2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
26 * dbs is used in this file as a shortform for demandbased switching
27 * It helps to keep variable names smaller, simpler
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD (80)
32 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
33 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
34 #define MIN_FREQUENCY_UP_THRESHOLD (11)
35 #define MAX_FREQUENCY_UP_THRESHOLD (100)
38 * The polling frequency of this governor depends on the capability of
39 * the processor. Default polling frequency is 1000 times the transition
40 * latency of the processor. The governor will work on any processor with
41 * transition latency <= 10mS, using appropriate sampling
43 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
44 * this governor will not work.
45 * All times here are in uS.
47 static unsigned int def_sampling_rate
;
48 #define MIN_SAMPLING_RATE_RATIO (2)
49 /* for correct statistics, we need at least 10 ticks between each measure */
50 #define MIN_STAT_SAMPLING_RATE \
51 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
52 #define MIN_SAMPLING_RATE \
53 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
54 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
55 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
56 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
58 static void do_dbs_timer(struct work_struct
*work
);
61 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
63 struct cpu_dbs_info_s
{
64 cputime64_t prev_cpu_idle
;
65 cputime64_t prev_cpu_wall
;
66 cputime64_t prev_cpu_nice
;
67 struct cpufreq_policy
*cur_policy
;
68 struct delayed_work work
;
69 struct cpufreq_frequency_table
*freq_table
;
71 unsigned int freq_lo_jiffies
;
72 unsigned int freq_hi_jiffies
;
74 unsigned int enable
:1,
77 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
79 static unsigned int dbs_enable
; /* number of CPUs using this policy */
82 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
83 * lock and dbs_mutex. cpu_hotplug lock should always be held before
84 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
85 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
86 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
87 * is recursive for the same process. -Venki
89 static DEFINE_MUTEX(dbs_mutex
);
91 static struct workqueue_struct
*kondemand_wq
;
93 static struct dbs_tuners
{
94 unsigned int sampling_rate
;
95 unsigned int up_threshold
;
96 unsigned int down_differential
;
97 unsigned int ignore_nice
;
98 unsigned int powersave_bias
;
100 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
101 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
106 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
109 cputime64_t idle_time
;
110 cputime64_t cur_wall_time
;
111 cputime64_t busy_time
;
113 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
114 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
115 kstat_cpu(cpu
).cpustat
.system
);
117 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
118 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
119 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
121 if (!dbs_tuners_ins
.ignore_nice
) {
122 busy_time
= cputime64_add(busy_time
,
123 kstat_cpu(cpu
).cpustat
.nice
);
126 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
128 *wall
= cur_wall_time
;
133 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
135 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
137 if (idle_time
== -1ULL)
138 return get_cpu_idle_time_jiffy(cpu
, wall
);
140 if (dbs_tuners_ins
.ignore_nice
) {
141 cputime64_t cur_nice
;
142 unsigned long cur_nice_jiffies
;
143 struct cpu_dbs_info_s
*dbs_info
;
145 dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
146 cur_nice
= cputime64_sub(kstat_cpu(cpu
).cpustat
.nice
,
147 dbs_info
->prev_cpu_nice
);
149 * Assumption: nice time between sampling periods will be
150 * less than 2^32 jiffies for 32 bit sys
152 cur_nice_jiffies
= (unsigned long)
153 cputime64_to_jiffies64(cur_nice
);
154 dbs_info
->prev_cpu_nice
= kstat_cpu(cpu
).cpustat
.nice
;
155 return idle_time
+ jiffies_to_usecs(cur_nice_jiffies
);
161 * Find right freq to be set now with powersave_bias on.
162 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
163 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
165 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
166 unsigned int freq_next
,
167 unsigned int relation
)
169 unsigned int freq_req
, freq_reduc
, freq_avg
;
170 unsigned int freq_hi
, freq_lo
;
171 unsigned int index
= 0;
172 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
173 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, policy
->cpu
);
175 if (!dbs_info
->freq_table
) {
176 dbs_info
->freq_lo
= 0;
177 dbs_info
->freq_lo_jiffies
= 0;
181 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
183 freq_req
= dbs_info
->freq_table
[index
].frequency
;
184 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
185 freq_avg
= freq_req
- freq_reduc
;
187 /* Find freq bounds for freq_avg in freq_table */
189 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
190 CPUFREQ_RELATION_H
, &index
);
191 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
193 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
194 CPUFREQ_RELATION_L
, &index
);
195 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
197 /* Find out how long we have to be in hi and lo freqs */
198 if (freq_hi
== freq_lo
) {
199 dbs_info
->freq_lo
= 0;
200 dbs_info
->freq_lo_jiffies
= 0;
203 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
204 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
205 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
206 jiffies_hi
/= (freq_hi
- freq_lo
);
207 jiffies_lo
= jiffies_total
- jiffies_hi
;
208 dbs_info
->freq_lo
= freq_lo
;
209 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
210 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
214 static void ondemand_powersave_bias_init(void)
217 for_each_online_cpu(i
) {
218 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, i
);
219 dbs_info
->freq_table
= cpufreq_frequency_get_table(i
);
220 dbs_info
->freq_lo
= 0;
224 /************************** sysfs interface ************************/
225 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
227 return sprintf (buf
, "%u\n", MAX_SAMPLING_RATE
);
230 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
232 return sprintf (buf
, "%u\n", MIN_SAMPLING_RATE
);
235 #define define_one_ro(_name) \
236 static struct freq_attr _name = \
237 __ATTR(_name, 0444, show_##_name, NULL)
239 define_one_ro(sampling_rate_max
);
240 define_one_ro(sampling_rate_min
);
242 /* cpufreq_ondemand Governor Tunables */
243 #define show_one(file_name, object) \
244 static ssize_t show_##file_name \
245 (struct cpufreq_policy *unused, char *buf) \
247 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
249 show_one(sampling_rate
, sampling_rate
);
250 show_one(up_threshold
, up_threshold
);
251 show_one(ignore_nice_load
, ignore_nice
);
252 show_one(powersave_bias
, powersave_bias
);
254 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
255 const char *buf
, size_t count
)
259 ret
= sscanf(buf
, "%u", &input
);
261 mutex_lock(&dbs_mutex
);
262 if (ret
!= 1 || input
> MAX_SAMPLING_RATE
263 || input
< MIN_SAMPLING_RATE
) {
264 mutex_unlock(&dbs_mutex
);
268 dbs_tuners_ins
.sampling_rate
= input
;
269 mutex_unlock(&dbs_mutex
);
274 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
275 const char *buf
, size_t count
)
279 ret
= sscanf(buf
, "%u", &input
);
281 mutex_lock(&dbs_mutex
);
282 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
283 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
284 mutex_unlock(&dbs_mutex
);
288 dbs_tuners_ins
.up_threshold
= input
;
289 mutex_unlock(&dbs_mutex
);
294 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
295 const char *buf
, size_t count
)
302 ret
= sscanf(buf
, "%u", &input
);
309 mutex_lock(&dbs_mutex
);
310 if ( input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
311 mutex_unlock(&dbs_mutex
);
314 dbs_tuners_ins
.ignore_nice
= input
;
316 /* we need to re-evaluate prev_cpu_idle */
317 for_each_online_cpu(j
) {
318 struct cpu_dbs_info_s
*dbs_info
;
319 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
320 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
321 &dbs_info
->prev_cpu_wall
);
323 mutex_unlock(&dbs_mutex
);
328 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
329 const char *buf
, size_t count
)
333 ret
= sscanf(buf
, "%u", &input
);
341 mutex_lock(&dbs_mutex
);
342 dbs_tuners_ins
.powersave_bias
= input
;
343 ondemand_powersave_bias_init();
344 mutex_unlock(&dbs_mutex
);
349 #define define_one_rw(_name) \
350 static struct freq_attr _name = \
351 __ATTR(_name, 0644, show_##_name, store_##_name)
353 define_one_rw(sampling_rate
);
354 define_one_rw(up_threshold
);
355 define_one_rw(ignore_nice_load
);
356 define_one_rw(powersave_bias
);
358 static struct attribute
* dbs_attributes
[] = {
359 &sampling_rate_max
.attr
,
360 &sampling_rate_min
.attr
,
363 &ignore_nice_load
.attr
,
364 &powersave_bias
.attr
,
368 static struct attribute_group dbs_attr_group
= {
369 .attrs
= dbs_attributes
,
373 /************************** sysfs end ************************/
375 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
377 unsigned int max_load_freq
;
379 struct cpufreq_policy
*policy
;
382 if (!this_dbs_info
->enable
)
385 this_dbs_info
->freq_lo
= 0;
386 policy
= this_dbs_info
->cur_policy
;
389 * Every sampling_rate, we check, if current idle time is less
390 * than 20% (default), then we try to increase frequency
391 * Every sampling_rate, we look for a the lowest
392 * frequency which can sustain the load while keeping idle time over
393 * 30%. If such a frequency exist, we try to decrease to this frequency.
395 * Any frequency increase takes it to the maximum frequency.
396 * Frequency reduction happens at minimum steps of
397 * 5% (default) of current frequency
400 /* Get Absolute Load - in terms of freq */
403 for_each_cpu_mask_nr(j
, policy
->cpus
) {
404 struct cpu_dbs_info_s
*j_dbs_info
;
405 cputime64_t cur_wall_time
, cur_idle_time
;
406 unsigned int idle_time
, wall_time
;
407 unsigned int load
, load_freq
;
410 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
412 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
414 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
415 j_dbs_info
->prev_cpu_wall
);
416 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
418 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
419 j_dbs_info
->prev_cpu_idle
);
420 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
422 if (unlikely(!wall_time
|| wall_time
< idle_time
))
425 load
= 100 * (wall_time
- idle_time
) / wall_time
;
427 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
429 freq_avg
= policy
->cur
;
431 load_freq
= load
* freq_avg
;
432 if (load_freq
> max_load_freq
)
433 max_load_freq
= load_freq
;
436 /* Check for frequency increase */
437 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
438 /* if we are already at full speed then break out early */
439 if (!dbs_tuners_ins
.powersave_bias
) {
440 if (policy
->cur
== policy
->max
)
443 __cpufreq_driver_target(policy
, policy
->max
,
446 int freq
= powersave_bias_target(policy
, policy
->max
,
448 __cpufreq_driver_target(policy
, freq
,
454 /* Check for frequency decrease */
455 /* if we cannot reduce the frequency anymore, break out early */
456 if (policy
->cur
== policy
->min
)
460 * The optimal frequency is the frequency that is the lowest that
461 * can support the current CPU usage without triggering the up
462 * policy. To be safe, we focus 10 points under the threshold.
465 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
467 unsigned int freq_next
;
468 freq_next
= max_load_freq
/
469 (dbs_tuners_ins
.up_threshold
-
470 dbs_tuners_ins
.down_differential
);
472 if (!dbs_tuners_ins
.powersave_bias
) {
473 __cpufreq_driver_target(policy
, freq_next
,
476 int freq
= powersave_bias_target(policy
, freq_next
,
478 __cpufreq_driver_target(policy
, freq
,
484 static void do_dbs_timer(struct work_struct
*work
)
486 struct cpu_dbs_info_s
*dbs_info
=
487 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
488 unsigned int cpu
= dbs_info
->cpu
;
489 int sample_type
= dbs_info
->sample_type
;
491 /* We want all CPUs to do sampling nearly on same jiffy */
492 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
494 delay
-= jiffies
% delay
;
496 if (lock_policy_rwsem_write(cpu
) < 0)
499 if (!dbs_info
->enable
) {
500 unlock_policy_rwsem_write(cpu
);
504 /* Common NORMAL_SAMPLE setup */
505 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
506 if (!dbs_tuners_ins
.powersave_bias
||
507 sample_type
== DBS_NORMAL_SAMPLE
) {
508 dbs_check_cpu(dbs_info
);
509 if (dbs_info
->freq_lo
) {
510 /* Setup timer for SUB_SAMPLE */
511 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
512 delay
= dbs_info
->freq_hi_jiffies
;
515 __cpufreq_driver_target(dbs_info
->cur_policy
,
519 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
520 unlock_policy_rwsem_write(cpu
);
523 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
525 /* We want all CPUs to do sampling nearly on same jiffy */
526 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
527 delay
-= jiffies
% delay
;
529 dbs_info
->enable
= 1;
530 ondemand_powersave_bias_init();
531 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
532 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
533 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
537 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
539 dbs_info
->enable
= 0;
540 cancel_delayed_work(&dbs_info
->work
);
543 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
546 unsigned int cpu
= policy
->cpu
;
547 struct cpu_dbs_info_s
*this_dbs_info
;
551 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
554 case CPUFREQ_GOV_START
:
555 if ((!cpu_online(cpu
)) || (!policy
->cur
))
558 if (this_dbs_info
->enable
) /* Already enabled */
561 mutex_lock(&dbs_mutex
);
564 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
567 mutex_unlock(&dbs_mutex
);
571 for_each_cpu_mask_nr(j
, policy
->cpus
) {
572 struct cpu_dbs_info_s
*j_dbs_info
;
573 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
574 j_dbs_info
->cur_policy
= policy
;
576 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
577 &j_dbs_info
->prev_cpu_wall
);
579 this_dbs_info
->cpu
= cpu
;
581 * Start the timerschedule work, when this governor
582 * is used for first time
584 if (dbs_enable
== 1) {
585 unsigned int latency
;
586 /* policy latency is in nS. Convert it to uS first */
587 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
591 def_sampling_rate
= latency
*
592 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER
;
594 if (def_sampling_rate
< MIN_STAT_SAMPLING_RATE
)
595 def_sampling_rate
= MIN_STAT_SAMPLING_RATE
;
597 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
599 dbs_timer_init(this_dbs_info
);
601 mutex_unlock(&dbs_mutex
);
604 case CPUFREQ_GOV_STOP
:
605 mutex_lock(&dbs_mutex
);
606 dbs_timer_exit(this_dbs_info
);
607 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
609 mutex_unlock(&dbs_mutex
);
613 case CPUFREQ_GOV_LIMITS
:
614 mutex_lock(&dbs_mutex
);
615 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
616 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
619 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
620 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
623 mutex_unlock(&dbs_mutex
);
629 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
632 struct cpufreq_governor cpufreq_gov_ondemand
= {
634 .governor
= cpufreq_governor_dbs
,
635 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
636 .owner
= THIS_MODULE
,
639 static int __init
cpufreq_gov_dbs_init(void)
646 idle_time
= get_cpu_idle_time_us(cpu
, &wall
);
648 if (idle_time
!= -1ULL) {
649 /* Idle micro accounting is supported. Use finer thresholds */
650 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
651 dbs_tuners_ins
.down_differential
=
652 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
655 kondemand_wq
= create_workqueue("kondemand");
657 printk(KERN_ERR
"Creation of kondemand failed\n");
660 err
= cpufreq_register_governor(&cpufreq_gov_ondemand
);
662 destroy_workqueue(kondemand_wq
);
667 static void __exit
cpufreq_gov_dbs_exit(void)
669 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
670 destroy_workqueue(kondemand_wq
);
674 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
675 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
676 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
677 "Low Latency Frequency Transition capable processors");
678 MODULE_LICENSE("GPL");
680 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
681 fs_initcall(cpufreq_gov_dbs_init
);
683 module_init(cpufreq_gov_dbs_init
);
685 module_exit(cpufreq_gov_dbs_exit
);