thinkpad-acpi: remove include of acnamesp.h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / libfs.c
blobbdaec17fa388a8ec98bd03f7b393b193aec2627b
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 #include <linux/exportfs.h>
13 #include <asm/uaccess.h>
15 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
16 struct kstat *stat)
18 struct inode *inode = dentry->d_inode;
19 generic_fillattr(inode, stat);
20 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
21 return 0;
24 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
26 buf->f_type = dentry->d_sb->s_magic;
27 buf->f_bsize = PAGE_CACHE_SIZE;
28 buf->f_namelen = NAME_MAX;
29 return 0;
33 * Retaining negative dentries for an in-memory filesystem just wastes
34 * memory and lookup time: arrange for them to be deleted immediately.
36 static int simple_delete_dentry(struct dentry *dentry)
38 return 1;
42 * Lookup the data. This is trivial - if the dentry didn't already
43 * exist, we know it is negative. Set d_op to delete negative dentries.
45 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
47 static struct dentry_operations simple_dentry_operations = {
48 .d_delete = simple_delete_dentry,
51 if (dentry->d_name.len > NAME_MAX)
52 return ERR_PTR(-ENAMETOOLONG);
53 dentry->d_op = &simple_dentry_operations;
54 d_add(dentry, NULL);
55 return NULL;
58 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
60 return 0;
63 int dcache_dir_open(struct inode *inode, struct file *file)
65 static struct qstr cursor_name = {.len = 1, .name = "."};
67 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
69 return file->private_data ? 0 : -ENOMEM;
72 int dcache_dir_close(struct inode *inode, struct file *file)
74 dput(file->private_data);
75 return 0;
78 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
80 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
81 switch (origin) {
82 case 1:
83 offset += file->f_pos;
84 case 0:
85 if (offset >= 0)
86 break;
87 default:
88 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
89 return -EINVAL;
91 if (offset != file->f_pos) {
92 file->f_pos = offset;
93 if (file->f_pos >= 2) {
94 struct list_head *p;
95 struct dentry *cursor = file->private_data;
96 loff_t n = file->f_pos - 2;
98 spin_lock(&dcache_lock);
99 list_del(&cursor->d_u.d_child);
100 p = file->f_path.dentry->d_subdirs.next;
101 while (n && p != &file->f_path.dentry->d_subdirs) {
102 struct dentry *next;
103 next = list_entry(p, struct dentry, d_u.d_child);
104 if (!d_unhashed(next) && next->d_inode)
105 n--;
106 p = p->next;
108 list_add_tail(&cursor->d_u.d_child, p);
109 spin_unlock(&dcache_lock);
112 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
113 return offset;
116 /* Relationship between i_mode and the DT_xxx types */
117 static inline unsigned char dt_type(struct inode *inode)
119 return (inode->i_mode >> 12) & 15;
123 * Directory is locked and all positive dentries in it are safe, since
124 * for ramfs-type trees they can't go away without unlink() or rmdir(),
125 * both impossible due to the lock on directory.
128 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
130 struct dentry *dentry = filp->f_path.dentry;
131 struct dentry *cursor = filp->private_data;
132 struct list_head *p, *q = &cursor->d_u.d_child;
133 ino_t ino;
134 int i = filp->f_pos;
136 switch (i) {
137 case 0:
138 ino = dentry->d_inode->i_ino;
139 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
140 break;
141 filp->f_pos++;
142 i++;
143 /* fallthrough */
144 case 1:
145 ino = parent_ino(dentry);
146 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
147 break;
148 filp->f_pos++;
149 i++;
150 /* fallthrough */
151 default:
152 spin_lock(&dcache_lock);
153 if (filp->f_pos == 2)
154 list_move(q, &dentry->d_subdirs);
156 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
157 struct dentry *next;
158 next = list_entry(p, struct dentry, d_u.d_child);
159 if (d_unhashed(next) || !next->d_inode)
160 continue;
162 spin_unlock(&dcache_lock);
163 if (filldir(dirent, next->d_name.name,
164 next->d_name.len, filp->f_pos,
165 next->d_inode->i_ino,
166 dt_type(next->d_inode)) < 0)
167 return 0;
168 spin_lock(&dcache_lock);
169 /* next is still alive */
170 list_move(q, p);
171 p = q;
172 filp->f_pos++;
174 spin_unlock(&dcache_lock);
176 return 0;
179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
181 return -EISDIR;
184 const struct file_operations simple_dir_operations = {
185 .open = dcache_dir_open,
186 .release = dcache_dir_close,
187 .llseek = dcache_dir_lseek,
188 .read = generic_read_dir,
189 .readdir = dcache_readdir,
190 .fsync = simple_sync_file,
193 const struct inode_operations simple_dir_inode_operations = {
194 .lookup = simple_lookup,
197 static const struct super_operations simple_super_operations = {
198 .statfs = simple_statfs,
202 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
203 * will never be mountable)
205 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
206 const struct super_operations *ops, unsigned long magic,
207 struct vfsmount *mnt)
209 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
210 struct dentry *dentry;
211 struct inode *root;
212 struct qstr d_name = {.name = name, .len = strlen(name)};
214 if (IS_ERR(s))
215 return PTR_ERR(s);
217 s->s_flags = MS_NOUSER;
218 s->s_maxbytes = ~0ULL;
219 s->s_blocksize = PAGE_SIZE;
220 s->s_blocksize_bits = PAGE_SHIFT;
221 s->s_magic = magic;
222 s->s_op = ops ? ops : &simple_super_operations;
223 s->s_time_gran = 1;
224 root = new_inode(s);
225 if (!root)
226 goto Enomem;
228 * since this is the first inode, make it number 1. New inodes created
229 * after this must take care not to collide with it (by passing
230 * max_reserved of 1 to iunique).
232 root->i_ino = 1;
233 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
234 root->i_uid = root->i_gid = 0;
235 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
236 dentry = d_alloc(NULL, &d_name);
237 if (!dentry) {
238 iput(root);
239 goto Enomem;
241 dentry->d_sb = s;
242 dentry->d_parent = dentry;
243 d_instantiate(dentry, root);
244 s->s_root = dentry;
245 s->s_flags |= MS_ACTIVE;
246 return simple_set_mnt(mnt, s);
248 Enomem:
249 up_write(&s->s_umount);
250 deactivate_super(s);
251 return -ENOMEM;
254 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
256 struct inode *inode = old_dentry->d_inode;
258 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
259 inc_nlink(inode);
260 atomic_inc(&inode->i_count);
261 dget(dentry);
262 d_instantiate(dentry, inode);
263 return 0;
266 static inline int simple_positive(struct dentry *dentry)
268 return dentry->d_inode && !d_unhashed(dentry);
271 int simple_empty(struct dentry *dentry)
273 struct dentry *child;
274 int ret = 0;
276 spin_lock(&dcache_lock);
277 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
278 if (simple_positive(child))
279 goto out;
280 ret = 1;
281 out:
282 spin_unlock(&dcache_lock);
283 return ret;
286 int simple_unlink(struct inode *dir, struct dentry *dentry)
288 struct inode *inode = dentry->d_inode;
290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
291 drop_nlink(inode);
292 dput(dentry);
293 return 0;
296 int simple_rmdir(struct inode *dir, struct dentry *dentry)
298 if (!simple_empty(dentry))
299 return -ENOTEMPTY;
301 drop_nlink(dentry->d_inode);
302 simple_unlink(dir, dentry);
303 drop_nlink(dir);
304 return 0;
307 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
308 struct inode *new_dir, struct dentry *new_dentry)
310 struct inode *inode = old_dentry->d_inode;
311 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
313 if (!simple_empty(new_dentry))
314 return -ENOTEMPTY;
316 if (new_dentry->d_inode) {
317 simple_unlink(new_dir, new_dentry);
318 if (they_are_dirs)
319 drop_nlink(old_dir);
320 } else if (they_are_dirs) {
321 drop_nlink(old_dir);
322 inc_nlink(new_dir);
325 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
326 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
328 return 0;
331 int simple_readpage(struct file *file, struct page *page)
333 clear_highpage(page);
334 flush_dcache_page(page);
335 SetPageUptodate(page);
336 unlock_page(page);
337 return 0;
340 int simple_prepare_write(struct file *file, struct page *page,
341 unsigned from, unsigned to)
343 if (!PageUptodate(page)) {
344 if (to - from != PAGE_CACHE_SIZE)
345 zero_user_segments(page,
346 0, from,
347 to, PAGE_CACHE_SIZE);
349 return 0;
352 int simple_write_begin(struct file *file, struct address_space *mapping,
353 loff_t pos, unsigned len, unsigned flags,
354 struct page **pagep, void **fsdata)
356 struct page *page;
357 pgoff_t index;
358 unsigned from;
360 index = pos >> PAGE_CACHE_SHIFT;
361 from = pos & (PAGE_CACHE_SIZE - 1);
363 page = grab_cache_page_write_begin(mapping, index, flags);
364 if (!page)
365 return -ENOMEM;
367 *pagep = page;
369 return simple_prepare_write(file, page, from, from+len);
372 static int simple_commit_write(struct file *file, struct page *page,
373 unsigned from, unsigned to)
375 struct inode *inode = page->mapping->host;
376 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
378 if (!PageUptodate(page))
379 SetPageUptodate(page);
381 * No need to use i_size_read() here, the i_size
382 * cannot change under us because we hold the i_mutex.
384 if (pos > inode->i_size)
385 i_size_write(inode, pos);
386 set_page_dirty(page);
387 return 0;
390 int simple_write_end(struct file *file, struct address_space *mapping,
391 loff_t pos, unsigned len, unsigned copied,
392 struct page *page, void *fsdata)
394 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
396 /* zero the stale part of the page if we did a short copy */
397 if (copied < len) {
398 void *kaddr = kmap_atomic(page, KM_USER0);
399 memset(kaddr + from + copied, 0, len - copied);
400 flush_dcache_page(page);
401 kunmap_atomic(kaddr, KM_USER0);
404 simple_commit_write(file, page, from, from+copied);
406 unlock_page(page);
407 page_cache_release(page);
409 return copied;
413 * the inodes created here are not hashed. If you use iunique to generate
414 * unique inode values later for this filesystem, then you must take care
415 * to pass it an appropriate max_reserved value to avoid collisions.
417 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
419 struct inode *inode;
420 struct dentry *root;
421 struct dentry *dentry;
422 int i;
424 s->s_blocksize = PAGE_CACHE_SIZE;
425 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
426 s->s_magic = magic;
427 s->s_op = &simple_super_operations;
428 s->s_time_gran = 1;
430 inode = new_inode(s);
431 if (!inode)
432 return -ENOMEM;
434 * because the root inode is 1, the files array must not contain an
435 * entry at index 1
437 inode->i_ino = 1;
438 inode->i_mode = S_IFDIR | 0755;
439 inode->i_uid = inode->i_gid = 0;
440 inode->i_blocks = 0;
441 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
442 inode->i_op = &simple_dir_inode_operations;
443 inode->i_fop = &simple_dir_operations;
444 inode->i_nlink = 2;
445 root = d_alloc_root(inode);
446 if (!root) {
447 iput(inode);
448 return -ENOMEM;
450 for (i = 0; !files->name || files->name[0]; i++, files++) {
451 if (!files->name)
452 continue;
454 /* warn if it tries to conflict with the root inode */
455 if (unlikely(i == 1))
456 printk(KERN_WARNING "%s: %s passed in a files array"
457 "with an index of 1!\n", __func__,
458 s->s_type->name);
460 dentry = d_alloc_name(root, files->name);
461 if (!dentry)
462 goto out;
463 inode = new_inode(s);
464 if (!inode)
465 goto out;
466 inode->i_mode = S_IFREG | files->mode;
467 inode->i_uid = inode->i_gid = 0;
468 inode->i_blocks = 0;
469 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
470 inode->i_fop = files->ops;
471 inode->i_ino = i;
472 d_add(dentry, inode);
474 s->s_root = root;
475 return 0;
476 out:
477 d_genocide(root);
478 dput(root);
479 return -ENOMEM;
482 static DEFINE_SPINLOCK(pin_fs_lock);
484 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
486 struct vfsmount *mnt = NULL;
487 spin_lock(&pin_fs_lock);
488 if (unlikely(!*mount)) {
489 spin_unlock(&pin_fs_lock);
490 mnt = vfs_kern_mount(type, 0, type->name, NULL);
491 if (IS_ERR(mnt))
492 return PTR_ERR(mnt);
493 spin_lock(&pin_fs_lock);
494 if (!*mount)
495 *mount = mnt;
497 mntget(*mount);
498 ++*count;
499 spin_unlock(&pin_fs_lock);
500 mntput(mnt);
501 return 0;
504 void simple_release_fs(struct vfsmount **mount, int *count)
506 struct vfsmount *mnt;
507 spin_lock(&pin_fs_lock);
508 mnt = *mount;
509 if (!--*count)
510 *mount = NULL;
511 spin_unlock(&pin_fs_lock);
512 mntput(mnt);
516 * simple_read_from_buffer - copy data from the buffer to user space
517 * @to: the user space buffer to read to
518 * @count: the maximum number of bytes to read
519 * @ppos: the current position in the buffer
520 * @from: the buffer to read from
521 * @available: the size of the buffer
523 * The simple_read_from_buffer() function reads up to @count bytes from the
524 * buffer @from at offset @ppos into the user space address starting at @to.
526 * On success, the number of bytes read is returned and the offset @ppos is
527 * advanced by this number, or negative value is returned on error.
529 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
530 const void *from, size_t available)
532 loff_t pos = *ppos;
533 if (pos < 0)
534 return -EINVAL;
535 if (pos >= available)
536 return 0;
537 if (count > available - pos)
538 count = available - pos;
539 if (copy_to_user(to, from + pos, count))
540 return -EFAULT;
541 *ppos = pos + count;
542 return count;
546 * memory_read_from_buffer - copy data from the buffer
547 * @to: the kernel space buffer to read to
548 * @count: the maximum number of bytes to read
549 * @ppos: the current position in the buffer
550 * @from: the buffer to read from
551 * @available: the size of the buffer
553 * The memory_read_from_buffer() function reads up to @count bytes from the
554 * buffer @from at offset @ppos into the kernel space address starting at @to.
556 * On success, the number of bytes read is returned and the offset @ppos is
557 * advanced by this number, or negative value is returned on error.
559 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
560 const void *from, size_t available)
562 loff_t pos = *ppos;
564 if (pos < 0)
565 return -EINVAL;
566 if (pos >= available)
567 return 0;
568 if (count > available - pos)
569 count = available - pos;
570 memcpy(to, from + pos, count);
571 *ppos = pos + count;
573 return count;
577 * Transaction based IO.
578 * The file expects a single write which triggers the transaction, and then
579 * possibly a read which collects the result - which is stored in a
580 * file-local buffer.
582 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
584 struct simple_transaction_argresp *ar;
585 static DEFINE_SPINLOCK(simple_transaction_lock);
587 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
588 return ERR_PTR(-EFBIG);
590 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
591 if (!ar)
592 return ERR_PTR(-ENOMEM);
594 spin_lock(&simple_transaction_lock);
596 /* only one write allowed per open */
597 if (file->private_data) {
598 spin_unlock(&simple_transaction_lock);
599 free_page((unsigned long)ar);
600 return ERR_PTR(-EBUSY);
603 file->private_data = ar;
605 spin_unlock(&simple_transaction_lock);
607 if (copy_from_user(ar->data, buf, size))
608 return ERR_PTR(-EFAULT);
610 return ar->data;
613 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
615 struct simple_transaction_argresp *ar = file->private_data;
617 if (!ar)
618 return 0;
619 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
622 int simple_transaction_release(struct inode *inode, struct file *file)
624 free_page((unsigned long)file->private_data);
625 return 0;
628 /* Simple attribute files */
630 struct simple_attr {
631 int (*get)(void *, u64 *);
632 int (*set)(void *, u64);
633 char get_buf[24]; /* enough to store a u64 and "\n\0" */
634 char set_buf[24];
635 void *data;
636 const char *fmt; /* format for read operation */
637 struct mutex mutex; /* protects access to these buffers */
640 /* simple_attr_open is called by an actual attribute open file operation
641 * to set the attribute specific access operations. */
642 int simple_attr_open(struct inode *inode, struct file *file,
643 int (*get)(void *, u64 *), int (*set)(void *, u64),
644 const char *fmt)
646 struct simple_attr *attr;
648 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
649 if (!attr)
650 return -ENOMEM;
652 attr->get = get;
653 attr->set = set;
654 attr->data = inode->i_private;
655 attr->fmt = fmt;
656 mutex_init(&attr->mutex);
658 file->private_data = attr;
660 return nonseekable_open(inode, file);
663 int simple_attr_release(struct inode *inode, struct file *file)
665 kfree(file->private_data);
666 return 0;
669 /* read from the buffer that is filled with the get function */
670 ssize_t simple_attr_read(struct file *file, char __user *buf,
671 size_t len, loff_t *ppos)
673 struct simple_attr *attr;
674 size_t size;
675 ssize_t ret;
677 attr = file->private_data;
679 if (!attr->get)
680 return -EACCES;
682 ret = mutex_lock_interruptible(&attr->mutex);
683 if (ret)
684 return ret;
686 if (*ppos) { /* continued read */
687 size = strlen(attr->get_buf);
688 } else { /* first read */
689 u64 val;
690 ret = attr->get(attr->data, &val);
691 if (ret)
692 goto out;
694 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
695 attr->fmt, (unsigned long long)val);
698 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
699 out:
700 mutex_unlock(&attr->mutex);
701 return ret;
704 /* interpret the buffer as a number to call the set function with */
705 ssize_t simple_attr_write(struct file *file, const char __user *buf,
706 size_t len, loff_t *ppos)
708 struct simple_attr *attr;
709 u64 val;
710 size_t size;
711 ssize_t ret;
713 attr = file->private_data;
714 if (!attr->set)
715 return -EACCES;
717 ret = mutex_lock_interruptible(&attr->mutex);
718 if (ret)
719 return ret;
721 ret = -EFAULT;
722 size = min(sizeof(attr->set_buf) - 1, len);
723 if (copy_from_user(attr->set_buf, buf, size))
724 goto out;
726 ret = len; /* claim we got the whole input */
727 attr->set_buf[size] = '\0';
728 val = simple_strtol(attr->set_buf, NULL, 0);
729 attr->set(attr->data, val);
730 out:
731 mutex_unlock(&attr->mutex);
732 return ret;
736 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
737 * @sb: filesystem to do the file handle conversion on
738 * @fid: file handle to convert
739 * @fh_len: length of the file handle in bytes
740 * @fh_type: type of file handle
741 * @get_inode: filesystem callback to retrieve inode
743 * This function decodes @fid as long as it has one of the well-known
744 * Linux filehandle types and calls @get_inode on it to retrieve the
745 * inode for the object specified in the file handle.
747 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
748 int fh_len, int fh_type, struct inode *(*get_inode)
749 (struct super_block *sb, u64 ino, u32 gen))
751 struct inode *inode = NULL;
753 if (fh_len < 2)
754 return NULL;
756 switch (fh_type) {
757 case FILEID_INO32_GEN:
758 case FILEID_INO32_GEN_PARENT:
759 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
760 break;
763 return d_obtain_alias(inode);
765 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
768 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
769 * @sb: filesystem to do the file handle conversion on
770 * @fid: file handle to convert
771 * @fh_len: length of the file handle in bytes
772 * @fh_type: type of file handle
773 * @get_inode: filesystem callback to retrieve inode
775 * This function decodes @fid as long as it has one of the well-known
776 * Linux filehandle types and calls @get_inode on it to retrieve the
777 * inode for the _parent_ object specified in the file handle if it
778 * is specified in the file handle, or NULL otherwise.
780 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
781 int fh_len, int fh_type, struct inode *(*get_inode)
782 (struct super_block *sb, u64 ino, u32 gen))
784 struct inode *inode = NULL;
786 if (fh_len <= 2)
787 return NULL;
789 switch (fh_type) {
790 case FILEID_INO32_GEN_PARENT:
791 inode = get_inode(sb, fid->i32.parent_ino,
792 (fh_len > 3 ? fid->i32.parent_gen : 0));
793 break;
796 return d_obtain_alias(inode);
798 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
800 EXPORT_SYMBOL(dcache_dir_close);
801 EXPORT_SYMBOL(dcache_dir_lseek);
802 EXPORT_SYMBOL(dcache_dir_open);
803 EXPORT_SYMBOL(dcache_readdir);
804 EXPORT_SYMBOL(generic_read_dir);
805 EXPORT_SYMBOL(get_sb_pseudo);
806 EXPORT_SYMBOL(simple_write_begin);
807 EXPORT_SYMBOL(simple_write_end);
808 EXPORT_SYMBOL(simple_dir_inode_operations);
809 EXPORT_SYMBOL(simple_dir_operations);
810 EXPORT_SYMBOL(simple_empty);
811 EXPORT_SYMBOL(d_alloc_name);
812 EXPORT_SYMBOL(simple_fill_super);
813 EXPORT_SYMBOL(simple_getattr);
814 EXPORT_SYMBOL(simple_link);
815 EXPORT_SYMBOL(simple_lookup);
816 EXPORT_SYMBOL(simple_pin_fs);
817 EXPORT_UNUSED_SYMBOL(simple_prepare_write);
818 EXPORT_SYMBOL(simple_readpage);
819 EXPORT_SYMBOL(simple_release_fs);
820 EXPORT_SYMBOL(simple_rename);
821 EXPORT_SYMBOL(simple_rmdir);
822 EXPORT_SYMBOL(simple_statfs);
823 EXPORT_SYMBOL(simple_sync_file);
824 EXPORT_SYMBOL(simple_unlink);
825 EXPORT_SYMBOL(simple_read_from_buffer);
826 EXPORT_SYMBOL(memory_read_from_buffer);
827 EXPORT_SYMBOL(simple_transaction_get);
828 EXPORT_SYMBOL(simple_transaction_read);
829 EXPORT_SYMBOL(simple_transaction_release);
830 EXPORT_SYMBOL_GPL(simple_attr_open);
831 EXPORT_SYMBOL_GPL(simple_attr_release);
832 EXPORT_SYMBOL_GPL(simple_attr_read);
833 EXPORT_SYMBOL_GPL(simple_attr_write);