2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
85 #include <linux/net_tstamp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
98 #include <linux/of_net.h>
101 #include "fsl_pq_mdio.h"
103 #define TX_TIMEOUT (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
107 const char gfar_driver_name
[] = "Gianfar Ethernet";
108 const char gfar_driver_version
[] = "1.3";
110 static int gfar_enet_open(struct net_device
*dev
);
111 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
112 static void gfar_reset_task(struct work_struct
*work
);
113 static void gfar_timeout(struct net_device
*dev
);
114 static int gfar_close(struct net_device
*dev
);
115 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
117 struct sk_buff
*skb
);
118 static int gfar_set_mac_address(struct net_device
*dev
);
119 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
120 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
121 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
122 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
123 static void adjust_link(struct net_device
*dev
);
124 static void init_registers(struct net_device
*dev
);
125 static int init_phy(struct net_device
*dev
);
126 static int gfar_probe(struct platform_device
*ofdev
,
127 const struct of_device_id
*match
);
128 static int gfar_remove(struct platform_device
*ofdev
);
129 static void free_skb_resources(struct gfar_private
*priv
);
130 static void gfar_set_multi(struct net_device
*dev
);
131 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
132 static void gfar_configure_serdes(struct net_device
*dev
);
133 static int gfar_poll(struct napi_struct
*napi
, int budget
);
134 #ifdef CONFIG_NET_POLL_CONTROLLER
135 static void gfar_netpoll(struct net_device
*dev
);
137 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
138 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
139 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
141 static void gfar_vlan_rx_register(struct net_device
*netdev
,
142 struct vlan_group
*grp
);
143 void gfar_halt(struct net_device
*dev
);
144 static void gfar_halt_nodisable(struct net_device
*dev
);
145 void gfar_start(struct net_device
*dev
);
146 static void gfar_clear_exact_match(struct net_device
*dev
);
147 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
149 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
162 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
163 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
164 lstatus
|= BD_LFLAG(RXBD_WRAP
);
168 bdp
->lstatus
= lstatus
;
171 static int gfar_init_bds(struct net_device
*ndev
)
173 struct gfar_private
*priv
= netdev_priv(ndev
);
174 struct gfar_priv_tx_q
*tx_queue
= NULL
;
175 struct gfar_priv_rx_q
*rx_queue
= NULL
;
180 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
181 tx_queue
= priv
->tx_queue
[i
];
182 /* Initialize some variables in our dev structure */
183 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
184 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
185 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
186 tx_queue
->skb_curtx
= 0;
187 tx_queue
->skb_dirtytx
= 0;
189 /* Initialize Transmit Descriptor Ring */
190 txbdp
= tx_queue
->tx_bd_base
;
191 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
197 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp
->status
|= TXBD_WRAP
;
202 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
203 rx_queue
= priv
->rx_queue
[i
];
204 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
205 rx_queue
->skb_currx
= 0;
206 rxbdp
= rx_queue
->rx_bd_base
;
208 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
209 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
212 gfar_init_rxbdp(rx_queue
, rxbdp
,
215 skb
= gfar_new_skb(ndev
);
217 pr_err("%s: Can't allocate RX buffers\n",
219 goto err_rxalloc_fail
;
221 rx_queue
->rx_skbuff
[j
] = skb
;
223 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
234 free_skb_resources(priv
);
238 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
243 struct gfar_private
*priv
= netdev_priv(ndev
);
244 struct device
*dev
= &priv
->ofdev
->dev
;
245 struct gfar_priv_tx_q
*tx_queue
= NULL
;
246 struct gfar_priv_rx_q
*rx_queue
= NULL
;
248 priv
->total_tx_ring_size
= 0;
249 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
250 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
252 priv
->total_rx_ring_size
= 0;
253 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
254 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
256 /* Allocate memory for the buffer descriptors */
257 vaddr
= dma_alloc_coherent(dev
,
258 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
259 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
262 if (netif_msg_ifup(priv
))
263 pr_err("%s: Could not allocate buffer descriptors!\n",
268 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
269 tx_queue
= priv
->tx_queue
[i
];
270 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
271 tx_queue
->tx_bd_dma_base
= addr
;
272 tx_queue
->dev
= ndev
;
273 /* enet DMA only understands physical addresses */
274 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
275 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
278 /* Start the rx descriptor ring where the tx ring leaves off */
279 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
280 rx_queue
= priv
->rx_queue
[i
];
281 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
282 rx_queue
->rx_bd_dma_base
= addr
;
283 rx_queue
->dev
= ndev
;
284 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
285 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
288 /* Setup the skbuff rings */
289 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
290 tx_queue
= priv
->tx_queue
[i
];
291 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
292 tx_queue
->tx_ring_size
, GFP_KERNEL
);
293 if (!tx_queue
->tx_skbuff
) {
294 if (netif_msg_ifup(priv
))
295 pr_err("%s: Could not allocate tx_skbuff\n",
300 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
301 tx_queue
->tx_skbuff
[k
] = NULL
;
304 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
305 rx_queue
= priv
->rx_queue
[i
];
306 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
307 rx_queue
->rx_ring_size
, GFP_KERNEL
);
309 if (!rx_queue
->rx_skbuff
) {
310 if (netif_msg_ifup(priv
))
311 pr_err("%s: Could not allocate rx_skbuff\n",
316 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
317 rx_queue
->rx_skbuff
[j
] = NULL
;
320 if (gfar_init_bds(ndev
))
326 free_skb_resources(priv
);
330 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
332 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
336 baddr
= ®s
->tbase0
;
337 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
338 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
342 baddr
= ®s
->rbase0
;
343 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
344 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
349 static void gfar_init_mac(struct net_device
*ndev
)
351 struct gfar_private
*priv
= netdev_priv(ndev
);
352 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
357 /* write the tx/rx base registers */
358 gfar_init_tx_rx_base(priv
);
360 /* Configure the coalescing support */
361 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
363 if (priv
->rx_filer_enable
) {
364 rctrl
|= RCTRL_FILREN
;
365 /* Program the RIR0 reg with the required distribution */
366 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
369 if (priv
->rx_csum_enable
)
370 rctrl
|= RCTRL_CHECKSUMMING
;
372 if (priv
->extended_hash
) {
373 rctrl
|= RCTRL_EXTHASH
;
375 gfar_clear_exact_match(ndev
);
380 rctrl
&= ~RCTRL_PAL_MASK
;
381 rctrl
|= RCTRL_PADDING(priv
->padding
);
384 /* Insert receive time stamps into padding alignment bytes */
385 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
) {
386 rctrl
&= ~RCTRL_PAL_MASK
;
387 rctrl
|= RCTRL_PADDING(8);
391 /* Enable HW time stamping if requested from user space */
392 if (priv
->hwts_rx_en
)
393 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
395 /* keep vlan related bits if it's enabled */
397 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
398 tctrl
|= TCTRL_VLINS
;
401 /* Init rctrl based on our settings */
402 gfar_write(®s
->rctrl
, rctrl
);
404 if (ndev
->features
& NETIF_F_IP_CSUM
)
405 tctrl
|= TCTRL_INIT_CSUM
;
407 tctrl
|= TCTRL_TXSCHED_PRIO
;
409 gfar_write(®s
->tctrl
, tctrl
);
411 /* Set the extraction length and index */
412 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
413 ATTRELI_EI(priv
->rx_stash_index
);
415 gfar_write(®s
->attreli
, attrs
);
417 /* Start with defaults, and add stashing or locking
418 * depending on the approprate variables */
419 attrs
= ATTR_INIT_SETTINGS
;
421 if (priv
->bd_stash_en
)
422 attrs
|= ATTR_BDSTASH
;
424 if (priv
->rx_stash_size
!= 0)
425 attrs
|= ATTR_BUFSTASH
;
427 gfar_write(®s
->attr
, attrs
);
429 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
430 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
431 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
434 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
436 struct gfar_private
*priv
= netdev_priv(dev
);
437 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
438 unsigned long tx_packets
= 0, tx_bytes
= 0;
441 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
442 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
443 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
444 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
447 dev
->stats
.rx_packets
= rx_packets
;
448 dev
->stats
.rx_bytes
= rx_bytes
;
449 dev
->stats
.rx_dropped
= rx_dropped
;
451 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
452 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
453 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
456 dev
->stats
.tx_bytes
= tx_bytes
;
457 dev
->stats
.tx_packets
= tx_packets
;
462 static const struct net_device_ops gfar_netdev_ops
= {
463 .ndo_open
= gfar_enet_open
,
464 .ndo_start_xmit
= gfar_start_xmit
,
465 .ndo_stop
= gfar_close
,
466 .ndo_change_mtu
= gfar_change_mtu
,
467 .ndo_set_multicast_list
= gfar_set_multi
,
468 .ndo_tx_timeout
= gfar_timeout
,
469 .ndo_do_ioctl
= gfar_ioctl
,
470 .ndo_get_stats
= gfar_get_stats
,
471 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
472 .ndo_set_mac_address
= eth_mac_addr
,
473 .ndo_validate_addr
= eth_validate_addr
,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 .ndo_poll_controller
= gfar_netpoll
,
479 unsigned int ftp_rqfpr
[MAX_FILER_IDX
+ 1];
480 unsigned int ftp_rqfcr
[MAX_FILER_IDX
+ 1];
482 void lock_rx_qs(struct gfar_private
*priv
)
486 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
487 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
490 void lock_tx_qs(struct gfar_private
*priv
)
494 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
495 spin_lock(&priv
->tx_queue
[i
]->txlock
);
498 void unlock_rx_qs(struct gfar_private
*priv
)
502 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
503 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
506 void unlock_tx_qs(struct gfar_private
*priv
)
510 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
511 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
517 return priv
->vlgrp
|| priv
->rx_csum_enable
||
518 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
);
521 static void free_tx_pointers(struct gfar_private
*priv
)
525 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
526 kfree(priv
->tx_queue
[i
]);
529 static void free_rx_pointers(struct gfar_private
*priv
)
533 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
534 kfree(priv
->rx_queue
[i
]);
537 static void unmap_group_regs(struct gfar_private
*priv
)
541 for (i
= 0; i
< MAXGROUPS
; i
++)
542 if (priv
->gfargrp
[i
].regs
)
543 iounmap(priv
->gfargrp
[i
].regs
);
546 static void disable_napi(struct gfar_private
*priv
)
550 for (i
= 0; i
< priv
->num_grps
; i
++)
551 napi_disable(&priv
->gfargrp
[i
].napi
);
554 static void enable_napi(struct gfar_private
*priv
)
558 for (i
= 0; i
< priv
->num_grps
; i
++)
559 napi_enable(&priv
->gfargrp
[i
].napi
);
562 static int gfar_parse_group(struct device_node
*np
,
563 struct gfar_private
*priv
, const char *model
)
567 priv
->gfargrp
[priv
->num_grps
].regs
= of_iomap(np
, 0);
568 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
571 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
572 irq_of_parse_and_map(np
, 0);
574 /* If we aren't the FEC we have multiple interrupts */
575 if (model
&& strcasecmp(model
, "FEC")) {
576 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
577 irq_of_parse_and_map(np
, 1);
578 priv
->gfargrp
[priv
->num_grps
].interruptError
=
579 irq_of_parse_and_map(np
,2);
580 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
== NO_IRQ
||
581 priv
->gfargrp
[priv
->num_grps
].interruptReceive
== NO_IRQ
||
582 priv
->gfargrp
[priv
->num_grps
].interruptError
== NO_IRQ
)
586 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
587 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
588 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
589 if(priv
->mode
== MQ_MG_MODE
) {
590 queue_mask
= (u32
*)of_get_property(np
,
591 "fsl,rx-bit-map", NULL
);
592 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
593 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
594 queue_mask
= (u32
*)of_get_property(np
,
595 "fsl,tx-bit-map", NULL
);
596 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
597 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
599 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
600 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
607 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
611 const void *mac_addr
;
613 struct net_device
*dev
= NULL
;
614 struct gfar_private
*priv
= NULL
;
615 struct device_node
*np
= ofdev
->dev
.of_node
;
616 struct device_node
*child
= NULL
;
618 const u32
*stash_len
;
619 const u32
*stash_idx
;
620 unsigned int num_tx_qs
, num_rx_qs
;
621 u32
*tx_queues
, *rx_queues
;
623 if (!np
|| !of_device_is_available(np
))
626 /* parse the num of tx and rx queues */
627 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
628 num_tx_qs
= tx_queues
? *tx_queues
: 1;
630 if (num_tx_qs
> MAX_TX_QS
) {
631 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
632 num_tx_qs
, MAX_TX_QS
);
633 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
637 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
638 num_rx_qs
= rx_queues
? *rx_queues
: 1;
640 if (num_rx_qs
> MAX_RX_QS
) {
641 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
642 num_tx_qs
, MAX_TX_QS
);
643 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
647 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
652 priv
= netdev_priv(dev
);
653 priv
->node
= ofdev
->dev
.of_node
;
656 priv
->num_tx_queues
= num_tx_qs
;
657 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
658 priv
->num_rx_queues
= num_rx_qs
;
659 priv
->num_grps
= 0x0;
661 model
= of_get_property(np
, "model", NULL
);
663 for (i
= 0; i
< MAXGROUPS
; i
++)
664 priv
->gfargrp
[i
].regs
= NULL
;
666 /* Parse and initialize group specific information */
667 if (of_device_is_compatible(np
, "fsl,etsec2")) {
668 priv
->mode
= MQ_MG_MODE
;
669 for_each_child_of_node(np
, child
) {
670 err
= gfar_parse_group(child
, priv
, model
);
675 priv
->mode
= SQ_SG_MODE
;
676 err
= gfar_parse_group(np
, priv
, model
);
681 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
682 priv
->tx_queue
[i
] = NULL
;
683 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
684 priv
->rx_queue
[i
] = NULL
;
686 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
687 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
689 if (!priv
->tx_queue
[i
]) {
691 goto tx_alloc_failed
;
693 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
694 priv
->tx_queue
[i
]->qindex
= i
;
695 priv
->tx_queue
[i
]->dev
= dev
;
696 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
699 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
700 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
702 if (!priv
->rx_queue
[i
]) {
704 goto rx_alloc_failed
;
706 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
707 priv
->rx_queue
[i
]->qindex
= i
;
708 priv
->rx_queue
[i
]->dev
= dev
;
709 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
713 stash
= of_get_property(np
, "bd-stash", NULL
);
716 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
717 priv
->bd_stash_en
= 1;
720 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
723 priv
->rx_stash_size
= *stash_len
;
725 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
728 priv
->rx_stash_index
= *stash_idx
;
730 if (stash_len
|| stash_idx
)
731 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
733 mac_addr
= of_get_mac_address(np
);
735 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
737 if (model
&& !strcasecmp(model
, "TSEC"))
739 FSL_GIANFAR_DEV_HAS_GIGABIT
|
740 FSL_GIANFAR_DEV_HAS_COALESCE
|
741 FSL_GIANFAR_DEV_HAS_RMON
|
742 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
743 if (model
&& !strcasecmp(model
, "eTSEC"))
745 FSL_GIANFAR_DEV_HAS_GIGABIT
|
746 FSL_GIANFAR_DEV_HAS_COALESCE
|
747 FSL_GIANFAR_DEV_HAS_RMON
|
748 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
749 FSL_GIANFAR_DEV_HAS_PADDING
|
750 FSL_GIANFAR_DEV_HAS_CSUM
|
751 FSL_GIANFAR_DEV_HAS_VLAN
|
752 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
753 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
754 FSL_GIANFAR_DEV_HAS_TIMER
;
756 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
758 /* We only care about rgmii-id. The rest are autodetected */
759 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
760 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
762 priv
->interface
= PHY_INTERFACE_MODE_MII
;
764 if (of_get_property(np
, "fsl,magic-packet", NULL
))
765 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
767 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
769 /* Find the TBI PHY. If it's not there, we don't support SGMII */
770 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
775 free_rx_pointers(priv
);
777 free_tx_pointers(priv
);
779 unmap_group_regs(priv
);
784 static int gfar_hwtstamp_ioctl(struct net_device
*netdev
,
785 struct ifreq
*ifr
, int cmd
)
787 struct hwtstamp_config config
;
788 struct gfar_private
*priv
= netdev_priv(netdev
);
790 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
793 /* reserved for future extensions */
797 switch (config
.tx_type
) {
798 case HWTSTAMP_TX_OFF
:
799 priv
->hwts_tx_en
= 0;
802 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
804 priv
->hwts_tx_en
= 1;
810 switch (config
.rx_filter
) {
811 case HWTSTAMP_FILTER_NONE
:
812 if (priv
->hwts_rx_en
) {
814 priv
->hwts_rx_en
= 0;
815 startup_gfar(netdev
);
819 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
821 if (!priv
->hwts_rx_en
) {
823 priv
->hwts_rx_en
= 1;
824 startup_gfar(netdev
);
826 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
830 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
834 /* Ioctl MII Interface */
835 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
837 struct gfar_private
*priv
= netdev_priv(dev
);
839 if (!netif_running(dev
))
842 if (cmd
== SIOCSHWTSTAMP
)
843 return gfar_hwtstamp_ioctl(dev
, rq
, cmd
);
848 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
851 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
853 unsigned int new_bit_map
= 0x0;
854 int mask
= 0x1 << (max_qs
- 1), i
;
855 for (i
= 0; i
< max_qs
; i
++) {
857 new_bit_map
= new_bit_map
+ (1 << i
);
863 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
866 u32 rqfpr
= FPR_FILER_MASK
;
870 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
871 ftp_rqfpr
[rqfar
] = rqfpr
;
872 ftp_rqfcr
[rqfar
] = rqfcr
;
873 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
876 rqfcr
= RQFCR_CMP_NOMATCH
;
877 ftp_rqfpr
[rqfar
] = rqfpr
;
878 ftp_rqfcr
[rqfar
] = rqfcr
;
879 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
882 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
884 ftp_rqfcr
[rqfar
] = rqfcr
;
885 ftp_rqfpr
[rqfar
] = rqfpr
;
886 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
889 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
891 ftp_rqfcr
[rqfar
] = rqfcr
;
892 ftp_rqfpr
[rqfar
] = rqfpr
;
893 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
898 static void gfar_init_filer_table(struct gfar_private
*priv
)
901 u32 rqfar
= MAX_FILER_IDX
;
903 u32 rqfpr
= FPR_FILER_MASK
;
906 rqfcr
= RQFCR_CMP_MATCH
;
907 ftp_rqfcr
[rqfar
] = rqfcr
;
908 ftp_rqfpr
[rqfar
] = rqfpr
;
909 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
911 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
912 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
913 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
914 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
915 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
916 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
918 /* cur_filer_idx indicated the first non-masked rule */
919 priv
->cur_filer_idx
= rqfar
;
921 /* Rest are masked rules */
922 rqfcr
= RQFCR_CMP_NOMATCH
;
923 for (i
= 0; i
< rqfar
; i
++) {
924 ftp_rqfcr
[i
] = rqfcr
;
925 ftp_rqfpr
[i
] = rqfpr
;
926 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
930 static void gfar_detect_errata(struct gfar_private
*priv
)
932 struct device
*dev
= &priv
->ofdev
->dev
;
933 unsigned int pvr
= mfspr(SPRN_PVR
);
934 unsigned int svr
= mfspr(SPRN_SVR
);
935 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
936 unsigned int rev
= svr
& 0xffff;
938 /* MPC8313 Rev 2.0 and higher; All MPC837x */
939 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
940 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
941 priv
->errata
|= GFAR_ERRATA_74
;
943 /* MPC8313 and MPC837x all rev */
944 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
945 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
946 priv
->errata
|= GFAR_ERRATA_76
;
948 /* MPC8313 and MPC837x all rev */
949 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
950 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
951 priv
->errata
|= GFAR_ERRATA_A002
;
953 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
954 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020) ||
955 (pvr
== 0x80210020 && mod
== 0x8030 && rev
== 0x0020))
956 priv
->errata
|= GFAR_ERRATA_12
;
959 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
963 /* Set up the ethernet device structure, private data,
964 * and anything else we need before we start */
965 static int gfar_probe(struct platform_device
*ofdev
,
966 const struct of_device_id
*match
)
969 struct net_device
*dev
= NULL
;
970 struct gfar_private
*priv
= NULL
;
971 struct gfar __iomem
*regs
= NULL
;
972 int err
= 0, i
, grp_idx
= 0;
974 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
978 err
= gfar_of_init(ofdev
, &dev
);
983 priv
= netdev_priv(dev
);
986 priv
->node
= ofdev
->dev
.of_node
;
987 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
989 spin_lock_init(&priv
->bflock
);
990 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
992 dev_set_drvdata(&ofdev
->dev
, priv
);
993 regs
= priv
->gfargrp
[0].regs
;
995 gfar_detect_errata(priv
);
997 /* Stop the DMA engine now, in case it was running before */
998 /* (The firmware could have used it, and left it running). */
1001 /* Reset MAC layer */
1002 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1004 /* We need to delay at least 3 TX clocks */
1007 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
1008 gfar_write(®s
->maccfg1
, tempval
);
1010 /* Initialize MACCFG2. */
1011 tempval
= MACCFG2_INIT_SETTINGS
;
1012 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1013 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1014 gfar_write(®s
->maccfg2
, tempval
);
1016 /* Initialize ECNTRL */
1017 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1019 /* Set the dev->base_addr to the gfar reg region */
1020 dev
->base_addr
= (unsigned long) regs
;
1022 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1024 /* Fill in the dev structure */
1025 dev
->watchdog_timeo
= TX_TIMEOUT
;
1027 dev
->netdev_ops
= &gfar_netdev_ops
;
1028 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1030 /* Register for napi ...We are registering NAPI for each grp */
1031 for (i
= 0; i
< priv
->num_grps
; i
++)
1032 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
1034 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1035 priv
->rx_csum_enable
= 1;
1036 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
1038 priv
->rx_csum_enable
= 0;
1042 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
1043 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1045 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1046 priv
->extended_hash
= 1;
1047 priv
->hash_width
= 9;
1049 priv
->hash_regs
[0] = ®s
->igaddr0
;
1050 priv
->hash_regs
[1] = ®s
->igaddr1
;
1051 priv
->hash_regs
[2] = ®s
->igaddr2
;
1052 priv
->hash_regs
[3] = ®s
->igaddr3
;
1053 priv
->hash_regs
[4] = ®s
->igaddr4
;
1054 priv
->hash_regs
[5] = ®s
->igaddr5
;
1055 priv
->hash_regs
[6] = ®s
->igaddr6
;
1056 priv
->hash_regs
[7] = ®s
->igaddr7
;
1057 priv
->hash_regs
[8] = ®s
->gaddr0
;
1058 priv
->hash_regs
[9] = ®s
->gaddr1
;
1059 priv
->hash_regs
[10] = ®s
->gaddr2
;
1060 priv
->hash_regs
[11] = ®s
->gaddr3
;
1061 priv
->hash_regs
[12] = ®s
->gaddr4
;
1062 priv
->hash_regs
[13] = ®s
->gaddr5
;
1063 priv
->hash_regs
[14] = ®s
->gaddr6
;
1064 priv
->hash_regs
[15] = ®s
->gaddr7
;
1067 priv
->extended_hash
= 0;
1068 priv
->hash_width
= 8;
1070 priv
->hash_regs
[0] = ®s
->gaddr0
;
1071 priv
->hash_regs
[1] = ®s
->gaddr1
;
1072 priv
->hash_regs
[2] = ®s
->gaddr2
;
1073 priv
->hash_regs
[3] = ®s
->gaddr3
;
1074 priv
->hash_regs
[4] = ®s
->gaddr4
;
1075 priv
->hash_regs
[5] = ®s
->gaddr5
;
1076 priv
->hash_regs
[6] = ®s
->gaddr6
;
1077 priv
->hash_regs
[7] = ®s
->gaddr7
;
1080 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
1081 priv
->padding
= DEFAULT_PADDING
;
1085 if (dev
->features
& NETIF_F_IP_CSUM
||
1086 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1087 dev
->hard_header_len
+= GMAC_FCB_LEN
;
1089 /* Program the isrg regs only if number of grps > 1 */
1090 if (priv
->num_grps
> 1) {
1091 baddr
= ®s
->isrg0
;
1092 for (i
= 0; i
< priv
->num_grps
; i
++) {
1093 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
1094 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
1095 gfar_write(baddr
, isrg
);
1101 /* Need to reverse the bit maps as bit_map's MSB is q0
1102 * but, for_each_set_bit parses from right to left, which
1103 * basically reverses the queue numbers */
1104 for (i
= 0; i
< priv
->num_grps
; i
++) {
1105 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1106 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1107 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1108 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1111 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1112 * also assign queues to groups */
1113 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1114 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1115 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1116 priv
->num_rx_queues
) {
1117 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1118 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1119 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1120 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1122 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1123 for_each_set_bit(i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1124 priv
->num_tx_queues
) {
1125 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1126 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1127 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1128 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1130 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1131 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1135 gfar_write(®s
->rqueue
, rqueue
);
1136 gfar_write(®s
->tqueue
, tqueue
);
1138 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1140 /* Initializing some of the rx/tx queue level parameters */
1141 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1142 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1143 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1144 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1145 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1148 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1149 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1150 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1151 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1154 /* enable filer if using multiple RX queues*/
1155 if(priv
->num_rx_queues
> 1)
1156 priv
->rx_filer_enable
= 1;
1157 /* Enable most messages by default */
1158 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1160 /* Carrier starts down, phylib will bring it up */
1161 netif_carrier_off(dev
);
1163 err
= register_netdev(dev
);
1166 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1171 device_init_wakeup(&dev
->dev
,
1172 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1174 /* fill out IRQ number and name fields */
1175 len_devname
= strlen(dev
->name
);
1176 for (i
= 0; i
< priv
->num_grps
; i
++) {
1177 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1179 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1180 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1181 "_g", sizeof("_g"));
1182 priv
->gfargrp
[i
].int_name_tx
[
1183 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1184 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1185 priv
->gfargrp
[i
].int_name_tx
)],
1186 "_tx", sizeof("_tx") + 1);
1188 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1190 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1191 "_g", sizeof("_g"));
1192 priv
->gfargrp
[i
].int_name_rx
[
1193 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1194 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1195 priv
->gfargrp
[i
].int_name_rx
)],
1196 "_rx", sizeof("_rx") + 1);
1198 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1200 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1201 "_g", sizeof("_g"));
1202 priv
->gfargrp
[i
].int_name_er
[strlen(
1203 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1204 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1205 priv
->gfargrp
[i
].int_name_er
)],
1206 "_er", sizeof("_er") + 1);
1208 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1211 /* Initialize the filer table */
1212 gfar_init_filer_table(priv
);
1214 /* Create all the sysfs files */
1215 gfar_init_sysfs(dev
);
1217 /* Print out the device info */
1218 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1220 /* Even more device info helps when determining which kernel */
1221 /* provided which set of benchmarks. */
1222 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1223 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1224 printk(KERN_INFO
"%s: RX BD ring size for Q[%d]: %d\n",
1225 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1226 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1227 printk(KERN_INFO
"%s: TX BD ring size for Q[%d]: %d\n",
1228 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1233 unmap_group_regs(priv
);
1234 free_tx_pointers(priv
);
1235 free_rx_pointers(priv
);
1237 of_node_put(priv
->phy_node
);
1239 of_node_put(priv
->tbi_node
);
1244 static int gfar_remove(struct platform_device
*ofdev
)
1246 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1249 of_node_put(priv
->phy_node
);
1251 of_node_put(priv
->tbi_node
);
1253 dev_set_drvdata(&ofdev
->dev
, NULL
);
1255 unregister_netdev(priv
->ndev
);
1256 unmap_group_regs(priv
);
1257 free_netdev(priv
->ndev
);
1264 static int gfar_suspend(struct device
*dev
)
1266 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1267 struct net_device
*ndev
= priv
->ndev
;
1268 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1269 unsigned long flags
;
1272 int magic_packet
= priv
->wol_en
&&
1273 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1275 netif_device_detach(ndev
);
1277 if (netif_running(ndev
)) {
1279 local_irq_save(flags
);
1283 gfar_halt_nodisable(ndev
);
1285 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286 tempval
= gfar_read(®s
->maccfg1
);
1288 tempval
&= ~MACCFG1_TX_EN
;
1291 tempval
&= ~MACCFG1_RX_EN
;
1293 gfar_write(®s
->maccfg1
, tempval
);
1297 local_irq_restore(flags
);
1302 /* Enable interrupt on Magic Packet */
1303 gfar_write(®s
->imask
, IMASK_MAG
);
1305 /* Enable Magic Packet mode */
1306 tempval
= gfar_read(®s
->maccfg2
);
1307 tempval
|= MACCFG2_MPEN
;
1308 gfar_write(®s
->maccfg2
, tempval
);
1310 phy_stop(priv
->phydev
);
1317 static int gfar_resume(struct device
*dev
)
1319 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1320 struct net_device
*ndev
= priv
->ndev
;
1321 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1322 unsigned long flags
;
1324 int magic_packet
= priv
->wol_en
&&
1325 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1327 if (!netif_running(ndev
)) {
1328 netif_device_attach(ndev
);
1332 if (!magic_packet
&& priv
->phydev
)
1333 phy_start(priv
->phydev
);
1335 /* Disable Magic Packet mode, in case something
1338 local_irq_save(flags
);
1342 tempval
= gfar_read(®s
->maccfg2
);
1343 tempval
&= ~MACCFG2_MPEN
;
1344 gfar_write(®s
->maccfg2
, tempval
);
1350 local_irq_restore(flags
);
1352 netif_device_attach(ndev
);
1359 static int gfar_restore(struct device
*dev
)
1361 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1362 struct net_device
*ndev
= priv
->ndev
;
1364 if (!netif_running(ndev
))
1367 gfar_init_bds(ndev
);
1368 init_registers(ndev
);
1369 gfar_set_mac_address(ndev
);
1370 gfar_init_mac(ndev
);
1375 priv
->oldduplex
= -1;
1378 phy_start(priv
->phydev
);
1380 netif_device_attach(ndev
);
1386 static struct dev_pm_ops gfar_pm_ops
= {
1387 .suspend
= gfar_suspend
,
1388 .resume
= gfar_resume
,
1389 .freeze
= gfar_suspend
,
1390 .thaw
= gfar_resume
,
1391 .restore
= gfar_restore
,
1394 #define GFAR_PM_OPS (&gfar_pm_ops)
1398 #define GFAR_PM_OPS NULL
1402 /* Reads the controller's registers to determine what interface
1403 * connects it to the PHY.
1405 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1407 struct gfar_private
*priv
= netdev_priv(dev
);
1408 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1411 ecntrl
= gfar_read(®s
->ecntrl
);
1413 if (ecntrl
& ECNTRL_SGMII_MODE
)
1414 return PHY_INTERFACE_MODE_SGMII
;
1416 if (ecntrl
& ECNTRL_TBI_MODE
) {
1417 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1418 return PHY_INTERFACE_MODE_RTBI
;
1420 return PHY_INTERFACE_MODE_TBI
;
1423 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1424 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1425 return PHY_INTERFACE_MODE_RMII
;
1427 phy_interface_t interface
= priv
->interface
;
1430 * This isn't autodetected right now, so it must
1431 * be set by the device tree or platform code.
1433 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1434 return PHY_INTERFACE_MODE_RGMII_ID
;
1436 return PHY_INTERFACE_MODE_RGMII
;
1440 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1441 return PHY_INTERFACE_MODE_GMII
;
1443 return PHY_INTERFACE_MODE_MII
;
1447 /* Initializes driver's PHY state, and attaches to the PHY.
1448 * Returns 0 on success.
1450 static int init_phy(struct net_device
*dev
)
1452 struct gfar_private
*priv
= netdev_priv(dev
);
1453 uint gigabit_support
=
1454 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1455 SUPPORTED_1000baseT_Full
: 0;
1456 phy_interface_t interface
;
1460 priv
->oldduplex
= -1;
1462 interface
= gfar_get_interface(dev
);
1464 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1467 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1469 if (!priv
->phydev
) {
1470 dev_err(&dev
->dev
, "could not attach to PHY\n");
1474 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1475 gfar_configure_serdes(dev
);
1477 /* Remove any features not supported by the controller */
1478 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1479 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1485 * Initialize TBI PHY interface for communicating with the
1486 * SERDES lynx PHY on the chip. We communicate with this PHY
1487 * through the MDIO bus on each controller, treating it as a
1488 * "normal" PHY at the address found in the TBIPA register. We assume
1489 * that the TBIPA register is valid. Either the MDIO bus code will set
1490 * it to a value that doesn't conflict with other PHYs on the bus, or the
1491 * value doesn't matter, as there are no other PHYs on the bus.
1493 static void gfar_configure_serdes(struct net_device
*dev
)
1495 struct gfar_private
*priv
= netdev_priv(dev
);
1496 struct phy_device
*tbiphy
;
1498 if (!priv
->tbi_node
) {
1499 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1500 "device tree specify a tbi-handle\n");
1504 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1506 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1511 * If the link is already up, we must already be ok, and don't need to
1512 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1513 * everything for us? Resetting it takes the link down and requires
1514 * several seconds for it to come back.
1516 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1519 /* Single clk mode, mii mode off(for serdes communication) */
1520 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1522 phy_write(tbiphy
, MII_ADVERTISE
,
1523 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1524 ADVERTISE_1000XPSE_ASYM
);
1526 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1527 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1530 static void init_registers(struct net_device
*dev
)
1532 struct gfar_private
*priv
= netdev_priv(dev
);
1533 struct gfar __iomem
*regs
= NULL
;
1536 for (i
= 0; i
< priv
->num_grps
; i
++) {
1537 regs
= priv
->gfargrp
[i
].regs
;
1539 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1541 /* Initialize IMASK */
1542 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1545 regs
= priv
->gfargrp
[0].regs
;
1546 /* Init hash registers to zero */
1547 gfar_write(®s
->igaddr0
, 0);
1548 gfar_write(®s
->igaddr1
, 0);
1549 gfar_write(®s
->igaddr2
, 0);
1550 gfar_write(®s
->igaddr3
, 0);
1551 gfar_write(®s
->igaddr4
, 0);
1552 gfar_write(®s
->igaddr5
, 0);
1553 gfar_write(®s
->igaddr6
, 0);
1554 gfar_write(®s
->igaddr7
, 0);
1556 gfar_write(®s
->gaddr0
, 0);
1557 gfar_write(®s
->gaddr1
, 0);
1558 gfar_write(®s
->gaddr2
, 0);
1559 gfar_write(®s
->gaddr3
, 0);
1560 gfar_write(®s
->gaddr4
, 0);
1561 gfar_write(®s
->gaddr5
, 0);
1562 gfar_write(®s
->gaddr6
, 0);
1563 gfar_write(®s
->gaddr7
, 0);
1565 /* Zero out the rmon mib registers if it has them */
1566 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1567 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1569 /* Mask off the CAM interrupts */
1570 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1571 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1574 /* Initialize the max receive buffer length */
1575 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1577 /* Initialize the Minimum Frame Length Register */
1578 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1581 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1586 * Normaly TSEC should not hang on GRS commands, so we should
1587 * actually wait for IEVENT_GRSC flag.
1589 if (likely(!gfar_has_errata(priv
, GFAR_ERRATA_A002
)))
1593 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595 * and the Rx can be safely reset.
1597 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1599 if ((res
& 0xffff) == (res
>> 16))
1605 /* Halt the receive and transmit queues */
1606 static void gfar_halt_nodisable(struct net_device
*dev
)
1608 struct gfar_private
*priv
= netdev_priv(dev
);
1609 struct gfar __iomem
*regs
= NULL
;
1613 for (i
= 0; i
< priv
->num_grps
; i
++) {
1614 regs
= priv
->gfargrp
[i
].regs
;
1615 /* Mask all interrupts */
1616 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1618 /* Clear all interrupts */
1619 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1622 regs
= priv
->gfargrp
[0].regs
;
1623 /* Stop the DMA, and wait for it to stop */
1624 tempval
= gfar_read(®s
->dmactrl
);
1625 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1626 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1629 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1630 gfar_write(®s
->dmactrl
, tempval
);
1633 ret
= spin_event_timeout(((gfar_read(®s
->ievent
) &
1634 (IEVENT_GRSC
| IEVENT_GTSC
)) ==
1635 (IEVENT_GRSC
| IEVENT_GTSC
)), 1000000, 0);
1636 if (!ret
&& !(gfar_read(®s
->ievent
) & IEVENT_GRSC
))
1637 ret
= __gfar_is_rx_idle(priv
);
1642 /* Halt the receive and transmit queues */
1643 void gfar_halt(struct net_device
*dev
)
1645 struct gfar_private
*priv
= netdev_priv(dev
);
1646 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1649 gfar_halt_nodisable(dev
);
1651 /* Disable Rx and Tx */
1652 tempval
= gfar_read(®s
->maccfg1
);
1653 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1654 gfar_write(®s
->maccfg1
, tempval
);
1657 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1659 free_irq(grp
->interruptError
, grp
);
1660 free_irq(grp
->interruptTransmit
, grp
);
1661 free_irq(grp
->interruptReceive
, grp
);
1664 void stop_gfar(struct net_device
*dev
)
1666 struct gfar_private
*priv
= netdev_priv(dev
);
1667 unsigned long flags
;
1670 phy_stop(priv
->phydev
);
1674 local_irq_save(flags
);
1682 local_irq_restore(flags
);
1685 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1686 for (i
= 0; i
< priv
->num_grps
; i
++)
1687 free_grp_irqs(&priv
->gfargrp
[i
]);
1689 for (i
= 0; i
< priv
->num_grps
; i
++)
1690 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1694 free_skb_resources(priv
);
1697 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1699 struct txbd8
*txbdp
;
1700 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1703 txbdp
= tx_queue
->tx_bd_base
;
1705 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1706 if (!tx_queue
->tx_skbuff
[i
])
1709 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1710 txbdp
->length
, DMA_TO_DEVICE
);
1712 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1715 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1716 txbdp
->length
, DMA_TO_DEVICE
);
1719 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1720 tx_queue
->tx_skbuff
[i
] = NULL
;
1722 kfree(tx_queue
->tx_skbuff
);
1725 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1727 struct rxbd8
*rxbdp
;
1728 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1731 rxbdp
= rx_queue
->rx_bd_base
;
1733 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1734 if (rx_queue
->rx_skbuff
[i
]) {
1735 dma_unmap_single(&priv
->ofdev
->dev
,
1736 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1738 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1739 rx_queue
->rx_skbuff
[i
] = NULL
;
1745 kfree(rx_queue
->rx_skbuff
);
1748 /* If there are any tx skbs or rx skbs still around, free them.
1749 * Then free tx_skbuff and rx_skbuff */
1750 static void free_skb_resources(struct gfar_private
*priv
)
1752 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1753 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1756 /* Go through all the buffer descriptors and free their data buffers */
1757 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1758 tx_queue
= priv
->tx_queue
[i
];
1759 if(tx_queue
->tx_skbuff
)
1760 free_skb_tx_queue(tx_queue
);
1763 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1764 rx_queue
= priv
->rx_queue
[i
];
1765 if(rx_queue
->rx_skbuff
)
1766 free_skb_rx_queue(rx_queue
);
1769 dma_free_coherent(&priv
->ofdev
->dev
,
1770 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1771 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1772 priv
->tx_queue
[0]->tx_bd_base
,
1773 priv
->tx_queue
[0]->tx_bd_dma_base
);
1774 skb_queue_purge(&priv
->rx_recycle
);
1777 void gfar_start(struct net_device
*dev
)
1779 struct gfar_private
*priv
= netdev_priv(dev
);
1780 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1784 /* Enable Rx and Tx in MACCFG1 */
1785 tempval
= gfar_read(®s
->maccfg1
);
1786 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1787 gfar_write(®s
->maccfg1
, tempval
);
1789 /* Initialize DMACTRL to have WWR and WOP */
1790 tempval
= gfar_read(®s
->dmactrl
);
1791 tempval
|= DMACTRL_INIT_SETTINGS
;
1792 gfar_write(®s
->dmactrl
, tempval
);
1794 /* Make sure we aren't stopped */
1795 tempval
= gfar_read(®s
->dmactrl
);
1796 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1797 gfar_write(®s
->dmactrl
, tempval
);
1799 for (i
= 0; i
< priv
->num_grps
; i
++) {
1800 regs
= priv
->gfargrp
[i
].regs
;
1801 /* Clear THLT/RHLT, so that the DMA starts polling now */
1802 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1803 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1804 /* Unmask the interrupts we look for */
1805 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1808 dev
->trans_start
= jiffies
; /* prevent tx timeout */
1811 void gfar_configure_coalescing(struct gfar_private
*priv
,
1812 unsigned long tx_mask
, unsigned long rx_mask
)
1814 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1818 /* Backward compatible case ---- even if we enable
1819 * multiple queues, there's only single reg to program
1821 gfar_write(®s
->txic
, 0);
1822 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1823 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1825 gfar_write(®s
->rxic
, 0);
1826 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1827 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1829 if (priv
->mode
== MQ_MG_MODE
) {
1830 baddr
= ®s
->txic0
;
1831 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
1832 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1833 gfar_write(baddr
+ i
, 0);
1834 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1838 baddr
= ®s
->rxic0
;
1839 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
1840 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1841 gfar_write(baddr
+ i
, 0);
1842 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1848 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1850 struct gfar_private
*priv
= grp
->priv
;
1851 struct net_device
*dev
= priv
->ndev
;
1854 /* If the device has multiple interrupts, register for
1855 * them. Otherwise, only register for the one */
1856 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1857 /* Install our interrupt handlers for Error,
1858 * Transmit, and Receive */
1859 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1860 grp
->int_name_er
,grp
)) < 0) {
1861 if (netif_msg_intr(priv
))
1862 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1863 dev
->name
, grp
->interruptError
);
1868 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1869 0, grp
->int_name_tx
, grp
)) < 0) {
1870 if (netif_msg_intr(priv
))
1871 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1872 dev
->name
, grp
->interruptTransmit
);
1876 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1877 grp
->int_name_rx
, grp
)) < 0) {
1878 if (netif_msg_intr(priv
))
1879 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1880 dev
->name
, grp
->interruptReceive
);
1884 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1885 grp
->int_name_tx
, grp
)) < 0) {
1886 if (netif_msg_intr(priv
))
1887 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1888 dev
->name
, grp
->interruptTransmit
);
1896 free_irq(grp
->interruptTransmit
, grp
);
1898 free_irq(grp
->interruptError
, grp
);
1904 /* Bring the controller up and running */
1905 int startup_gfar(struct net_device
*ndev
)
1907 struct gfar_private
*priv
= netdev_priv(ndev
);
1908 struct gfar __iomem
*regs
= NULL
;
1911 for (i
= 0; i
< priv
->num_grps
; i
++) {
1912 regs
= priv
->gfargrp
[i
].regs
;
1913 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1916 regs
= priv
->gfargrp
[0].regs
;
1917 err
= gfar_alloc_skb_resources(ndev
);
1921 gfar_init_mac(ndev
);
1923 for (i
= 0; i
< priv
->num_grps
; i
++) {
1924 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1926 for (j
= 0; j
< i
; j
++)
1927 free_grp_irqs(&priv
->gfargrp
[j
]);
1932 /* Start the controller */
1935 phy_start(priv
->phydev
);
1937 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1942 free_skb_resources(priv
);
1946 /* Called when something needs to use the ethernet device */
1947 /* Returns 0 for success. */
1948 static int gfar_enet_open(struct net_device
*dev
)
1950 struct gfar_private
*priv
= netdev_priv(dev
);
1955 skb_queue_head_init(&priv
->rx_recycle
);
1957 /* Initialize a bunch of registers */
1958 init_registers(dev
);
1960 gfar_set_mac_address(dev
);
1962 err
= init_phy(dev
);
1969 err
= startup_gfar(dev
);
1975 netif_tx_start_all_queues(dev
);
1977 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1982 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1984 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1986 memset(fcb
, 0, GMAC_FCB_LEN
);
1991 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1995 /* If we're here, it's a IP packet with a TCP or UDP
1996 * payload. We set it to checksum, using a pseudo-header
1999 flags
= TXFCB_DEFAULT
;
2001 /* Tell the controller what the protocol is */
2002 /* And provide the already calculated phcs */
2003 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2005 fcb
->phcs
= udp_hdr(skb
)->check
;
2007 fcb
->phcs
= tcp_hdr(skb
)->check
;
2009 /* l3os is the distance between the start of the
2010 * frame (skb->data) and the start of the IP hdr.
2011 * l4os is the distance between the start of the
2012 * l3 hdr and the l4 hdr */
2013 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
2014 fcb
->l4os
= skb_network_header_len(skb
);
2019 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2021 fcb
->flags
|= TXFCB_VLN
;
2022 fcb
->vlctl
= vlan_tx_tag_get(skb
);
2025 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2026 struct txbd8
*base
, int ring_size
)
2028 struct txbd8
*new_bd
= bdp
+ stride
;
2030 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2033 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2036 return skip_txbd(bdp
, 1, base
, ring_size
);
2039 /* This is called by the kernel when a frame is ready for transmission. */
2040 /* It is pointed to by the dev->hard_start_xmit function pointer */
2041 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2043 struct gfar_private
*priv
= netdev_priv(dev
);
2044 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2045 struct netdev_queue
*txq
;
2046 struct gfar __iomem
*regs
= NULL
;
2047 struct txfcb
*fcb
= NULL
;
2048 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2050 int i
, rq
= 0, do_tstamp
= 0;
2052 unsigned long flags
;
2053 unsigned int nr_frags
, nr_txbds
, length
;
2056 * TOE=1 frames larger than 2500 bytes may see excess delays
2057 * before start of transmission.
2059 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2060 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
2064 ret
= skb_checksum_help(skb
);
2069 rq
= skb
->queue_mapping
;
2070 tx_queue
= priv
->tx_queue
[rq
];
2071 txq
= netdev_get_tx_queue(dev
, rq
);
2072 base
= tx_queue
->tx_bd_base
;
2073 regs
= tx_queue
->grp
->regs
;
2075 /* check if time stamp should be generated */
2076 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
2080 /* make space for additional header when fcb is needed */
2081 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2082 vlan_tx_tag_present(skb
) ||
2083 unlikely(do_tstamp
)) &&
2084 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
2085 struct sk_buff
*skb_new
;
2087 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
2089 dev
->stats
.tx_errors
++;
2091 return NETDEV_TX_OK
;
2097 /* total number of fragments in the SKB */
2098 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2100 /* calculate the required number of TxBDs for this skb */
2101 if (unlikely(do_tstamp
))
2102 nr_txbds
= nr_frags
+ 2;
2104 nr_txbds
= nr_frags
+ 1;
2106 /* check if there is space to queue this packet */
2107 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2108 /* no space, stop the queue */
2109 netif_tx_stop_queue(txq
);
2110 dev
->stats
.tx_fifo_errors
++;
2111 return NETDEV_TX_BUSY
;
2114 /* Update transmit stats */
2115 tx_queue
->stats
.tx_bytes
+= skb
->len
;
2116 tx_queue
->stats
.tx_packets
++;
2118 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2119 lstatus
= txbdp
->lstatus
;
2121 /* Time stamp insertion requires one additional TxBD */
2122 if (unlikely(do_tstamp
))
2123 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2124 tx_queue
->tx_ring_size
);
2126 if (nr_frags
== 0) {
2127 if (unlikely(do_tstamp
))
2128 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2131 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2133 /* Place the fragment addresses and lengths into the TxBDs */
2134 for (i
= 0; i
< nr_frags
; i
++) {
2135 /* Point at the next BD, wrapping as needed */
2136 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2138 length
= skb_shinfo(skb
)->frags
[i
].size
;
2140 lstatus
= txbdp
->lstatus
| length
|
2141 BD_LFLAG(TXBD_READY
);
2143 /* Handle the last BD specially */
2144 if (i
== nr_frags
- 1)
2145 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2147 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
2148 skb_shinfo(skb
)->frags
[i
].page
,
2149 skb_shinfo(skb
)->frags
[i
].page_offset
,
2153 /* set the TxBD length and buffer pointer */
2154 txbdp
->bufPtr
= bufaddr
;
2155 txbdp
->lstatus
= lstatus
;
2158 lstatus
= txbdp_start
->lstatus
;
2161 /* Set up checksumming */
2162 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2163 fcb
= gfar_add_fcb(skb
);
2164 /* as specified by errata */
2165 if (unlikely(gfar_has_errata(priv
, GFAR_ERRATA_12
)
2166 && ((unsigned long)fcb
% 0x20) > 0x18)) {
2167 __skb_pull(skb
, GMAC_FCB_LEN
);
2168 skb_checksum_help(skb
);
2170 lstatus
|= BD_LFLAG(TXBD_TOE
);
2171 gfar_tx_checksum(skb
, fcb
);
2175 if (vlan_tx_tag_present(skb
)) {
2176 if (unlikely(NULL
== fcb
)) {
2177 fcb
= gfar_add_fcb(skb
);
2178 lstatus
|= BD_LFLAG(TXBD_TOE
);
2181 gfar_tx_vlan(skb
, fcb
);
2184 /* Setup tx hardware time stamping if requested */
2185 if (unlikely(do_tstamp
)) {
2186 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2188 fcb
= gfar_add_fcb(skb
);
2190 lstatus
|= BD_LFLAG(TXBD_TOE
);
2193 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2194 skb_headlen(skb
), DMA_TO_DEVICE
);
2197 * If time stamping is requested one additional TxBD must be set up. The
2198 * first TxBD points to the FCB and must have a data length of
2199 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2200 * the full frame length.
2202 if (unlikely(do_tstamp
)) {
2203 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ GMAC_FCB_LEN
;
2204 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2205 (skb_headlen(skb
) - GMAC_FCB_LEN
);
2206 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2208 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2212 * We can work in parallel with gfar_clean_tx_ring(), except
2213 * when modifying num_txbdfree. Note that we didn't grab the lock
2214 * when we were reading the num_txbdfree and checking for available
2215 * space, that's because outside of this function it can only grow,
2216 * and once we've got needed space, it cannot suddenly disappear.
2218 * The lock also protects us from gfar_error(), which can modify
2219 * regs->tstat and thus retrigger the transfers, which is why we
2220 * also must grab the lock before setting ready bit for the first
2221 * to be transmitted BD.
2223 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2226 * The powerpc-specific eieio() is used, as wmb() has too strong
2227 * semantics (it requires synchronization between cacheable and
2228 * uncacheable mappings, which eieio doesn't provide and which we
2229 * don't need), thus requiring a more expensive sync instruction. At
2230 * some point, the set of architecture-independent barrier functions
2231 * should be expanded to include weaker barriers.
2235 txbdp_start
->lstatus
= lstatus
;
2237 eieio(); /* force lstatus write before tx_skbuff */
2239 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2241 /* Update the current skb pointer to the next entry we will use
2242 * (wrapping if necessary) */
2243 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2244 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2246 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2248 /* reduce TxBD free count */
2249 tx_queue
->num_txbdfree
-= (nr_txbds
);
2251 /* If the next BD still needs to be cleaned up, then the bds
2252 are full. We need to tell the kernel to stop sending us stuff. */
2253 if (!tx_queue
->num_txbdfree
) {
2254 netif_tx_stop_queue(txq
);
2256 dev
->stats
.tx_fifo_errors
++;
2259 /* Tell the DMA to go go go */
2260 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2263 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2265 return NETDEV_TX_OK
;
2268 /* Stops the kernel queue, and halts the controller */
2269 static int gfar_close(struct net_device
*dev
)
2271 struct gfar_private
*priv
= netdev_priv(dev
);
2275 cancel_work_sync(&priv
->reset_task
);
2278 /* Disconnect from the PHY */
2279 phy_disconnect(priv
->phydev
);
2280 priv
->phydev
= NULL
;
2282 netif_tx_stop_all_queues(dev
);
2287 /* Changes the mac address if the controller is not running. */
2288 static int gfar_set_mac_address(struct net_device
*dev
)
2290 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2296 /* Enables and disables VLAN insertion/extraction */
2297 static void gfar_vlan_rx_register(struct net_device
*dev
,
2298 struct vlan_group
*grp
)
2300 struct gfar_private
*priv
= netdev_priv(dev
);
2301 struct gfar __iomem
*regs
= NULL
;
2302 unsigned long flags
;
2305 regs
= priv
->gfargrp
[0].regs
;
2306 local_irq_save(flags
);
2312 /* Enable VLAN tag insertion */
2313 tempval
= gfar_read(®s
->tctrl
);
2314 tempval
|= TCTRL_VLINS
;
2316 gfar_write(®s
->tctrl
, tempval
);
2318 /* Enable VLAN tag extraction */
2319 tempval
= gfar_read(®s
->rctrl
);
2320 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2321 gfar_write(®s
->rctrl
, tempval
);
2323 /* Disable VLAN tag insertion */
2324 tempval
= gfar_read(®s
->tctrl
);
2325 tempval
&= ~TCTRL_VLINS
;
2326 gfar_write(®s
->tctrl
, tempval
);
2328 /* Disable VLAN tag extraction */
2329 tempval
= gfar_read(®s
->rctrl
);
2330 tempval
&= ~RCTRL_VLEX
;
2331 /* If parse is no longer required, then disable parser */
2332 if (tempval
& RCTRL_REQ_PARSER
)
2333 tempval
|= RCTRL_PRSDEP_INIT
;
2335 tempval
&= ~RCTRL_PRSDEP_INIT
;
2336 gfar_write(®s
->rctrl
, tempval
);
2339 gfar_change_mtu(dev
, dev
->mtu
);
2342 local_irq_restore(flags
);
2345 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2347 int tempsize
, tempval
;
2348 struct gfar_private
*priv
= netdev_priv(dev
);
2349 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2350 int oldsize
= priv
->rx_buffer_size
;
2351 int frame_size
= new_mtu
+ ETH_HLEN
;
2354 frame_size
+= VLAN_HLEN
;
2356 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2357 if (netif_msg_drv(priv
))
2358 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2363 if (gfar_uses_fcb(priv
))
2364 frame_size
+= GMAC_FCB_LEN
;
2366 frame_size
+= priv
->padding
;
2369 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2370 INCREMENTAL_BUFFER_SIZE
;
2372 /* Only stop and start the controller if it isn't already
2373 * stopped, and we changed something */
2374 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2377 priv
->rx_buffer_size
= tempsize
;
2381 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2382 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2384 /* If the mtu is larger than the max size for standard
2385 * ethernet frames (ie, a jumbo frame), then set maccfg2
2386 * to allow huge frames, and to check the length */
2387 tempval
= gfar_read(®s
->maccfg2
);
2389 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
||
2390 gfar_has_errata(priv
, GFAR_ERRATA_74
))
2391 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2393 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2395 gfar_write(®s
->maccfg2
, tempval
);
2397 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2403 /* gfar_reset_task gets scheduled when a packet has not been
2404 * transmitted after a set amount of time.
2405 * For now, assume that clearing out all the structures, and
2406 * starting over will fix the problem.
2408 static void gfar_reset_task(struct work_struct
*work
)
2410 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2412 struct net_device
*dev
= priv
->ndev
;
2414 if (dev
->flags
& IFF_UP
) {
2415 netif_tx_stop_all_queues(dev
);
2418 netif_tx_start_all_queues(dev
);
2421 netif_tx_schedule_all(dev
);
2424 static void gfar_timeout(struct net_device
*dev
)
2426 struct gfar_private
*priv
= netdev_priv(dev
);
2428 dev
->stats
.tx_errors
++;
2429 schedule_work(&priv
->reset_task
);
2432 static void gfar_align_skb(struct sk_buff
*skb
)
2434 /* We need the data buffer to be aligned properly. We will reserve
2435 * as many bytes as needed to align the data properly
2437 skb_reserve(skb
, RXBUF_ALIGNMENT
-
2438 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
2441 /* Interrupt Handler for Transmit complete */
2442 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2444 struct net_device
*dev
= tx_queue
->dev
;
2445 struct gfar_private
*priv
= netdev_priv(dev
);
2446 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2447 struct txbd8
*bdp
, *next
= NULL
;
2448 struct txbd8
*lbdp
= NULL
;
2449 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2450 struct sk_buff
*skb
;
2452 int tx_ring_size
= tx_queue
->tx_ring_size
;
2453 int frags
= 0, nr_txbds
= 0;
2459 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2460 bdp
= tx_queue
->dirty_tx
;
2461 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2463 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2464 unsigned long flags
;
2466 frags
= skb_shinfo(skb
)->nr_frags
;
2469 * When time stamping, one additional TxBD must be freed.
2470 * Also, we need to dma_unmap_single() the TxPAL.
2472 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2473 nr_txbds
= frags
+ 2;
2475 nr_txbds
= frags
+ 1;
2477 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2479 lstatus
= lbdp
->lstatus
;
2481 /* Only clean completed frames */
2482 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2483 (lstatus
& BD_LENGTH_MASK
))
2486 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2487 next
= next_txbd(bdp
, base
, tx_ring_size
);
2488 buflen
= next
->length
+ GMAC_FCB_LEN
;
2490 buflen
= bdp
->length
;
2492 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2493 buflen
, DMA_TO_DEVICE
);
2495 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2496 struct skb_shared_hwtstamps shhwtstamps
;
2497 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2498 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2499 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2500 skb_tstamp_tx(skb
, &shhwtstamps
);
2501 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2505 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2506 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2508 for (i
= 0; i
< frags
; i
++) {
2509 dma_unmap_page(&priv
->ofdev
->dev
,
2513 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2514 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2518 * If there's room in the queue (limit it to rx_buffer_size)
2519 * we add this skb back into the pool, if it's the right size
2521 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2522 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2524 gfar_align_skb(skb
);
2525 skb_queue_head(&priv
->rx_recycle
, skb
);
2527 dev_kfree_skb_any(skb
);
2529 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2531 skb_dirtytx
= (skb_dirtytx
+ 1) &
2532 TX_RING_MOD_MASK(tx_ring_size
);
2535 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2536 tx_queue
->num_txbdfree
+= nr_txbds
;
2537 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2540 /* If we freed a buffer, we can restart transmission, if necessary */
2541 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2542 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2544 /* Update dirty indicators */
2545 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2546 tx_queue
->dirty_tx
= bdp
;
2551 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2553 unsigned long flags
;
2555 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2556 if (napi_schedule_prep(&gfargrp
->napi
)) {
2557 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2558 __napi_schedule(&gfargrp
->napi
);
2561 * Clear IEVENT, so interrupts aren't called again
2562 * because of the packets that have already arrived.
2564 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2566 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2570 /* Interrupt Handler for Transmit complete */
2571 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2573 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2577 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2578 struct sk_buff
*skb
)
2580 struct net_device
*dev
= rx_queue
->dev
;
2581 struct gfar_private
*priv
= netdev_priv(dev
);
2584 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2585 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2586 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2589 static struct sk_buff
* gfar_alloc_skb(struct net_device
*dev
)
2591 struct gfar_private
*priv
= netdev_priv(dev
);
2592 struct sk_buff
*skb
= NULL
;
2594 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2598 gfar_align_skb(skb
);
2603 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2605 struct gfar_private
*priv
= netdev_priv(dev
);
2606 struct sk_buff
*skb
= NULL
;
2608 skb
= skb_dequeue(&priv
->rx_recycle
);
2610 skb
= gfar_alloc_skb(dev
);
2615 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2617 struct gfar_private
*priv
= netdev_priv(dev
);
2618 struct net_device_stats
*stats
= &dev
->stats
;
2619 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2621 /* If the packet was truncated, none of the other errors
2623 if (status
& RXBD_TRUNCATED
) {
2624 stats
->rx_length_errors
++;
2630 /* Count the errors, if there were any */
2631 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2632 stats
->rx_length_errors
++;
2634 if (status
& RXBD_LARGE
)
2639 if (status
& RXBD_NONOCTET
) {
2640 stats
->rx_frame_errors
++;
2641 estats
->rx_nonoctet
++;
2643 if (status
& RXBD_CRCERR
) {
2644 estats
->rx_crcerr
++;
2645 stats
->rx_crc_errors
++;
2647 if (status
& RXBD_OVERRUN
) {
2648 estats
->rx_overrun
++;
2649 stats
->rx_crc_errors
++;
2653 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2655 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2659 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2661 /* If valid headers were found, and valid sums
2662 * were verified, then we tell the kernel that no
2663 * checksumming is necessary. Otherwise, it is */
2664 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2665 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2667 skb_checksum_none_assert(skb
);
2671 /* gfar_process_frame() -- handle one incoming packet if skb
2673 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2676 struct gfar_private
*priv
= netdev_priv(dev
);
2677 struct rxfcb
*fcb
= NULL
;
2681 /* fcb is at the beginning if exists */
2682 fcb
= (struct rxfcb
*)skb
->data
;
2684 /* Remove the FCB from the skb */
2685 /* Remove the padded bytes, if there are any */
2687 skb_record_rx_queue(skb
, fcb
->rq
);
2688 skb_pull(skb
, amount_pull
);
2691 /* Get receive timestamp from the skb */
2692 if (priv
->hwts_rx_en
) {
2693 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2694 u64
*ns
= (u64
*) skb
->data
;
2695 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2696 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2700 skb_pull(skb
, priv
->padding
);
2702 if (priv
->rx_csum_enable
)
2703 gfar_rx_checksum(skb
, fcb
);
2705 /* Tell the skb what kind of packet this is */
2706 skb
->protocol
= eth_type_trans(skb
, dev
);
2708 /* Send the packet up the stack */
2709 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2710 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2712 ret
= netif_receive_skb(skb
);
2714 if (NET_RX_DROP
== ret
)
2715 priv
->extra_stats
.kernel_dropped
++;
2720 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2721 * until the budget/quota has been reached. Returns the number
2724 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2726 struct net_device
*dev
= rx_queue
->dev
;
2727 struct rxbd8
*bdp
, *base
;
2728 struct sk_buff
*skb
;
2732 struct gfar_private
*priv
= netdev_priv(dev
);
2734 /* Get the first full descriptor */
2735 bdp
= rx_queue
->cur_rx
;
2736 base
= rx_queue
->rx_bd_base
;
2738 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0);
2740 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2741 struct sk_buff
*newskb
;
2744 /* Add another skb for the future */
2745 newskb
= gfar_new_skb(dev
);
2747 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2749 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2750 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2752 if (unlikely(!(bdp
->status
& RXBD_ERR
) &&
2753 bdp
->length
> priv
->rx_buffer_size
))
2754 bdp
->status
= RXBD_LARGE
;
2756 /* We drop the frame if we failed to allocate a new buffer */
2757 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2758 bdp
->status
& RXBD_ERR
)) {
2759 count_errors(bdp
->status
, dev
);
2761 if (unlikely(!newskb
))
2764 skb_queue_head(&priv
->rx_recycle
, skb
);
2766 /* Increment the number of packets */
2767 rx_queue
->stats
.rx_packets
++;
2771 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2772 /* Remove the FCS from the packet length */
2773 skb_put(skb
, pkt_len
);
2774 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2775 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2776 gfar_process_frame(dev
, skb
, amount_pull
);
2779 if (netif_msg_rx_err(priv
))
2781 "%s: Missing skb!\n", dev
->name
);
2782 rx_queue
->stats
.rx_dropped
++;
2783 priv
->extra_stats
.rx_skbmissing
++;
2788 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2790 /* Setup the new bdp */
2791 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2793 /* Update to the next pointer */
2794 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2796 /* update to point at the next skb */
2797 rx_queue
->skb_currx
=
2798 (rx_queue
->skb_currx
+ 1) &
2799 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2802 /* Update the current rxbd pointer to be the next one */
2803 rx_queue
->cur_rx
= bdp
;
2808 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2810 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2811 struct gfar_priv_grp
, napi
);
2812 struct gfar_private
*priv
= gfargrp
->priv
;
2813 struct gfar __iomem
*regs
= gfargrp
->regs
;
2814 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2815 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2816 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2817 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2818 unsigned long serviced_queues
= 0;
2821 num_queues
= gfargrp
->num_rx_queues
;
2822 budget_per_queue
= budget
/num_queues
;
2824 /* Clear IEVENT, so interrupts aren't called again
2825 * because of the packets that have already arrived */
2826 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2828 while (num_queues
&& left_over_budget
) {
2830 budget_per_queue
= left_over_budget
/num_queues
;
2831 left_over_budget
= 0;
2833 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2834 if (test_bit(i
, &serviced_queues
))
2836 rx_queue
= priv
->rx_queue
[i
];
2837 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2839 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2840 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2842 rx_cleaned
+= rx_cleaned_per_queue
;
2843 if(rx_cleaned_per_queue
< budget_per_queue
) {
2844 left_over_budget
= left_over_budget
+
2845 (budget_per_queue
- rx_cleaned_per_queue
);
2846 set_bit(i
, &serviced_queues
);
2855 if (rx_cleaned
< budget
) {
2856 napi_complete(napi
);
2858 /* Clear the halt bit in RSTAT */
2859 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2861 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2863 /* If we are coalescing interrupts, update the timer */
2864 /* Otherwise, clear it */
2865 gfar_configure_coalescing(priv
,
2866 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2872 #ifdef CONFIG_NET_POLL_CONTROLLER
2874 * Polling 'interrupt' - used by things like netconsole to send skbs
2875 * without having to re-enable interrupts. It's not called while
2876 * the interrupt routine is executing.
2878 static void gfar_netpoll(struct net_device
*dev
)
2880 struct gfar_private
*priv
= netdev_priv(dev
);
2883 /* If the device has multiple interrupts, run tx/rx */
2884 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2885 for (i
= 0; i
< priv
->num_grps
; i
++) {
2886 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2887 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2888 disable_irq(priv
->gfargrp
[i
].interruptError
);
2889 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2891 enable_irq(priv
->gfargrp
[i
].interruptError
);
2892 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2893 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2896 for (i
= 0; i
< priv
->num_grps
; i
++) {
2897 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2898 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2900 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2906 /* The interrupt handler for devices with one interrupt */
2907 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2909 struct gfar_priv_grp
*gfargrp
= grp_id
;
2911 /* Save ievent for future reference */
2912 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2914 /* Check for reception */
2915 if (events
& IEVENT_RX_MASK
)
2916 gfar_receive(irq
, grp_id
);
2918 /* Check for transmit completion */
2919 if (events
& IEVENT_TX_MASK
)
2920 gfar_transmit(irq
, grp_id
);
2922 /* Check for errors */
2923 if (events
& IEVENT_ERR_MASK
)
2924 gfar_error(irq
, grp_id
);
2929 /* Called every time the controller might need to be made
2930 * aware of new link state. The PHY code conveys this
2931 * information through variables in the phydev structure, and this
2932 * function converts those variables into the appropriate
2933 * register values, and can bring down the device if needed.
2935 static void adjust_link(struct net_device
*dev
)
2937 struct gfar_private
*priv
= netdev_priv(dev
);
2938 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2939 unsigned long flags
;
2940 struct phy_device
*phydev
= priv
->phydev
;
2943 local_irq_save(flags
);
2947 u32 tempval
= gfar_read(®s
->maccfg2
);
2948 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2950 /* Now we make sure that we can be in full duplex mode.
2951 * If not, we operate in half-duplex mode. */
2952 if (phydev
->duplex
!= priv
->oldduplex
) {
2954 if (!(phydev
->duplex
))
2955 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2957 tempval
|= MACCFG2_FULL_DUPLEX
;
2959 priv
->oldduplex
= phydev
->duplex
;
2962 if (phydev
->speed
!= priv
->oldspeed
) {
2964 switch (phydev
->speed
) {
2967 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2969 ecntrl
&= ~(ECNTRL_R100
);
2974 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2976 /* Reduced mode distinguishes
2977 * between 10 and 100 */
2978 if (phydev
->speed
== SPEED_100
)
2979 ecntrl
|= ECNTRL_R100
;
2981 ecntrl
&= ~(ECNTRL_R100
);
2984 if (netif_msg_link(priv
))
2986 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2987 dev
->name
, phydev
->speed
);
2991 priv
->oldspeed
= phydev
->speed
;
2994 gfar_write(®s
->maccfg2
, tempval
);
2995 gfar_write(®s
->ecntrl
, ecntrl
);
2997 if (!priv
->oldlink
) {
3001 } else if (priv
->oldlink
) {
3005 priv
->oldduplex
= -1;
3008 if (new_state
&& netif_msg_link(priv
))
3009 phy_print_status(phydev
);
3011 local_irq_restore(flags
);
3014 /* Update the hash table based on the current list of multicast
3015 * addresses we subscribe to. Also, change the promiscuity of
3016 * the device based on the flags (this function is called
3017 * whenever dev->flags is changed */
3018 static void gfar_set_multi(struct net_device
*dev
)
3020 struct netdev_hw_addr
*ha
;
3021 struct gfar_private
*priv
= netdev_priv(dev
);
3022 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3025 if (dev
->flags
& IFF_PROMISC
) {
3026 /* Set RCTRL to PROM */
3027 tempval
= gfar_read(®s
->rctrl
);
3028 tempval
|= RCTRL_PROM
;
3029 gfar_write(®s
->rctrl
, tempval
);
3031 /* Set RCTRL to not PROM */
3032 tempval
= gfar_read(®s
->rctrl
);
3033 tempval
&= ~(RCTRL_PROM
);
3034 gfar_write(®s
->rctrl
, tempval
);
3037 if (dev
->flags
& IFF_ALLMULTI
) {
3038 /* Set the hash to rx all multicast frames */
3039 gfar_write(®s
->igaddr0
, 0xffffffff);
3040 gfar_write(®s
->igaddr1
, 0xffffffff);
3041 gfar_write(®s
->igaddr2
, 0xffffffff);
3042 gfar_write(®s
->igaddr3
, 0xffffffff);
3043 gfar_write(®s
->igaddr4
, 0xffffffff);
3044 gfar_write(®s
->igaddr5
, 0xffffffff);
3045 gfar_write(®s
->igaddr6
, 0xffffffff);
3046 gfar_write(®s
->igaddr7
, 0xffffffff);
3047 gfar_write(®s
->gaddr0
, 0xffffffff);
3048 gfar_write(®s
->gaddr1
, 0xffffffff);
3049 gfar_write(®s
->gaddr2
, 0xffffffff);
3050 gfar_write(®s
->gaddr3
, 0xffffffff);
3051 gfar_write(®s
->gaddr4
, 0xffffffff);
3052 gfar_write(®s
->gaddr5
, 0xffffffff);
3053 gfar_write(®s
->gaddr6
, 0xffffffff);
3054 gfar_write(®s
->gaddr7
, 0xffffffff);
3059 /* zero out the hash */
3060 gfar_write(®s
->igaddr0
, 0x0);
3061 gfar_write(®s
->igaddr1
, 0x0);
3062 gfar_write(®s
->igaddr2
, 0x0);
3063 gfar_write(®s
->igaddr3
, 0x0);
3064 gfar_write(®s
->igaddr4
, 0x0);
3065 gfar_write(®s
->igaddr5
, 0x0);
3066 gfar_write(®s
->igaddr6
, 0x0);
3067 gfar_write(®s
->igaddr7
, 0x0);
3068 gfar_write(®s
->gaddr0
, 0x0);
3069 gfar_write(®s
->gaddr1
, 0x0);
3070 gfar_write(®s
->gaddr2
, 0x0);
3071 gfar_write(®s
->gaddr3
, 0x0);
3072 gfar_write(®s
->gaddr4
, 0x0);
3073 gfar_write(®s
->gaddr5
, 0x0);
3074 gfar_write(®s
->gaddr6
, 0x0);
3075 gfar_write(®s
->gaddr7
, 0x0);
3077 /* If we have extended hash tables, we need to
3078 * clear the exact match registers to prepare for
3080 if (priv
->extended_hash
) {
3081 em_num
= GFAR_EM_NUM
+ 1;
3082 gfar_clear_exact_match(dev
);
3089 if (netdev_mc_empty(dev
))
3092 /* Parse the list, and set the appropriate bits */
3093 netdev_for_each_mc_addr(ha
, dev
) {
3095 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3098 gfar_set_hash_for_addr(dev
, ha
->addr
);
3104 /* Clears each of the exact match registers to zero, so they
3105 * don't interfere with normal reception */
3106 static void gfar_clear_exact_match(struct net_device
*dev
)
3109 static const u8 zero_arr
[MAC_ADDR_LEN
] = {0, 0, 0, 0, 0, 0};
3111 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
3112 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3115 /* Set the appropriate hash bit for the given addr */
3116 /* The algorithm works like so:
3117 * 1) Take the Destination Address (ie the multicast address), and
3118 * do a CRC on it (little endian), and reverse the bits of the
3120 * 2) Use the 8 most significant bits as a hash into a 256-entry
3121 * table. The table is controlled through 8 32-bit registers:
3122 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3123 * gaddr7. This means that the 3 most significant bits in the
3124 * hash index which gaddr register to use, and the 5 other bits
3125 * indicate which bit (assuming an IBM numbering scheme, which
3126 * for PowerPC (tm) is usually the case) in the register holds
3128 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3131 struct gfar_private
*priv
= netdev_priv(dev
);
3132 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
3133 int width
= priv
->hash_width
;
3134 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3135 u8 whichreg
= result
>> (32 - width
+ 5);
3136 u32 value
= (1 << (31-whichbit
));
3138 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3140 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3144 /* There are multiple MAC Address register pairs on some controllers
3145 * This function sets the numth pair to a given address
3147 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3150 struct gfar_private
*priv
= netdev_priv(dev
);
3151 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3153 char tmpbuf
[MAC_ADDR_LEN
];
3155 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3159 /* Now copy it into the mac registers backwards, cuz */
3160 /* little endian is silly */
3161 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
3162 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
3164 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
3166 tempval
= *((u32
*) (tmpbuf
+ 4));
3168 gfar_write(macptr
+1, tempval
);
3171 /* GFAR error interrupt handler */
3172 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3174 struct gfar_priv_grp
*gfargrp
= grp_id
;
3175 struct gfar __iomem
*regs
= gfargrp
->regs
;
3176 struct gfar_private
*priv
= gfargrp
->priv
;
3177 struct net_device
*dev
= priv
->ndev
;
3179 /* Save ievent for future reference */
3180 u32 events
= gfar_read(®s
->ievent
);
3183 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3185 /* Magic Packet is not an error. */
3186 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3187 (events
& IEVENT_MAG
))
3188 events
&= ~IEVENT_MAG
;
3191 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3192 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3193 dev
->name
, events
, gfar_read(®s
->imask
));
3195 /* Update the error counters */
3196 if (events
& IEVENT_TXE
) {
3197 dev
->stats
.tx_errors
++;
3199 if (events
& IEVENT_LC
)
3200 dev
->stats
.tx_window_errors
++;
3201 if (events
& IEVENT_CRL
)
3202 dev
->stats
.tx_aborted_errors
++;
3203 if (events
& IEVENT_XFUN
) {
3204 unsigned long flags
;
3206 if (netif_msg_tx_err(priv
))
3207 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
3208 "packet dropped.\n", dev
->name
);
3209 dev
->stats
.tx_dropped
++;
3210 priv
->extra_stats
.tx_underrun
++;
3212 local_irq_save(flags
);
3215 /* Reactivate the Tx Queues */
3216 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3219 local_irq_restore(flags
);
3221 if (netif_msg_tx_err(priv
))
3222 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3224 if (events
& IEVENT_BSY
) {
3225 dev
->stats
.rx_errors
++;
3226 priv
->extra_stats
.rx_bsy
++;
3228 gfar_receive(irq
, grp_id
);
3230 if (netif_msg_rx_err(priv
))
3231 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3232 dev
->name
, gfar_read(®s
->rstat
));
3234 if (events
& IEVENT_BABR
) {
3235 dev
->stats
.rx_errors
++;
3236 priv
->extra_stats
.rx_babr
++;
3238 if (netif_msg_rx_err(priv
))
3239 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3241 if (events
& IEVENT_EBERR
) {
3242 priv
->extra_stats
.eberr
++;
3243 if (netif_msg_rx_err(priv
))
3244 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3246 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3247 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3249 if (events
& IEVENT_BABT
) {
3250 priv
->extra_stats
.tx_babt
++;
3251 if (netif_msg_tx_err(priv
))
3252 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3257 static struct of_device_id gfar_match
[] =
3261 .compatible
= "gianfar",
3264 .compatible
= "fsl,etsec2",
3268 MODULE_DEVICE_TABLE(of
, gfar_match
);
3270 /* Structure for a device driver */
3271 static struct of_platform_driver gfar_driver
= {
3273 .name
= "fsl-gianfar",
3274 .owner
= THIS_MODULE
,
3276 .of_match_table
= gfar_match
,
3278 .probe
= gfar_probe
,
3279 .remove
= gfar_remove
,
3282 static int __init
gfar_init(void)
3284 return of_register_platform_driver(&gfar_driver
);
3287 static void __exit
gfar_exit(void)
3289 of_unregister_platform_driver(&gfar_driver
);
3292 module_init(gfar_init
);
3293 module_exit(gfar_exit
);