL_CPT;
4001 else
4002 lvds |= LVDS_PIPEB_SELECT;
4003 } else {
4004 if (HAS_PCH_CPT(dev))
4005 lvds &= ~PORT_TRANS_SEL_MASK;
4006 else
4007 lvds &= ~LVDS_PIPEB_SELECT;
4009 /* set the corresponsding LVDS_BORDER bit */
4010 lvds |= dev_priv->lvds_border_bits;
4011 /* Set the B0-B3 data pairs corresponding to whether we're going to
4012 * set the DPLLs for dual-channel mode or not.
4014 if (clock.p2 == 7)
4015 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4016 else
4017 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4019 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4020 * appropriately here, but we need to look more thoroughly into how
4021 * panels behave in the two modes.
4023 /* set the dithering flag */
4024 if (IS_I965G(dev)) {
4025 if (dev_priv->lvds_dither) {
4026 if (HAS_PCH_SPLIT(dev)) {
4027 pipeconf |= PIPE_ENABLE_DITHER;
4028 pipeconf |= PIPE_DITHER_TYPE_ST01;
4029 } else
4030 lvds |= LVDS_ENABLE_DITHER;
4031 } else {
4032 if (!HAS_PCH_SPLIT(dev)) {
4033 lvds &= ~LVDS_ENABLE_DITHER;
4037 I915_WRITE(lvds_reg, lvds);
4038 I915_READ(lvds_reg);
4040 if (is_dp)
4041 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4042 else if (HAS_PCH_SPLIT(dev)) {
4043 /* For non-DP output, clear any trans DP clock recovery setting.*/
4044 if (pipe == 0) {
4045 I915_WRITE(TRANSA_DATA_M1, 0);
4046 I915_WRITE(TRANSA_DATA_N1, 0);
4047 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4048 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4049 } else {
4050 I915_WRITE(TRANSB_DATA_M1, 0);
4051 I915_WRITE(TRANSB_DATA_N1, 0);
4052 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4053 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4057 if (!is_edp) {
4058 I915_WRITE(fp_reg, fp);
4059 I915_WRITE(dpll_reg, dpll);
4060 I915_READ(dpll_reg);
4061 /* Wait for the clocks to stabilize. */
4062 udelay(150);
4064 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
4065 if (is_sdvo) {
4066 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
4067 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
4068 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
4069 } else
4070 I915_WRITE(dpll_md_reg, 0);
4071 } else {
4072 /* write it again -- the BIOS does, after all */
4073 I915_WRITE(dpll_reg, dpll);
4075 I915_READ(dpll_reg);
4076 /* Wait for the clocks to stabilize. */
4077 udelay(150);
4080 if (is_lvds && has_reduced_clock && i915_powersave) {
4081 I915_WRITE(fp_reg + 4, fp2);
4082 intel_crtc->lowfreq_avail = true;
4083 if (HAS_PIPE_CXSR(dev)) {
4084 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4085 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4087 } else {
4088 I915_WRITE(fp_reg + 4, fp);
4089 intel_crtc->lowfreq_avail = false;
4090 if (HAS_PIPE_CXSR(dev)) {
4091 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4092 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4096 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4097 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4098 /* the chip adds 2 halflines automatically */
4099 adjusted_mode->crtc_vdisplay -= 1;
4100 adjusted_mode->crtc_vtotal -= 1;
4101 adjusted_mode->crtc_vblank_start -= 1;
4102 adjusted_mode->crtc_vblank_end -= 1;
4103 adjusted_mode->crtc_vsync_end -= 1;
4104 adjusted_mode->crtc_vsync_start -= 1;
4105 } else
4106 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4108 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4109 ((adjusted_mode->crtc_htotal - 1) << 16));
4110 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4111 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4112 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4113 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4114 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4115 ((adjusted_mode->crtc_vtotal - 1) << 16));
4116 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4117 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4118 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4119 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4120 /* pipesrc and dspsize control the size that is scaled from, which should
4121 * always be the user's requested size.
4123 if (!HAS_PCH_SPLIT(dev)) {
4124 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4125 (mode->hdisplay - 1));
4126 I915_WRITE(dsppos_reg, 0);
4128 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4130 if (HAS_PCH_SPLIT(dev)) {
4131 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4132 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4133 I915_WRITE(link_m1_reg, m_n.link_m);
4134 I915_WRITE(link_n1_reg, m_n.link_n);
4136 if (is_edp) {
4137 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4138 } else {
4139 /* enable FDI RX PLL too */
4140 temp = I915_READ(fdi_rx_reg);
4141 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4142 I915_READ(fdi_rx_reg);
4143 udelay(200);
4145 /* enable FDI TX PLL too */
4146 temp = I915_READ(fdi_tx_reg);
4147 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4148 I915_READ(fdi_tx_reg);
4150 /* enable FDI RX PCDCLK */
4151 temp = I915_READ(fdi_rx_reg);
4152 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4153 I915_READ(fdi_rx_reg);
4154 udelay(200);
4158 I915_WRITE(pipeconf_reg, pipeconf);
4159 I915_READ(pipeconf_reg);
4161 intel_wait_for_vblank(dev);
4163 if (IS_IRONLAKE(dev)) {
4164 /* enable address swizzle for tiling buffer */
4165 temp = I915_READ(DISP_ARB_CTL);
4166 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4169 I915_WRITE(dspcntr_reg, dspcntr);
4171 /* Flush the plane changes */
4172 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4174 intel_update_watermarks(dev);
4176 drm_vblank_post_modeset(dev, pipe);
4178 return ret;
4181 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4182 void intel_crtc_load_lut(struct drm_crtc *crtc)
4184 struct drm_device *dev = crtc->dev;
4185 struct drm_i915_private *dev_priv = dev->dev_private;
4186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4187 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4188 int i;
4190 /* The clocks have to be on to load the palette. */
4191 if (!crtc->enabled)
4192 return;
4194 /* use legacy palette for Ironlake */
4195 if (HAS_PCH_SPLIT(dev))
4196 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4197 LGC_PALETTE_B;
4199 for (i = 0; i < 256; i++) {
4200 I915_WRITE(palreg + 4 * i,
4201 (intel_crtc->lut_r[i] << 16) |
4202 (intel_crtc->lut_g[i] << 8) |
4203 intel_crtc->lut_b[i]);
4207 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4209 struct drm_device *dev = crtc->dev;
4210 struct drm_i915_private *dev_priv = dev->dev_private;
4211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4212 bool visible = base != 0;
4213 u32 cntl;
4215 if (intel_crtc->cursor_visible == visible)
4216 return;
4218 cntl = I915_READ(CURACNTR);
4219 if (visible) {
4220 /* On these chipsets we can only modify the base whilst
4221 * the cursor is disabled.
4223 I915_WRITE(CURABASE, base);
4225 cntl &= ~(CURSOR_FORMAT_MASK);
4226 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4227 cntl |= CURSOR_ENABLE |
4228 CURSOR_GAMMA_ENABLE |
4229 CURSOR_FORMAT_ARGB;
4230 } else
4231 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4232 I915_WRITE(CURACNTR, cntl);
4234 intel_crtc->cursor_visible = visible;
4237 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4239 struct drm_device *dev = crtc->dev;
4240 struct drm_i915_private *dev_priv = dev->dev_private;
4241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4242 int pipe = intel_crtc->pipe;
4243 bool visible = base != 0;
4245 if (intel_crtc->cursor_visible != visible) {
4246 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4247 if (base) {
4248 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4249 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4250 cntl |= pipe << 28; /* Connect to correct pipe */
4251 } else {
4252 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4253 cntl |= CURSOR_MODE_DISABLE;
4255 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4257 intel_crtc->cursor_visible = visible;
4259 /* and commit changes on next vblank */
4260 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4263 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4264 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4266 struct drm_device *dev = crtc->dev;
4267 struct drm_i915_private *dev_priv = dev->dev_private;
4268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4269 int pipe = intel_crtc->pipe;
4270 int x = intel_crtc->cursor_x;
4271 int y = intel_crtc->cursor_y;
4272 u32 base, pos;
4273 bool visible;
4275 pos = 0;
4277 if (intel_crtc->cursor_on && crtc->fb) {
4278 base = intel_crtc->cursor_addr;
4279 if (x > (int) crtc->fb->width)
4280 base = 0;
4282 if (y > (int) crtc->fb->height)
4283 base = 0;
4284 } else
4285 base = 0;
4287 if (x < 0) {
4288 if (x + intel_crtc->cursor_width < 0)
4289 base = 0;
4291 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4292 x = -x;
4294 pos |= x << CURSOR_X_SHIFT;
4296 if (y < 0) {
4297 if (y + intel_crtc->cursor_height < 0)
4298 base = 0;
4300 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4301 y = -y;
4303 pos |= y << CURSOR_Y_SHIFT;
4305 visible = base != 0;
4306 if (!visible && !intel_crtc->cursor_visible)
4307 return;
4309 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4310 if (IS_845G(dev) || IS_I865G(dev))
4311 i845_update_cursor(crtc, base);
4312 else
4313 i9xx_update_cursor(crtc, base);
4315 if (visible)
4316 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4319 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4320 struct drm_file *file_priv,
4321 uint32_t handle,
4322 uint32_t width, uint32_t height)
4324 struct drm_device *dev = crtc->dev;
4325 struct drm_i915_private *dev_priv = dev->dev_private;
4326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4327 struct drm_gem_object *bo;
4328 struct drm_i915_gem_object *obj_priv;
4329 uint32_t addr;
4330 int ret;
4332 DRM_DEBUG_KMS("\n");
4334 /* if we want to turn off the cursor ignore width and height */
4335 if (!handle) {
4336 DRM_DEBUG_KMS("cursor off\n");
4337 addr = 0;
4338 bo = NULL;
4339 mutex_lock(&dev->struct_mutex);
4340 goto finish;
4343 /* Currently we only support 64x64 cursors */
4344 if (width != 64 || height != 64) {
4345 DRM_ERROR("we currently only support 64x64 cursors\n");
4346 return -EINVAL;
4349 bo = drm_gem_object_lookup(dev, file_priv, handle);
4350 if (!bo)
4351 return -ENOENT;
4353 obj_priv = to_intel_bo(bo);
4355 if (bo->size < width * height * 4) {
4356 DRM_ERROR("buffer is to small\n");
4357 ret = -ENOMEM;
4358 goto fail;
4361 /* we only need to pin inside GTT if cursor is non-phy */
4362 mutex_lock(&dev->struct_mutex);
4363 if (!dev_priv->info->cursor_needs_physical) {
4364 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4365 if (ret) {
4366 DRM_ERROR("failed to pin cursor bo\n");
4367 goto fail_locked;
4370 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4371 if (ret) {
4372 DRM_ERROR("failed to move cursor bo into the GTT\n");
4373 goto fail_unpin;
4376 addr = obj_priv->gtt_offset;
4377 } else {
4378 int align = IS_I830(dev) ? 16 * 1024 : 256;
4379 ret = i915_gem_attach_phys_object(dev, bo,
4380 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4381 align);
4382 if (ret) {
4383 DRM_ERROR("failed to attach phys object\n");
4384 goto fail_locked;
4386 addr = obj_priv->phys_obj->handle->busaddr;
4389 if (!IS_I9XX(dev))
4390 I915_WRITE(CURSIZE, (height << 12) | width);
4392 finish:
4393 if (intel_crtc->cursor_bo) {
4394 if (dev_priv->info->cursor_needs_physical) {
4395 if (intel_crtc->cursor_bo != bo)
4396 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4397 } else
4398 i915_gem_object_unpin(intel_crtc->cursor_bo);
4399 drm_gem_object_unreference(intel_crtc->cursor_bo);
4402 mutex_unlock(&dev->struct_mutex);
4404 intel_crtc->cursor_addr = addr;
4405 intel_crtc->cursor_bo = bo;
4406 intel_crtc->cursor_width = width;
4407 intel_crtc->cursor_height = height;
4409 intel_crtc_update_cursor(crtc);
4411 return 0;
4412 fail_unpin:
4413 i915_gem_object_unpin(bo);
4414 fail_locked:
4415 mutex_unlock(&dev->struct_mutex);
4416 fail:
4417 drm_gem_object_unreference_unlocked(bo);
4418 return ret;
4421 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4425 intel_crtc->cursor_x = x;
4426 intel_crtc->cursor_y = y;
4428 intel_crtc_update_cursor(crtc);
4430 return 0;
4433 /** Sets the color ramps on behalf of RandR */
4434 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4435 u16 blue, int regno)
4437 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4439 intel_crtc->lut_r[regno] = red >> 8;
4440 intel_crtc->lut_g[regno] = green >> 8;
4441 intel_crtc->lut_b[regno] = blue >> 8;
4444 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4445 u16 *blue, int regno)
4447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4449 *red = intel_crtc->lut_r[regno] << 8;
4450 *green = intel_crtc->lut_g[regno] << 8;
4451 *blue = intel_crtc->lut_b[regno] << 8;
4454 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4455 u16 *blue, uint32_t size)
4457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4458 int i;
4460 if (size != 256)
4461 return;
4463 for (i = 0; i < 256; i++) {
4464 intel_crtc->lut_r[i] = red[i] >> 8;
4465 intel_crtc->lut_g[i] = green[i] >> 8;
4466 intel_crtc->lut_b[i] = blue[i] >> 8;
4469 intel_crtc_load_lut(crtc);
4473 * Get a pipe with a simple mode set on it for doing load-based monitor
4474 * detection.
4476 * It will be up to the load-detect code to adjust the pipe as appropriate for
4477 * its requirements. The pipe will be connected to no other encoders.
4479 * Currently this code will only succeed if there is a pipe with no encoders
4480 * configured for it. In the future, it could choose to temporarily disable
4481 * some outputs to free up a pipe for its use.
4483 * \return crtc, or NULL if no pipes are available.
4486 /* VESA 640x480x72Hz mode to set on the pipe */
4487 static struct drm_display_mode load_detect_mode = {
4488 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4489 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4492 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4493 struct drm_connector *connector,
4494 struct drm_display_mode *mode,
4495 int *dpms_mode)
4497 struct intel_crtc *intel_crtc;
4498 struct drm_crtc *possible_crtc;
4499 struct drm_crtc *supported_crtc =NULL;
4500 struct drm_encoder *encoder = &intel_encoder->enc;
4501 struct drm_crtc *crtc = NULL;
4502 struct drm_device *dev = encoder->dev;
4503 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4504 struct drm_crtc_helper_funcs *crtc_funcs;
4505 int i = -1;
4508 * Algorithm gets a little messy:
4509 * - if the connector already has an assigned crtc, use it (but make
4510 * sure it's on first)
4511 * - try to find the first unused crtc that can drive this connector,
4512 * and use that if we find one
4513 * - if there are no unused crtcs available, try to use the first
4514 * one we found that supports the connector
4517 /* See if we already have a CRTC for this connector */
4518 if (encoder->crtc) {
4519 crtc = encoder->crtc;
4520 /* Make sure the crtc and connector are running */
4521 intel_crtc = to_intel_crtc(crtc);
4522 *dpms_mode = intel_crtc->dpms_mode;
4523 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4524 crtc_funcs = crtc->helper_private;
4525 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4526 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4528 return crtc;
4531 /* Find an unused one (if possible) */
4532 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4533 i++;
4534 if (!(encoder->possible_crtcs & (1 << i)))
4535 continue;
4536 if (!possible_crtc->enabled) {
4537 crtc = possible_crtc;
4538 break;
4540 if (!supported_crtc)
4541 supported_crtc = possible_crtc;
4545 * If we didn't find an unused CRTC, don't use any.
4547 if (!crtc) {
4548 return NULL;
4551 encoder->crtc = crtc;
4552 connector->encoder = encoder;
4553 intel_encoder->load_detect_temp = true;
4555 intel_crtc = to_intel_crtc(crtc);
4556 *dpms_mode = intel_crtc->dpms_mode;
4558 if (!crtc->enabled) {
4559 if (!mode)
4560 mode = &load_detect_mode;
4561 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4562 } else {
4563 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4564 crtc_funcs = crtc->helper_private;
4565 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4568 /* Add this connector to the crtc */
4569 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4570 encoder_funcs->commit(encoder);
4572 /* let the connector get through one full cycle before testing */
4573 intel_wait_for_vblank(dev);
4575 return crtc;
4578 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4579 struct drm_connector *connector, int dpms_mode)
4581 struct drm_encoder *encoder = &intel_encoder->enc;
4582 struct drm_device *dev = encoder->dev;
4583 struct drm_crtc *crtc = encoder->crtc;
4584 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4585 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4587 if (intel_encoder->load_detect_temp) {
4588 encoder->crtc = NULL;
4589 connector->encoder = NULL;
4590 intel_encoder->load_detect_temp = false;
4591 crtc->enabled = drm_helper_crtc_in_use(crtc);
4592 drm_helper_disable_unused_functions(dev);
4595 /* Switch crtc and encoder back off if necessary */
4596 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4597 if (encoder->crtc == crtc)
4598 encoder_funcs->dpms(encoder, dpms_mode);
4599 crtc_funcs->dpms(crtc, dpms_mode);
4603 /* Returns the clock of the currently programmed mode of the given pipe. */
4604 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4606 struct drm_i915_private *dev_priv = dev->dev_private;
4607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4608 int pipe = intel_crtc->pipe;
4609 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4610 u32 fp;
4611 intel_clock_t clock;
4613 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4614 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4615 else
4616 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4618 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4619 if (IS_PINEVIEW(dev)) {
4620 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4621 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4622 } else {
4623 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4624 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4627 if (IS_I9XX(dev)) {
4628 if (IS_PINEVIEW(dev))
4629 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4630 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4631 else
4632 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4633 DPLL_FPA01_P1_POST_DIV_SHIFT);
4635 switch (dpll & DPLL_MODE_MASK) {
4636 case DPLLB_MODE_DAC_SERIAL:
4637 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4638 5 : 10;
4639 break;
4640 case DPLLB_MODE_LVDS:
4641 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4642 7 : 14;
4643 break;
4644 default:
4645 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4646 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4647 return 0;
4650 /* XXX: Handle the 100Mhz refclk */
4651 intel_clock(dev, 96000, &clock);
4652 } else {
4653 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4655 if (is_lvds) {
4656 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4657 DPLL_FPA01_P1_POST_DIV_SHIFT);
4658 clock.p2 = 14;
4660 if ((dpll & PLL_REF_INPUT_MASK) ==
4661 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4662 /* XXX: might not be 66MHz */
4663 intel_clock(dev, 66000, &clock);
4664 } else
4665 intel_clock(dev, 48000, &clock);
4666 } else {
4667 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4668 clock.p1 = 2;
4669 else {
4670 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4671 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4673 if (dpll & PLL_P2_DIVIDE_BY_4)
4674 clock.p2 = 4;
4675 else
4676 clock.p2 = 2;
4678 intel_clock(dev, 48000, &clock);
4682 /* XXX: It would be nice to validate the clocks, but we can't reuse
4683 * i830PllIsValid() because it relies on the xf86_config connector
4684 * configuration being accurate, which it isn't necessarily.
4687 return clock.dot;
4690 /** Returns the currently programmed mode of the given pipe. */
4691 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4692 struct drm_crtc *crtc)
4694 struct drm_i915_private *dev_priv = dev->dev_private;
4695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4696 int pipe = intel_crtc->pipe;
4697 struct drm_display_mode *mode;
4698 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4699 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4700 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4701 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4703 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4704 if (!mode)
4705 return NULL;
4707 mode->clock = intel_crtc_clock_get(dev, crtc);
4708 mode->hdisplay = (htot & 0xffff) + 1;
4709 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4710 mode->hsync_start = (hsync & 0xffff) + 1;
4711 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4712 mode->vdisplay = (vtot & 0xffff) + 1;
4713 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4714 mode->vsync_start = (vsync & 0xffff) + 1;
4715 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4717 drm_mode_set_name(mode);
4718 drm_mode_set_crtcinfo(mode, 0);
4720 return mode;
4723 #define GPU_IDLE_TIMEOUT 500 /* ms */
4725 /* When this timer fires, we've been idle for awhile */
4726 static void intel_gpu_idle_timer(unsigned long arg)
4728 struct drm_device *dev = (struct drm_device *)arg;
4729 drm_i915_private_t *dev_priv = dev->dev_private;
4731 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4733 dev_priv->busy = false;
4735 queue_work(dev_priv->wq, &dev_priv->idle_work);
4738 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4740 static void intel_crtc_idle_timer(unsigned long arg)
4742 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4743 struct drm_crtc *crtc = &intel_crtc->base;
4744 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4746 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4748 intel_crtc->busy = false;
4750 queue_work(dev_priv->wq, &dev_priv->idle_work);
4753 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4755 struct drm_device *dev = crtc->dev;
4756 drm_i915_private_t *dev_priv = dev->dev_private;
4757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4758 int pipe = intel_crtc->pipe;
4759 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4760 int dpll = I915_READ(dpll_reg);
4762 if (HAS_PCH_SPLIT(dev))
4763 return;
4765 if (!dev_priv->lvds_downclock_avail)
4766 return;
4768 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4769 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4771 /* Unlock panel regs */
4772 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4773 PANEL_UNLOCK_REGS);
4775 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4776 I915_WRITE(dpll_reg, dpll);
4777 dpll = I915_READ(dpll_reg);
4778 intel_wait_for_vblank(dev);
4779 dpll = I915_READ(dpll_reg);
4780 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4781 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4783 /* ...and lock them again */
4784 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4787 /* Schedule downclock */
4788 if (schedule)
4789 mod_timer(&intel_crtc->idle_timer, jiffies +
4790 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4793 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4795 struct drm_device *dev = crtc->dev;
4796 drm_i915_private_t *dev_priv = dev->dev_private;
4797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4798 int pipe = intel_crtc->pipe;
4799 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4800 int dpll = I915_READ(dpll_reg);
4802 if (HAS_PCH_SPLIT(dev))
4803 return;
4805 if (!dev_priv->lvds_downclock_avail)
4806 return;
4809 * Since this is called by a timer, we should never get here in
4810 * the manual case.
4812 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4813 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4815 /* Unlock panel regs */
4816 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4817 PANEL_UNLOCK_REGS);
4819 dpll |= DISPLAY_RATE_SELECT_FPA1;
4820 I915_WRITE(dpll_reg, dpll);
4821 dpll = I915_READ(dpll_reg);
4822 intel_wait_for_vblank(dev);
4823 dpll = I915_READ(dpll_reg);
4824 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4825 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4827 /* ...and lock them again */
4828 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4834 * intel_idle_update - adjust clocks for idleness
4835 * @work: work struct
4837 * Either the GPU or display (or both) went idle. Check the busy status
4838 * here and adjust the CRTC and GPU clocks as necessary.
4840 static void intel_idle_update(struct work_struct *work)
4842 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4843 idle_work);
4844 struct drm_device *dev = dev_priv->dev;
4845 struct drm_crtc *crtc;
4846 struct intel_crtc *intel_crtc;
4847 int enabled = 0;
4849 if (!i915_powersave)
4850 return;
4852 mutex_lock(&dev->struct_mutex);
4854 i915_update_gfx_val(dev_priv);
4856 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4857 /* Skip inactive CRTCs */
4858 if (!crtc->fb)
4859 continue;
4861 enabled++;
4862 intel_crtc = to_intel_crtc(crtc);
4863 if (!intel_crtc->busy)
4864 intel_decrease_pllclock(crtc);
4867 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4868 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4869 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4872 mutex_unlock(&dev->struct_mutex);
4876 * intel_mark_busy - mark the GPU and possibly the display busy
4877 * @dev: drm device
4878 * @obj: object we're operating on
4880 * Callers can use this function to indicate that the GPU is busy processing
4881 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4882 * buffer), we'll also mark the display as busy, so we know to increase its
4883 * clock frequency.
4885 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4887 drm_i915_private_t *dev_priv = dev->dev_private;
4888 struct drm_crtc *crtc = NULL;
4889 struct intel_framebuffer *intel_fb;
4890 struct intel_crtc *intel_crtc;
4892 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4893 return;
4895 if (!dev_priv->busy) {
4896 if (IS_I945G(dev) || IS_I945GM(dev)) {
4897 u32 fw_blc_self;
4899 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4900 fw_blc_self = I915_READ(FW_BLC_SELF);
4901 fw_blc_self &= ~FW_BLC_SELF_EN;
4902 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4904 dev_priv->busy = true;
4905 } else
4906 mod_timer(&dev_priv->idle_timer, jiffies +
4907 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4909 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4910 if (!crtc->fb)
4911 continue;
4913 intel_crtc = to_intel_crtc(crtc);
4914 intel_fb = to_intel_framebuffer(crtc->fb);
4915 if (intel_fb->obj == obj) {
4916 if (!intel_crtc->busy) {
4917 if (IS_I945G(dev) || IS_I945GM(dev)) {
4918 u32 fw_blc_self;
4920 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4921 fw_blc_self = I915_READ(FW_BLC_SELF);
4922 fw_blc_self &= ~FW_BLC_SELF_EN;
4923 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4925 /* Non-busy -> busy, upclock */
4926 intel_increase_pllclock(crtc, true);
4927 intel_crtc->busy = true;
4928 } else {
4929 /* Busy -> busy, put off timer */
4930 mod_timer(&intel_crtc->idle_timer, jiffies +
4931 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4937 static void intel_crtc_destroy(struct drm_crtc *crtc)
4939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4941 drm_crtc_cleanup(crtc);
4942 kfree(intel_crtc);
4945 struct intel_unpin_work {
4946 struct work_struct work;
4947 struct drm_device *dev;
4948 struct drm_gem_object *old_fb_obj;
4949 struct drm_gem_object *pending_flip_obj;
4950 struct drm_pending_vblank_event *event;
4951 int pending;
4954 static void intel_unpin_work_fn(struct work_struct *__work)
4956 struct intel_unpin_work *work =
4957 container_of(__work, struct intel_unpin_work, work);
4959 mutex_lock(&work->dev->struct_mutex);
4960 i915_gem_object_unpin(work->old_fb_obj);
4961 drm_gem_object_unreference(work->pending_flip_obj);
4962 drm_gem_object_unreference(work->old_fb_obj);
4963 mutex_unlock(&work->dev->struct_mutex);
4964 kfree(work);
4967 static void do_intel_finish_page_flip(struct drm_device *dev,
4968 struct drm_crtc *crtc)
4970 drm_i915_private_t *dev_priv = dev->dev_private;
4971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4972 struct intel_unpin_work *work;
4973 struct drm_i915_gem_object *obj_priv;
4974 struct drm_pending_vblank_event *e;
4975 struct timeval now;
4976 unsigned long flags;
4978 /* Ignore early vblank irqs */
4979 if (intel_crtc == NULL)
4980 return;
4982 spin_lock_irqsave(&dev->event_lock, flags);
4983 work = intel_crtc->unpin_work;
4984 if (work == NULL || !work->pending) {
4985 spin_unlock_irqrestore(&dev->event_lock, flags);
4986 return;
4989 intel_crtc->unpin_work = NULL;
4990 drm_vblank_put(dev, intel_crtc->pipe);
4992 if (work->event) {
4993 e = work->event;
4994 do_gettimeofday(&now);
4995 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4996 e->event.tv_sec = now.tv_sec;
4997 e->event.tv_usec = now.tv_usec;
4998 list_add_tail(&e->base.link,
4999 &e->base.file_priv->event_list);
5000 wake_up_interruptible(&e->base.file_priv->event_wait);
5003 spin_unlock_irqrestore(&dev->event_lock, flags);
5005 obj_priv = to_intel_bo(work->pending_flip_obj);
5007 /* Initial scanout buffer will have a 0 pending flip count */
5008 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
5009 atomic_dec_and_test(&obj_priv->pending_flip))
5010 DRM_WAKEUP(&dev_priv->pending_flip_queue);
5011 schedule_work(&work->work);
5013 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5016 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5018 drm_i915_private_t *dev_priv = dev->dev_private;
5019 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5021 do_intel_finish_page_flip(dev, crtc);
5024 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5026 drm_i915_private_t *dev_priv = dev->dev_private;
5027 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5029 do_intel_finish_page_flip(dev, crtc);
5032 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5034 drm_i915_private_t *dev_priv = dev->dev_private;
5035 struct intel_crtc *intel_crtc =
5036 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5037 unsigned long flags;
5039 spin_lock_irqsave(&dev->event_lock, flags);
5040 if (intel_crtc->unpin_work) {
5041 intel_crtc->unpin_work->pending = 1;
5042 } else {
5043 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5045 spin_unlock_irqrestore(&dev->event_lock, flags);
5048 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5049 struct drm_framebuffer *fb,
5050 struct drm_pending_vblank_event *event)
5052 struct drm_device *dev = crtc->dev;
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 struct intel_framebuffer *intel_fb;
5055 struct drm_i915_gem_object *obj_priv;
5056 struct drm_gem_object *obj;
5057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5058 struct intel_unpin_work *work;
5059 unsigned long flags, offset;
5060 int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
5061 int ret, pipesrc;
5062 u32 flip_mask;
5064 work = kzalloc(sizeof *work, GFP_KERNEL);
5065 if (work == NULL)
5066 return -ENOMEM;
5068 work->event = event;
5069 work->dev = crtc->dev;
5070 intel_fb = to_intel_framebuffer(crtc->fb);
5071 work->old_fb_obj = intel_fb->obj;
5072 INIT_WORK(&work->work, intel_unpin_work_fn);
5074 /* We borrow the event spin lock for protecting unpin_work */
5075 spin_lock_irqsave(&dev->event_lock, flags);
5076 if (intel_crtc->unpin_work) {
5077 spin_unlock_irqrestore(&dev->event_lock, flags);
5078 kfree(work);
5080 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5081 return -EBUSY;
5083 intel_crtc->unpin_work = work;
5084 spin_unlock_irqrestore(&dev->event_lock, flags);
5086 intel_fb = to_intel_framebuffer(fb);
5087 obj = intel_fb->obj;
5089 mutex_lock(&dev->struct_mutex);
5090 ret = intel_pin_and_fence_fb_obj(dev, obj);
5091 if (ret)
5092 goto cleanup_work;
5094 /* Reference the objects for the scheduled work. */
5095 drm_gem_object_reference(work->old_fb_obj);
5096 drm_gem_object_reference(obj);
5098 crtc->fb = fb;
5099 ret = i915_gem_object_flush_write_domain(obj);
5100 if (ret)
5101 goto cleanup_objs;
5103 ret = drm_vblank_get(dev, intel_crtc->pipe);
5104 if (ret)
5105 goto cleanup_objs;
5107 obj_priv = to_intel_bo(obj);
5108 atomic_inc(&obj_priv->pending_flip);
5109 work->pending_flip_obj = obj;
5111 if (intel_crtc->plane)
5112 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5113 else
5114 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5116 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5117 BEGIN_LP_RING(2);
5118 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5119 OUT_RING(0);
5120 ADVANCE_LP_RING();
5123 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5124 offset = obj_priv->gtt_offset;
5125 offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
5127 BEGIN_LP_RING(4);
5128 if (IS_I965G(dev)) {
5129 OUT_RING(MI_DISPLAY_FLIP |
5130 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5131 OUT_RING(fb->pitch);
5132 OUT_RING(offset | obj_priv->tiling_mode);
5133 pipesrc = I915_READ(pipesrc_reg);
5134 OUT_RING(pipesrc & 0x0fff0fff);
5135 } else if (IS_GEN3(dev)) {
5136 OUT_RING(MI_DISPLAY_FLIP_I915 |
5137 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5138 OUT_RING(fb->pitch);
5139 OUT_RING(offset);
5140 OUT_RING(MI_NOOP);
5141 } else {
5142 OUT_RING(MI_DISPLAY_FLIP |
5143 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5144 OUT_RING(fb->pitch);
5145 OUT_RING(offset);
5146 OUT_RING(MI_NOOP);
5148 ADVANCE_LP_RING();
5150 mutex_unlock(&dev->struct_mutex);
5152 trace_i915_flip_request(intel_crtc->plane, obj);
5154 return 0;
5156 cleanup_objs:
5157 drm_gem_object_unreference(work->old_fb_obj);
5158 drm_gem_object_unreference(obj);
5159 cleanup_work:
5160 mutex_unlock(&dev->struct_mutex);
5162 spin_lock_irqsave(&dev->event_lock, flags);
5163 intel_crtc->unpin_work = NULL;
5164 spin_unlock_irqrestore(&dev->event_lock, flags);
5166 kfree(work);
5168 return ret;
5171 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5172 .dpms = intel_crtc_dpms,
5173 .mode_fixup = intel_crtc_mode_fixup,
5174 .mode_set = intel_crtc_mode_set,
5175 .mode_set_base = intel_pipe_set_base,
5176 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5177 .prepare = intel_crtc_prepare,
5178 .commit = intel_crtc_commit,
5179 .load_lut = intel_crtc_load_lut,
5182 static const struct drm_crtc_funcs intel_crtc_funcs = {
5183 .cursor_set = intel_crtc_cursor_set,
5184 .cursor_move = intel_crtc_cursor_move,
5185 .gamma_set = intel_crtc_gamma_set,
5186 .set_config = drm_crtc_helper_set_config,
5187 .destroy = intel_crtc_destroy,
5188 .page_flip = intel_crtc_page_flip,
5192 static void intel_crtc_init(struct drm_device *dev, int pipe)
5194 drm_i915_private_t *dev_priv = dev->dev_private;
5195 struct intel_crtc *intel_crtc;
5196 int i;
5198 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5199 if (intel_crtc == NULL)
5200 return;
5202 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5204 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5205 intel_crtc->pipe = pipe;
5206 intel_crtc->plane = pipe;
5207 for (i = 0; i < 256; i++) {
5208 intel_crtc->lut_r[i] = i;
5209 intel_crtc->lut_g[i] = i;
5210 intel_crtc->lut_b[i] = i;
5213 /* Swap pipes & planes for FBC on pre-965 */
5214 intel_crtc->pipe = pipe;
5215 intel_crtc->plane = pipe;
5216 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5217 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5218 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5221 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5222 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5223 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5224 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5226 intel_crtc->cursor_addr = 0;
5227 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5228 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5230 intel_crtc->busy = false;
5232 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5233 (unsigned long)intel_crtc);
5236 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5237 struct drm_file *file_priv)
5239 drm_i915_private_t *dev_priv = dev->dev_private;
5240 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5241 struct drm_mode_object *drmmode_obj;
5242 struct intel_crtc *crtc;
5244 if (!dev_priv) {
5245 DRM_ERROR("called with no initialization\n");
5246 return -EINVAL;
5249 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5250 DRM_MODE_OBJECT_CRTC);
5252 if (!drmmode_obj) {
5253 DRM_ERROR("no such CRTC id\n");
5254 return -EINVAL;
5257 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5258 pipe_from_crtc_id->pipe = crtc->pipe;
5260 return 0;
5263 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5265 struct drm_crtc *crtc = NULL;
5267 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5269 if (intel_crtc->pipe == pipe)
5270 break;
5272 return crtc;
5275 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5277 int index_mask = 0;
5278 struct drm_encoder *encoder;
5279 int entry = 0;
5281 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5282 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5283 if (type_mask & intel_encoder->clone_mask)
5284 index_mask |= (1 << entry);
5285 entry++;
5287 return index_mask;
5291 static void intel_setup_outputs(struct drm_device *dev)
5293 struct drm_i915_private *dev_priv = dev->dev_private;
5294 struct drm_encoder *encoder;
5295 bool dpd_is_edp = false;
5297 if (IS_MOBILE(dev) && !IS_I830(dev))
5298 intel_lvds_init(dev);
5300 if (HAS_PCH_SPLIT(dev)) {
5301 dpd_is_edp = intel_dpd_is_edp(dev);
5303 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5304 intel_dp_init(dev, DP_A);
5306 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5307 intel_dp_init(dev, PCH_DP_D);
5310 intel_crt_init(dev);
5312 if (HAS_PCH_SPLIT(dev)) {
5313 int found;
5315 if (I915_READ(HDMIB) & PORT_DETECTED) {
5316 /* PCH SDVOB multiplex with HDMIB */
5317 found = intel_sdvo_init(dev, PCH_SDVOB);
5318 if (!found)
5319 intel_hdmi_init(dev, HDMIB);
5320 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5321 intel_dp_init(dev, PCH_DP_B);
5324 if (I915_READ(HDMIC) & PORT_DETECTED)
5325 intel_hdmi_init(dev, HDMIC);
5327 if (I915_READ(HDMID) & PORT_DETECTED)
5328 intel_hdmi_init(dev, HDMID);
5330 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5331 intel_dp_init(dev, PCH_DP_C);
5333 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5334 intel_dp_init(dev, PCH_DP_D);
5336 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5337 bool found = false;
5339 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5340 DRM_DEBUG_KMS("probing SDVOB\n");
5341 found = intel_sdvo_init(dev, SDVOB);
5342 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5343 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5344 intel_hdmi_init(dev, SDVOB);
5347 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5348 DRM_DEBUG_KMS("probing DP_B\n");
5349 intel_dp_init(dev, DP_B);
5353 /* Before G4X SDVOC doesn't have its own detect register */
5355 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5356 DRM_DEBUG_KMS("probing SDVOC\n");
5357 found = intel_sdvo_init(dev, SDVOC);
5360 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5362 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5363 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5364 intel_hdmi_init(dev, SDVOC);
5366 if (SUPPORTS_INTEGRATED_DP(dev)) {
5367 DRM_DEBUG_KMS("probing DP_C\n");
5368 intel_dp_init(dev, DP_C);
5372 if (SUPPORTS_INTEGRATED_DP(dev) &&
5373 (I915_READ(DP_D) & DP_DETECTED)) {
5374 DRM_DEBUG_KMS("probing DP_D\n");
5375 intel_dp_init(dev, DP_D);
5377 } else if (IS_GEN2(dev))
5378 intel_dvo_init(dev);
5380 if (SUPPORTS_TV(dev))
5381 intel_tv_init(dev);
5383 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5384 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5386 encoder->possible_crtcs = intel_encoder->crtc_mask;
5387 encoder->possible_clones = intel_encoder_clones(dev,
5388 intel_encoder->clone_mask);
5392 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5394 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5396 drm_framebuffer_cleanup(fb);
5397 drm_gem_object_unreference_unlocked(intel_fb->obj);
5399 kfree(intel_fb);
5402 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5403 struct drm_file *file_priv,
5404 unsigned int *handle)
5406 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5407 struct drm_gem_object *object = intel_fb->obj;
5409 return drm_gem_handle_create(file_priv, object, handle);
5412 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5413 .destroy = intel_user_framebuffer_destroy,
5414 .create_handle = intel_user_framebuffer_create_handle,
5417 int intel_framebuffer_init(struct drm_device *dev,
5418 struct intel_framebuffer *intel_fb,
5419 struct drm_mode_fb_cmd *mode_cmd,
5420 struct drm_gem_object *obj)
5422 int ret;
5424 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5425 if (ret) {
5426 DRM_ERROR("framebuffer init failed %d\n", ret);
5427 return ret;
5430 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5431 intel_fb->obj = obj;
5432 return 0;
5435 static struct drm_framebuffer *
5436 intel_user_framebuffer_create(struct drm_device *dev,
5437 struct drm_file *filp,
5438 struct drm_mode_fb_cmd *mode_cmd)
5440 struct drm_gem_object *obj;
5441 struct intel_framebuffer *intel_fb;
5442 int ret;
5444 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5445 if (!obj)
5446 return NULL;
5448 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5449 if (!intel_fb)
5450 return NULL;
5452 ret = intel_framebuffer_init(dev, intel_fb,
5453 mode_cmd, obj);
5454 if (ret) {
5455 drm_gem_object_unreference_unlocked(obj);
5456 kfree(intel_fb);
5457 return NULL;
5460 return &intel_fb->base;
5463 static const struct drm_mode_config_funcs intel_mode_funcs = {
5464 .fb_create = intel_user_framebuffer_create,
5465 .output_poll_changed = intel_fb_output_poll_changed,
5468 static struct drm_gem_object *
5469 intel_alloc_power_context(struct drm_device *dev)
5471 struct drm_gem_object *pwrctx;
5472 int ret;
5474 pwrctx = i915_gem_alloc_object(dev, 4096);
5475 if (!pwrctx) {
5476 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5477 return NULL;
5480 mutex_lock(&dev->struct_mutex);
5481 ret = i915_gem_object_pin(pwrctx, 4096);
5482 if (ret) {
5483 DRM_ERROR("failed to pin power context: %d\n", ret);
5484 goto err_unref;
5487 ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5488 if (ret) {
5489 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5490 goto err_unpin;
5492 mutex_unlock(&dev->struct_mutex);
5494 return pwrctx;
5496 err_unpin:
5497 i915_gem_object_unpin(pwrctx);
5498 err_unref:
5499 drm_gem_object_unreference(pwrctx);
5500 mutex_unlock(&dev->struct_mutex);
5501 return NULL;
5504 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5506 struct drm_i915_private *dev_priv = dev->dev_private;
5507 u16 rgvswctl;
5509 rgvswctl = I915_READ16(MEMSWCTL);
5510 if (rgvswctl & MEMCTL_CMD_STS) {
5511 DRM_DEBUG("gpu busy, RCS change rejected\n");
5512 return false; /* still busy with another command */
5515 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5516 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5517 I915_WRITE16(MEMSWCTL, rgvswctl);
5518 POSTING_READ16(MEMSWCTL);
5520 rgvswctl |= MEMCTL_CMD_STS;
5521 I915_WRITE16(MEMSWCTL, rgvswctl);
5523 return true;
5526 void ironlake_enable_drps(struct drm_device *dev)
5528 struct drm_i915_private *dev_priv = dev->dev_private;
5529 u32 rgvmodectl = I915_READ(MEMMODECTL);
5530 u8 fmax, fmin, fstart, vstart;
5532 /* 100ms RC evaluation intervals */
5533 I915_WRITE(RCUPEI, 100000);
5534 I915_WRITE(RCDNEI, 100000);
5536 /* Set max/min thresholds to 90ms and 80ms respectively */
5537 I915_WRITE(RCBMAXAVG, 90000);
5538 I915_WRITE(RCBMINAVG, 80000);
5540 I915_WRITE(MEMIHYST, 1);
5542 /* Set up min, max, and cur for interrupt handling */
5543 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5544 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5545 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5546 MEMMODE_FSTART_SHIFT;
5547 fstart = fmax;
5549 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5550 PXVFREQ_PX_SHIFT;
5552 dev_priv->fmax = fstart; /* IPS callback will increase this */
5553 dev_priv->fstart = fstart;
5555 dev_priv->max_delay = fmax;
5556 dev_priv->min_delay = fmin;
5557 dev_priv->cur_delay = fstart;
5559 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5560 fstart);
5562 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5565 * Interrupts will be enabled in ironlake_irq_postinstall
5568 I915_WRITE(VIDSTART, vstart);
5569 POSTING_READ(VIDSTART);
5571 rgvmodectl |= MEMMODE_SWMODE_EN;
5572 I915_WRITE(MEMMODECTL, rgvmodectl);
5574 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 1, 0))
5575 DRM_ERROR("stuck trying to change perf mode\n");
5576 msleep(1);
5578 ironlake_set_drps(dev, fstart);
5580 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5581 I915_READ(0x112e0);
5582 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5583 dev_priv->last_count2 = I915_READ(0x112f4);
5584 getrawmonotonic(&dev_priv->last_time2);
5587 void ironlake_disable_drps(struct drm_device *dev)
5589 struct drm_i915_private *dev_priv = dev->dev_private;
5590 u16 rgvswctl = I915_READ16(MEMSWCTL);
5592 /* Ack interrupts, disable EFC interrupt */
5593 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5594 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5595 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5596 I915_WRITE(DEIIR, DE_PCU_EVENT);
5597 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5599 /* Go back to the starting frequency */
5600 ironlake_set_drps(dev, dev_priv->fstart);
5601 msleep(1);
5602 rgvswctl |= MEMCTL_CMD_STS;
5603 I915_WRITE(MEMSWCTL, rgvswctl);
5604 msleep(1);
5608 static unsigned long intel_pxfreq(u32 vidfreq)
5610 unsigned long freq;
5611 int div = (vidfreq & 0x3f0000) >> 16;
5612 int post = (vidfreq & 0x3000) >> 12;
5613 int pre = (vidfreq & 0x7);
5615 if (!pre)
5616 return 0;
5618 freq = ((div * 133333) / ((1<<post) * pre));
5620 return freq;
5623 void intel_init_emon(struct drm_device *dev)
5625 struct drm_i915_private *dev_priv = dev->dev_private;
5626 u32 lcfuse;
5627 u8 pxw[16];
5628 int i;
5630 /* Disable to program */
5631 I915_WRITE(ECR, 0);
5632 POSTING_READ(ECR);
5634 /* Program energy weights for various events */
5635 I915_WRITE(SDEW, 0x15040d00);
5636 I915_WRITE(CSIEW0, 0x007f0000);
5637 I915_WRITE(CSIEW1, 0x1e220004);
5638 I915_WRITE(CSIEW2, 0x04000004);
5640 for (i = 0; i < 5; i++)
5641 I915_WRITE(PEW + (i * 4), 0);
5642 for (i = 0; i < 3; i++)
5643 I915_WRITE(DEW + (i * 4), 0);
5645 /* Program P-state weights to account for frequency power adjustment */
5646 for (i = 0; i < 16; i++) {
5647 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5648 unsigned long freq = intel_pxfreq(pxvidfreq);
5649 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5650 PXVFREQ_PX_SHIFT;
5651 unsigned long val;
5653 val = vid * vid;
5654 val *= (freq / 1000);
5655 val *= 255;
5656 val /= (127*127*900);
5657 if (val > 0xff)
5658 DRM_ERROR("bad pxval: %ld\n", val);
5659 pxw[i] = val;
5661 /* Render standby states get 0 weight */
5662 pxw[14] = 0;
5663 pxw[15] = 0;
5665 for (i = 0; i < 4; i++) {
5666 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5667 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5668 I915_WRITE(PXW + (i * 4), val);
5671 /* Adjust magic regs to magic values (more experimental results) */
5672 I915_WRITE(OGW0, 0);
5673 I915_WRITE(OGW1, 0);
5674 I915_WRITE(EG0, 0x00007f00);
5675 I915_WRITE(EG1, 0x0000000e);
5676 I915_WRITE(EG2, 0x000e0000);
5677 I915_WRITE(EG3, 0x68000300);
5678 I915_WRITE(EG4, 0x42000000);
5679 I915_WRITE(EG5, 0x00140031);
5680 I915_WRITE(EG6, 0);
5681 I915_WRITE(EG7, 0);
5683 for (i = 0; i < 8; i++)
5684 I915_WRITE(PXWL + (i * 4), 0);
5686 /* Enable PMON + select events */
5687 I915_WRITE(ECR, 0x80000019);
5689 lcfuse = I915_READ(LCFUSE02);
5691 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5694 void intel_init_clock_gating(struct drm_device *dev)
5696 struct drm_i915_private *dev_priv = dev->dev_private;
5699 * Disable clock gating reported to work incorrectly according to the
5700 * specs, but enable as much else as we can.
5702 if (HAS_PCH_SPLIT(dev)) {
5703 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5705 if (IS_IRONLAKE(dev)) {
5706 /* Required for FBC */
5707 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5708 /* Required for CxSR */
5709 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5711 I915_WRITE(PCH_3DCGDIS0,
5712 MARIUNIT_CLOCK_GATE_DISABLE |
5713 SVSMUNIT_CLOCK_GATE_DISABLE);
5716 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5719 * According to the spec the following bits should be set in
5720 * order to enable memory self-refresh
5721 * The bit 22/21 of 0x42004
5722 * The bit 5 of 0x42020
5723 * The bit 15 of 0x45000
5725 if (IS_IRONLAKE(dev)) {
5726 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5727 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5728 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5729 I915_WRITE(ILK_DSPCLK_GATE,
5730 (I915_READ(ILK_DSPCLK_GATE) |
5731 ILK_DPARB_CLK_GATE));
5732 I915_WRITE(DISP_ARB_CTL,
5733 (I915_READ(DISP_ARB_CTL) |
5734 DISP_FBC_WM_DIS));
5737 * Based on the document from hardware guys the following bits
5738 * should be set unconditionally in order to enable FBC.
5739 * The bit 22 of 0x42000
5740 * The bit 22 of 0x42004
5741 * The bit 7,8,9 of 0x42020.
5743 if (IS_IRONLAKE_M(dev)) {
5744 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5745 I915_READ(ILK_DISPLAY_CHICKEN1) |
5746 ILK_FBCQ_DIS);
5747 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5748 I915_READ(ILK_DISPLAY_CHICKEN2) |
5749 ILK_DPARB_GATE);
5750 I915_WRITE(ILK_DSPCLK_GATE,
5751 I915_READ(ILK_DSPCLK_GATE) |
5752 ILK_DPFC_DIS1 |
5753 ILK_DPFC_DIS2 |
5754 ILK_CLK_FBC);
5756 return;
5757 } else if (IS_G4X(dev)) {
5758 uint32_t dspclk_gate;
5759 I915_WRITE(RENCLK_GATE_D1, 0);
5760 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5761 GS_UNIT_CLOCK_GATE_DISABLE |
5762 CL_UNIT_CLOCK_GATE_DISABLE);
5763 I915_WRITE(RAMCLK_GATE_D, 0);
5764 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5765 OVRUNIT_CLOCK_GATE_DISABLE |
5766 OVCUNIT_CLOCK_GATE_DISABLE;
5767 if (IS_GM45(dev))
5768 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5769 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5770 } else if (IS_I965GM(dev)) {
5771 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5772 I915_WRITE(RENCLK_GATE_D2, 0);
5773 I915_WRITE(DSPCLK_GATE_D, 0);
5774 I915_WRITE(RAMCLK_GATE_D, 0);
5775 I915_WRITE16(DEUC, 0);
5776 } else if (IS_I965G(dev)) {
5777 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5778 I965_RCC_CLOCK_GATE_DISABLE |
5779 I965_RCPB_CLOCK_GATE_DISABLE |
5780 I965_ISC_CLOCK_GATE_DISABLE |
5781 I965_FBC_CLOCK_GATE_DISABLE);
5782 I915_WRITE(RENCLK_GATE_D2, 0);
5783 } else if (IS_I9XX(dev)) {
5784 u32 dstate = I915_READ(D_STATE);
5786 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5787 DSTATE_DOT_CLOCK_GATING;
5788 I915_WRITE(D_STATE, dstate);
5789 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5790 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5791 } else if (IS_I830(dev)) {
5792 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5796 * GPU can automatically power down the render unit if given a page
5797 * to save state.
5799 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5800 struct drm_i915_gem_object *obj_priv = NULL;
5802 if (dev_priv->pwrctx) {
5803 obj_priv = to_intel_bo(dev_priv->pwrctx);
5804 } else {
5805 struct drm_gem_object *pwrctx;
5807 pwrctx = intel_alloc_power_context(dev);
5808 if (pwrctx) {
5809 dev_priv->pwrctx = pwrctx;
5810 obj_priv = to_intel_bo(pwrctx);
5814 if (obj_priv) {
5815 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5816 I915_WRITE(MCHBAR_RENDER_STANDBY,
5817 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5822 /* Set up chip specific display functions */
5823 static void intel_init_display(struct drm_device *dev)
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5827 /* We always want a DPMS function */
5828 if (HAS_PCH_SPLIT(dev))
5829 dev_priv->display.dpms = ironlake_crtc_dpms;
5830 else
5831 dev_priv->display.dpms = i9xx_crtc_dpms;
5833 if (I915_HAS_FBC(dev)) {
5834 if (IS_IRONLAKE_M(dev)) {
5835 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5836 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5837 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5838 } else if (IS_GM45(dev)) {
5839 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5840 dev_priv->display.enable_fbc = g4x_enable_fbc;
5841 dev_priv->display.disable_fbc = g4x_disable_fbc;
5842 } else if (IS_I965GM(dev)) {
5843 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5844 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5845 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5847 /* 855GM needs testing */
5850 /* Returns the core display clock speed */
5851 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5852 dev_priv->display.get_display_clock_speed =
5853 i945_get_display_clock_speed;
5854 else if (IS_I915G(dev))
5855 dev_priv->display.get_display_clock_speed =
5856 i915_get_display_clock_speed;
5857 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5858 dev_priv->display.get_display_clock_speed =
5859 i9xx_misc_get_display_clock_speed;
5860 else if (IS_I915GM(dev))
5861 dev_priv->display.get_display_clock_speed =
5862 i915gm_get_display_clock_speed;
5863 else if (IS_I865G(dev))
5864 dev_priv->display.get_display_clock_speed =
5865 i865_get_display_clock_speed;
5866 else if (IS_I85X(dev))
5867 dev_priv->display.get_display_clock_speed =
5868 i855_get_display_clock_speed;
5869 else /* 852, 830 */
5870 dev_priv->display.get_display_clock_speed =
5871 i830_get_display_clock_speed;
5873 /* For FIFO watermark updates */
5874 if (HAS_PCH_SPLIT(dev)) {
5875 if (IS_IRONLAKE(dev)) {
5876 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5877 dev_priv->display.update_wm = ironlake_update_wm;
5878 else {
5879 DRM_DEBUG_KMS("Failed to get proper latency. "
5880 "Disable CxSR\n");
5881 dev_priv->display.update_wm = NULL;
5883 } else
5884 dev_priv->display.update_wm = NULL;
5885 } else if (IS_PINEVIEW(dev)) {
5886 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5887 dev_priv->is_ddr3,
5888 dev_priv->fsb_freq,
5889 dev_priv->mem_freq)) {
5890 DRM_INFO("failed to find known CxSR latency "
5891 "(found ddr%s fsb freq %d, mem freq %d), "
5892 "disabling CxSR\n",
5893 (dev_priv->is_ddr3 == 1) ? "3": "2",
5894 dev_priv->fsb_freq, dev_priv->mem_freq);
5895 /* Disable CxSR and never update its watermark again */
5896 pineview_disable_cxsr(dev);
5897 dev_priv->display.update_wm = NULL;
5898 } else
5899 dev_priv->display.update_wm = pineview_update_wm;
5900 } else if (IS_G4X(dev))
5901 dev_priv->display.update_wm = g4x_update_wm;
5902 else if (IS_I965G(dev))
5903 dev_priv->display.update_wm = i965_update_wm;
5904 else if (IS_I9XX(dev)) {
5905 dev_priv->display.update_wm = i9xx_update_wm;
5906 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5907 } else if (IS_I85X(dev)) {
5908 dev_priv->display.update_wm = i9xx_update_wm;
5909 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5910 } else {
5911 dev_priv->display.update_wm = i830_update_wm;
5912 if (IS_845G(dev))
5913 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5914 else
5915 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5920 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5921 * resume, or other times. This quirk makes sure that's the case for
5922 * affected systems.
5924 static void quirk_pipea_force (struct drm_device *dev)
5926 struct drm_i915_private *dev_priv = dev->dev_private;
5928 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5929 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5932 struct intel_quirk {
5933 int device;
5934 int subsystem_vendor;
5935 int subsystem_device;
5936 void (*hook)(struct drm_device *dev);
5939 struct intel_quirk intel_quirks[] = {
5940 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5941 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5942 /* HP Mini needs pipe A force quirk (LP: #322104) */
5943 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5945 /* Thinkpad R31 needs pipe A force quirk */
5946 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5947 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5948 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5950 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5951 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5952 /* ThinkPad X40 needs pipe A force quirk */
5954 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5955 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5957 /* 855 & before need to leave pipe A & dpll A up */
5958 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5959 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5962 static void intel_init_quirks(struct drm_device *dev)
5964 struct pci_dev *d = dev->pdev;
5965 int i;
5967 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5968 struct intel_quirk *q = &intel_quirks[i];
5970 if (d->device == q->device &&
5971 (d->subsystem_vendor == q->subsystem_vendor ||
5972 q->subsystem_vendor == PCI_ANY_ID) &&
5973 (d->subsystem_device == q->subsystem_device ||
5974 q->subsystem_device == PCI_ANY_ID))
5975 q->hook(dev);
5979 void intel_modeset_init(struct drm_device *dev)
5981 struct drm_i915_private *dev_priv = dev->dev_private;
5982 int i;
5984 drm_mode_config_init(dev);
5986 dev->mode_config.min_width = 0;
5987 dev->mode_config.min_height = 0;
5989 dev->mode_config.funcs = (void *)&intel_mode_funcs;
5991 intel_init_quirks(dev);
5993 intel_init_display(dev);
5995 if (IS_I965G(dev)) {
5996 dev->mode_config.max_width = 8192;
5997 dev->mode_config.max_height = 8192;
5998 } else if (IS_I9XX(dev)) {
5999 dev->mode_config.max_width = 4096;
6000 dev->mode_config.max_height = 4096;
6001 } else {
6002 dev->mode_config.max_width = 2048;
6003 dev->mode_config.max_height = 2048;
6006 /* set memory base */
6007 if (IS_I9XX(dev))
6008 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6009 else
6010 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6012 if (IS_MOBILE(dev) || IS_I9XX(dev))
6013 dev_priv->num_pipe = 2;
6014 else
6015 dev_priv->num_pipe = 1;
6016 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6017 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6019 for (i = 0; i < dev_priv->num_pipe; i++) {
6020 intel_crtc_init(dev, i);
6023 intel_setup_outputs(dev);
6025 intel_init_clock_gating(dev);
6027 if (IS_IRONLAKE_M(dev)) {
6028 ironlake_enable_drps(dev);
6029 intel_init_emon(dev);
6032 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6033 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6034 (unsigned long)dev);
6036 intel_setup_overlay(dev);
6039 void intel_modeset_cleanup(struct drm_device *dev)
6041 struct drm_i915_private *dev_priv = dev->dev_private;
6042 struct drm_crtc *crtc;
6043 struct intel_crtc *intel_crtc;
6045 mutex_lock(&dev->struct_mutex);
6047 drm_kms_helper_poll_fini(dev);
6048 intel_fbdev_fini(dev);
6050 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6051 /* Skip inactive CRTCs */
6052 if (!crtc->fb)
6053 continue;
6055 intel_crtc = to_intel_crtc(crtc);
6056 intel_increase_pllclock(crtc, false);
6057 del_timer_sync(&intel_crtc->idle_timer);
6060 del_timer_sync(&dev_priv->idle_timer);
6062 if (dev_priv->display.disable_fbc)
6063 dev_priv->display.disable_fbc(dev);
6065 if (dev_priv->pwrctx) {
6066 struct drm_i915_gem_object *obj_priv;
6068 obj_priv = to_intel_bo(dev_priv->pwrctx);
6069 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6070 I915_READ(PWRCTXA);
6071 i915_gem_object_unpin(dev_priv->pwrctx);
6072 drm_gem_object_unreference(dev_priv->pwrctx);
6075 if (IS_IRONLAKE_M(dev))
6076 ironlake_disable_drps(dev);
6078 mutex_unlock(&dev->struct_mutex);
6080 drm_mode_config_cleanup(dev);
6085 * Return which encoder is currently attached for connector.
6087 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6089 struct drm_mode_object *obj;
6090 struct drm_encoder *encoder;
6091 int i;
6093 for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6094 if (connector->encoder_ids[i] == 0)
6095 break;
6097 obj = drm_mode_object_find(connector->dev,
6098 connector->encoder_ids[i],
6099 DRM_MODE_OBJECT_ENCODER);
6100 if (!obj)
6101 continue;
6103 encoder = obj_to_encoder(obj);
6104 return encoder;
6106 return NULL;
6110 * set vga decode state - true == enable VGA decode
6112 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115 u16 gmch_ctrl;
6117 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6118 if (state)
6119 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6120 else
6121 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6122 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6123 return 0;