zorro8390: Fix regression caused during net_device_ops conversion
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / fec.c
blobcd0282d5d40f13935eeafb2a0fe5b7c2587b9f17
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
50 #ifndef CONFIG_ARM
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
53 #endif
55 #include "fec.h"
57 #if defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
58 #define FEC_ALIGNMENT 0xf
59 #else
60 #define FEC_ALIGNMENT 0x3
61 #endif
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype[] = {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
78 { }
81 static unsigned char macaddr[ETH_ALEN];
82 module_param_array(macaddr, byte, NULL, 0);
83 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
85 #if defined(CONFIG_M5272)
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
90 #if defined(CONFIG_NETtel)
91 #define FEC_FLASHMAC 0xf0006006
92 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93 #define FEC_FLASHMAC 0xf0006000
94 #elif defined(CONFIG_CANCam)
95 #define FEC_FLASHMAC 0xf0020000
96 #elif defined (CONFIG_M5272C3)
97 #define FEC_FLASHMAC (0xffe04000 + 4)
98 #elif defined(CONFIG_MOD5272)
99 #define FEC_FLASHMAC 0xffc0406b
100 #else
101 #define FEC_FLASHMAC 0
102 #endif
103 #endif /* CONFIG_M5272 */
105 /* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
111 #define FEC_ENET_RX_PAGES 8
112 #define FEC_ENET_RX_FRSIZE 2048
113 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115 #define FEC_ENET_TX_FRSIZE 2048
116 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117 #define TX_RING_SIZE 16 /* Must be power of two */
118 #define TX_RING_MOD_MASK 15 /* for this to work */
120 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
121 #error "FEC: descriptor ring size constants too large"
122 #endif
124 /* Interrupt events/masks. */
125 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
136 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
138 /* The FEC stores dest/src/type, data, and checksum for receive packets.
140 #define PKT_MAXBUF_SIZE 1518
141 #define PKT_MINBUF_SIZE 64
142 #define PKT_MAXBLR_SIZE 1520
146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
150 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
152 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
153 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
154 #else
155 #define OPT_FRAME_SIZE 0
156 #endif
158 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
159 * tx_bd_base always point to the base of the buffer descriptors. The
160 * cur_rx and cur_tx point to the currently available buffer.
161 * The dirty_tx tracks the current buffer that is being sent by the
162 * controller. The cur_tx and dirty_tx are equal under both completely
163 * empty and completely full conditions. The empty/ready indicator in
164 * the buffer descriptor determines the actual condition.
166 struct fec_enet_private {
167 /* Hardware registers of the FEC device */
168 void __iomem *hwp;
170 struct net_device *netdev;
172 struct clk *clk;
174 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
175 unsigned char *tx_bounce[TX_RING_SIZE];
176 struct sk_buff* tx_skbuff[TX_RING_SIZE];
177 struct sk_buff* rx_skbuff[RX_RING_SIZE];
178 ushort skb_cur;
179 ushort skb_dirty;
181 /* CPM dual port RAM relative addresses */
182 dma_addr_t bd_dma;
183 /* Address of Rx and Tx buffers */
184 struct bufdesc *rx_bd_base;
185 struct bufdesc *tx_bd_base;
186 /* The next free ring entry */
187 struct bufdesc *cur_rx, *cur_tx;
188 /* The ring entries to be free()ed */
189 struct bufdesc *dirty_tx;
191 uint tx_full;
192 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
193 spinlock_t hw_lock;
195 struct platform_device *pdev;
197 int opened;
199 /* Phylib and MDIO interface */
200 struct mii_bus *mii_bus;
201 struct phy_device *phy_dev;
202 int mii_timeout;
203 uint phy_speed;
204 phy_interface_t phy_interface;
205 int link;
206 int full_duplex;
207 struct completion mdio_done;
210 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
211 static void fec_enet_tx(struct net_device *dev);
212 static void fec_enet_rx(struct net_device *dev);
213 static int fec_enet_close(struct net_device *dev);
214 static void fec_restart(struct net_device *dev, int duplex);
215 static void fec_stop(struct net_device *dev);
217 /* FEC MII MMFR bits definition */
218 #define FEC_MMFR_ST (1 << 30)
219 #define FEC_MMFR_OP_READ (2 << 28)
220 #define FEC_MMFR_OP_WRITE (1 << 28)
221 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
222 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
223 #define FEC_MMFR_TA (2 << 16)
224 #define FEC_MMFR_DATA(v) (v & 0xffff)
226 #define FEC_MII_TIMEOUT 1000 /* us */
228 /* Transmitter timeout */
229 #define TX_TIMEOUT (2 * HZ)
231 static void *swap_buffer(void *bufaddr, int len)
233 int i;
234 unsigned int *buf = bufaddr;
236 for (i = 0; i < (len + 3) / 4; i++, buf++)
237 *buf = cpu_to_be32(*buf);
239 return bufaddr;
242 static netdev_tx_t
243 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
245 struct fec_enet_private *fep = netdev_priv(dev);
246 const struct platform_device_id *id_entry =
247 platform_get_device_id(fep->pdev);
248 struct bufdesc *bdp;
249 void *bufaddr;
250 unsigned short status;
251 unsigned long flags;
253 if (!fep->link) {
254 /* Link is down or autonegotiation is in progress. */
255 return NETDEV_TX_BUSY;
258 spin_lock_irqsave(&fep->hw_lock, flags);
259 /* Fill in a Tx ring entry */
260 bdp = fep->cur_tx;
262 status = bdp->cbd_sc;
264 if (status & BD_ENET_TX_READY) {
265 /* Ooops. All transmit buffers are full. Bail out.
266 * This should not happen, since dev->tbusy should be set.
268 printk("%s: tx queue full!.\n", dev->name);
269 spin_unlock_irqrestore(&fep->hw_lock, flags);
270 return NETDEV_TX_BUSY;
273 /* Clear all of the status flags */
274 status &= ~BD_ENET_TX_STATS;
276 /* Set buffer length and buffer pointer */
277 bufaddr = skb->data;
278 bdp->cbd_datlen = skb->len;
281 * On some FEC implementations data must be aligned on
282 * 4-byte boundaries. Use bounce buffers to copy data
283 * and get it aligned. Ugh.
285 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
286 unsigned int index;
287 index = bdp - fep->tx_bd_base;
288 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
289 bufaddr = fep->tx_bounce[index];
293 * Some design made an incorrect assumption on endian mode of
294 * the system that it's running on. As the result, driver has to
295 * swap every frame going to and coming from the controller.
297 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
298 swap_buffer(bufaddr, skb->len);
300 /* Save skb pointer */
301 fep->tx_skbuff[fep->skb_cur] = skb;
303 dev->stats.tx_bytes += skb->len;
304 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
306 /* Push the data cache so the CPM does not get stale memory
307 * data.
309 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
310 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
312 /* Send it on its way. Tell FEC it's ready, interrupt when done,
313 * it's the last BD of the frame, and to put the CRC on the end.
315 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
316 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
317 bdp->cbd_sc = status;
319 /* Trigger transmission start */
320 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
322 /* If this was the last BD in the ring, start at the beginning again. */
323 if (status & BD_ENET_TX_WRAP)
324 bdp = fep->tx_bd_base;
325 else
326 bdp++;
328 if (bdp == fep->dirty_tx) {
329 fep->tx_full = 1;
330 netif_stop_queue(dev);
333 fep->cur_tx = bdp;
335 spin_unlock_irqrestore(&fep->hw_lock, flags);
337 return NETDEV_TX_OK;
340 static void
341 fec_timeout(struct net_device *dev)
343 struct fec_enet_private *fep = netdev_priv(dev);
345 dev->stats.tx_errors++;
347 fec_restart(dev, fep->full_duplex);
348 netif_wake_queue(dev);
351 static irqreturn_t
352 fec_enet_interrupt(int irq, void * dev_id)
354 struct net_device *dev = dev_id;
355 struct fec_enet_private *fep = netdev_priv(dev);
356 uint int_events;
357 irqreturn_t ret = IRQ_NONE;
359 do {
360 int_events = readl(fep->hwp + FEC_IEVENT);
361 writel(int_events, fep->hwp + FEC_IEVENT);
363 if (int_events & FEC_ENET_RXF) {
364 ret = IRQ_HANDLED;
365 fec_enet_rx(dev);
368 /* Transmit OK, or non-fatal error. Update the buffer
369 * descriptors. FEC handles all errors, we just discover
370 * them as part of the transmit process.
372 if (int_events & FEC_ENET_TXF) {
373 ret = IRQ_HANDLED;
374 fec_enet_tx(dev);
377 if (int_events & FEC_ENET_MII) {
378 ret = IRQ_HANDLED;
379 complete(&fep->mdio_done);
381 } while (int_events);
383 return ret;
387 static void
388 fec_enet_tx(struct net_device *dev)
390 struct fec_enet_private *fep;
391 struct bufdesc *bdp;
392 unsigned short status;
393 struct sk_buff *skb;
395 fep = netdev_priv(dev);
396 spin_lock(&fep->hw_lock);
397 bdp = fep->dirty_tx;
399 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
400 if (bdp == fep->cur_tx && fep->tx_full == 0)
401 break;
403 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
404 bdp->cbd_bufaddr = 0;
406 skb = fep->tx_skbuff[fep->skb_dirty];
407 /* Check for errors. */
408 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
409 BD_ENET_TX_RL | BD_ENET_TX_UN |
410 BD_ENET_TX_CSL)) {
411 dev->stats.tx_errors++;
412 if (status & BD_ENET_TX_HB) /* No heartbeat */
413 dev->stats.tx_heartbeat_errors++;
414 if (status & BD_ENET_TX_LC) /* Late collision */
415 dev->stats.tx_window_errors++;
416 if (status & BD_ENET_TX_RL) /* Retrans limit */
417 dev->stats.tx_aborted_errors++;
418 if (status & BD_ENET_TX_UN) /* Underrun */
419 dev->stats.tx_fifo_errors++;
420 if (status & BD_ENET_TX_CSL) /* Carrier lost */
421 dev->stats.tx_carrier_errors++;
422 } else {
423 dev->stats.tx_packets++;
426 if (status & BD_ENET_TX_READY)
427 printk("HEY! Enet xmit interrupt and TX_READY.\n");
429 /* Deferred means some collisions occurred during transmit,
430 * but we eventually sent the packet OK.
432 if (status & BD_ENET_TX_DEF)
433 dev->stats.collisions++;
435 /* Free the sk buffer associated with this last transmit */
436 dev_kfree_skb_any(skb);
437 fep->tx_skbuff[fep->skb_dirty] = NULL;
438 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
440 /* Update pointer to next buffer descriptor to be transmitted */
441 if (status & BD_ENET_TX_WRAP)
442 bdp = fep->tx_bd_base;
443 else
444 bdp++;
446 /* Since we have freed up a buffer, the ring is no longer full
448 if (fep->tx_full) {
449 fep->tx_full = 0;
450 if (netif_queue_stopped(dev))
451 netif_wake_queue(dev);
454 fep->dirty_tx = bdp;
455 spin_unlock(&fep->hw_lock);
459 /* During a receive, the cur_rx points to the current incoming buffer.
460 * When we update through the ring, if the next incoming buffer has
461 * not been given to the system, we just set the empty indicator,
462 * effectively tossing the packet.
464 static void
465 fec_enet_rx(struct net_device *dev)
467 struct fec_enet_private *fep = netdev_priv(dev);
468 const struct platform_device_id *id_entry =
469 platform_get_device_id(fep->pdev);
470 struct bufdesc *bdp;
471 unsigned short status;
472 struct sk_buff *skb;
473 ushort pkt_len;
474 __u8 *data;
476 #ifdef CONFIG_M532x
477 flush_cache_all();
478 #endif
480 spin_lock(&fep->hw_lock);
482 /* First, grab all of the stats for the incoming packet.
483 * These get messed up if we get called due to a busy condition.
485 bdp = fep->cur_rx;
487 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
489 /* Since we have allocated space to hold a complete frame,
490 * the last indicator should be set.
492 if ((status & BD_ENET_RX_LAST) == 0)
493 printk("FEC ENET: rcv is not +last\n");
495 if (!fep->opened)
496 goto rx_processing_done;
498 /* Check for errors. */
499 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
500 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
501 dev->stats.rx_errors++;
502 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
503 /* Frame too long or too short. */
504 dev->stats.rx_length_errors++;
506 if (status & BD_ENET_RX_NO) /* Frame alignment */
507 dev->stats.rx_frame_errors++;
508 if (status & BD_ENET_RX_CR) /* CRC Error */
509 dev->stats.rx_crc_errors++;
510 if (status & BD_ENET_RX_OV) /* FIFO overrun */
511 dev->stats.rx_fifo_errors++;
514 /* Report late collisions as a frame error.
515 * On this error, the BD is closed, but we don't know what we
516 * have in the buffer. So, just drop this frame on the floor.
518 if (status & BD_ENET_RX_CL) {
519 dev->stats.rx_errors++;
520 dev->stats.rx_frame_errors++;
521 goto rx_processing_done;
524 /* Process the incoming frame. */
525 dev->stats.rx_packets++;
526 pkt_len = bdp->cbd_datlen;
527 dev->stats.rx_bytes += pkt_len;
528 data = (__u8*)__va(bdp->cbd_bufaddr);
530 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
531 DMA_FROM_DEVICE);
533 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
534 swap_buffer(data, pkt_len);
536 /* This does 16 byte alignment, exactly what we need.
537 * The packet length includes FCS, but we don't want to
538 * include that when passing upstream as it messes up
539 * bridging applications.
541 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
543 if (unlikely(!skb)) {
544 printk("%s: Memory squeeze, dropping packet.\n",
545 dev->name);
546 dev->stats.rx_dropped++;
547 } else {
548 skb_reserve(skb, NET_IP_ALIGN);
549 skb_put(skb, pkt_len - 4); /* Make room */
550 skb_copy_to_linear_data(skb, data, pkt_len - 4);
551 skb->protocol = eth_type_trans(skb, dev);
552 netif_rx(skb);
555 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
556 DMA_FROM_DEVICE);
557 rx_processing_done:
558 /* Clear the status flags for this buffer */
559 status &= ~BD_ENET_RX_STATS;
561 /* Mark the buffer empty */
562 status |= BD_ENET_RX_EMPTY;
563 bdp->cbd_sc = status;
565 /* Update BD pointer to next entry */
566 if (status & BD_ENET_RX_WRAP)
567 bdp = fep->rx_bd_base;
568 else
569 bdp++;
570 /* Doing this here will keep the FEC running while we process
571 * incoming frames. On a heavily loaded network, we should be
572 * able to keep up at the expense of system resources.
574 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
576 fep->cur_rx = bdp;
578 spin_unlock(&fep->hw_lock);
581 /* ------------------------------------------------------------------------- */
582 static void __inline__ fec_get_mac(struct net_device *dev)
584 struct fec_enet_private *fep = netdev_priv(dev);
585 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
586 unsigned char *iap, tmpaddr[ETH_ALEN];
589 * try to get mac address in following order:
591 * 1) module parameter via kernel command line in form
592 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
594 iap = macaddr;
597 * 2) from flash or fuse (via platform data)
599 if (!is_valid_ether_addr(iap)) {
600 #ifdef CONFIG_M5272
601 if (FEC_FLASHMAC)
602 iap = (unsigned char *)FEC_FLASHMAC;
603 #else
604 if (pdata)
605 memcpy(iap, pdata->mac, ETH_ALEN);
606 #endif
610 * 3) FEC mac registers set by bootloader
612 if (!is_valid_ether_addr(iap)) {
613 *((unsigned long *) &tmpaddr[0]) =
614 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
615 *((unsigned short *) &tmpaddr[4]) =
616 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
617 iap = &tmpaddr[0];
620 memcpy(dev->dev_addr, iap, ETH_ALEN);
622 /* Adjust MAC if using macaddr */
623 if (iap == macaddr)
624 dev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
627 /* ------------------------------------------------------------------------- */
630 * Phy section
632 static void fec_enet_adjust_link(struct net_device *dev)
634 struct fec_enet_private *fep = netdev_priv(dev);
635 struct phy_device *phy_dev = fep->phy_dev;
636 unsigned long flags;
638 int status_change = 0;
640 spin_lock_irqsave(&fep->hw_lock, flags);
642 /* Prevent a state halted on mii error */
643 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
644 phy_dev->state = PHY_RESUMING;
645 goto spin_unlock;
648 /* Duplex link change */
649 if (phy_dev->link) {
650 if (fep->full_duplex != phy_dev->duplex) {
651 fec_restart(dev, phy_dev->duplex);
652 status_change = 1;
656 /* Link on or off change */
657 if (phy_dev->link != fep->link) {
658 fep->link = phy_dev->link;
659 if (phy_dev->link)
660 fec_restart(dev, phy_dev->duplex);
661 else
662 fec_stop(dev);
663 status_change = 1;
666 spin_unlock:
667 spin_unlock_irqrestore(&fep->hw_lock, flags);
669 if (status_change)
670 phy_print_status(phy_dev);
673 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
675 struct fec_enet_private *fep = bus->priv;
676 unsigned long time_left;
678 fep->mii_timeout = 0;
679 init_completion(&fep->mdio_done);
681 /* start a read op */
682 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
683 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
684 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
686 /* wait for end of transfer */
687 time_left = wait_for_completion_timeout(&fep->mdio_done,
688 usecs_to_jiffies(FEC_MII_TIMEOUT));
689 if (time_left == 0) {
690 fep->mii_timeout = 1;
691 printk(KERN_ERR "FEC: MDIO read timeout\n");
692 return -ETIMEDOUT;
695 /* return value */
696 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
699 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
700 u16 value)
702 struct fec_enet_private *fep = bus->priv;
703 unsigned long time_left;
705 fep->mii_timeout = 0;
706 init_completion(&fep->mdio_done);
708 /* start a write op */
709 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
710 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
711 FEC_MMFR_TA | FEC_MMFR_DATA(value),
712 fep->hwp + FEC_MII_DATA);
714 /* wait for end of transfer */
715 time_left = wait_for_completion_timeout(&fep->mdio_done,
716 usecs_to_jiffies(FEC_MII_TIMEOUT));
717 if (time_left == 0) {
718 fep->mii_timeout = 1;
719 printk(KERN_ERR "FEC: MDIO write timeout\n");
720 return -ETIMEDOUT;
723 return 0;
726 static int fec_enet_mdio_reset(struct mii_bus *bus)
728 return 0;
731 static int fec_enet_mii_probe(struct net_device *dev)
733 struct fec_enet_private *fep = netdev_priv(dev);
734 struct phy_device *phy_dev = NULL;
735 char mdio_bus_id[MII_BUS_ID_SIZE];
736 char phy_name[MII_BUS_ID_SIZE + 3];
737 int phy_id;
738 int dev_id = fep->pdev->id;
740 fep->phy_dev = NULL;
742 /* check for attached phy */
743 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
744 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
745 continue;
746 if (fep->mii_bus->phy_map[phy_id] == NULL)
747 continue;
748 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
749 continue;
750 if (dev_id--)
751 continue;
752 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
753 break;
756 if (phy_id >= PHY_MAX_ADDR) {
757 printk(KERN_INFO "%s: no PHY, assuming direct connection "
758 "to switch\n", dev->name);
759 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
760 phy_id = 0;
763 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
764 phy_dev = phy_connect(dev, phy_name, &fec_enet_adjust_link, 0,
765 PHY_INTERFACE_MODE_MII);
766 if (IS_ERR(phy_dev)) {
767 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
768 return PTR_ERR(phy_dev);
771 /* mask with MAC supported features */
772 phy_dev->supported &= PHY_BASIC_FEATURES;
773 phy_dev->advertising = phy_dev->supported;
775 fep->phy_dev = phy_dev;
776 fep->link = 0;
777 fep->full_duplex = 0;
779 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
780 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
781 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
782 fep->phy_dev->irq);
784 return 0;
787 static int fec_enet_mii_init(struct platform_device *pdev)
789 static struct mii_bus *fec0_mii_bus;
790 struct net_device *dev = platform_get_drvdata(pdev);
791 struct fec_enet_private *fep = netdev_priv(dev);
792 const struct platform_device_id *id_entry =
793 platform_get_device_id(fep->pdev);
794 int err = -ENXIO, i;
797 * The dual fec interfaces are not equivalent with enet-mac.
798 * Here are the differences:
800 * - fec0 supports MII & RMII modes while fec1 only supports RMII
801 * - fec0 acts as the 1588 time master while fec1 is slave
802 * - external phys can only be configured by fec0
804 * That is to say fec1 can not work independently. It only works
805 * when fec0 is working. The reason behind this design is that the
806 * second interface is added primarily for Switch mode.
808 * Because of the last point above, both phys are attached on fec0
809 * mdio interface in board design, and need to be configured by
810 * fec0 mii_bus.
812 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
813 /* fec1 uses fec0 mii_bus */
814 fep->mii_bus = fec0_mii_bus;
815 return 0;
818 fep->mii_timeout = 0;
821 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
823 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
824 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
826 fep->mii_bus = mdiobus_alloc();
827 if (fep->mii_bus == NULL) {
828 err = -ENOMEM;
829 goto err_out;
832 fep->mii_bus->name = "fec_enet_mii_bus";
833 fep->mii_bus->read = fec_enet_mdio_read;
834 fep->mii_bus->write = fec_enet_mdio_write;
835 fep->mii_bus->reset = fec_enet_mdio_reset;
836 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
837 fep->mii_bus->priv = fep;
838 fep->mii_bus->parent = &pdev->dev;
840 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
841 if (!fep->mii_bus->irq) {
842 err = -ENOMEM;
843 goto err_out_free_mdiobus;
846 for (i = 0; i < PHY_MAX_ADDR; i++)
847 fep->mii_bus->irq[i] = PHY_POLL;
849 platform_set_drvdata(dev, fep->mii_bus);
851 if (mdiobus_register(fep->mii_bus))
852 goto err_out_free_mdio_irq;
854 /* save fec0 mii_bus */
855 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
856 fec0_mii_bus = fep->mii_bus;
858 return 0;
860 err_out_free_mdio_irq:
861 kfree(fep->mii_bus->irq);
862 err_out_free_mdiobus:
863 mdiobus_free(fep->mii_bus);
864 err_out:
865 return err;
868 static void fec_enet_mii_remove(struct fec_enet_private *fep)
870 if (fep->phy_dev)
871 phy_disconnect(fep->phy_dev);
872 mdiobus_unregister(fep->mii_bus);
873 kfree(fep->mii_bus->irq);
874 mdiobus_free(fep->mii_bus);
877 static int fec_enet_get_settings(struct net_device *dev,
878 struct ethtool_cmd *cmd)
880 struct fec_enet_private *fep = netdev_priv(dev);
881 struct phy_device *phydev = fep->phy_dev;
883 if (!phydev)
884 return -ENODEV;
886 return phy_ethtool_gset(phydev, cmd);
889 static int fec_enet_set_settings(struct net_device *dev,
890 struct ethtool_cmd *cmd)
892 struct fec_enet_private *fep = netdev_priv(dev);
893 struct phy_device *phydev = fep->phy_dev;
895 if (!phydev)
896 return -ENODEV;
898 return phy_ethtool_sset(phydev, cmd);
901 static void fec_enet_get_drvinfo(struct net_device *dev,
902 struct ethtool_drvinfo *info)
904 struct fec_enet_private *fep = netdev_priv(dev);
906 strcpy(info->driver, fep->pdev->dev.driver->name);
907 strcpy(info->version, "Revision: 1.0");
908 strcpy(info->bus_info, dev_name(&dev->dev));
911 static struct ethtool_ops fec_enet_ethtool_ops = {
912 .get_settings = fec_enet_get_settings,
913 .set_settings = fec_enet_set_settings,
914 .get_drvinfo = fec_enet_get_drvinfo,
915 .get_link = ethtool_op_get_link,
918 static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
920 struct fec_enet_private *fep = netdev_priv(dev);
921 struct phy_device *phydev = fep->phy_dev;
923 if (!netif_running(dev))
924 return -EINVAL;
926 if (!phydev)
927 return -ENODEV;
929 return phy_mii_ioctl(phydev, rq, cmd);
932 static void fec_enet_free_buffers(struct net_device *dev)
934 struct fec_enet_private *fep = netdev_priv(dev);
935 int i;
936 struct sk_buff *skb;
937 struct bufdesc *bdp;
939 bdp = fep->rx_bd_base;
940 for (i = 0; i < RX_RING_SIZE; i++) {
941 skb = fep->rx_skbuff[i];
943 if (bdp->cbd_bufaddr)
944 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
945 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
946 if (skb)
947 dev_kfree_skb(skb);
948 bdp++;
951 bdp = fep->tx_bd_base;
952 for (i = 0; i < TX_RING_SIZE; i++)
953 kfree(fep->tx_bounce[i]);
956 static int fec_enet_alloc_buffers(struct net_device *dev)
958 struct fec_enet_private *fep = netdev_priv(dev);
959 int i;
960 struct sk_buff *skb;
961 struct bufdesc *bdp;
963 bdp = fep->rx_bd_base;
964 for (i = 0; i < RX_RING_SIZE; i++) {
965 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
966 if (!skb) {
967 fec_enet_free_buffers(dev);
968 return -ENOMEM;
970 fep->rx_skbuff[i] = skb;
972 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
973 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
974 bdp->cbd_sc = BD_ENET_RX_EMPTY;
975 bdp++;
978 /* Set the last buffer to wrap. */
979 bdp--;
980 bdp->cbd_sc |= BD_SC_WRAP;
982 bdp = fep->tx_bd_base;
983 for (i = 0; i < TX_RING_SIZE; i++) {
984 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
986 bdp->cbd_sc = 0;
987 bdp->cbd_bufaddr = 0;
988 bdp++;
991 /* Set the last buffer to wrap. */
992 bdp--;
993 bdp->cbd_sc |= BD_SC_WRAP;
995 return 0;
998 static int
999 fec_enet_open(struct net_device *dev)
1001 struct fec_enet_private *fep = netdev_priv(dev);
1002 int ret;
1004 /* I should reset the ring buffers here, but I don't yet know
1005 * a simple way to do that.
1008 ret = fec_enet_alloc_buffers(dev);
1009 if (ret)
1010 return ret;
1012 /* Probe and connect to PHY when open the interface */
1013 ret = fec_enet_mii_probe(dev);
1014 if (ret) {
1015 fec_enet_free_buffers(dev);
1016 return ret;
1018 phy_start(fep->phy_dev);
1019 netif_start_queue(dev);
1020 fep->opened = 1;
1021 return 0;
1024 static int
1025 fec_enet_close(struct net_device *dev)
1027 struct fec_enet_private *fep = netdev_priv(dev);
1029 /* Don't know what to do yet. */
1030 fep->opened = 0;
1031 netif_stop_queue(dev);
1032 fec_stop(dev);
1034 if (fep->phy_dev)
1035 phy_disconnect(fep->phy_dev);
1037 fec_enet_free_buffers(dev);
1039 return 0;
1042 /* Set or clear the multicast filter for this adaptor.
1043 * Skeleton taken from sunlance driver.
1044 * The CPM Ethernet implementation allows Multicast as well as individual
1045 * MAC address filtering. Some of the drivers check to make sure it is
1046 * a group multicast address, and discard those that are not. I guess I
1047 * will do the same for now, but just remove the test if you want
1048 * individual filtering as well (do the upper net layers want or support
1049 * this kind of feature?).
1052 #define HASH_BITS 6 /* #bits in hash */
1053 #define CRC32_POLY 0xEDB88320
1055 static void set_multicast_list(struct net_device *dev)
1057 struct fec_enet_private *fep = netdev_priv(dev);
1058 struct netdev_hw_addr *ha;
1059 unsigned int i, bit, data, crc, tmp;
1060 unsigned char hash;
1062 if (dev->flags & IFF_PROMISC) {
1063 tmp = readl(fep->hwp + FEC_R_CNTRL);
1064 tmp |= 0x8;
1065 writel(tmp, fep->hwp + FEC_R_CNTRL);
1066 return;
1069 tmp = readl(fep->hwp + FEC_R_CNTRL);
1070 tmp &= ~0x8;
1071 writel(tmp, fep->hwp + FEC_R_CNTRL);
1073 if (dev->flags & IFF_ALLMULTI) {
1074 /* Catch all multicast addresses, so set the
1075 * filter to all 1's
1077 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1078 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1080 return;
1083 /* Clear filter and add the addresses in hash register
1085 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1086 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1088 netdev_for_each_mc_addr(ha, dev) {
1089 /* Only support group multicast for now */
1090 if (!(ha->addr[0] & 1))
1091 continue;
1093 /* calculate crc32 value of mac address */
1094 crc = 0xffffffff;
1096 for (i = 0; i < dev->addr_len; i++) {
1097 data = ha->addr[i];
1098 for (bit = 0; bit < 8; bit++, data >>= 1) {
1099 crc = (crc >> 1) ^
1100 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1104 /* only upper 6 bits (HASH_BITS) are used
1105 * which point to specific bit in he hash registers
1107 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1109 if (hash > 31) {
1110 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1111 tmp |= 1 << (hash - 32);
1112 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1113 } else {
1114 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1115 tmp |= 1 << hash;
1116 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1121 /* Set a MAC change in hardware. */
1122 static int
1123 fec_set_mac_address(struct net_device *dev, void *p)
1125 struct fec_enet_private *fep = netdev_priv(dev);
1126 struct sockaddr *addr = p;
1128 if (!is_valid_ether_addr(addr->sa_data))
1129 return -EADDRNOTAVAIL;
1131 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1133 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1134 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1135 fep->hwp + FEC_ADDR_LOW);
1136 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1137 fep->hwp + FEC_ADDR_HIGH);
1138 return 0;
1141 static const struct net_device_ops fec_netdev_ops = {
1142 .ndo_open = fec_enet_open,
1143 .ndo_stop = fec_enet_close,
1144 .ndo_start_xmit = fec_enet_start_xmit,
1145 .ndo_set_multicast_list = set_multicast_list,
1146 .ndo_change_mtu = eth_change_mtu,
1147 .ndo_validate_addr = eth_validate_addr,
1148 .ndo_tx_timeout = fec_timeout,
1149 .ndo_set_mac_address = fec_set_mac_address,
1150 .ndo_do_ioctl = fec_enet_ioctl,
1154 * XXX: We need to clean up on failure exits here.
1157 static int fec_enet_init(struct net_device *dev)
1159 struct fec_enet_private *fep = netdev_priv(dev);
1160 struct bufdesc *cbd_base;
1161 struct bufdesc *bdp;
1162 int i;
1164 /* Allocate memory for buffer descriptors. */
1165 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1166 GFP_KERNEL);
1167 if (!cbd_base) {
1168 printk("FEC: allocate descriptor memory failed?\n");
1169 return -ENOMEM;
1172 spin_lock_init(&fep->hw_lock);
1174 fep->hwp = (void __iomem *)dev->base_addr;
1175 fep->netdev = dev;
1177 /* Get the Ethernet address */
1178 fec_get_mac(dev);
1180 /* Set receive and transmit descriptor base. */
1181 fep->rx_bd_base = cbd_base;
1182 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1184 /* The FEC Ethernet specific entries in the device structure */
1185 dev->watchdog_timeo = TX_TIMEOUT;
1186 dev->netdev_ops = &fec_netdev_ops;
1187 dev->ethtool_ops = &fec_enet_ethtool_ops;
1189 /* Initialize the receive buffer descriptors. */
1190 bdp = fep->rx_bd_base;
1191 for (i = 0; i < RX_RING_SIZE; i++) {
1193 /* Initialize the BD for every fragment in the page. */
1194 bdp->cbd_sc = 0;
1195 bdp++;
1198 /* Set the last buffer to wrap */
1199 bdp--;
1200 bdp->cbd_sc |= BD_SC_WRAP;
1202 /* ...and the same for transmit */
1203 bdp = fep->tx_bd_base;
1204 for (i = 0; i < TX_RING_SIZE; i++) {
1206 /* Initialize the BD for every fragment in the page. */
1207 bdp->cbd_sc = 0;
1208 bdp->cbd_bufaddr = 0;
1209 bdp++;
1212 /* Set the last buffer to wrap */
1213 bdp--;
1214 bdp->cbd_sc |= BD_SC_WRAP;
1216 fec_restart(dev, 0);
1218 return 0;
1221 /* This function is called to start or restart the FEC during a link
1222 * change. This only happens when switching between half and full
1223 * duplex.
1225 static void
1226 fec_restart(struct net_device *dev, int duplex)
1228 struct fec_enet_private *fep = netdev_priv(dev);
1229 const struct platform_device_id *id_entry =
1230 platform_get_device_id(fep->pdev);
1231 int i;
1232 u32 val, temp_mac[2];
1234 /* Whack a reset. We should wait for this. */
1235 writel(1, fep->hwp + FEC_ECNTRL);
1236 udelay(10);
1239 * enet-mac reset will reset mac address registers too,
1240 * so need to reconfigure it.
1242 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1243 memcpy(&temp_mac, dev->dev_addr, ETH_ALEN);
1244 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
1245 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
1248 /* Clear any outstanding interrupt. */
1249 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1251 /* Reset all multicast. */
1252 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1253 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1254 #ifndef CONFIG_M5272
1255 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1256 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1257 #endif
1259 /* Set maximum receive buffer size. */
1260 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1262 /* Set receive and transmit descriptor base. */
1263 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1264 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1265 fep->hwp + FEC_X_DES_START);
1267 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1268 fep->cur_rx = fep->rx_bd_base;
1270 /* Reset SKB transmit buffers. */
1271 fep->skb_cur = fep->skb_dirty = 0;
1272 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1273 if (fep->tx_skbuff[i]) {
1274 dev_kfree_skb_any(fep->tx_skbuff[i]);
1275 fep->tx_skbuff[i] = NULL;
1279 /* Enable MII mode */
1280 if (duplex) {
1281 /* MII enable / FD enable */
1282 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1283 writel(0x04, fep->hwp + FEC_X_CNTRL);
1284 } else {
1285 /* MII enable / No Rcv on Xmit */
1286 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1287 writel(0x0, fep->hwp + FEC_X_CNTRL);
1289 fep->full_duplex = duplex;
1291 /* Set MII speed */
1292 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1295 * The phy interface and speed need to get configured
1296 * differently on enet-mac.
1298 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1299 val = readl(fep->hwp + FEC_R_CNTRL);
1301 /* MII or RMII */
1302 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1303 val |= (1 << 8);
1304 else
1305 val &= ~(1 << 8);
1307 /* 10M or 100M */
1308 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
1309 val &= ~(1 << 9);
1310 else
1311 val |= (1 << 9);
1313 writel(val, fep->hwp + FEC_R_CNTRL);
1314 } else {
1315 #ifdef FEC_MIIGSK_ENR
1316 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1317 /* disable the gasket and wait */
1318 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1319 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1320 udelay(1);
1323 * configure the gasket:
1324 * RMII, 50 MHz, no loopback, no echo
1326 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1328 /* re-enable the gasket */
1329 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1331 #endif
1334 /* And last, enable the transmit and receive processing */
1335 writel(2, fep->hwp + FEC_ECNTRL);
1336 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1338 /* Enable interrupts we wish to service */
1339 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1342 static void
1343 fec_stop(struct net_device *dev)
1345 struct fec_enet_private *fep = netdev_priv(dev);
1347 /* We cannot expect a graceful transmit stop without link !!! */
1348 if (fep->link) {
1349 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1350 udelay(10);
1351 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1352 printk("fec_stop : Graceful transmit stop did not complete !\n");
1355 /* Whack a reset. We should wait for this. */
1356 writel(1, fep->hwp + FEC_ECNTRL);
1357 udelay(10);
1358 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1359 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1362 static int __devinit
1363 fec_probe(struct platform_device *pdev)
1365 struct fec_enet_private *fep;
1366 struct fec_platform_data *pdata;
1367 struct net_device *ndev;
1368 int i, irq, ret = 0;
1369 struct resource *r;
1371 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1372 if (!r)
1373 return -ENXIO;
1375 r = request_mem_region(r->start, resource_size(r), pdev->name);
1376 if (!r)
1377 return -EBUSY;
1379 /* Init network device */
1380 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1381 if (!ndev)
1382 return -ENOMEM;
1384 SET_NETDEV_DEV(ndev, &pdev->dev);
1386 /* setup board info structure */
1387 fep = netdev_priv(ndev);
1388 memset(fep, 0, sizeof(*fep));
1390 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1391 fep->pdev = pdev;
1393 if (!ndev->base_addr) {
1394 ret = -ENOMEM;
1395 goto failed_ioremap;
1398 platform_set_drvdata(pdev, ndev);
1400 pdata = pdev->dev.platform_data;
1401 if (pdata)
1402 fep->phy_interface = pdata->phy;
1404 /* This device has up to three irqs on some platforms */
1405 for (i = 0; i < 3; i++) {
1406 irq = platform_get_irq(pdev, i);
1407 if (i && irq < 0)
1408 break;
1409 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1410 if (ret) {
1411 while (i >= 0) {
1412 irq = platform_get_irq(pdev, i);
1413 free_irq(irq, ndev);
1414 i--;
1416 goto failed_irq;
1420 fep->clk = clk_get(&pdev->dev, "fec_clk");
1421 if (IS_ERR(fep->clk)) {
1422 ret = PTR_ERR(fep->clk);
1423 goto failed_clk;
1425 clk_enable(fep->clk);
1427 ret = fec_enet_init(ndev);
1428 if (ret)
1429 goto failed_init;
1431 ret = fec_enet_mii_init(pdev);
1432 if (ret)
1433 goto failed_mii_init;
1435 /* Carrier starts down, phylib will bring it up */
1436 netif_carrier_off(ndev);
1438 ret = register_netdev(ndev);
1439 if (ret)
1440 goto failed_register;
1442 return 0;
1444 failed_register:
1445 fec_enet_mii_remove(fep);
1446 failed_mii_init:
1447 failed_init:
1448 clk_disable(fep->clk);
1449 clk_put(fep->clk);
1450 failed_clk:
1451 for (i = 0; i < 3; i++) {
1452 irq = platform_get_irq(pdev, i);
1453 if (irq > 0)
1454 free_irq(irq, ndev);
1456 failed_irq:
1457 iounmap((void __iomem *)ndev->base_addr);
1458 failed_ioremap:
1459 free_netdev(ndev);
1461 return ret;
1464 static int __devexit
1465 fec_drv_remove(struct platform_device *pdev)
1467 struct net_device *ndev = platform_get_drvdata(pdev);
1468 struct fec_enet_private *fep = netdev_priv(ndev);
1470 platform_set_drvdata(pdev, NULL);
1472 fec_stop(ndev);
1473 fec_enet_mii_remove(fep);
1474 clk_disable(fep->clk);
1475 clk_put(fep->clk);
1476 iounmap((void __iomem *)ndev->base_addr);
1477 unregister_netdev(ndev);
1478 free_netdev(ndev);
1479 return 0;
1482 #ifdef CONFIG_PM
1483 static int
1484 fec_suspend(struct device *dev)
1486 struct net_device *ndev = dev_get_drvdata(dev);
1487 struct fec_enet_private *fep;
1489 if (ndev) {
1490 fep = netdev_priv(ndev);
1491 if (netif_running(ndev)) {
1492 fec_stop(ndev);
1493 netif_device_detach(ndev);
1495 clk_disable(fep->clk);
1497 return 0;
1500 static int
1501 fec_resume(struct device *dev)
1503 struct net_device *ndev = dev_get_drvdata(dev);
1504 struct fec_enet_private *fep;
1506 if (ndev) {
1507 fep = netdev_priv(ndev);
1508 clk_enable(fep->clk);
1509 if (netif_running(ndev)) {
1510 fec_restart(ndev, fep->full_duplex);
1511 netif_device_attach(ndev);
1514 return 0;
1517 static const struct dev_pm_ops fec_pm_ops = {
1518 .suspend = fec_suspend,
1519 .resume = fec_resume,
1520 .freeze = fec_suspend,
1521 .thaw = fec_resume,
1522 .poweroff = fec_suspend,
1523 .restore = fec_resume,
1525 #endif
1527 static struct platform_driver fec_driver = {
1528 .driver = {
1529 .name = DRIVER_NAME,
1530 .owner = THIS_MODULE,
1531 #ifdef CONFIG_PM
1532 .pm = &fec_pm_ops,
1533 #endif
1535 .id_table = fec_devtype,
1536 .probe = fec_probe,
1537 .remove = __devexit_p(fec_drv_remove),
1540 static int __init
1541 fec_enet_module_init(void)
1543 printk(KERN_INFO "FEC Ethernet Driver\n");
1545 return platform_driver_register(&fec_driver);
1548 static void __exit
1549 fec_enet_cleanup(void)
1551 platform_driver_unregister(&fec_driver);
1554 module_exit(fec_enet_cleanup);
1555 module_init(fec_enet_module_init);
1557 MODULE_LICENSE("GPL");