perf_events: Simplify code by removing cpu argument to hw_perf_group_sched_in()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
blobad096562d694e19275c231c455a06690ae7678f8
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
32 static u64 perf_event_mask __read_mostly;
34 /* The maximal number of PEBS events: */
35 #define MAX_PEBS_EVENTS 4
37 /* The size of a BTS record in bytes: */
38 #define BTS_RECORD_SIZE 24
40 /* The size of a per-cpu BTS buffer in bytes: */
41 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
43 /* The BTS overflow threshold in bytes from the end of the buffer: */
44 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
48 * Bits in the debugctlmsr controlling branch tracing.
50 #define X86_DEBUGCTL_TR (1 << 6)
51 #define X86_DEBUGCTL_BTS (1 << 7)
52 #define X86_DEBUGCTL_BTINT (1 << 8)
53 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
57 * A debug store configuration.
59 * We only support architectures that use 64bit fields.
61 struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
73 struct event_constraint {
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
76 u64 idxmsk64[1];
78 int code;
79 int cmask;
80 int weight;
83 struct amd_nb {
84 int nb_id; /* NorthBridge id */
85 int refcnt; /* reference count */
86 struct perf_event *owners[X86_PMC_IDX_MAX];
87 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
90 struct cpu_hw_events {
91 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
92 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
93 unsigned long interrupts;
94 int enabled;
95 struct debug_store *ds;
97 int n_events;
98 int n_added;
99 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
100 u64 tags[X86_PMC_IDX_MAX];
101 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
102 struct amd_nb *amd_nb;
105 #define __EVENT_CONSTRAINT(c, n, m, w) {\
106 { .idxmsk64[0] = (n) }, \
107 .code = (c), \
108 .cmask = (m), \
109 .weight = (w), \
112 #define EVENT_CONSTRAINT(c, n, m) \
113 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
115 #define INTEL_EVENT_CONSTRAINT(c, n) \
116 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
118 #define FIXED_EVENT_CONSTRAINT(c, n) \
119 EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
121 #define EVENT_CONSTRAINT_END \
122 EVENT_CONSTRAINT(0, 0, 0)
124 #define for_each_event_constraint(e, c) \
125 for ((e) = (c); (e)->cmask; (e)++)
128 * struct x86_pmu - generic x86 pmu
130 struct x86_pmu {
131 const char *name;
132 int version;
133 int (*handle_irq)(struct pt_regs *);
134 void (*disable_all)(void);
135 void (*enable_all)(void);
136 void (*enable)(struct hw_perf_event *, int);
137 void (*disable)(struct hw_perf_event *, int);
138 unsigned eventsel;
139 unsigned perfctr;
140 u64 (*event_map)(int);
141 u64 (*raw_event)(u64);
142 int max_events;
143 int num_events;
144 int num_events_fixed;
145 int event_bits;
146 u64 event_mask;
147 int apic;
148 u64 max_period;
149 u64 intel_ctrl;
150 void (*enable_bts)(u64 config);
151 void (*disable_bts)(void);
153 struct event_constraint *
154 (*get_event_constraints)(struct cpu_hw_events *cpuc,
155 struct perf_event *event);
157 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
158 struct perf_event *event);
159 struct event_constraint *event_constraints;
162 static struct x86_pmu x86_pmu __read_mostly;
164 static raw_spinlock_t amd_nb_lock;
166 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
167 .enabled = 1,
170 static int x86_perf_event_set_period(struct perf_event *event,
171 struct hw_perf_event *hwc, int idx);
174 * Not sure about some of these
176 static const u64 p6_perfmon_event_map[] =
178 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
179 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
180 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
181 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
182 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
183 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
184 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
187 static u64 p6_pmu_event_map(int hw_event)
189 return p6_perfmon_event_map[hw_event];
193 * Event setting that is specified not to count anything.
194 * We use this to effectively disable a counter.
196 * L2_RQSTS with 0 MESI unit mask.
198 #define P6_NOP_EVENT 0x0000002EULL
200 static u64 p6_pmu_raw_event(u64 hw_event)
202 #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
203 #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
204 #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
205 #define P6_EVNTSEL_INV_MASK 0x00800000ULL
206 #define P6_EVNTSEL_REG_MASK 0xFF000000ULL
208 #define P6_EVNTSEL_MASK \
209 (P6_EVNTSEL_EVENT_MASK | \
210 P6_EVNTSEL_UNIT_MASK | \
211 P6_EVNTSEL_EDGE_MASK | \
212 P6_EVNTSEL_INV_MASK | \
213 P6_EVNTSEL_REG_MASK)
215 return hw_event & P6_EVNTSEL_MASK;
218 static struct event_constraint intel_p6_event_constraints[] =
220 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */
221 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
222 INTEL_EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */
223 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
224 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
225 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
226 EVENT_CONSTRAINT_END
230 * Intel PerfMon v3. Used on Core2 and later.
232 static const u64 intel_perfmon_event_map[] =
234 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
235 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
236 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
237 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
238 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
239 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
240 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
243 static struct event_constraint intel_core_event_constraints[] =
245 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
246 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
247 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
248 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
249 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
250 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
251 EVENT_CONSTRAINT_END
254 static struct event_constraint intel_core2_event_constraints[] =
256 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
257 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
258 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
259 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
260 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
261 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
262 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
263 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
264 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
265 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
266 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
267 EVENT_CONSTRAINT_END
270 static struct event_constraint intel_nehalem_event_constraints[] =
272 FIXED_EVENT_CONSTRAINT(0xc0, (0xf|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
273 FIXED_EVENT_CONSTRAINT(0x3c, (0xf|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
274 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
275 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
276 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
277 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
278 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
279 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
280 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
281 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
282 EVENT_CONSTRAINT_END
285 static struct event_constraint intel_westmere_event_constraints[] =
287 FIXED_EVENT_CONSTRAINT(0xc0, (0xf|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
288 FIXED_EVENT_CONSTRAINT(0x3c, (0xf|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
289 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
290 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
291 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
292 EVENT_CONSTRAINT_END
295 static struct event_constraint intel_gen_event_constraints[] =
297 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
298 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
299 EVENT_CONSTRAINT_END
302 static u64 intel_pmu_event_map(int hw_event)
304 return intel_perfmon_event_map[hw_event];
308 * Generalized hw caching related hw_event table, filled
309 * in on a per model basis. A value of 0 means
310 * 'not supported', -1 means 'hw_event makes no sense on
311 * this CPU', any other value means the raw hw_event
312 * ID.
315 #define C(x) PERF_COUNT_HW_CACHE_##x
317 static u64 __read_mostly hw_cache_event_ids
318 [PERF_COUNT_HW_CACHE_MAX]
319 [PERF_COUNT_HW_CACHE_OP_MAX]
320 [PERF_COUNT_HW_CACHE_RESULT_MAX];
322 static __initconst u64 westmere_hw_cache_event_ids
323 [PERF_COUNT_HW_CACHE_MAX]
324 [PERF_COUNT_HW_CACHE_OP_MAX]
325 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
327 [ C(L1D) ] = {
328 [ C(OP_READ) ] = {
329 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
330 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
332 [ C(OP_WRITE) ] = {
333 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
334 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
336 [ C(OP_PREFETCH) ] = {
337 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
338 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
341 [ C(L1I ) ] = {
342 [ C(OP_READ) ] = {
343 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
344 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
346 [ C(OP_WRITE) ] = {
347 [ C(RESULT_ACCESS) ] = -1,
348 [ C(RESULT_MISS) ] = -1,
350 [ C(OP_PREFETCH) ] = {
351 [ C(RESULT_ACCESS) ] = 0x0,
352 [ C(RESULT_MISS) ] = 0x0,
355 [ C(LL ) ] = {
356 [ C(OP_READ) ] = {
357 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
358 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
360 [ C(OP_WRITE) ] = {
361 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
362 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
364 [ C(OP_PREFETCH) ] = {
365 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
366 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
369 [ C(DTLB) ] = {
370 [ C(OP_READ) ] = {
371 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
372 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
374 [ C(OP_WRITE) ] = {
375 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
376 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
378 [ C(OP_PREFETCH) ] = {
379 [ C(RESULT_ACCESS) ] = 0x0,
380 [ C(RESULT_MISS) ] = 0x0,
383 [ C(ITLB) ] = {
384 [ C(OP_READ) ] = {
385 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
386 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
388 [ C(OP_WRITE) ] = {
389 [ C(RESULT_ACCESS) ] = -1,
390 [ C(RESULT_MISS) ] = -1,
392 [ C(OP_PREFETCH) ] = {
393 [ C(RESULT_ACCESS) ] = -1,
394 [ C(RESULT_MISS) ] = -1,
397 [ C(BPU ) ] = {
398 [ C(OP_READ) ] = {
399 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
400 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
402 [ C(OP_WRITE) ] = {
403 [ C(RESULT_ACCESS) ] = -1,
404 [ C(RESULT_MISS) ] = -1,
406 [ C(OP_PREFETCH) ] = {
407 [ C(RESULT_ACCESS) ] = -1,
408 [ C(RESULT_MISS) ] = -1,
413 static __initconst u64 nehalem_hw_cache_event_ids
414 [PERF_COUNT_HW_CACHE_MAX]
415 [PERF_COUNT_HW_CACHE_OP_MAX]
416 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
418 [ C(L1D) ] = {
419 [ C(OP_READ) ] = {
420 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
421 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
423 [ C(OP_WRITE) ] = {
424 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
425 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
427 [ C(OP_PREFETCH) ] = {
428 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
429 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
432 [ C(L1I ) ] = {
433 [ C(OP_READ) ] = {
434 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
435 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
437 [ C(OP_WRITE) ] = {
438 [ C(RESULT_ACCESS) ] = -1,
439 [ C(RESULT_MISS) ] = -1,
441 [ C(OP_PREFETCH) ] = {
442 [ C(RESULT_ACCESS) ] = 0x0,
443 [ C(RESULT_MISS) ] = 0x0,
446 [ C(LL ) ] = {
447 [ C(OP_READ) ] = {
448 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
449 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
451 [ C(OP_WRITE) ] = {
452 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
453 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
455 [ C(OP_PREFETCH) ] = {
456 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
457 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
460 [ C(DTLB) ] = {
461 [ C(OP_READ) ] = {
462 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
463 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
465 [ C(OP_WRITE) ] = {
466 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
467 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
469 [ C(OP_PREFETCH) ] = {
470 [ C(RESULT_ACCESS) ] = 0x0,
471 [ C(RESULT_MISS) ] = 0x0,
474 [ C(ITLB) ] = {
475 [ C(OP_READ) ] = {
476 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
477 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
479 [ C(OP_WRITE) ] = {
480 [ C(RESULT_ACCESS) ] = -1,
481 [ C(RESULT_MISS) ] = -1,
483 [ C(OP_PREFETCH) ] = {
484 [ C(RESULT_ACCESS) ] = -1,
485 [ C(RESULT_MISS) ] = -1,
488 [ C(BPU ) ] = {
489 [ C(OP_READ) ] = {
490 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
491 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
493 [ C(OP_WRITE) ] = {
494 [ C(RESULT_ACCESS) ] = -1,
495 [ C(RESULT_MISS) ] = -1,
497 [ C(OP_PREFETCH) ] = {
498 [ C(RESULT_ACCESS) ] = -1,
499 [ C(RESULT_MISS) ] = -1,
504 static __initconst u64 core2_hw_cache_event_ids
505 [PERF_COUNT_HW_CACHE_MAX]
506 [PERF_COUNT_HW_CACHE_OP_MAX]
507 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
509 [ C(L1D) ] = {
510 [ C(OP_READ) ] = {
511 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
512 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
514 [ C(OP_WRITE) ] = {
515 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
516 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
518 [ C(OP_PREFETCH) ] = {
519 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
520 [ C(RESULT_MISS) ] = 0,
523 [ C(L1I ) ] = {
524 [ C(OP_READ) ] = {
525 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
526 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
528 [ C(OP_WRITE) ] = {
529 [ C(RESULT_ACCESS) ] = -1,
530 [ C(RESULT_MISS) ] = -1,
532 [ C(OP_PREFETCH) ] = {
533 [ C(RESULT_ACCESS) ] = 0,
534 [ C(RESULT_MISS) ] = 0,
537 [ C(LL ) ] = {
538 [ C(OP_READ) ] = {
539 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
540 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
542 [ C(OP_WRITE) ] = {
543 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
544 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
546 [ C(OP_PREFETCH) ] = {
547 [ C(RESULT_ACCESS) ] = 0,
548 [ C(RESULT_MISS) ] = 0,
551 [ C(DTLB) ] = {
552 [ C(OP_READ) ] = {
553 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
554 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
556 [ C(OP_WRITE) ] = {
557 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
558 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
560 [ C(OP_PREFETCH) ] = {
561 [ C(RESULT_ACCESS) ] = 0,
562 [ C(RESULT_MISS) ] = 0,
565 [ C(ITLB) ] = {
566 [ C(OP_READ) ] = {
567 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
568 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
570 [ C(OP_WRITE) ] = {
571 [ C(RESULT_ACCESS) ] = -1,
572 [ C(RESULT_MISS) ] = -1,
574 [ C(OP_PREFETCH) ] = {
575 [ C(RESULT_ACCESS) ] = -1,
576 [ C(RESULT_MISS) ] = -1,
579 [ C(BPU ) ] = {
580 [ C(OP_READ) ] = {
581 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
582 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
584 [ C(OP_WRITE) ] = {
585 [ C(RESULT_ACCESS) ] = -1,
586 [ C(RESULT_MISS) ] = -1,
588 [ C(OP_PREFETCH) ] = {
589 [ C(RESULT_ACCESS) ] = -1,
590 [ C(RESULT_MISS) ] = -1,
595 static __initconst u64 atom_hw_cache_event_ids
596 [PERF_COUNT_HW_CACHE_MAX]
597 [PERF_COUNT_HW_CACHE_OP_MAX]
598 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
600 [ C(L1D) ] = {
601 [ C(OP_READ) ] = {
602 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
603 [ C(RESULT_MISS) ] = 0,
605 [ C(OP_WRITE) ] = {
606 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
607 [ C(RESULT_MISS) ] = 0,
609 [ C(OP_PREFETCH) ] = {
610 [ C(RESULT_ACCESS) ] = 0x0,
611 [ C(RESULT_MISS) ] = 0,
614 [ C(L1I ) ] = {
615 [ C(OP_READ) ] = {
616 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
617 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
619 [ C(OP_WRITE) ] = {
620 [ C(RESULT_ACCESS) ] = -1,
621 [ C(RESULT_MISS) ] = -1,
623 [ C(OP_PREFETCH) ] = {
624 [ C(RESULT_ACCESS) ] = 0,
625 [ C(RESULT_MISS) ] = 0,
628 [ C(LL ) ] = {
629 [ C(OP_READ) ] = {
630 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
631 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
633 [ C(OP_WRITE) ] = {
634 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
635 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
637 [ C(OP_PREFETCH) ] = {
638 [ C(RESULT_ACCESS) ] = 0,
639 [ C(RESULT_MISS) ] = 0,
642 [ C(DTLB) ] = {
643 [ C(OP_READ) ] = {
644 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
645 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
647 [ C(OP_WRITE) ] = {
648 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
649 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
651 [ C(OP_PREFETCH) ] = {
652 [ C(RESULT_ACCESS) ] = 0,
653 [ C(RESULT_MISS) ] = 0,
656 [ C(ITLB) ] = {
657 [ C(OP_READ) ] = {
658 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
659 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
661 [ C(OP_WRITE) ] = {
662 [ C(RESULT_ACCESS) ] = -1,
663 [ C(RESULT_MISS) ] = -1,
665 [ C(OP_PREFETCH) ] = {
666 [ C(RESULT_ACCESS) ] = -1,
667 [ C(RESULT_MISS) ] = -1,
670 [ C(BPU ) ] = {
671 [ C(OP_READ) ] = {
672 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
673 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
675 [ C(OP_WRITE) ] = {
676 [ C(RESULT_ACCESS) ] = -1,
677 [ C(RESULT_MISS) ] = -1,
679 [ C(OP_PREFETCH) ] = {
680 [ C(RESULT_ACCESS) ] = -1,
681 [ C(RESULT_MISS) ] = -1,
686 static u64 intel_pmu_raw_event(u64 hw_event)
688 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
689 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
690 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
691 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
692 #define CORE_EVNTSEL_REG_MASK 0xFF000000ULL
694 #define CORE_EVNTSEL_MASK \
695 (INTEL_ARCH_EVTSEL_MASK | \
696 INTEL_ARCH_UNIT_MASK | \
697 INTEL_ARCH_EDGE_MASK | \
698 INTEL_ARCH_INV_MASK | \
699 INTEL_ARCH_CNT_MASK)
701 return hw_event & CORE_EVNTSEL_MASK;
704 static __initconst u64 amd_hw_cache_event_ids
705 [PERF_COUNT_HW_CACHE_MAX]
706 [PERF_COUNT_HW_CACHE_OP_MAX]
707 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
709 [ C(L1D) ] = {
710 [ C(OP_READ) ] = {
711 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
712 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
714 [ C(OP_WRITE) ] = {
715 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
716 [ C(RESULT_MISS) ] = 0,
718 [ C(OP_PREFETCH) ] = {
719 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
720 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
723 [ C(L1I ) ] = {
724 [ C(OP_READ) ] = {
725 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
726 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
728 [ C(OP_WRITE) ] = {
729 [ C(RESULT_ACCESS) ] = -1,
730 [ C(RESULT_MISS) ] = -1,
732 [ C(OP_PREFETCH) ] = {
733 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
734 [ C(RESULT_MISS) ] = 0,
737 [ C(LL ) ] = {
738 [ C(OP_READ) ] = {
739 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
740 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
742 [ C(OP_WRITE) ] = {
743 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
744 [ C(RESULT_MISS) ] = 0,
746 [ C(OP_PREFETCH) ] = {
747 [ C(RESULT_ACCESS) ] = 0,
748 [ C(RESULT_MISS) ] = 0,
751 [ C(DTLB) ] = {
752 [ C(OP_READ) ] = {
753 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
754 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
756 [ C(OP_WRITE) ] = {
757 [ C(RESULT_ACCESS) ] = 0,
758 [ C(RESULT_MISS) ] = 0,
760 [ C(OP_PREFETCH) ] = {
761 [ C(RESULT_ACCESS) ] = 0,
762 [ C(RESULT_MISS) ] = 0,
765 [ C(ITLB) ] = {
766 [ C(OP_READ) ] = {
767 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
768 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
770 [ C(OP_WRITE) ] = {
771 [ C(RESULT_ACCESS) ] = -1,
772 [ C(RESULT_MISS) ] = -1,
774 [ C(OP_PREFETCH) ] = {
775 [ C(RESULT_ACCESS) ] = -1,
776 [ C(RESULT_MISS) ] = -1,
779 [ C(BPU ) ] = {
780 [ C(OP_READ) ] = {
781 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
782 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
784 [ C(OP_WRITE) ] = {
785 [ C(RESULT_ACCESS) ] = -1,
786 [ C(RESULT_MISS) ] = -1,
788 [ C(OP_PREFETCH) ] = {
789 [ C(RESULT_ACCESS) ] = -1,
790 [ C(RESULT_MISS) ] = -1,
796 * AMD Performance Monitor K7 and later.
798 static const u64 amd_perfmon_event_map[] =
800 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
801 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
802 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
803 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
804 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
805 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
808 static u64 amd_pmu_event_map(int hw_event)
810 return amd_perfmon_event_map[hw_event];
813 static u64 amd_pmu_raw_event(u64 hw_event)
815 #define K7_EVNTSEL_EVENT_MASK 0xF000000FFULL
816 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
817 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
818 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
819 #define K7_EVNTSEL_REG_MASK 0x0FF000000ULL
821 #define K7_EVNTSEL_MASK \
822 (K7_EVNTSEL_EVENT_MASK | \
823 K7_EVNTSEL_UNIT_MASK | \
824 K7_EVNTSEL_EDGE_MASK | \
825 K7_EVNTSEL_INV_MASK | \
826 K7_EVNTSEL_REG_MASK)
828 return hw_event & K7_EVNTSEL_MASK;
832 * Propagate event elapsed time into the generic event.
833 * Can only be executed on the CPU where the event is active.
834 * Returns the delta events processed.
836 static u64
837 x86_perf_event_update(struct perf_event *event,
838 struct hw_perf_event *hwc, int idx)
840 int shift = 64 - x86_pmu.event_bits;
841 u64 prev_raw_count, new_raw_count;
842 s64 delta;
844 if (idx == X86_PMC_IDX_FIXED_BTS)
845 return 0;
848 * Careful: an NMI might modify the previous event value.
850 * Our tactic to handle this is to first atomically read and
851 * exchange a new raw count - then add that new-prev delta
852 * count to the generic event atomically:
854 again:
855 prev_raw_count = atomic64_read(&hwc->prev_count);
856 rdmsrl(hwc->event_base + idx, new_raw_count);
858 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
859 new_raw_count) != prev_raw_count)
860 goto again;
863 * Now we have the new raw value and have updated the prev
864 * timestamp already. We can now calculate the elapsed delta
865 * (event-)time and add that to the generic event.
867 * Careful, not all hw sign-extends above the physical width
868 * of the count.
870 delta = (new_raw_count << shift) - (prev_raw_count << shift);
871 delta >>= shift;
873 atomic64_add(delta, &event->count);
874 atomic64_sub(delta, &hwc->period_left);
876 return new_raw_count;
879 static atomic_t active_events;
880 static DEFINE_MUTEX(pmc_reserve_mutex);
882 static bool reserve_pmc_hardware(void)
884 #ifdef CONFIG_X86_LOCAL_APIC
885 int i;
887 if (nmi_watchdog == NMI_LOCAL_APIC)
888 disable_lapic_nmi_watchdog();
890 for (i = 0; i < x86_pmu.num_events; i++) {
891 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
892 goto perfctr_fail;
895 for (i = 0; i < x86_pmu.num_events; i++) {
896 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
897 goto eventsel_fail;
899 #endif
901 return true;
903 #ifdef CONFIG_X86_LOCAL_APIC
904 eventsel_fail:
905 for (i--; i >= 0; i--)
906 release_evntsel_nmi(x86_pmu.eventsel + i);
908 i = x86_pmu.num_events;
910 perfctr_fail:
911 for (i--; i >= 0; i--)
912 release_perfctr_nmi(x86_pmu.perfctr + i);
914 if (nmi_watchdog == NMI_LOCAL_APIC)
915 enable_lapic_nmi_watchdog();
917 return false;
918 #endif
921 static void release_pmc_hardware(void)
923 #ifdef CONFIG_X86_LOCAL_APIC
924 int i;
926 for (i = 0; i < x86_pmu.num_events; i++) {
927 release_perfctr_nmi(x86_pmu.perfctr + i);
928 release_evntsel_nmi(x86_pmu.eventsel + i);
931 if (nmi_watchdog == NMI_LOCAL_APIC)
932 enable_lapic_nmi_watchdog();
933 #endif
936 static inline bool bts_available(void)
938 return x86_pmu.enable_bts != NULL;
941 static inline void init_debug_store_on_cpu(int cpu)
943 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
945 if (!ds)
946 return;
948 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
949 (u32)((u64)(unsigned long)ds),
950 (u32)((u64)(unsigned long)ds >> 32));
953 static inline void fini_debug_store_on_cpu(int cpu)
955 if (!per_cpu(cpu_hw_events, cpu).ds)
956 return;
958 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
961 static void release_bts_hardware(void)
963 int cpu;
965 if (!bts_available())
966 return;
968 get_online_cpus();
970 for_each_online_cpu(cpu)
971 fini_debug_store_on_cpu(cpu);
973 for_each_possible_cpu(cpu) {
974 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
976 if (!ds)
977 continue;
979 per_cpu(cpu_hw_events, cpu).ds = NULL;
981 kfree((void *)(unsigned long)ds->bts_buffer_base);
982 kfree(ds);
985 put_online_cpus();
988 static int reserve_bts_hardware(void)
990 int cpu, err = 0;
992 if (!bts_available())
993 return 0;
995 get_online_cpus();
997 for_each_possible_cpu(cpu) {
998 struct debug_store *ds;
999 void *buffer;
1001 err = -ENOMEM;
1002 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
1003 if (unlikely(!buffer))
1004 break;
1006 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
1007 if (unlikely(!ds)) {
1008 kfree(buffer);
1009 break;
1012 ds->bts_buffer_base = (u64)(unsigned long)buffer;
1013 ds->bts_index = ds->bts_buffer_base;
1014 ds->bts_absolute_maximum =
1015 ds->bts_buffer_base + BTS_BUFFER_SIZE;
1016 ds->bts_interrupt_threshold =
1017 ds->bts_absolute_maximum - BTS_OVFL_TH;
1019 per_cpu(cpu_hw_events, cpu).ds = ds;
1020 err = 0;
1023 if (err)
1024 release_bts_hardware();
1025 else {
1026 for_each_online_cpu(cpu)
1027 init_debug_store_on_cpu(cpu);
1030 put_online_cpus();
1032 return err;
1035 static void hw_perf_event_destroy(struct perf_event *event)
1037 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
1038 release_pmc_hardware();
1039 release_bts_hardware();
1040 mutex_unlock(&pmc_reserve_mutex);
1044 static inline int x86_pmu_initialized(void)
1046 return x86_pmu.handle_irq != NULL;
1049 static inline int
1050 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
1052 unsigned int cache_type, cache_op, cache_result;
1053 u64 config, val;
1055 config = attr->config;
1057 cache_type = (config >> 0) & 0xff;
1058 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1059 return -EINVAL;
1061 cache_op = (config >> 8) & 0xff;
1062 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1063 return -EINVAL;
1065 cache_result = (config >> 16) & 0xff;
1066 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1067 return -EINVAL;
1069 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
1071 if (val == 0)
1072 return -ENOENT;
1074 if (val == -1)
1075 return -EINVAL;
1077 hwc->config |= val;
1079 return 0;
1082 static void intel_pmu_enable_bts(u64 config)
1084 unsigned long debugctlmsr;
1086 debugctlmsr = get_debugctlmsr();
1088 debugctlmsr |= X86_DEBUGCTL_TR;
1089 debugctlmsr |= X86_DEBUGCTL_BTS;
1090 debugctlmsr |= X86_DEBUGCTL_BTINT;
1092 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
1093 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;
1095 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
1096 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;
1098 update_debugctlmsr(debugctlmsr);
1101 static void intel_pmu_disable_bts(void)
1103 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1104 unsigned long debugctlmsr;
1106 if (!cpuc->ds)
1107 return;
1109 debugctlmsr = get_debugctlmsr();
1111 debugctlmsr &=
1112 ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
1113 X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);
1115 update_debugctlmsr(debugctlmsr);
1119 * Setup the hardware configuration for a given attr_type
1121 static int __hw_perf_event_init(struct perf_event *event)
1123 struct perf_event_attr *attr = &event->attr;
1124 struct hw_perf_event *hwc = &event->hw;
1125 u64 config;
1126 int err;
1128 if (!x86_pmu_initialized())
1129 return -ENODEV;
1131 err = 0;
1132 if (!atomic_inc_not_zero(&active_events)) {
1133 mutex_lock(&pmc_reserve_mutex);
1134 if (atomic_read(&active_events) == 0) {
1135 if (!reserve_pmc_hardware())
1136 err = -EBUSY;
1137 else
1138 err = reserve_bts_hardware();
1140 if (!err)
1141 atomic_inc(&active_events);
1142 mutex_unlock(&pmc_reserve_mutex);
1144 if (err)
1145 return err;
1147 event->destroy = hw_perf_event_destroy;
1150 * Generate PMC IRQs:
1151 * (keep 'enabled' bit clear for now)
1153 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
1155 hwc->idx = -1;
1156 hwc->last_cpu = -1;
1157 hwc->last_tag = ~0ULL;
1160 * Count user and OS events unless requested not to.
1162 if (!attr->exclude_user)
1163 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
1164 if (!attr->exclude_kernel)
1165 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
1167 if (!hwc->sample_period) {
1168 hwc->sample_period = x86_pmu.max_period;
1169 hwc->last_period = hwc->sample_period;
1170 atomic64_set(&hwc->period_left, hwc->sample_period);
1171 } else {
1173 * If we have a PMU initialized but no APIC
1174 * interrupts, we cannot sample hardware
1175 * events (user-space has to fall back and
1176 * sample via a hrtimer based software event):
1178 if (!x86_pmu.apic)
1179 return -EOPNOTSUPP;
1183 * Raw hw_event type provide the config in the hw_event structure
1185 if (attr->type == PERF_TYPE_RAW) {
1186 hwc->config |= x86_pmu.raw_event(attr->config);
1187 return 0;
1190 if (attr->type == PERF_TYPE_HW_CACHE)
1191 return set_ext_hw_attr(hwc, attr);
1193 if (attr->config >= x86_pmu.max_events)
1194 return -EINVAL;
1197 * The generic map:
1199 config = x86_pmu.event_map(attr->config);
1201 if (config == 0)
1202 return -ENOENT;
1204 if (config == -1LL)
1205 return -EINVAL;
1208 * Branch tracing:
1210 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1211 (hwc->sample_period == 1)) {
1212 /* BTS is not supported by this architecture. */
1213 if (!bts_available())
1214 return -EOPNOTSUPP;
1216 /* BTS is currently only allowed for user-mode. */
1217 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1218 return -EOPNOTSUPP;
1221 hwc->config |= config;
1223 return 0;
1226 static void p6_pmu_disable_all(void)
1228 u64 val;
1230 /* p6 only has one enable register */
1231 rdmsrl(MSR_P6_EVNTSEL0, val);
1232 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1233 wrmsrl(MSR_P6_EVNTSEL0, val);
1236 static void intel_pmu_disable_all(void)
1238 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1240 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1242 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1243 intel_pmu_disable_bts();
1246 static void x86_pmu_disable_all(void)
1248 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1249 int idx;
1251 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1252 u64 val;
1254 if (!test_bit(idx, cpuc->active_mask))
1255 continue;
1256 rdmsrl(x86_pmu.eventsel + idx, val);
1257 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
1258 continue;
1259 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1260 wrmsrl(x86_pmu.eventsel + idx, val);
1264 void hw_perf_disable(void)
1266 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1268 if (!x86_pmu_initialized())
1269 return;
1271 if (!cpuc->enabled)
1272 return;
1274 cpuc->n_added = 0;
1275 cpuc->enabled = 0;
1276 barrier();
1278 x86_pmu.disable_all();
1281 static void p6_pmu_enable_all(void)
1283 unsigned long val;
1285 /* p6 only has one enable register */
1286 rdmsrl(MSR_P6_EVNTSEL0, val);
1287 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1288 wrmsrl(MSR_P6_EVNTSEL0, val);
1291 static void intel_pmu_enable_all(void)
1293 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1295 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1297 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1298 struct perf_event *event =
1299 cpuc->events[X86_PMC_IDX_FIXED_BTS];
1301 if (WARN_ON_ONCE(!event))
1302 return;
1304 intel_pmu_enable_bts(event->hw.config);
1308 static void x86_pmu_enable_all(void)
1310 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1311 int idx;
1313 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1314 struct perf_event *event = cpuc->events[idx];
1315 u64 val;
1317 if (!test_bit(idx, cpuc->active_mask))
1318 continue;
1320 val = event->hw.config;
1321 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1322 wrmsrl(x86_pmu.eventsel + idx, val);
1326 static const struct pmu pmu;
1328 static inline int is_x86_event(struct perf_event *event)
1330 return event->pmu == &pmu;
1333 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1335 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1336 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1337 int i, j, w, wmax, num = 0;
1338 struct hw_perf_event *hwc;
1340 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1342 for (i = 0; i < n; i++) {
1343 constraints[i] =
1344 x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
1348 * fastpath, try to reuse previous register
1350 for (i = 0; i < n; i++) {
1351 hwc = &cpuc->event_list[i]->hw;
1352 c = constraints[i];
1354 /* never assigned */
1355 if (hwc->idx == -1)
1356 break;
1358 /* constraint still honored */
1359 if (!test_bit(hwc->idx, c->idxmsk))
1360 break;
1362 /* not already used */
1363 if (test_bit(hwc->idx, used_mask))
1364 break;
1366 set_bit(hwc->idx, used_mask);
1367 if (assign)
1368 assign[i] = hwc->idx;
1370 if (i == n)
1371 goto done;
1374 * begin slow path
1377 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1380 * weight = number of possible counters
1382 * 1 = most constrained, only works on one counter
1383 * wmax = least constrained, works on any counter
1385 * assign events to counters starting with most
1386 * constrained events.
1388 wmax = x86_pmu.num_events;
1391 * when fixed event counters are present,
1392 * wmax is incremented by 1 to account
1393 * for one more choice
1395 if (x86_pmu.num_events_fixed)
1396 wmax++;
1398 for (w = 1, num = n; num && w <= wmax; w++) {
1399 /* for each event */
1400 for (i = 0; num && i < n; i++) {
1401 c = constraints[i];
1402 hwc = &cpuc->event_list[i]->hw;
1404 if (c->weight != w)
1405 continue;
1407 for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1408 if (!test_bit(j, used_mask))
1409 break;
1412 if (j == X86_PMC_IDX_MAX)
1413 break;
1415 set_bit(j, used_mask);
1417 if (assign)
1418 assign[i] = j;
1419 num--;
1422 done:
1424 * scheduling failed or is just a simulation,
1425 * free resources if necessary
1427 if (!assign || num) {
1428 for (i = 0; i < n; i++) {
1429 if (x86_pmu.put_event_constraints)
1430 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
1433 return num ? -ENOSPC : 0;
1437 * dogrp: true if must collect siblings events (group)
1438 * returns total number of events and error code
1440 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1442 struct perf_event *event;
1443 int n, max_count;
1445 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
1447 /* current number of events already accepted */
1448 n = cpuc->n_events;
1450 if (is_x86_event(leader)) {
1451 if (n >= max_count)
1452 return -ENOSPC;
1453 cpuc->event_list[n] = leader;
1454 n++;
1456 if (!dogrp)
1457 return n;
1459 list_for_each_entry(event, &leader->sibling_list, group_entry) {
1460 if (!is_x86_event(event) ||
1461 event->state <= PERF_EVENT_STATE_OFF)
1462 continue;
1464 if (n >= max_count)
1465 return -ENOSPC;
1467 cpuc->event_list[n] = event;
1468 n++;
1470 return n;
1473 static inline void x86_assign_hw_event(struct perf_event *event,
1474 struct cpu_hw_events *cpuc, int i)
1476 struct hw_perf_event *hwc = &event->hw;
1478 hwc->idx = cpuc->assign[i];
1479 hwc->last_cpu = smp_processor_id();
1480 hwc->last_tag = ++cpuc->tags[i];
1482 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
1483 hwc->config_base = 0;
1484 hwc->event_base = 0;
1485 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
1486 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1488 * We set it so that event_base + idx in wrmsr/rdmsr maps to
1489 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1491 hwc->event_base =
1492 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1493 } else {
1494 hwc->config_base = x86_pmu.eventsel;
1495 hwc->event_base = x86_pmu.perfctr;
1499 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1500 struct cpu_hw_events *cpuc,
1501 int i)
1503 return hwc->idx == cpuc->assign[i] &&
1504 hwc->last_cpu == smp_processor_id() &&
1505 hwc->last_tag == cpuc->tags[i];
1508 static void x86_pmu_stop(struct perf_event *event);
1510 void hw_perf_enable(void)
1512 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1513 struct perf_event *event;
1514 struct hw_perf_event *hwc;
1515 int i;
1517 if (!x86_pmu_initialized())
1518 return;
1520 if (cpuc->enabled)
1521 return;
1523 if (cpuc->n_added) {
1525 * apply assignment obtained either from
1526 * hw_perf_group_sched_in() or x86_pmu_enable()
1528 * step1: save events moving to new counters
1529 * step2: reprogram moved events into new counters
1531 for (i = 0; i < cpuc->n_events; i++) {
1533 event = cpuc->event_list[i];
1534 hwc = &event->hw;
1537 * we can avoid reprogramming counter if:
1538 * - assigned same counter as last time
1539 * - running on same CPU as last time
1540 * - no other event has used the counter since
1542 if (hwc->idx == -1 ||
1543 match_prev_assignment(hwc, cpuc, i))
1544 continue;
1546 x86_pmu_stop(event);
1548 hwc->idx = -1;
1551 for (i = 0; i < cpuc->n_events; i++) {
1553 event = cpuc->event_list[i];
1554 hwc = &event->hw;
1556 if (hwc->idx == -1) {
1557 x86_assign_hw_event(event, cpuc, i);
1558 x86_perf_event_set_period(event, hwc, hwc->idx);
1561 * need to mark as active because x86_pmu_disable()
1562 * clear active_mask and events[] yet it preserves
1563 * idx
1565 set_bit(hwc->idx, cpuc->active_mask);
1566 cpuc->events[hwc->idx] = event;
1568 x86_pmu.enable(hwc, hwc->idx);
1569 perf_event_update_userpage(event);
1571 cpuc->n_added = 0;
1572 perf_events_lapic_init();
1575 cpuc->enabled = 1;
1576 barrier();
1578 x86_pmu.enable_all();
1581 static inline u64 intel_pmu_get_status(void)
1583 u64 status;
1585 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1587 return status;
1590 static inline void intel_pmu_ack_status(u64 ack)
1592 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1595 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1597 (void)checking_wrmsrl(hwc->config_base + idx,
1598 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
1601 static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1603 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
1606 static inline void
1607 intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx)
1609 int idx = __idx - X86_PMC_IDX_FIXED;
1610 u64 ctrl_val, mask;
1612 mask = 0xfULL << (idx * 4);
1614 rdmsrl(hwc->config_base, ctrl_val);
1615 ctrl_val &= ~mask;
1616 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
1619 static inline void
1620 p6_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1622 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1623 u64 val = P6_NOP_EVENT;
1625 if (cpuc->enabled)
1626 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1628 (void)checking_wrmsrl(hwc->config_base + idx, val);
1631 static inline void
1632 intel_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1634 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1635 intel_pmu_disable_bts();
1636 return;
1639 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1640 intel_pmu_disable_fixed(hwc, idx);
1641 return;
1644 x86_pmu_disable_event(hwc, idx);
1647 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1650 * Set the next IRQ period, based on the hwc->period_left value.
1651 * To be called with the event disabled in hw:
1653 static int
1654 x86_perf_event_set_period(struct perf_event *event,
1655 struct hw_perf_event *hwc, int idx)
1657 s64 left = atomic64_read(&hwc->period_left);
1658 s64 period = hwc->sample_period;
1659 int err, ret = 0;
1661 if (idx == X86_PMC_IDX_FIXED_BTS)
1662 return 0;
1665 * If we are way outside a reasonable range then just skip forward:
1667 if (unlikely(left <= -period)) {
1668 left = period;
1669 atomic64_set(&hwc->period_left, left);
1670 hwc->last_period = period;
1671 ret = 1;
1674 if (unlikely(left <= 0)) {
1675 left += period;
1676 atomic64_set(&hwc->period_left, left);
1677 hwc->last_period = period;
1678 ret = 1;
1681 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1683 if (unlikely(left < 2))
1684 left = 2;
1686 if (left > x86_pmu.max_period)
1687 left = x86_pmu.max_period;
1689 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1692 * The hw event starts counting from this event offset,
1693 * mark it to be able to extra future deltas:
1695 atomic64_set(&hwc->prev_count, (u64)-left);
1697 err = checking_wrmsrl(hwc->event_base + idx,
1698 (u64)(-left) & x86_pmu.event_mask);
1700 perf_event_update_userpage(event);
1702 return ret;
1705 static inline void
1706 intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx)
1708 int idx = __idx - X86_PMC_IDX_FIXED;
1709 u64 ctrl_val, bits, mask;
1710 int err;
1713 * Enable IRQ generation (0x8),
1714 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1715 * if requested:
1717 bits = 0x8ULL;
1718 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1719 bits |= 0x2;
1720 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1721 bits |= 0x1;
1724 * ANY bit is supported in v3 and up
1726 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1727 bits |= 0x4;
1729 bits <<= (idx * 4);
1730 mask = 0xfULL << (idx * 4);
1732 rdmsrl(hwc->config_base, ctrl_val);
1733 ctrl_val &= ~mask;
1734 ctrl_val |= bits;
1735 err = checking_wrmsrl(hwc->config_base, ctrl_val);
1738 static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1740 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1741 u64 val;
1743 val = hwc->config;
1744 if (cpuc->enabled)
1745 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1747 (void)checking_wrmsrl(hwc->config_base + idx, val);
1751 static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1753 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1754 if (!__get_cpu_var(cpu_hw_events).enabled)
1755 return;
1757 intel_pmu_enable_bts(hwc->config);
1758 return;
1761 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1762 intel_pmu_enable_fixed(hwc, idx);
1763 return;
1766 __x86_pmu_enable_event(hwc, idx);
1769 static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1771 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1772 if (cpuc->enabled)
1773 __x86_pmu_enable_event(hwc, idx);
1777 * activate a single event
1779 * The event is added to the group of enabled events
1780 * but only if it can be scehduled with existing events.
1782 * Called with PMU disabled. If successful and return value 1,
1783 * then guaranteed to call perf_enable() and hw_perf_enable()
1785 static int x86_pmu_enable(struct perf_event *event)
1787 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1788 struct hw_perf_event *hwc;
1789 int assign[X86_PMC_IDX_MAX];
1790 int n, n0, ret;
1792 hwc = &event->hw;
1794 n0 = cpuc->n_events;
1795 n = collect_events(cpuc, event, false);
1796 if (n < 0)
1797 return n;
1799 ret = x86_schedule_events(cpuc, n, assign);
1800 if (ret)
1801 return ret;
1803 * copy new assignment, now we know it is possible
1804 * will be used by hw_perf_enable()
1806 memcpy(cpuc->assign, assign, n*sizeof(int));
1808 cpuc->n_events = n;
1809 cpuc->n_added = n - n0;
1811 return 0;
1814 static int x86_pmu_start(struct perf_event *event)
1816 struct hw_perf_event *hwc = &event->hw;
1818 if (hwc->idx == -1)
1819 return -EAGAIN;
1821 x86_perf_event_set_period(event, hwc, hwc->idx);
1822 x86_pmu.enable(hwc, hwc->idx);
1824 return 0;
1827 static void x86_pmu_unthrottle(struct perf_event *event)
1829 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1830 struct hw_perf_event *hwc = &event->hw;
1832 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1833 cpuc->events[hwc->idx] != event))
1834 return;
1836 x86_pmu.enable(hwc, hwc->idx);
1839 void perf_event_print_debug(void)
1841 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1842 struct cpu_hw_events *cpuc;
1843 unsigned long flags;
1844 int cpu, idx;
1846 if (!x86_pmu.num_events)
1847 return;
1849 local_irq_save(flags);
1851 cpu = smp_processor_id();
1852 cpuc = &per_cpu(cpu_hw_events, cpu);
1854 if (x86_pmu.version >= 2) {
1855 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1856 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1857 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1858 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1860 pr_info("\n");
1861 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1862 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1863 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1864 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1866 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1868 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1869 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1870 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1872 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1874 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1875 cpu, idx, pmc_ctrl);
1876 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1877 cpu, idx, pmc_count);
1878 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1879 cpu, idx, prev_left);
1881 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1882 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1884 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1885 cpu, idx, pmc_count);
1887 local_irq_restore(flags);
1890 static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc)
1892 struct debug_store *ds = cpuc->ds;
1893 struct bts_record {
1894 u64 from;
1895 u64 to;
1896 u64 flags;
1898 struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS];
1899 struct bts_record *at, *top;
1900 struct perf_output_handle handle;
1901 struct perf_event_header header;
1902 struct perf_sample_data data;
1903 struct pt_regs regs;
1905 if (!event)
1906 return;
1908 if (!ds)
1909 return;
1911 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
1912 top = (struct bts_record *)(unsigned long)ds->bts_index;
1914 if (top <= at)
1915 return;
1917 ds->bts_index = ds->bts_buffer_base;
1920 data.period = event->hw.last_period;
1921 data.addr = 0;
1922 data.raw = NULL;
1923 regs.ip = 0;
1926 * Prepare a generic sample, i.e. fill in the invariant fields.
1927 * We will overwrite the from and to address before we output
1928 * the sample.
1930 perf_prepare_sample(&header, &data, event, &regs);
1932 if (perf_output_begin(&handle, event,
1933 header.size * (top - at), 1, 1))
1934 return;
1936 for (; at < top; at++) {
1937 data.ip = at->from;
1938 data.addr = at->to;
1940 perf_output_sample(&handle, &header, &data, event);
1943 perf_output_end(&handle);
1945 /* There's new data available. */
1946 event->hw.interrupts++;
1947 event->pending_kill = POLL_IN;
1950 static void x86_pmu_stop(struct perf_event *event)
1952 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1953 struct hw_perf_event *hwc = &event->hw;
1954 int idx = hwc->idx;
1957 * Must be done before we disable, otherwise the nmi handler
1958 * could reenable again:
1960 clear_bit(idx, cpuc->active_mask);
1961 x86_pmu.disable(hwc, idx);
1964 * Drain the remaining delta count out of a event
1965 * that we are disabling:
1967 x86_perf_event_update(event, hwc, idx);
1969 /* Drain the remaining BTS records. */
1970 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS))
1971 intel_pmu_drain_bts_buffer(cpuc);
1973 cpuc->events[idx] = NULL;
1976 static void x86_pmu_disable(struct perf_event *event)
1978 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1979 int i;
1981 x86_pmu_stop(event);
1983 for (i = 0; i < cpuc->n_events; i++) {
1984 if (event == cpuc->event_list[i]) {
1986 if (x86_pmu.put_event_constraints)
1987 x86_pmu.put_event_constraints(cpuc, event);
1989 while (++i < cpuc->n_events)
1990 cpuc->event_list[i-1] = cpuc->event_list[i];
1992 --cpuc->n_events;
1993 break;
1996 perf_event_update_userpage(event);
2000 * Save and restart an expired event. Called by NMI contexts,
2001 * so it has to be careful about preempting normal event ops:
2003 static int intel_pmu_save_and_restart(struct perf_event *event)
2005 struct hw_perf_event *hwc = &event->hw;
2006 int idx = hwc->idx;
2007 int ret;
2009 x86_perf_event_update(event, hwc, idx);
2010 ret = x86_perf_event_set_period(event, hwc, idx);
2012 if (event->state == PERF_EVENT_STATE_ACTIVE)
2013 intel_pmu_enable_event(hwc, idx);
2015 return ret;
2018 static void intel_pmu_reset(void)
2020 struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds;
2021 unsigned long flags;
2022 int idx;
2024 if (!x86_pmu.num_events)
2025 return;
2027 local_irq_save(flags);
2029 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
2031 for (idx = 0; idx < x86_pmu.num_events; idx++) {
2032 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
2033 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
2035 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2036 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2038 if (ds)
2039 ds->bts_index = ds->bts_buffer_base;
2041 local_irq_restore(flags);
2045 * This handler is triggered by the local APIC, so the APIC IRQ handling
2046 * rules apply:
2048 static int intel_pmu_handle_irq(struct pt_regs *regs)
2050 struct perf_sample_data data;
2051 struct cpu_hw_events *cpuc;
2052 int bit, loops;
2053 u64 ack, status;
2055 data.addr = 0;
2056 data.raw = NULL;
2058 cpuc = &__get_cpu_var(cpu_hw_events);
2060 perf_disable();
2061 intel_pmu_drain_bts_buffer(cpuc);
2062 status = intel_pmu_get_status();
2063 if (!status) {
2064 perf_enable();
2065 return 0;
2068 loops = 0;
2069 again:
2070 if (++loops > 100) {
2071 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
2072 perf_event_print_debug();
2073 intel_pmu_reset();
2074 perf_enable();
2075 return 1;
2078 inc_irq_stat(apic_perf_irqs);
2079 ack = status;
2080 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2081 struct perf_event *event = cpuc->events[bit];
2083 clear_bit(bit, (unsigned long *) &status);
2084 if (!test_bit(bit, cpuc->active_mask))
2085 continue;
2087 if (!intel_pmu_save_and_restart(event))
2088 continue;
2090 data.period = event->hw.last_period;
2092 if (perf_event_overflow(event, 1, &data, regs))
2093 intel_pmu_disable_event(&event->hw, bit);
2096 intel_pmu_ack_status(ack);
2099 * Repeat if there is more work to be done:
2101 status = intel_pmu_get_status();
2102 if (status)
2103 goto again;
2105 perf_enable();
2107 return 1;
2110 static int x86_pmu_handle_irq(struct pt_regs *regs)
2112 struct perf_sample_data data;
2113 struct cpu_hw_events *cpuc;
2114 struct perf_event *event;
2115 struct hw_perf_event *hwc;
2116 int idx, handled = 0;
2117 u64 val;
2119 data.addr = 0;
2120 data.raw = NULL;
2122 cpuc = &__get_cpu_var(cpu_hw_events);
2124 for (idx = 0; idx < x86_pmu.num_events; idx++) {
2125 if (!test_bit(idx, cpuc->active_mask))
2126 continue;
2128 event = cpuc->events[idx];
2129 hwc = &event->hw;
2131 val = x86_perf_event_update(event, hwc, idx);
2132 if (val & (1ULL << (x86_pmu.event_bits - 1)))
2133 continue;
2136 * event overflow
2138 handled = 1;
2139 data.period = event->hw.last_period;
2141 if (!x86_perf_event_set_period(event, hwc, idx))
2142 continue;
2144 if (perf_event_overflow(event, 1, &data, regs))
2145 x86_pmu.disable(hwc, idx);
2148 if (handled)
2149 inc_irq_stat(apic_perf_irqs);
2151 return handled;
2154 void smp_perf_pending_interrupt(struct pt_regs *regs)
2156 irq_enter();
2157 ack_APIC_irq();
2158 inc_irq_stat(apic_pending_irqs);
2159 perf_event_do_pending();
2160 irq_exit();
2163 void set_perf_event_pending(void)
2165 #ifdef CONFIG_X86_LOCAL_APIC
2166 if (!x86_pmu.apic || !x86_pmu_initialized())
2167 return;
2169 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
2170 #endif
2173 void perf_events_lapic_init(void)
2175 #ifdef CONFIG_X86_LOCAL_APIC
2176 if (!x86_pmu.apic || !x86_pmu_initialized())
2177 return;
2180 * Always use NMI for PMU
2182 apic_write(APIC_LVTPC, APIC_DM_NMI);
2183 #endif
2186 static int __kprobes
2187 perf_event_nmi_handler(struct notifier_block *self,
2188 unsigned long cmd, void *__args)
2190 struct die_args *args = __args;
2191 struct pt_regs *regs;
2193 if (!atomic_read(&active_events))
2194 return NOTIFY_DONE;
2196 switch (cmd) {
2197 case DIE_NMI:
2198 case DIE_NMI_IPI:
2199 break;
2201 default:
2202 return NOTIFY_DONE;
2205 regs = args->regs;
2207 #ifdef CONFIG_X86_LOCAL_APIC
2208 apic_write(APIC_LVTPC, APIC_DM_NMI);
2209 #endif
2211 * Can't rely on the handled return value to say it was our NMI, two
2212 * events could trigger 'simultaneously' raising two back-to-back NMIs.
2214 * If the first NMI handles both, the latter will be empty and daze
2215 * the CPU.
2217 x86_pmu.handle_irq(regs);
2219 return NOTIFY_STOP;
2222 static struct event_constraint unconstrained;
2223 static struct event_constraint emptyconstraint;
2225 static struct event_constraint bts_constraint =
2226 EVENT_CONSTRAINT(0, 1ULL << X86_PMC_IDX_FIXED_BTS, 0);
2228 static struct event_constraint *
2229 intel_special_constraints(struct perf_event *event)
2231 unsigned int hw_event;
2233 hw_event = event->hw.config & INTEL_ARCH_EVENT_MASK;
2235 if (unlikely((hw_event ==
2236 x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
2237 (event->hw.sample_period == 1))) {
2239 return &bts_constraint;
2241 return NULL;
2244 static struct event_constraint *
2245 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
2247 struct event_constraint *c;
2249 c = intel_special_constraints(event);
2250 if (c)
2251 return c;
2253 if (x86_pmu.event_constraints) {
2254 for_each_event_constraint(c, x86_pmu.event_constraints) {
2255 if ((event->hw.config & c->cmask) == c->code)
2256 return c;
2260 return &unconstrained;
2264 * AMD64 events are detected based on their event codes.
2266 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
2268 return (hwc->config & 0xe0) == 0xe0;
2271 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
2272 struct perf_event *event)
2274 struct hw_perf_event *hwc = &event->hw;
2275 struct amd_nb *nb = cpuc->amd_nb;
2276 int i;
2279 * only care about NB events
2281 if (!(nb && amd_is_nb_event(hwc)))
2282 return;
2285 * need to scan whole list because event may not have
2286 * been assigned during scheduling
2288 * no race condition possible because event can only
2289 * be removed on one CPU at a time AND PMU is disabled
2290 * when we come here
2292 for (i = 0; i < x86_pmu.num_events; i++) {
2293 if (nb->owners[i] == event) {
2294 cmpxchg(nb->owners+i, event, NULL);
2295 break;
2301 * AMD64 NorthBridge events need special treatment because
2302 * counter access needs to be synchronized across all cores
2303 * of a package. Refer to BKDG section 3.12
2305 * NB events are events measuring L3 cache, Hypertransport
2306 * traffic. They are identified by an event code >= 0xe00.
2307 * They measure events on the NorthBride which is shared
2308 * by all cores on a package. NB events are counted on a
2309 * shared set of counters. When a NB event is programmed
2310 * in a counter, the data actually comes from a shared
2311 * counter. Thus, access to those counters needs to be
2312 * synchronized.
2314 * We implement the synchronization such that no two cores
2315 * can be measuring NB events using the same counters. Thus,
2316 * we maintain a per-NB allocation table. The available slot
2317 * is propagated using the event_constraint structure.
2319 * We provide only one choice for each NB event based on
2320 * the fact that only NB events have restrictions. Consequently,
2321 * if a counter is available, there is a guarantee the NB event
2322 * will be assigned to it. If no slot is available, an empty
2323 * constraint is returned and scheduling will eventually fail
2324 * for this event.
2326 * Note that all cores attached the same NB compete for the same
2327 * counters to host NB events, this is why we use atomic ops. Some
2328 * multi-chip CPUs may have more than one NB.
2330 * Given that resources are allocated (cmpxchg), they must be
2331 * eventually freed for others to use. This is accomplished by
2332 * calling amd_put_event_constraints().
2334 * Non NB events are not impacted by this restriction.
2336 static struct event_constraint *
2337 amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
2339 struct hw_perf_event *hwc = &event->hw;
2340 struct amd_nb *nb = cpuc->amd_nb;
2341 struct perf_event *old = NULL;
2342 int max = x86_pmu.num_events;
2343 int i, j, k = -1;
2346 * if not NB event or no NB, then no constraints
2348 if (!(nb && amd_is_nb_event(hwc)))
2349 return &unconstrained;
2352 * detect if already present, if so reuse
2354 * cannot merge with actual allocation
2355 * because of possible holes
2357 * event can already be present yet not assigned (in hwc->idx)
2358 * because of successive calls to x86_schedule_events() from
2359 * hw_perf_group_sched_in() without hw_perf_enable()
2361 for (i = 0; i < max; i++) {
2363 * keep track of first free slot
2365 if (k == -1 && !nb->owners[i])
2366 k = i;
2368 /* already present, reuse */
2369 if (nb->owners[i] == event)
2370 goto done;
2373 * not present, so grab a new slot
2374 * starting either at:
2376 if (hwc->idx != -1) {
2377 /* previous assignment */
2378 i = hwc->idx;
2379 } else if (k != -1) {
2380 /* start from free slot found */
2381 i = k;
2382 } else {
2384 * event not found, no slot found in
2385 * first pass, try again from the
2386 * beginning
2388 i = 0;
2390 j = i;
2391 do {
2392 old = cmpxchg(nb->owners+i, NULL, event);
2393 if (!old)
2394 break;
2395 if (++i == max)
2396 i = 0;
2397 } while (i != j);
2398 done:
2399 if (!old)
2400 return &nb->event_constraints[i];
2402 return &emptyconstraint;
2405 static int x86_event_sched_in(struct perf_event *event,
2406 struct perf_cpu_context *cpuctx)
2408 int ret = 0;
2410 event->state = PERF_EVENT_STATE_ACTIVE;
2411 event->oncpu = smp_processor_id();
2412 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
2414 if (!is_x86_event(event))
2415 ret = event->pmu->enable(event);
2417 if (!ret && !is_software_event(event))
2418 cpuctx->active_oncpu++;
2420 if (!ret && event->attr.exclusive)
2421 cpuctx->exclusive = 1;
2423 return ret;
2426 static void x86_event_sched_out(struct perf_event *event,
2427 struct perf_cpu_context *cpuctx)
2429 event->state = PERF_EVENT_STATE_INACTIVE;
2430 event->oncpu = -1;
2432 if (!is_x86_event(event))
2433 event->pmu->disable(event);
2435 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
2437 if (!is_software_event(event))
2438 cpuctx->active_oncpu--;
2440 if (event->attr.exclusive || !cpuctx->active_oncpu)
2441 cpuctx->exclusive = 0;
2445 * Called to enable a whole group of events.
2446 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
2447 * Assumes the caller has disabled interrupts and has
2448 * frozen the PMU with hw_perf_save_disable.
2450 * called with PMU disabled. If successful and return value 1,
2451 * then guaranteed to call perf_enable() and hw_perf_enable()
2453 int hw_perf_group_sched_in(struct perf_event *leader,
2454 struct perf_cpu_context *cpuctx,
2455 struct perf_event_context *ctx)
2457 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
2458 struct perf_event *sub;
2459 int assign[X86_PMC_IDX_MAX];
2460 int n0, n1, ret;
2462 /* n0 = total number of events */
2463 n0 = collect_events(cpuc, leader, true);
2464 if (n0 < 0)
2465 return n0;
2467 ret = x86_schedule_events(cpuc, n0, assign);
2468 if (ret)
2469 return ret;
2471 ret = x86_event_sched_in(leader, cpuctx);
2472 if (ret)
2473 return ret;
2475 n1 = 1;
2476 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2477 if (sub->state > PERF_EVENT_STATE_OFF) {
2478 ret = x86_event_sched_in(sub, cpuctx);
2479 if (ret)
2480 goto undo;
2481 ++n1;
2485 * copy new assignment, now we know it is possible
2486 * will be used by hw_perf_enable()
2488 memcpy(cpuc->assign, assign, n0*sizeof(int));
2490 cpuc->n_events = n0;
2491 cpuc->n_added = n1;
2492 ctx->nr_active += n1;
2495 * 1 means successful and events are active
2496 * This is not quite true because we defer
2497 * actual activation until hw_perf_enable() but
2498 * this way we* ensure caller won't try to enable
2499 * individual events
2501 return 1;
2502 undo:
2503 x86_event_sched_out(leader, cpuctx);
2504 n0 = 1;
2505 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2506 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
2507 x86_event_sched_out(sub, cpuctx);
2508 if (++n0 == n1)
2509 break;
2512 return ret;
2515 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
2516 .notifier_call = perf_event_nmi_handler,
2517 .next = NULL,
2518 .priority = 1
2521 static __initconst struct x86_pmu p6_pmu = {
2522 .name = "p6",
2523 .handle_irq = x86_pmu_handle_irq,
2524 .disable_all = p6_pmu_disable_all,
2525 .enable_all = p6_pmu_enable_all,
2526 .enable = p6_pmu_enable_event,
2527 .disable = p6_pmu_disable_event,
2528 .eventsel = MSR_P6_EVNTSEL0,
2529 .perfctr = MSR_P6_PERFCTR0,
2530 .event_map = p6_pmu_event_map,
2531 .raw_event = p6_pmu_raw_event,
2532 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
2533 .apic = 1,
2534 .max_period = (1ULL << 31) - 1,
2535 .version = 0,
2536 .num_events = 2,
2538 * Events have 40 bits implemented. However they are designed such
2539 * that bits [32-39] are sign extensions of bit 31. As such the
2540 * effective width of a event for P6-like PMU is 32 bits only.
2542 * See IA-32 Intel Architecture Software developer manual Vol 3B
2544 .event_bits = 32,
2545 .event_mask = (1ULL << 32) - 1,
2546 .get_event_constraints = intel_get_event_constraints,
2547 .event_constraints = intel_p6_event_constraints
2550 static __initconst struct x86_pmu core_pmu = {
2551 .name = "core",
2552 .handle_irq = x86_pmu_handle_irq,
2553 .disable_all = x86_pmu_disable_all,
2554 .enable_all = x86_pmu_enable_all,
2555 .enable = x86_pmu_enable_event,
2556 .disable = x86_pmu_disable_event,
2557 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2558 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2559 .event_map = intel_pmu_event_map,
2560 .raw_event = intel_pmu_raw_event,
2561 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2562 .apic = 1,
2564 * Intel PMCs cannot be accessed sanely above 32 bit width,
2565 * so we install an artificial 1<<31 period regardless of
2566 * the generic event period:
2568 .max_period = (1ULL << 31) - 1,
2569 .get_event_constraints = intel_get_event_constraints,
2570 .event_constraints = intel_core_event_constraints,
2573 static __initconst struct x86_pmu intel_pmu = {
2574 .name = "Intel",
2575 .handle_irq = intel_pmu_handle_irq,
2576 .disable_all = intel_pmu_disable_all,
2577 .enable_all = intel_pmu_enable_all,
2578 .enable = intel_pmu_enable_event,
2579 .disable = intel_pmu_disable_event,
2580 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2581 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2582 .event_map = intel_pmu_event_map,
2583 .raw_event = intel_pmu_raw_event,
2584 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2585 .apic = 1,
2587 * Intel PMCs cannot be accessed sanely above 32 bit width,
2588 * so we install an artificial 1<<31 period regardless of
2589 * the generic event period:
2591 .max_period = (1ULL << 31) - 1,
2592 .enable_bts = intel_pmu_enable_bts,
2593 .disable_bts = intel_pmu_disable_bts,
2594 .get_event_constraints = intel_get_event_constraints
2597 static __initconst struct x86_pmu amd_pmu = {
2598 .name = "AMD",
2599 .handle_irq = x86_pmu_handle_irq,
2600 .disable_all = x86_pmu_disable_all,
2601 .enable_all = x86_pmu_enable_all,
2602 .enable = x86_pmu_enable_event,
2603 .disable = x86_pmu_disable_event,
2604 .eventsel = MSR_K7_EVNTSEL0,
2605 .perfctr = MSR_K7_PERFCTR0,
2606 .event_map = amd_pmu_event_map,
2607 .raw_event = amd_pmu_raw_event,
2608 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
2609 .num_events = 4,
2610 .event_bits = 48,
2611 .event_mask = (1ULL << 48) - 1,
2612 .apic = 1,
2613 /* use highest bit to detect overflow */
2614 .max_period = (1ULL << 47) - 1,
2615 .get_event_constraints = amd_get_event_constraints,
2616 .put_event_constraints = amd_put_event_constraints
2619 static __init int p6_pmu_init(void)
2621 switch (boot_cpu_data.x86_model) {
2622 case 1:
2623 case 3: /* Pentium Pro */
2624 case 5:
2625 case 6: /* Pentium II */
2626 case 7:
2627 case 8:
2628 case 11: /* Pentium III */
2629 case 9:
2630 case 13:
2631 /* Pentium M */
2632 break;
2633 default:
2634 pr_cont("unsupported p6 CPU model %d ",
2635 boot_cpu_data.x86_model);
2636 return -ENODEV;
2639 x86_pmu = p6_pmu;
2641 return 0;
2644 static __init int intel_pmu_init(void)
2646 union cpuid10_edx edx;
2647 union cpuid10_eax eax;
2648 unsigned int unused;
2649 unsigned int ebx;
2650 int version;
2652 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2653 /* check for P6 processor family */
2654 if (boot_cpu_data.x86 == 6) {
2655 return p6_pmu_init();
2656 } else {
2657 return -ENODEV;
2662 * Check whether the Architectural PerfMon supports
2663 * Branch Misses Retired hw_event or not.
2665 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
2666 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
2667 return -ENODEV;
2669 version = eax.split.version_id;
2670 if (version < 2)
2671 x86_pmu = core_pmu;
2672 else
2673 x86_pmu = intel_pmu;
2675 x86_pmu.version = version;
2676 x86_pmu.num_events = eax.split.num_events;
2677 x86_pmu.event_bits = eax.split.bit_width;
2678 x86_pmu.event_mask = (1ULL << eax.split.bit_width) - 1;
2681 * Quirk: v2 perfmon does not report fixed-purpose events, so
2682 * assume at least 3 events:
2684 if (version > 1)
2685 x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3);
2688 * Install the hw-cache-events table:
2690 switch (boot_cpu_data.x86_model) {
2691 case 14: /* 65 nm core solo/duo, "Yonah" */
2692 pr_cont("Core events, ");
2693 break;
2695 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2696 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2697 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2698 case 29: /* six-core 45 nm xeon "Dunnington" */
2699 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2700 sizeof(hw_cache_event_ids));
2702 x86_pmu.event_constraints = intel_core2_event_constraints;
2703 pr_cont("Core2 events, ");
2704 break;
2706 case 26: /* 45 nm nehalem, "Bloomfield" */
2707 case 30: /* 45 nm nehalem, "Lynnfield" */
2708 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2709 sizeof(hw_cache_event_ids));
2711 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2712 pr_cont("Nehalem/Corei7 events, ");
2713 break;
2714 case 28:
2715 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2716 sizeof(hw_cache_event_ids));
2718 x86_pmu.event_constraints = intel_gen_event_constraints;
2719 pr_cont("Atom events, ");
2720 break;
2722 case 37: /* 32 nm nehalem, "Clarkdale" */
2723 case 44: /* 32 nm nehalem, "Gulftown" */
2724 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2725 sizeof(hw_cache_event_ids));
2727 x86_pmu.event_constraints = intel_westmere_event_constraints;
2728 pr_cont("Westmere events, ");
2729 break;
2730 default:
2732 * default constraints for v2 and up
2734 x86_pmu.event_constraints = intel_gen_event_constraints;
2735 pr_cont("generic architected perfmon, ");
2737 return 0;
2740 static struct amd_nb *amd_alloc_nb(int cpu, int nb_id)
2742 struct amd_nb *nb;
2743 int i;
2745 nb = kmalloc(sizeof(struct amd_nb), GFP_KERNEL);
2746 if (!nb)
2747 return NULL;
2749 memset(nb, 0, sizeof(*nb));
2750 nb->nb_id = nb_id;
2753 * initialize all possible NB constraints
2755 for (i = 0; i < x86_pmu.num_events; i++) {
2756 set_bit(i, nb->event_constraints[i].idxmsk);
2757 nb->event_constraints[i].weight = 1;
2759 return nb;
2762 static void amd_pmu_cpu_online(int cpu)
2764 struct cpu_hw_events *cpu1, *cpu2;
2765 struct amd_nb *nb = NULL;
2766 int i, nb_id;
2768 if (boot_cpu_data.x86_max_cores < 2)
2769 return;
2772 * function may be called too early in the
2773 * boot process, in which case nb_id is bogus
2775 nb_id = amd_get_nb_id(cpu);
2776 if (nb_id == BAD_APICID)
2777 return;
2779 cpu1 = &per_cpu(cpu_hw_events, cpu);
2780 cpu1->amd_nb = NULL;
2782 raw_spin_lock(&amd_nb_lock);
2784 for_each_online_cpu(i) {
2785 cpu2 = &per_cpu(cpu_hw_events, i);
2786 nb = cpu2->amd_nb;
2787 if (!nb)
2788 continue;
2789 if (nb->nb_id == nb_id)
2790 goto found;
2793 nb = amd_alloc_nb(cpu, nb_id);
2794 if (!nb) {
2795 pr_err("perf_events: failed NB allocation for CPU%d\n", cpu);
2796 raw_spin_unlock(&amd_nb_lock);
2797 return;
2799 found:
2800 nb->refcnt++;
2801 cpu1->amd_nb = nb;
2803 raw_spin_unlock(&amd_nb_lock);
2806 static void amd_pmu_cpu_offline(int cpu)
2808 struct cpu_hw_events *cpuhw;
2810 if (boot_cpu_data.x86_max_cores < 2)
2811 return;
2813 cpuhw = &per_cpu(cpu_hw_events, cpu);
2815 raw_spin_lock(&amd_nb_lock);
2817 if (--cpuhw->amd_nb->refcnt == 0)
2818 kfree(cpuhw->amd_nb);
2820 cpuhw->amd_nb = NULL;
2822 raw_spin_unlock(&amd_nb_lock);
2825 static __init int amd_pmu_init(void)
2827 /* Performance-monitoring supported from K7 and later: */
2828 if (boot_cpu_data.x86 < 6)
2829 return -ENODEV;
2831 x86_pmu = amd_pmu;
2833 /* Events are common for all AMDs */
2834 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
2835 sizeof(hw_cache_event_ids));
2838 * explicitly initialize the boot cpu, other cpus will get
2839 * the cpu hotplug callbacks from smp_init()
2841 amd_pmu_cpu_online(smp_processor_id());
2842 return 0;
2845 static void __init pmu_check_apic(void)
2847 if (cpu_has_apic)
2848 return;
2850 x86_pmu.apic = 0;
2851 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
2852 pr_info("no hardware sampling interrupt available.\n");
2855 void __init init_hw_perf_events(void)
2857 int err;
2859 pr_info("Performance Events: ");
2861 switch (boot_cpu_data.x86_vendor) {
2862 case X86_VENDOR_INTEL:
2863 err = intel_pmu_init();
2864 break;
2865 case X86_VENDOR_AMD:
2866 err = amd_pmu_init();
2867 break;
2868 default:
2869 return;
2871 if (err != 0) {
2872 pr_cont("no PMU driver, software events only.\n");
2873 return;
2876 pmu_check_apic();
2878 pr_cont("%s PMU driver.\n", x86_pmu.name);
2880 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
2881 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2882 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
2883 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
2885 perf_event_mask = (1 << x86_pmu.num_events) - 1;
2886 perf_max_events = x86_pmu.num_events;
2888 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
2889 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2890 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
2891 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
2894 perf_event_mask |=
2895 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
2896 x86_pmu.intel_ctrl = perf_event_mask;
2898 perf_events_lapic_init();
2899 register_die_notifier(&perf_event_nmi_notifier);
2901 unconstrained = (struct event_constraint)
2902 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
2903 0, x86_pmu.num_events);
2905 pr_info("... version: %d\n", x86_pmu.version);
2906 pr_info("... bit width: %d\n", x86_pmu.event_bits);
2907 pr_info("... generic registers: %d\n", x86_pmu.num_events);
2908 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
2909 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2910 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
2911 pr_info("... event mask: %016Lx\n", perf_event_mask);
2914 static inline void x86_pmu_read(struct perf_event *event)
2916 x86_perf_event_update(event, &event->hw, event->hw.idx);
2919 static const struct pmu pmu = {
2920 .enable = x86_pmu_enable,
2921 .disable = x86_pmu_disable,
2922 .start = x86_pmu_start,
2923 .stop = x86_pmu_stop,
2924 .read = x86_pmu_read,
2925 .unthrottle = x86_pmu_unthrottle,
2929 * validate a single event group
2931 * validation include:
2932 * - check events are compatible which each other
2933 * - events do not compete for the same counter
2934 * - number of events <= number of counters
2936 * validation ensures the group can be loaded onto the
2937 * PMU if it was the only group available.
2939 static int validate_group(struct perf_event *event)
2941 struct perf_event *leader = event->group_leader;
2942 struct cpu_hw_events *fake_cpuc;
2943 int ret, n;
2945 ret = -ENOMEM;
2946 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
2947 if (!fake_cpuc)
2948 goto out;
2951 * the event is not yet connected with its
2952 * siblings therefore we must first collect
2953 * existing siblings, then add the new event
2954 * before we can simulate the scheduling
2956 ret = -ENOSPC;
2957 n = collect_events(fake_cpuc, leader, true);
2958 if (n < 0)
2959 goto out_free;
2961 fake_cpuc->n_events = n;
2962 n = collect_events(fake_cpuc, event, false);
2963 if (n < 0)
2964 goto out_free;
2966 fake_cpuc->n_events = n;
2968 ret = x86_schedule_events(fake_cpuc, n, NULL);
2970 out_free:
2971 kfree(fake_cpuc);
2972 out:
2973 return ret;
2976 const struct pmu *hw_perf_event_init(struct perf_event *event)
2978 const struct pmu *tmp;
2979 int err;
2981 err = __hw_perf_event_init(event);
2982 if (!err) {
2984 * we temporarily connect event to its pmu
2985 * such that validate_group() can classify
2986 * it as an x86 event using is_x86_event()
2988 tmp = event->pmu;
2989 event->pmu = &pmu;
2991 if (event->group_leader != event)
2992 err = validate_group(event);
2994 event->pmu = tmp;
2996 if (err) {
2997 if (event->destroy)
2998 event->destroy(event);
2999 return ERR_PTR(err);
3002 return &pmu;
3006 * callchain support
3009 static inline
3010 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
3012 if (entry->nr < PERF_MAX_STACK_DEPTH)
3013 entry->ip[entry->nr++] = ip;
3016 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
3017 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
3020 static void
3021 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
3023 /* Ignore warnings */
3026 static void backtrace_warning(void *data, char *msg)
3028 /* Ignore warnings */
3031 static int backtrace_stack(void *data, char *name)
3033 return 0;
3036 static void backtrace_address(void *data, unsigned long addr, int reliable)
3038 struct perf_callchain_entry *entry = data;
3040 if (reliable)
3041 callchain_store(entry, addr);
3044 static const struct stacktrace_ops backtrace_ops = {
3045 .warning = backtrace_warning,
3046 .warning_symbol = backtrace_warning_symbol,
3047 .stack = backtrace_stack,
3048 .address = backtrace_address,
3049 .walk_stack = print_context_stack_bp,
3052 #include "../dumpstack.h"
3054 static void
3055 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
3057 callchain_store(entry, PERF_CONTEXT_KERNEL);
3058 callchain_store(entry, regs->ip);
3060 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
3064 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
3066 static unsigned long
3067 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
3069 unsigned long offset, addr = (unsigned long)from;
3070 int type = in_nmi() ? KM_NMI : KM_IRQ0;
3071 unsigned long size, len = 0;
3072 struct page *page;
3073 void *map;
3074 int ret;
3076 do {
3077 ret = __get_user_pages_fast(addr, 1, 0, &page);
3078 if (!ret)
3079 break;
3081 offset = addr & (PAGE_SIZE - 1);
3082 size = min(PAGE_SIZE - offset, n - len);
3084 map = kmap_atomic(page, type);
3085 memcpy(to, map+offset, size);
3086 kunmap_atomic(map, type);
3087 put_page(page);
3089 len += size;
3090 to += size;
3091 addr += size;
3093 } while (len < n);
3095 return len;
3098 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
3100 unsigned long bytes;
3102 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
3104 return bytes == sizeof(*frame);
3107 static void
3108 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
3110 struct stack_frame frame;
3111 const void __user *fp;
3113 if (!user_mode(regs))
3114 regs = task_pt_regs(current);
3116 fp = (void __user *)regs->bp;
3118 callchain_store(entry, PERF_CONTEXT_USER);
3119 callchain_store(entry, regs->ip);
3121 while (entry->nr < PERF_MAX_STACK_DEPTH) {
3122 frame.next_frame = NULL;
3123 frame.return_address = 0;
3125 if (!copy_stack_frame(fp, &frame))
3126 break;
3128 if ((unsigned long)fp < regs->sp)
3129 break;
3131 callchain_store(entry, frame.return_address);
3132 fp = frame.next_frame;
3136 static void
3137 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
3139 int is_user;
3141 if (!regs)
3142 return;
3144 is_user = user_mode(regs);
3146 if (is_user && current->state != TASK_RUNNING)
3147 return;
3149 if (!is_user)
3150 perf_callchain_kernel(regs, entry);
3152 if (current->mm)
3153 perf_callchain_user(regs, entry);
3156 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
3158 struct perf_callchain_entry *entry;
3160 if (in_nmi())
3161 entry = &__get_cpu_var(pmc_nmi_entry);
3162 else
3163 entry = &__get_cpu_var(pmc_irq_entry);
3165 entry->nr = 0;
3167 perf_do_callchain(regs, entry);
3169 return entry;
3172 void hw_perf_event_setup_online(int cpu)
3174 init_debug_store_on_cpu(cpu);
3176 switch (boot_cpu_data.x86_vendor) {
3177 case X86_VENDOR_AMD:
3178 amd_pmu_cpu_online(cpu);
3179 break;
3180 default:
3181 return;
3185 void hw_perf_event_setup_offline(int cpu)
3187 init_debug_store_on_cpu(cpu);
3189 switch (boot_cpu_data.x86_vendor) {
3190 case X86_VENDOR_AMD:
3191 amd_pmu_cpu_offline(cpu);
3192 break;
3193 default:
3194 return;