net: use NETDEV_TX_OK instead of 0 in ndo_start_xmit() functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / irda / au1k_ir.c
blob22baf65e1563ec0e4a713daaabc6edc30d4e6c98
1 /*
2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/init.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/slab.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm.h>
31 #include <linux/bitops.h>
33 #include <asm/irq.h>
34 #include <asm/io.h>
35 #include <asm/au1000.h>
36 #if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
37 #include <asm/pb1000.h>
38 #elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
39 #include <asm/db1x00.h>
40 #else
41 #error au1k_ir: unsupported board
42 #endif
44 #include <net/irda/irda.h>
45 #include <net/irda/irmod.h>
46 #include <net/irda/wrapper.h>
47 #include <net/irda/irda_device.h>
48 #include "au1000_ircc.h"
50 static int au1k_irda_net_init(struct net_device *);
51 static int au1k_irda_start(struct net_device *);
52 static int au1k_irda_stop(struct net_device *dev);
53 static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
54 static int au1k_irda_rx(struct net_device *);
55 static void au1k_irda_interrupt(int, void *);
56 static void au1k_tx_timeout(struct net_device *);
57 static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
58 static int au1k_irda_set_speed(struct net_device *dev, int speed);
60 static void *dma_alloc(size_t, dma_addr_t *);
61 static void dma_free(void *, size_t);
63 static int qos_mtt_bits = 0x07; /* 1 ms or more */
64 static struct net_device *ir_devs[NUM_IR_IFF];
65 static char version[] __devinitdata =
66 "au1k_ircc:1.2 ppopov@mvista.com\n";
68 #define RUN_AT(x) (jiffies + (x))
70 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
71 static BCSR * const bcsr = (BCSR *)0xAE000000;
72 #endif
74 static DEFINE_SPINLOCK(ir_lock);
77 * IrDA peripheral bug. You have to read the register
78 * twice to get the right value.
80 u32 read_ir_reg(u32 addr)
82 readl(addr);
83 return readl(addr);
88 * Buffer allocation/deallocation routines. The buffer descriptor returned
89 * has the virtual and dma address of a buffer suitable for
90 * both, receive and transmit operations.
92 static db_dest_t *GetFreeDB(struct au1k_private *aup)
94 db_dest_t *pDB;
95 pDB = aup->pDBfree;
97 if (pDB) {
98 aup->pDBfree = pDB->pnext;
100 return pDB;
103 static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
105 db_dest_t *pDBfree = aup->pDBfree;
106 if (pDBfree)
107 pDBfree->pnext = pDB;
108 aup->pDBfree = pDB;
113 DMA memory allocation, derived from pci_alloc_consistent.
114 However, the Au1000 data cache is coherent (when programmed
115 so), therefore we return KSEG0 address, not KSEG1.
117 static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
119 void *ret;
120 int gfp = GFP_ATOMIC | GFP_DMA;
122 ret = (void *) __get_free_pages(gfp, get_order(size));
124 if (ret != NULL) {
125 memset(ret, 0, size);
126 *dma_handle = virt_to_bus(ret);
127 ret = (void *)KSEG0ADDR(ret);
129 return ret;
133 static void dma_free(void *vaddr, size_t size)
135 vaddr = (void *)KSEG0ADDR(vaddr);
136 free_pages((unsigned long) vaddr, get_order(size));
140 static void
141 setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
143 int i;
144 for (i=0; i<NUM_IR_DESC; i++) {
145 aup->rx_ring[i] = (volatile ring_dest_t *)
146 (rx_base + sizeof(ring_dest_t)*i);
148 for (i=0; i<NUM_IR_DESC; i++) {
149 aup->tx_ring[i] = (volatile ring_dest_t *)
150 (tx_base + sizeof(ring_dest_t)*i);
154 static int au1k_irda_init(void)
156 static unsigned version_printed = 0;
157 struct au1k_private *aup;
158 struct net_device *dev;
159 int err;
161 if (version_printed++ == 0) printk(version);
163 dev = alloc_irdadev(sizeof(struct au1k_private));
164 if (!dev)
165 return -ENOMEM;
167 dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
168 err = au1k_irda_net_init(dev);
169 if (err)
170 goto out;
171 err = register_netdev(dev);
172 if (err)
173 goto out1;
174 ir_devs[0] = dev;
175 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
176 return 0;
178 out1:
179 aup = netdev_priv(dev);
180 dma_free((void *)aup->db[0].vaddr,
181 MAX_BUF_SIZE * 2*NUM_IR_DESC);
182 dma_free((void *)aup->rx_ring[0],
183 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
184 kfree(aup->rx_buff.head);
185 out:
186 free_netdev(dev);
187 return err;
190 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
192 io->head = kmalloc(size, GFP_KERNEL);
193 if (io->head != NULL) {
194 io->truesize = size;
195 io->in_frame = FALSE;
196 io->state = OUTSIDE_FRAME;
197 io->data = io->head;
199 return io->head ? 0 : -ENOMEM;
202 static const struct net_device_ops au1k_irda_netdev_ops = {
203 .ndo_open = au1k_irda_start,
204 .ndo_stop = au1k_irda_stop,
205 .ndo_start_xmit = au1k_irda_hard_xmit,
206 .ndo_tx_timeout = au1k_tx_timeout,
207 .ndo_do_ioctl = au1k_irda_ioctl,
208 .ndo_change_mtu = eth_change_mtu,
209 .ndo_validate_addr = eth_validate_addr,
210 .ndo_set_mac_address = eth_mac_addr,
213 static int au1k_irda_net_init(struct net_device *dev)
215 struct au1k_private *aup = netdev_priv(dev);
216 int i, retval = 0, err;
217 db_dest_t *pDB, *pDBfree;
218 dma_addr_t temp;
220 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
221 if (err)
222 goto out1;
224 dev->netdev_ops = &au1k_irda_netdev_ops;
226 irda_init_max_qos_capabilies(&aup->qos);
228 /* The only value we must override it the baudrate */
229 aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
230 IR_115200|IR_576000 |(IR_4000000 << 8);
232 aup->qos.min_turn_time.bits = qos_mtt_bits;
233 irda_qos_bits_to_value(&aup->qos);
235 retval = -ENOMEM;
237 /* Tx ring follows rx ring + 512 bytes */
238 /* we need a 1k aligned buffer */
239 aup->rx_ring[0] = (ring_dest_t *)
240 dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
241 if (!aup->rx_ring[0])
242 goto out2;
244 /* allocate the data buffers */
245 aup->db[0].vaddr =
246 (void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
247 if (!aup->db[0].vaddr)
248 goto out3;
250 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
252 pDBfree = NULL;
253 pDB = aup->db;
254 for (i=0; i<(2*NUM_IR_DESC); i++) {
255 pDB->pnext = pDBfree;
256 pDBfree = pDB;
257 pDB->vaddr =
258 (u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
259 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
260 pDB++;
262 aup->pDBfree = pDBfree;
264 /* attach a data buffer to each descriptor */
265 for (i=0; i<NUM_IR_DESC; i++) {
266 pDB = GetFreeDB(aup);
267 if (!pDB) goto out;
268 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
269 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
270 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
271 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
272 aup->rx_db_inuse[i] = pDB;
274 for (i=0; i<NUM_IR_DESC; i++) {
275 pDB = GetFreeDB(aup);
276 if (!pDB) goto out;
277 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
278 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
279 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
280 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
281 aup->tx_ring[i]->count_0 = 0;
282 aup->tx_ring[i]->count_1 = 0;
283 aup->tx_ring[i]->flags = 0;
284 aup->tx_db_inuse[i] = pDB;
287 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
288 /* power on */
289 bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
290 bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
291 au_sync();
292 #endif
294 return 0;
296 out3:
297 dma_free((void *)aup->rx_ring[0],
298 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
299 out2:
300 kfree(aup->rx_buff.head);
301 out1:
302 printk(KERN_ERR "au1k_init_module failed. Returns %d\n", retval);
303 return retval;
307 static int au1k_init(struct net_device *dev)
309 struct au1k_private *aup = netdev_priv(dev);
310 int i;
311 u32 control;
312 u32 ring_address;
314 /* bring the device out of reset */
315 control = 0xe; /* coherent, clock enable, one half system clock */
317 #ifndef CONFIG_CPU_LITTLE_ENDIAN
318 control |= 1;
319 #endif
320 aup->tx_head = 0;
321 aup->tx_tail = 0;
322 aup->rx_head = 0;
324 for (i=0; i<NUM_IR_DESC; i++) {
325 aup->rx_ring[i]->flags = AU_OWN;
328 writel(control, IR_INTERFACE_CONFIG);
329 au_sync_delay(10);
331 writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
332 au_sync_delay(1);
334 writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
336 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
337 writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
338 writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
340 writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
342 writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
343 writel(0, IR_RING_ADDR_CMPR);
345 au1k_irda_set_speed(dev, 9600);
346 return 0;
349 static int au1k_irda_start(struct net_device *dev)
351 int retval;
352 char hwname[32];
353 struct au1k_private *aup = netdev_priv(dev);
355 if ((retval = au1k_init(dev))) {
356 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
357 return retval;
360 if ((retval = request_irq(AU1000_IRDA_TX_INT, &au1k_irda_interrupt,
361 0, dev->name, dev))) {
362 printk(KERN_ERR "%s: unable to get IRQ %d\n",
363 dev->name, dev->irq);
364 return retval;
366 if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt,
367 0, dev->name, dev))) {
368 free_irq(AU1000_IRDA_TX_INT, dev);
369 printk(KERN_ERR "%s: unable to get IRQ %d\n",
370 dev->name, dev->irq);
371 return retval;
374 /* Give self a hardware name */
375 sprintf(hwname, "Au1000 SIR/FIR");
376 aup->irlap = irlap_open(dev, &aup->qos, hwname);
377 netif_start_queue(dev);
379 writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
381 aup->timer.expires = RUN_AT((3*HZ));
382 aup->timer.data = (unsigned long)dev;
383 return 0;
386 static int au1k_irda_stop(struct net_device *dev)
388 struct au1k_private *aup = netdev_priv(dev);
390 /* disable interrupts */
391 writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
392 writel(0, IR_CONFIG_1);
393 writel(0, IR_INTERFACE_CONFIG); /* disable clock */
394 au_sync();
396 if (aup->irlap) {
397 irlap_close(aup->irlap);
398 aup->irlap = NULL;
401 netif_stop_queue(dev);
402 del_timer(&aup->timer);
404 /* disable the interrupt */
405 free_irq(AU1000_IRDA_TX_INT, dev);
406 free_irq(AU1000_IRDA_RX_INT, dev);
407 return 0;
410 static void __exit au1k_irda_exit(void)
412 struct net_device *dev = ir_devs[0];
413 struct au1k_private *aup = netdev_priv(dev);
415 unregister_netdev(dev);
417 dma_free((void *)aup->db[0].vaddr,
418 MAX_BUF_SIZE * 2*NUM_IR_DESC);
419 dma_free((void *)aup->rx_ring[0],
420 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
421 kfree(aup->rx_buff.head);
422 free_netdev(dev);
426 static inline void
427 update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
429 struct au1k_private *aup = netdev_priv(dev);
430 struct net_device_stats *ps = &aup->stats;
432 ps->tx_packets++;
433 ps->tx_bytes += pkt_len;
435 if (status & IR_TX_ERROR) {
436 ps->tx_errors++;
437 ps->tx_aborted_errors++;
442 static void au1k_tx_ack(struct net_device *dev)
444 struct au1k_private *aup = netdev_priv(dev);
445 volatile ring_dest_t *ptxd;
447 ptxd = aup->tx_ring[aup->tx_tail];
448 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
449 update_tx_stats(dev, ptxd->flags,
450 ptxd->count_1<<8 | ptxd->count_0);
451 ptxd->count_0 = 0;
452 ptxd->count_1 = 0;
453 au_sync();
455 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
456 ptxd = aup->tx_ring[aup->tx_tail];
458 if (aup->tx_full) {
459 aup->tx_full = 0;
460 netif_wake_queue(dev);
464 if (aup->tx_tail == aup->tx_head) {
465 if (aup->newspeed) {
466 au1k_irda_set_speed(dev, aup->newspeed);
467 aup->newspeed = 0;
469 else {
470 writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
471 IR_CONFIG_1);
472 au_sync();
473 writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
474 IR_CONFIG_1);
475 writel(0, IR_RING_PROMPT);
476 au_sync();
483 * Au1000 transmit routine.
485 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
487 struct au1k_private *aup = netdev_priv(dev);
488 int speed = irda_get_next_speed(skb);
489 volatile ring_dest_t *ptxd;
490 u32 len;
492 u32 flags;
493 db_dest_t *pDB;
495 if (speed != aup->speed && speed != -1) {
496 aup->newspeed = speed;
499 if ((skb->len == 0) && (aup->newspeed)) {
500 if (aup->tx_tail == aup->tx_head) {
501 au1k_irda_set_speed(dev, speed);
502 aup->newspeed = 0;
504 dev_kfree_skb(skb);
505 return NETDEV_TX_OK;
508 ptxd = aup->tx_ring[aup->tx_head];
509 flags = ptxd->flags;
511 if (flags & AU_OWN) {
512 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
513 netif_stop_queue(dev);
514 aup->tx_full = 1;
515 return NETDEV_TX_BUSY;
517 else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
518 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
519 netif_stop_queue(dev);
520 aup->tx_full = 1;
521 return NETDEV_TX_BUSY;
524 pDB = aup->tx_db_inuse[aup->tx_head];
526 #if 0
527 if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
528 printk("tx warning: rx byte cnt %x\n",
529 read_ir_reg(IR_RX_BYTE_CNT));
531 #endif
533 if (aup->speed == 4000000) {
534 /* FIR */
535 skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
536 ptxd->count_0 = skb->len & 0xff;
537 ptxd->count_1 = (skb->len >> 8) & 0xff;
540 else {
541 /* SIR */
542 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
543 ptxd->count_0 = len & 0xff;
544 ptxd->count_1 = (len >> 8) & 0xff;
545 ptxd->flags |= IR_DIS_CRC;
546 au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
548 ptxd->flags |= AU_OWN;
549 au_sync();
551 writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
552 writel(0, IR_RING_PROMPT);
553 au_sync();
555 dev_kfree_skb(skb);
556 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
557 dev->trans_start = jiffies;
558 return NETDEV_TX_OK;
562 static inline void
563 update_rx_stats(struct net_device *dev, u32 status, u32 count)
565 struct au1k_private *aup = netdev_priv(dev);
566 struct net_device_stats *ps = &aup->stats;
568 ps->rx_packets++;
570 if (status & IR_RX_ERROR) {
571 ps->rx_errors++;
572 if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
573 ps->rx_missed_errors++;
574 if (status & IR_MAX_LEN)
575 ps->rx_length_errors++;
576 if (status & IR_CRC_ERROR)
577 ps->rx_crc_errors++;
579 else
580 ps->rx_bytes += count;
584 * Au1000 receive routine.
586 static int au1k_irda_rx(struct net_device *dev)
588 struct au1k_private *aup = netdev_priv(dev);
589 struct sk_buff *skb;
590 volatile ring_dest_t *prxd;
591 u32 flags, count;
592 db_dest_t *pDB;
594 prxd = aup->rx_ring[aup->rx_head];
595 flags = prxd->flags;
597 while (!(flags & AU_OWN)) {
598 pDB = aup->rx_db_inuse[aup->rx_head];
599 count = prxd->count_1<<8 | prxd->count_0;
600 if (!(flags & IR_RX_ERROR)) {
601 /* good frame */
602 update_rx_stats(dev, flags, count);
603 skb=alloc_skb(count+1,GFP_ATOMIC);
604 if (skb == NULL) {
605 aup->netdev->stats.rx_dropped++;
606 continue;
608 skb_reserve(skb, 1);
609 if (aup->speed == 4000000)
610 skb_put(skb, count);
611 else
612 skb_put(skb, count-2);
613 skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
614 skb->dev = dev;
615 skb_reset_mac_header(skb);
616 skb->protocol = htons(ETH_P_IRDA);
617 netif_rx(skb);
618 prxd->count_0 = 0;
619 prxd->count_1 = 0;
621 prxd->flags |= AU_OWN;
622 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
623 writel(0, IR_RING_PROMPT);
624 au_sync();
626 /* next descriptor */
627 prxd = aup->rx_ring[aup->rx_head];
628 flags = prxd->flags;
631 return 0;
635 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
637 struct net_device *dev = dev_id;
639 writel(0, IR_INT_CLEAR); /* ack irda interrupts */
641 au1k_irda_rx(dev);
642 au1k_tx_ack(dev);
644 return IRQ_HANDLED;
649 * The Tx ring has been full longer than the watchdog timeout
650 * value. The transmitter must be hung?
652 static void au1k_tx_timeout(struct net_device *dev)
654 u32 speed;
655 struct au1k_private *aup = netdev_priv(dev);
657 printk(KERN_ERR "%s: tx timeout\n", dev->name);
658 speed = aup->speed;
659 aup->speed = 0;
660 au1k_irda_set_speed(dev, speed);
661 aup->tx_full = 0;
662 netif_wake_queue(dev);
667 * Set the IrDA communications speed.
669 static int
670 au1k_irda_set_speed(struct net_device *dev, int speed)
672 unsigned long flags;
673 struct au1k_private *aup = netdev_priv(dev);
674 u32 control;
675 int ret = 0, timeout = 10, i;
676 volatile ring_dest_t *ptxd;
677 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
678 unsigned long irda_resets;
679 #endif
681 if (speed == aup->speed)
682 return ret;
684 spin_lock_irqsave(&ir_lock, flags);
686 /* disable PHY first */
687 writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
689 /* disable RX/TX */
690 writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
691 IR_CONFIG_1);
692 au_sync_delay(1);
693 while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
694 mdelay(1);
695 if (!timeout--) {
696 printk(KERN_ERR "%s: rx/tx disable timeout\n",
697 dev->name);
698 break;
702 /* disable DMA */
703 writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
704 au_sync_delay(1);
707 * After we disable tx/rx. the index pointers
708 * go back to zero.
710 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
711 for (i=0; i<NUM_IR_DESC; i++) {
712 ptxd = aup->tx_ring[i];
713 ptxd->flags = 0;
714 ptxd->count_0 = 0;
715 ptxd->count_1 = 0;
718 for (i=0; i<NUM_IR_DESC; i++) {
719 ptxd = aup->rx_ring[i];
720 ptxd->count_0 = 0;
721 ptxd->count_1 = 0;
722 ptxd->flags = AU_OWN;
725 if (speed == 4000000) {
726 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
727 bcsr->resets |= BCSR_RESETS_FIR_SEL;
728 #else /* Pb1000 and Pb1100 */
729 writel(1<<13, CPLD_AUX1);
730 #endif
732 else {
733 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
734 bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
735 #else /* Pb1000 and Pb1100 */
736 writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
737 #endif
740 switch (speed) {
741 case 9600:
742 writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
743 writel(IR_SIR_MODE, IR_CONFIG_1);
744 break;
745 case 19200:
746 writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
747 writel(IR_SIR_MODE, IR_CONFIG_1);
748 break;
749 case 38400:
750 writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
751 writel(IR_SIR_MODE, IR_CONFIG_1);
752 break;
753 case 57600:
754 writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
755 writel(IR_SIR_MODE, IR_CONFIG_1);
756 break;
757 case 115200:
758 writel(12<<5, IR_WRITE_PHY_CONFIG);
759 writel(IR_SIR_MODE, IR_CONFIG_1);
760 break;
761 case 4000000:
762 writel(0xF, IR_WRITE_PHY_CONFIG);
763 writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
764 break;
765 default:
766 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
767 ret = -EINVAL;
768 break;
771 aup->speed = speed;
772 writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
773 au_sync();
775 control = read_ir_reg(IR_ENABLE);
776 writel(0, IR_RING_PROMPT);
777 au_sync();
779 if (control & (1<<14)) {
780 printk(KERN_ERR "%s: configuration error\n", dev->name);
782 else {
783 if (control & (1<<11))
784 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
785 if (control & (1<<12))
786 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
787 if (control & (1<<13))
788 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
789 if (control & (1<<10))
790 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
791 if (control & (1<<9))
792 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
795 spin_unlock_irqrestore(&ir_lock, flags);
796 return ret;
799 static int
800 au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
802 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
803 struct au1k_private *aup = netdev_priv(dev);
804 int ret = -EOPNOTSUPP;
806 switch (cmd) {
807 case SIOCSBANDWIDTH:
808 if (capable(CAP_NET_ADMIN)) {
810 * We are unable to set the speed if the
811 * device is not running.
813 if (aup->open)
814 ret = au1k_irda_set_speed(dev,
815 rq->ifr_baudrate);
816 else {
817 printk(KERN_ERR "%s ioctl: !netif_running\n",
818 dev->name);
819 ret = 0;
822 break;
824 case SIOCSMEDIABUSY:
825 ret = -EPERM;
826 if (capable(CAP_NET_ADMIN)) {
827 irda_device_set_media_busy(dev, TRUE);
828 ret = 0;
830 break;
832 case SIOCGRECEIVING:
833 rq->ifr_receiving = 0;
834 break;
835 default:
836 break;
838 return ret;
841 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
842 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
844 module_init(au1k_irda_init);
845 module_exit(au1k_irda_exit);