Merge branch 'drm-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / timer.c
blobfe3a9a9f832849bddbb3bf1be92268af99287aa9
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
44 #ifdef CONFIG_TIME_INTERPOLATION
45 static void time_interpolator_update(long delta_nsec);
46 #else
47 #define time_interpolator_update(x)
48 #endif
50 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
52 EXPORT_SYMBOL(jiffies_64);
55 * per-CPU timer vector definitions:
58 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
59 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
60 #define TVN_SIZE (1 << TVN_BITS)
61 #define TVR_SIZE (1 << TVR_BITS)
62 #define TVN_MASK (TVN_SIZE - 1)
63 #define TVR_MASK (TVR_SIZE - 1)
65 struct timer_base_s {
66 spinlock_t lock;
67 struct timer_list *running_timer;
70 typedef struct tvec_s {
71 struct list_head vec[TVN_SIZE];
72 } tvec_t;
74 typedef struct tvec_root_s {
75 struct list_head vec[TVR_SIZE];
76 } tvec_root_t;
78 struct tvec_t_base_s {
79 struct timer_base_s t_base;
80 unsigned long timer_jiffies;
81 tvec_root_t tv1;
82 tvec_t tv2;
83 tvec_t tv3;
84 tvec_t tv4;
85 tvec_t tv5;
86 } ____cacheline_aligned_in_smp;
88 typedef struct tvec_t_base_s tvec_base_t;
89 static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
91 static inline void set_running_timer(tvec_base_t *base,
92 struct timer_list *timer)
94 #ifdef CONFIG_SMP
95 base->t_base.running_timer = timer;
96 #endif
99 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
101 unsigned long expires = timer->expires;
102 unsigned long idx = expires - base->timer_jiffies;
103 struct list_head *vec;
105 if (idx < TVR_SIZE) {
106 int i = expires & TVR_MASK;
107 vec = base->tv1.vec + i;
108 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
109 int i = (expires >> TVR_BITS) & TVN_MASK;
110 vec = base->tv2.vec + i;
111 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
112 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
113 vec = base->tv3.vec + i;
114 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
115 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
116 vec = base->tv4.vec + i;
117 } else if ((signed long) idx < 0) {
119 * Can happen if you add a timer with expires == jiffies,
120 * or you set a timer to go off in the past
122 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
123 } else {
124 int i;
125 /* If the timeout is larger than 0xffffffff on 64-bit
126 * architectures then we use the maximum timeout:
128 if (idx > 0xffffffffUL) {
129 idx = 0xffffffffUL;
130 expires = idx + base->timer_jiffies;
132 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
133 vec = base->tv5.vec + i;
136 * Timers are FIFO:
138 list_add_tail(&timer->entry, vec);
141 typedef struct timer_base_s timer_base_t;
143 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
144 * at compile time, and we need timer->base to lock the timer.
146 timer_base_t __init_timer_base
147 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
148 EXPORT_SYMBOL(__init_timer_base);
150 /***
151 * init_timer - initialize a timer.
152 * @timer: the timer to be initialized
154 * init_timer() must be done to a timer prior calling *any* of the
155 * other timer functions.
157 void fastcall init_timer(struct timer_list *timer)
159 timer->entry.next = NULL;
160 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
162 EXPORT_SYMBOL(init_timer);
164 static inline void detach_timer(struct timer_list *timer,
165 int clear_pending)
167 struct list_head *entry = &timer->entry;
169 __list_del(entry->prev, entry->next);
170 if (clear_pending)
171 entry->next = NULL;
172 entry->prev = LIST_POISON2;
176 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
177 * means that all timers which are tied to this base via timer->base are
178 * locked, and the base itself is locked too.
180 * So __run_timers/migrate_timers can safely modify all timers which could
181 * be found on ->tvX lists.
183 * When the timer's base is locked, and the timer removed from list, it is
184 * possible to set timer->base = NULL and drop the lock: the timer remains
185 * locked.
187 static timer_base_t *lock_timer_base(struct timer_list *timer,
188 unsigned long *flags)
190 timer_base_t *base;
192 for (;;) {
193 base = timer->base;
194 if (likely(base != NULL)) {
195 spin_lock_irqsave(&base->lock, *flags);
196 if (likely(base == timer->base))
197 return base;
198 /* The timer has migrated to another CPU */
199 spin_unlock_irqrestore(&base->lock, *flags);
201 cpu_relax();
205 int __mod_timer(struct timer_list *timer, unsigned long expires)
207 timer_base_t *base;
208 tvec_base_t *new_base;
209 unsigned long flags;
210 int ret = 0;
212 BUG_ON(!timer->function);
214 base = lock_timer_base(timer, &flags);
216 if (timer_pending(timer)) {
217 detach_timer(timer, 0);
218 ret = 1;
221 new_base = &__get_cpu_var(tvec_bases);
223 if (base != &new_base->t_base) {
225 * We are trying to schedule the timer on the local CPU.
226 * However we can't change timer's base while it is running,
227 * otherwise del_timer_sync() can't detect that the timer's
228 * handler yet has not finished. This also guarantees that
229 * the timer is serialized wrt itself.
231 if (unlikely(base->running_timer == timer)) {
232 /* The timer remains on a former base */
233 new_base = container_of(base, tvec_base_t, t_base);
234 } else {
235 /* See the comment in lock_timer_base() */
236 timer->base = NULL;
237 spin_unlock(&base->lock);
238 spin_lock(&new_base->t_base.lock);
239 timer->base = &new_base->t_base;
243 timer->expires = expires;
244 internal_add_timer(new_base, timer);
245 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
247 return ret;
250 EXPORT_SYMBOL(__mod_timer);
252 /***
253 * add_timer_on - start a timer on a particular CPU
254 * @timer: the timer to be added
255 * @cpu: the CPU to start it on
257 * This is not very scalable on SMP. Double adds are not possible.
259 void add_timer_on(struct timer_list *timer, int cpu)
261 tvec_base_t *base = &per_cpu(tvec_bases, cpu);
262 unsigned long flags;
264 BUG_ON(timer_pending(timer) || !timer->function);
265 spin_lock_irqsave(&base->t_base.lock, flags);
266 timer->base = &base->t_base;
267 internal_add_timer(base, timer);
268 spin_unlock_irqrestore(&base->t_base.lock, flags);
272 /***
273 * mod_timer - modify a timer's timeout
274 * @timer: the timer to be modified
276 * mod_timer is a more efficient way to update the expire field of an
277 * active timer (if the timer is inactive it will be activated)
279 * mod_timer(timer, expires) is equivalent to:
281 * del_timer(timer); timer->expires = expires; add_timer(timer);
283 * Note that if there are multiple unserialized concurrent users of the
284 * same timer, then mod_timer() is the only safe way to modify the timeout,
285 * since add_timer() cannot modify an already running timer.
287 * The function returns whether it has modified a pending timer or not.
288 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
289 * active timer returns 1.)
291 int mod_timer(struct timer_list *timer, unsigned long expires)
293 BUG_ON(!timer->function);
296 * This is a common optimization triggered by the
297 * networking code - if the timer is re-modified
298 * to be the same thing then just return:
300 if (timer->expires == expires && timer_pending(timer))
301 return 1;
303 return __mod_timer(timer, expires);
306 EXPORT_SYMBOL(mod_timer);
308 /***
309 * del_timer - deactive a timer.
310 * @timer: the timer to be deactivated
312 * del_timer() deactivates a timer - this works on both active and inactive
313 * timers.
315 * The function returns whether it has deactivated a pending timer or not.
316 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
317 * active timer returns 1.)
319 int del_timer(struct timer_list *timer)
321 timer_base_t *base;
322 unsigned long flags;
323 int ret = 0;
325 if (timer_pending(timer)) {
326 base = lock_timer_base(timer, &flags);
327 if (timer_pending(timer)) {
328 detach_timer(timer, 1);
329 ret = 1;
331 spin_unlock_irqrestore(&base->lock, flags);
334 return ret;
337 EXPORT_SYMBOL(del_timer);
339 #ifdef CONFIG_SMP
341 * This function tries to deactivate a timer. Upon successful (ret >= 0)
342 * exit the timer is not queued and the handler is not running on any CPU.
344 * It must not be called from interrupt contexts.
346 int try_to_del_timer_sync(struct timer_list *timer)
348 timer_base_t *base;
349 unsigned long flags;
350 int ret = -1;
352 base = lock_timer_base(timer, &flags);
354 if (base->running_timer == timer)
355 goto out;
357 ret = 0;
358 if (timer_pending(timer)) {
359 detach_timer(timer, 1);
360 ret = 1;
362 out:
363 spin_unlock_irqrestore(&base->lock, flags);
365 return ret;
368 /***
369 * del_timer_sync - deactivate a timer and wait for the handler to finish.
370 * @timer: the timer to be deactivated
372 * This function only differs from del_timer() on SMP: besides deactivating
373 * the timer it also makes sure the handler has finished executing on other
374 * CPUs.
376 * Synchronization rules: callers must prevent restarting of the timer,
377 * otherwise this function is meaningless. It must not be called from
378 * interrupt contexts. The caller must not hold locks which would prevent
379 * completion of the timer's handler. The timer's handler must not call
380 * add_timer_on(). Upon exit the timer is not queued and the handler is
381 * not running on any CPU.
383 * The function returns whether it has deactivated a pending timer or not.
385 int del_timer_sync(struct timer_list *timer)
387 for (;;) {
388 int ret = try_to_del_timer_sync(timer);
389 if (ret >= 0)
390 return ret;
394 EXPORT_SYMBOL(del_timer_sync);
395 #endif
397 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
399 /* cascade all the timers from tv up one level */
400 struct list_head *head, *curr;
402 head = tv->vec + index;
403 curr = head->next;
405 * We are removing _all_ timers from the list, so we don't have to
406 * detach them individually, just clear the list afterwards.
408 while (curr != head) {
409 struct timer_list *tmp;
411 tmp = list_entry(curr, struct timer_list, entry);
412 BUG_ON(tmp->base != &base->t_base);
413 curr = curr->next;
414 internal_add_timer(base, tmp);
416 INIT_LIST_HEAD(head);
418 return index;
421 /***
422 * __run_timers - run all expired timers (if any) on this CPU.
423 * @base: the timer vector to be processed.
425 * This function cascades all vectors and executes all expired timer
426 * vectors.
428 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
430 static inline void __run_timers(tvec_base_t *base)
432 struct timer_list *timer;
434 spin_lock_irq(&base->t_base.lock);
435 while (time_after_eq(jiffies, base->timer_jiffies)) {
436 struct list_head work_list = LIST_HEAD_INIT(work_list);
437 struct list_head *head = &work_list;
438 int index = base->timer_jiffies & TVR_MASK;
441 * Cascade timers:
443 if (!index &&
444 (!cascade(base, &base->tv2, INDEX(0))) &&
445 (!cascade(base, &base->tv3, INDEX(1))) &&
446 !cascade(base, &base->tv4, INDEX(2)))
447 cascade(base, &base->tv5, INDEX(3));
448 ++base->timer_jiffies;
449 list_splice_init(base->tv1.vec + index, &work_list);
450 while (!list_empty(head)) {
451 void (*fn)(unsigned long);
452 unsigned long data;
454 timer = list_entry(head->next,struct timer_list,entry);
455 fn = timer->function;
456 data = timer->data;
458 set_running_timer(base, timer);
459 detach_timer(timer, 1);
460 spin_unlock_irq(&base->t_base.lock);
462 int preempt_count = preempt_count();
463 fn(data);
464 if (preempt_count != preempt_count()) {
465 printk(KERN_WARNING "huh, entered %p "
466 "with preempt_count %08x, exited"
467 " with %08x?\n",
468 fn, preempt_count,
469 preempt_count());
470 BUG();
473 spin_lock_irq(&base->t_base.lock);
476 set_running_timer(base, NULL);
477 spin_unlock_irq(&base->t_base.lock);
480 #ifdef CONFIG_NO_IDLE_HZ
482 * Find out when the next timer event is due to happen. This
483 * is used on S/390 to stop all activity when a cpus is idle.
484 * This functions needs to be called disabled.
486 unsigned long next_timer_interrupt(void)
488 tvec_base_t *base;
489 struct list_head *list;
490 struct timer_list *nte;
491 unsigned long expires;
492 tvec_t *varray[4];
493 int i, j;
495 base = &__get_cpu_var(tvec_bases);
496 spin_lock(&base->t_base.lock);
497 expires = base->timer_jiffies + (LONG_MAX >> 1);
498 list = NULL;
500 /* Look for timer events in tv1. */
501 j = base->timer_jiffies & TVR_MASK;
502 do {
503 list_for_each_entry(nte, base->tv1.vec + j, entry) {
504 expires = nte->expires;
505 if (j < (base->timer_jiffies & TVR_MASK))
506 list = base->tv2.vec + (INDEX(0));
507 goto found;
509 j = (j + 1) & TVR_MASK;
510 } while (j != (base->timer_jiffies & TVR_MASK));
512 /* Check tv2-tv5. */
513 varray[0] = &base->tv2;
514 varray[1] = &base->tv3;
515 varray[2] = &base->tv4;
516 varray[3] = &base->tv5;
517 for (i = 0; i < 4; i++) {
518 j = INDEX(i);
519 do {
520 if (list_empty(varray[i]->vec + j)) {
521 j = (j + 1) & TVN_MASK;
522 continue;
524 list_for_each_entry(nte, varray[i]->vec + j, entry)
525 if (time_before(nte->expires, expires))
526 expires = nte->expires;
527 if (j < (INDEX(i)) && i < 3)
528 list = varray[i + 1]->vec + (INDEX(i + 1));
529 goto found;
530 } while (j != (INDEX(i)));
532 found:
533 if (list) {
535 * The search wrapped. We need to look at the next list
536 * from next tv element that would cascade into tv element
537 * where we found the timer element.
539 list_for_each_entry(nte, list, entry) {
540 if (time_before(nte->expires, expires))
541 expires = nte->expires;
544 spin_unlock(&base->t_base.lock);
545 return expires;
547 #endif
549 /******************************************************************/
552 * Timekeeping variables
554 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
555 unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
558 * The current time
559 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
560 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
561 * at zero at system boot time, so wall_to_monotonic will be negative,
562 * however, we will ALWAYS keep the tv_nsec part positive so we can use
563 * the usual normalization.
565 struct timespec xtime __attribute__ ((aligned (16)));
566 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
568 EXPORT_SYMBOL(xtime);
570 /* Don't completely fail for HZ > 500. */
571 int tickadj = 500/HZ ? : 1; /* microsecs */
575 * phase-lock loop variables
577 /* TIME_ERROR prevents overwriting the CMOS clock */
578 int time_state = TIME_OK; /* clock synchronization status */
579 int time_status = STA_UNSYNC; /* clock status bits */
580 long time_offset; /* time adjustment (us) */
581 long time_constant = 2; /* pll time constant */
582 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
583 long time_precision = 1; /* clock precision (us) */
584 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
585 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
586 static long time_phase; /* phase offset (scaled us) */
587 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
588 /* frequency offset (scaled ppm)*/
589 static long time_adj; /* tick adjust (scaled 1 / HZ) */
590 long time_reftime; /* time at last adjustment (s) */
591 long time_adjust;
592 long time_next_adjust;
595 * this routine handles the overflow of the microsecond field
597 * The tricky bits of code to handle the accurate clock support
598 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
599 * They were originally developed for SUN and DEC kernels.
600 * All the kudos should go to Dave for this stuff.
603 static void second_overflow(void)
605 long ltemp;
607 /* Bump the maxerror field */
608 time_maxerror += time_tolerance >> SHIFT_USEC;
609 if (time_maxerror > NTP_PHASE_LIMIT) {
610 time_maxerror = NTP_PHASE_LIMIT;
611 time_status |= STA_UNSYNC;
615 * Leap second processing. If in leap-insert state at the end of the
616 * day, the system clock is set back one second; if in leap-delete
617 * state, the system clock is set ahead one second. The microtime()
618 * routine or external clock driver will insure that reported time is
619 * always monotonic. The ugly divides should be replaced.
621 switch (time_state) {
622 case TIME_OK:
623 if (time_status & STA_INS)
624 time_state = TIME_INS;
625 else if (time_status & STA_DEL)
626 time_state = TIME_DEL;
627 break;
628 case TIME_INS:
629 if (xtime.tv_sec % 86400 == 0) {
630 xtime.tv_sec--;
631 wall_to_monotonic.tv_sec++;
633 * The timer interpolator will make time change
634 * gradually instead of an immediate jump by one second
636 time_interpolator_update(-NSEC_PER_SEC);
637 time_state = TIME_OOP;
638 clock_was_set();
639 printk(KERN_NOTICE "Clock: inserting leap second "
640 "23:59:60 UTC\n");
642 break;
643 case TIME_DEL:
644 if ((xtime.tv_sec + 1) % 86400 == 0) {
645 xtime.tv_sec++;
646 wall_to_monotonic.tv_sec--;
648 * Use of time interpolator for a gradual change of
649 * time
651 time_interpolator_update(NSEC_PER_SEC);
652 time_state = TIME_WAIT;
653 clock_was_set();
654 printk(KERN_NOTICE "Clock: deleting leap second "
655 "23:59:59 UTC\n");
657 break;
658 case TIME_OOP:
659 time_state = TIME_WAIT;
660 break;
661 case TIME_WAIT:
662 if (!(time_status & (STA_INS | STA_DEL)))
663 time_state = TIME_OK;
667 * Compute the phase adjustment for the next second. In PLL mode, the
668 * offset is reduced by a fixed factor times the time constant. In FLL
669 * mode the offset is used directly. In either mode, the maximum phase
670 * adjustment for each second is clamped so as to spread the adjustment
671 * over not more than the number of seconds between updates.
673 ltemp = time_offset;
674 if (!(time_status & STA_FLL))
675 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
676 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
677 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
678 time_offset -= ltemp;
679 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
682 * Compute the frequency estimate and additional phase adjustment due
683 * to frequency error for the next second. When the PPS signal is
684 * engaged, gnaw on the watchdog counter and update the frequency
685 * computed by the pll and the PPS signal.
687 pps_valid++;
688 if (pps_valid == PPS_VALID) { /* PPS signal lost */
689 pps_jitter = MAXTIME;
690 pps_stabil = MAXFREQ;
691 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
692 STA_PPSWANDER | STA_PPSERROR);
694 ltemp = time_freq + pps_freq;
695 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
697 #if HZ == 100
699 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
700 * get 128.125; => only 0.125% error (p. 14)
702 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
703 #endif
704 #if HZ == 250
706 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
707 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
709 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
710 #endif
711 #if HZ == 1000
713 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
714 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
716 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
717 #endif
721 * Returns how many microseconds we need to add to xtime this tick
722 * in doing an adjustment requested with adjtime.
724 static long adjtime_adjustment(void)
726 long time_adjust_step;
728 time_adjust_step = time_adjust;
729 if (time_adjust_step) {
731 * We are doing an adjtime thing. Prepare time_adjust_step to
732 * be within bounds. Note that a positive time_adjust means we
733 * want the clock to run faster.
735 * Limit the amount of the step to be in the range
736 * -tickadj .. +tickadj
738 time_adjust_step = min(time_adjust_step, (long)tickadj);
739 time_adjust_step = max(time_adjust_step, (long)-tickadj);
741 return time_adjust_step;
744 /* in the NTP reference this is called "hardclock()" */
745 static void update_wall_time_one_tick(void)
747 long time_adjust_step, delta_nsec;
749 time_adjust_step = adjtime_adjustment();
750 if (time_adjust_step)
751 /* Reduce by this step the amount of time left */
752 time_adjust -= time_adjust_step;
753 delta_nsec = tick_nsec + time_adjust_step * 1000;
755 * Advance the phase, once it gets to one microsecond, then
756 * advance the tick more.
758 time_phase += time_adj;
759 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
760 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
761 time_phase -= ltemp << (SHIFT_SCALE - 10);
762 delta_nsec += ltemp;
764 xtime.tv_nsec += delta_nsec;
765 time_interpolator_update(delta_nsec);
767 /* Changes by adjtime() do not take effect till next tick. */
768 if (time_next_adjust != 0) {
769 time_adjust = time_next_adjust;
770 time_next_adjust = 0;
775 * Return how long ticks are at the moment, that is, how much time
776 * update_wall_time_one_tick will add to xtime next time we call it
777 * (assuming no calls to do_adjtimex in the meantime).
778 * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
779 * bits to the right of the binary point.
780 * This function has no side-effects.
782 u64 current_tick_length(void)
784 long delta_nsec;
786 delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
787 return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
791 * Using a loop looks inefficient, but "ticks" is
792 * usually just one (we shouldn't be losing ticks,
793 * we're doing this this way mainly for interrupt
794 * latency reasons, not because we think we'll
795 * have lots of lost timer ticks
797 static void update_wall_time(unsigned long ticks)
799 do {
800 ticks--;
801 update_wall_time_one_tick();
802 if (xtime.tv_nsec >= 1000000000) {
803 xtime.tv_nsec -= 1000000000;
804 xtime.tv_sec++;
805 second_overflow();
807 } while (ticks);
811 * Called from the timer interrupt handler to charge one tick to the current
812 * process. user_tick is 1 if the tick is user time, 0 for system.
814 void update_process_times(int user_tick)
816 struct task_struct *p = current;
817 int cpu = smp_processor_id();
819 /* Note: this timer irq context must be accounted for as well. */
820 if (user_tick)
821 account_user_time(p, jiffies_to_cputime(1));
822 else
823 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
824 run_local_timers();
825 if (rcu_pending(cpu))
826 rcu_check_callbacks(cpu, user_tick);
827 scheduler_tick();
828 run_posix_cpu_timers(p);
832 * Nr of active tasks - counted in fixed-point numbers
834 static unsigned long count_active_tasks(void)
836 return (nr_running() + nr_uninterruptible()) * FIXED_1;
840 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
841 * imply that avenrun[] is the standard name for this kind of thing.
842 * Nothing else seems to be standardized: the fractional size etc
843 * all seem to differ on different machines.
845 * Requires xtime_lock to access.
847 unsigned long avenrun[3];
849 EXPORT_SYMBOL(avenrun);
852 * calc_load - given tick count, update the avenrun load estimates.
853 * This is called while holding a write_lock on xtime_lock.
855 static inline void calc_load(unsigned long ticks)
857 unsigned long active_tasks; /* fixed-point */
858 static int count = LOAD_FREQ;
860 count -= ticks;
861 if (count < 0) {
862 count += LOAD_FREQ;
863 active_tasks = count_active_tasks();
864 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
865 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
866 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
870 /* jiffies at the most recent update of wall time */
871 unsigned long wall_jiffies = INITIAL_JIFFIES;
874 * This read-write spinlock protects us from races in SMP while
875 * playing with xtime and avenrun.
877 #ifndef ARCH_HAVE_XTIME_LOCK
878 seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
880 EXPORT_SYMBOL(xtime_lock);
881 #endif
884 * This function runs timers and the timer-tq in bottom half context.
886 static void run_timer_softirq(struct softirq_action *h)
888 tvec_base_t *base = &__get_cpu_var(tvec_bases);
890 hrtimer_run_queues();
891 if (time_after_eq(jiffies, base->timer_jiffies))
892 __run_timers(base);
896 * Called by the local, per-CPU timer interrupt on SMP.
898 void run_local_timers(void)
900 raise_softirq(TIMER_SOFTIRQ);
904 * Called by the timer interrupt. xtime_lock must already be taken
905 * by the timer IRQ!
907 static inline void update_times(void)
909 unsigned long ticks;
911 ticks = jiffies - wall_jiffies;
912 if (ticks) {
913 wall_jiffies += ticks;
914 update_wall_time(ticks);
916 calc_load(ticks);
920 * The 64-bit jiffies value is not atomic - you MUST NOT read it
921 * without sampling the sequence number in xtime_lock.
922 * jiffies is defined in the linker script...
925 void do_timer(struct pt_regs *regs)
927 jiffies_64++;
928 update_times();
929 softlockup_tick(regs);
932 #ifdef __ARCH_WANT_SYS_ALARM
935 * For backwards compatibility? This can be done in libc so Alpha
936 * and all newer ports shouldn't need it.
938 asmlinkage unsigned long sys_alarm(unsigned int seconds)
940 struct itimerval it_new, it_old;
941 unsigned int oldalarm;
943 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
944 it_new.it_value.tv_sec = seconds;
945 it_new.it_value.tv_usec = 0;
946 do_setitimer(ITIMER_REAL, &it_new, &it_old);
947 oldalarm = it_old.it_value.tv_sec;
948 /* ehhh.. We can't return 0 if we have an alarm pending.. */
949 /* And we'd better return too much than too little anyway */
950 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
951 oldalarm++;
952 return oldalarm;
955 #endif
957 #ifndef __alpha__
960 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
961 * should be moved into arch/i386 instead?
965 * sys_getpid - return the thread group id of the current process
967 * Note, despite the name, this returns the tgid not the pid. The tgid and
968 * the pid are identical unless CLONE_THREAD was specified on clone() in
969 * which case the tgid is the same in all threads of the same group.
971 * This is SMP safe as current->tgid does not change.
973 asmlinkage long sys_getpid(void)
975 return current->tgid;
979 * Accessing ->group_leader->real_parent is not SMP-safe, it could
980 * change from under us. However, rather than getting any lock
981 * we can use an optimistic algorithm: get the parent
982 * pid, and go back and check that the parent is still
983 * the same. If it has changed (which is extremely unlikely
984 * indeed), we just try again..
986 * NOTE! This depends on the fact that even if we _do_
987 * get an old value of "parent", we can happily dereference
988 * the pointer (it was and remains a dereferencable kernel pointer
989 * no matter what): we just can't necessarily trust the result
990 * until we know that the parent pointer is valid.
992 * NOTE2: ->group_leader never changes from under us.
994 asmlinkage long sys_getppid(void)
996 int pid;
997 struct task_struct *me = current;
998 struct task_struct *parent;
1000 parent = me->group_leader->real_parent;
1001 for (;;) {
1002 pid = parent->tgid;
1003 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1005 struct task_struct *old = parent;
1008 * Make sure we read the pid before re-reading the
1009 * parent pointer:
1011 smp_rmb();
1012 parent = me->group_leader->real_parent;
1013 if (old != parent)
1014 continue;
1016 #endif
1017 break;
1019 return pid;
1022 asmlinkage long sys_getuid(void)
1024 /* Only we change this so SMP safe */
1025 return current->uid;
1028 asmlinkage long sys_geteuid(void)
1030 /* Only we change this so SMP safe */
1031 return current->euid;
1034 asmlinkage long sys_getgid(void)
1036 /* Only we change this so SMP safe */
1037 return current->gid;
1040 asmlinkage long sys_getegid(void)
1042 /* Only we change this so SMP safe */
1043 return current->egid;
1046 #endif
1048 static void process_timeout(unsigned long __data)
1050 wake_up_process((task_t *)__data);
1054 * schedule_timeout - sleep until timeout
1055 * @timeout: timeout value in jiffies
1057 * Make the current task sleep until @timeout jiffies have
1058 * elapsed. The routine will return immediately unless
1059 * the current task state has been set (see set_current_state()).
1061 * You can set the task state as follows -
1063 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1064 * pass before the routine returns. The routine will return 0
1066 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1067 * delivered to the current task. In this case the remaining time
1068 * in jiffies will be returned, or 0 if the timer expired in time
1070 * The current task state is guaranteed to be TASK_RUNNING when this
1071 * routine returns.
1073 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1074 * the CPU away without a bound on the timeout. In this case the return
1075 * value will be %MAX_SCHEDULE_TIMEOUT.
1077 * In all cases the return value is guaranteed to be non-negative.
1079 fastcall signed long __sched schedule_timeout(signed long timeout)
1081 struct timer_list timer;
1082 unsigned long expire;
1084 switch (timeout)
1086 case MAX_SCHEDULE_TIMEOUT:
1088 * These two special cases are useful to be comfortable
1089 * in the caller. Nothing more. We could take
1090 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1091 * but I' d like to return a valid offset (>=0) to allow
1092 * the caller to do everything it want with the retval.
1094 schedule();
1095 goto out;
1096 default:
1098 * Another bit of PARANOID. Note that the retval will be
1099 * 0 since no piece of kernel is supposed to do a check
1100 * for a negative retval of schedule_timeout() (since it
1101 * should never happens anyway). You just have the printk()
1102 * that will tell you if something is gone wrong and where.
1104 if (timeout < 0)
1106 printk(KERN_ERR "schedule_timeout: wrong timeout "
1107 "value %lx from %p\n", timeout,
1108 __builtin_return_address(0));
1109 current->state = TASK_RUNNING;
1110 goto out;
1114 expire = timeout + jiffies;
1116 setup_timer(&timer, process_timeout, (unsigned long)current);
1117 __mod_timer(&timer, expire);
1118 schedule();
1119 del_singleshot_timer_sync(&timer);
1121 timeout = expire - jiffies;
1123 out:
1124 return timeout < 0 ? 0 : timeout;
1126 EXPORT_SYMBOL(schedule_timeout);
1129 * We can use __set_current_state() here because schedule_timeout() calls
1130 * schedule() unconditionally.
1132 signed long __sched schedule_timeout_interruptible(signed long timeout)
1134 __set_current_state(TASK_INTERRUPTIBLE);
1135 return schedule_timeout(timeout);
1137 EXPORT_SYMBOL(schedule_timeout_interruptible);
1139 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1141 __set_current_state(TASK_UNINTERRUPTIBLE);
1142 return schedule_timeout(timeout);
1144 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1146 /* Thread ID - the internal kernel "pid" */
1147 asmlinkage long sys_gettid(void)
1149 return current->pid;
1153 * sys_sysinfo - fill in sysinfo struct
1155 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1157 struct sysinfo val;
1158 unsigned long mem_total, sav_total;
1159 unsigned int mem_unit, bitcount;
1160 unsigned long seq;
1162 memset((char *)&val, 0, sizeof(struct sysinfo));
1164 do {
1165 struct timespec tp;
1166 seq = read_seqbegin(&xtime_lock);
1169 * This is annoying. The below is the same thing
1170 * posix_get_clock_monotonic() does, but it wants to
1171 * take the lock which we want to cover the loads stuff
1172 * too.
1175 getnstimeofday(&tp);
1176 tp.tv_sec += wall_to_monotonic.tv_sec;
1177 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1178 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1179 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1180 tp.tv_sec++;
1182 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1184 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1185 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1186 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1188 val.procs = nr_threads;
1189 } while (read_seqretry(&xtime_lock, seq));
1191 si_meminfo(&val);
1192 si_swapinfo(&val);
1195 * If the sum of all the available memory (i.e. ram + swap)
1196 * is less than can be stored in a 32 bit unsigned long then
1197 * we can be binary compatible with 2.2.x kernels. If not,
1198 * well, in that case 2.2.x was broken anyways...
1200 * -Erik Andersen <andersee@debian.org>
1203 mem_total = val.totalram + val.totalswap;
1204 if (mem_total < val.totalram || mem_total < val.totalswap)
1205 goto out;
1206 bitcount = 0;
1207 mem_unit = val.mem_unit;
1208 while (mem_unit > 1) {
1209 bitcount++;
1210 mem_unit >>= 1;
1211 sav_total = mem_total;
1212 mem_total <<= 1;
1213 if (mem_total < sav_total)
1214 goto out;
1218 * If mem_total did not overflow, multiply all memory values by
1219 * val.mem_unit and set it to 1. This leaves things compatible
1220 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1221 * kernels...
1224 val.mem_unit = 1;
1225 val.totalram <<= bitcount;
1226 val.freeram <<= bitcount;
1227 val.sharedram <<= bitcount;
1228 val.bufferram <<= bitcount;
1229 val.totalswap <<= bitcount;
1230 val.freeswap <<= bitcount;
1231 val.totalhigh <<= bitcount;
1232 val.freehigh <<= bitcount;
1234 out:
1235 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1236 return -EFAULT;
1238 return 0;
1241 static void __devinit init_timers_cpu(int cpu)
1243 int j;
1244 tvec_base_t *base;
1246 base = &per_cpu(tvec_bases, cpu);
1247 spin_lock_init(&base->t_base.lock);
1248 for (j = 0; j < TVN_SIZE; j++) {
1249 INIT_LIST_HEAD(base->tv5.vec + j);
1250 INIT_LIST_HEAD(base->tv4.vec + j);
1251 INIT_LIST_HEAD(base->tv3.vec + j);
1252 INIT_LIST_HEAD(base->tv2.vec + j);
1254 for (j = 0; j < TVR_SIZE; j++)
1255 INIT_LIST_HEAD(base->tv1.vec + j);
1257 base->timer_jiffies = jiffies;
1260 #ifdef CONFIG_HOTPLUG_CPU
1261 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1263 struct timer_list *timer;
1265 while (!list_empty(head)) {
1266 timer = list_entry(head->next, struct timer_list, entry);
1267 detach_timer(timer, 0);
1268 timer->base = &new_base->t_base;
1269 internal_add_timer(new_base, timer);
1273 static void __devinit migrate_timers(int cpu)
1275 tvec_base_t *old_base;
1276 tvec_base_t *new_base;
1277 int i;
1279 BUG_ON(cpu_online(cpu));
1280 old_base = &per_cpu(tvec_bases, cpu);
1281 new_base = &get_cpu_var(tvec_bases);
1283 local_irq_disable();
1284 spin_lock(&new_base->t_base.lock);
1285 spin_lock(&old_base->t_base.lock);
1287 if (old_base->t_base.running_timer)
1288 BUG();
1289 for (i = 0; i < TVR_SIZE; i++)
1290 migrate_timer_list(new_base, old_base->tv1.vec + i);
1291 for (i = 0; i < TVN_SIZE; i++) {
1292 migrate_timer_list(new_base, old_base->tv2.vec + i);
1293 migrate_timer_list(new_base, old_base->tv3.vec + i);
1294 migrate_timer_list(new_base, old_base->tv4.vec + i);
1295 migrate_timer_list(new_base, old_base->tv5.vec + i);
1298 spin_unlock(&old_base->t_base.lock);
1299 spin_unlock(&new_base->t_base.lock);
1300 local_irq_enable();
1301 put_cpu_var(tvec_bases);
1303 #endif /* CONFIG_HOTPLUG_CPU */
1305 static int __devinit timer_cpu_notify(struct notifier_block *self,
1306 unsigned long action, void *hcpu)
1308 long cpu = (long)hcpu;
1309 switch(action) {
1310 case CPU_UP_PREPARE:
1311 init_timers_cpu(cpu);
1312 break;
1313 #ifdef CONFIG_HOTPLUG_CPU
1314 case CPU_DEAD:
1315 migrate_timers(cpu);
1316 break;
1317 #endif
1318 default:
1319 break;
1321 return NOTIFY_OK;
1324 static struct notifier_block __devinitdata timers_nb = {
1325 .notifier_call = timer_cpu_notify,
1329 void __init init_timers(void)
1331 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1332 (void *)(long)smp_processor_id());
1333 register_cpu_notifier(&timers_nb);
1334 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1337 #ifdef CONFIG_TIME_INTERPOLATION
1339 struct time_interpolator *time_interpolator;
1340 static struct time_interpolator *time_interpolator_list;
1341 static DEFINE_SPINLOCK(time_interpolator_lock);
1343 static inline u64 time_interpolator_get_cycles(unsigned int src)
1345 unsigned long (*x)(void);
1347 switch (src)
1349 case TIME_SOURCE_FUNCTION:
1350 x = time_interpolator->addr;
1351 return x();
1353 case TIME_SOURCE_MMIO64 :
1354 return readq((void __iomem *) time_interpolator->addr);
1356 case TIME_SOURCE_MMIO32 :
1357 return readl((void __iomem *) time_interpolator->addr);
1359 default: return get_cycles();
1363 static inline u64 time_interpolator_get_counter(int writelock)
1365 unsigned int src = time_interpolator->source;
1367 if (time_interpolator->jitter)
1369 u64 lcycle;
1370 u64 now;
1372 do {
1373 lcycle = time_interpolator->last_cycle;
1374 now = time_interpolator_get_cycles(src);
1375 if (lcycle && time_after(lcycle, now))
1376 return lcycle;
1378 /* When holding the xtime write lock, there's no need
1379 * to add the overhead of the cmpxchg. Readers are
1380 * force to retry until the write lock is released.
1382 if (writelock) {
1383 time_interpolator->last_cycle = now;
1384 return now;
1386 /* Keep track of the last timer value returned. The use of cmpxchg here
1387 * will cause contention in an SMP environment.
1389 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1390 return now;
1392 else
1393 return time_interpolator_get_cycles(src);
1396 void time_interpolator_reset(void)
1398 time_interpolator->offset = 0;
1399 time_interpolator->last_counter = time_interpolator_get_counter(1);
1402 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1404 unsigned long time_interpolator_get_offset(void)
1406 /* If we do not have a time interpolator set up then just return zero */
1407 if (!time_interpolator)
1408 return 0;
1410 return time_interpolator->offset +
1411 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1414 #define INTERPOLATOR_ADJUST 65536
1415 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1417 static void time_interpolator_update(long delta_nsec)
1419 u64 counter;
1420 unsigned long offset;
1422 /* If there is no time interpolator set up then do nothing */
1423 if (!time_interpolator)
1424 return;
1427 * The interpolator compensates for late ticks by accumulating the late
1428 * time in time_interpolator->offset. A tick earlier than expected will
1429 * lead to a reset of the offset and a corresponding jump of the clock
1430 * forward. Again this only works if the interpolator clock is running
1431 * slightly slower than the regular clock and the tuning logic insures
1432 * that.
1435 counter = time_interpolator_get_counter(1);
1436 offset = time_interpolator->offset +
1437 GET_TI_NSECS(counter, time_interpolator);
1439 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1440 time_interpolator->offset = offset - delta_nsec;
1441 else {
1442 time_interpolator->skips++;
1443 time_interpolator->ns_skipped += delta_nsec - offset;
1444 time_interpolator->offset = 0;
1446 time_interpolator->last_counter = counter;
1448 /* Tuning logic for time interpolator invoked every minute or so.
1449 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1450 * Increase interpolator clock speed if we skip too much time.
1452 if (jiffies % INTERPOLATOR_ADJUST == 0)
1454 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1455 time_interpolator->nsec_per_cyc--;
1456 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1457 time_interpolator->nsec_per_cyc++;
1458 time_interpolator->skips = 0;
1459 time_interpolator->ns_skipped = 0;
1463 static inline int
1464 is_better_time_interpolator(struct time_interpolator *new)
1466 if (!time_interpolator)
1467 return 1;
1468 return new->frequency > 2*time_interpolator->frequency ||
1469 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1472 void
1473 register_time_interpolator(struct time_interpolator *ti)
1475 unsigned long flags;
1477 /* Sanity check */
1478 if (ti->frequency == 0 || ti->mask == 0)
1479 BUG();
1481 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1482 spin_lock(&time_interpolator_lock);
1483 write_seqlock_irqsave(&xtime_lock, flags);
1484 if (is_better_time_interpolator(ti)) {
1485 time_interpolator = ti;
1486 time_interpolator_reset();
1488 write_sequnlock_irqrestore(&xtime_lock, flags);
1490 ti->next = time_interpolator_list;
1491 time_interpolator_list = ti;
1492 spin_unlock(&time_interpolator_lock);
1495 void
1496 unregister_time_interpolator(struct time_interpolator *ti)
1498 struct time_interpolator *curr, **prev;
1499 unsigned long flags;
1501 spin_lock(&time_interpolator_lock);
1502 prev = &time_interpolator_list;
1503 for (curr = *prev; curr; curr = curr->next) {
1504 if (curr == ti) {
1505 *prev = curr->next;
1506 break;
1508 prev = &curr->next;
1511 write_seqlock_irqsave(&xtime_lock, flags);
1512 if (ti == time_interpolator) {
1513 /* we lost the best time-interpolator: */
1514 time_interpolator = NULL;
1515 /* find the next-best interpolator */
1516 for (curr = time_interpolator_list; curr; curr = curr->next)
1517 if (is_better_time_interpolator(curr))
1518 time_interpolator = curr;
1519 time_interpolator_reset();
1521 write_sequnlock_irqrestore(&xtime_lock, flags);
1522 spin_unlock(&time_interpolator_lock);
1524 #endif /* CONFIG_TIME_INTERPOLATION */
1527 * msleep - sleep safely even with waitqueue interruptions
1528 * @msecs: Time in milliseconds to sleep for
1530 void msleep(unsigned int msecs)
1532 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1534 while (timeout)
1535 timeout = schedule_timeout_uninterruptible(timeout);
1538 EXPORT_SYMBOL(msleep);
1541 * msleep_interruptible - sleep waiting for signals
1542 * @msecs: Time in milliseconds to sleep for
1544 unsigned long msleep_interruptible(unsigned int msecs)
1546 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1548 while (timeout && !signal_pending(current))
1549 timeout = schedule_timeout_interruptible(timeout);
1550 return jiffies_to_msecs(timeout);
1553 EXPORT_SYMBOL(msleep_interruptible);