2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
29 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
31 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
33 return entry
->file_offset
+ entry
->len
;
36 /* returns NULL if the insertion worked, or it returns the node it did find
39 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
42 struct rb_node
**p
= &root
->rb_node
;
43 struct rb_node
*parent
= NULL
;
44 struct btrfs_ordered_extent
*entry
;
48 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
50 if (file_offset
< entry
->file_offset
)
52 else if (file_offset
>= entry_end(entry
))
58 rb_link_node(node
, parent
, p
);
59 rb_insert_color(node
, root
);
64 * look for a given offset in the tree, and if it can't be found return the
67 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
68 struct rb_node
**prev_ret
)
70 struct rb_node
*n
= root
->rb_node
;
71 struct rb_node
*prev
= NULL
;
73 struct btrfs_ordered_extent
*entry
;
74 struct btrfs_ordered_extent
*prev_entry
= NULL
;
77 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
81 if (file_offset
< entry
->file_offset
)
83 else if (file_offset
>= entry_end(entry
))
91 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
95 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
97 if (file_offset
< entry_end(prev_entry
))
103 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
105 while (prev
&& file_offset
< entry_end(prev_entry
)) {
106 test
= rb_prev(prev
);
109 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
118 * helper to check if a given offset is inside a given entry
120 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
122 if (file_offset
< entry
->file_offset
||
123 entry
->file_offset
+ entry
->len
<= file_offset
)
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
132 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
135 struct rb_root
*root
= &tree
->tree
;
136 struct rb_node
*prev
;
138 struct btrfs_ordered_extent
*entry
;
141 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
143 if (offset_in_entry(entry
, file_offset
))
146 ret
= __tree_search(root
, file_offset
, &prev
);
154 /* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
160 * len is the length of the extent
162 * The tree is given a single reference on the ordered extent that was
165 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
166 u64 start
, u64 len
, u64 disk_len
, int type
)
168 struct btrfs_ordered_inode_tree
*tree
;
169 struct rb_node
*node
;
170 struct btrfs_ordered_extent
*entry
;
172 tree
= &BTRFS_I(inode
)->ordered_tree
;
173 entry
= kzalloc(sizeof(*entry
), GFP_NOFS
);
177 mutex_lock(&tree
->mutex
);
178 entry
->file_offset
= file_offset
;
179 entry
->start
= start
;
181 entry
->disk_len
= disk_len
;
182 entry
->bytes_left
= len
;
183 entry
->inode
= inode
;
184 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
185 set_bit(type
, &entry
->flags
);
187 /* one ref for the tree */
188 atomic_set(&entry
->refs
, 1);
189 init_waitqueue_head(&entry
->wait
);
190 INIT_LIST_HEAD(&entry
->list
);
191 INIT_LIST_HEAD(&entry
->root_extent_list
);
193 node
= tree_insert(&tree
->tree
, file_offset
,
197 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
198 list_add_tail(&entry
->root_extent_list
,
199 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
200 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
202 mutex_unlock(&tree
->mutex
);
208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
209 * when an ordered extent is finished. If the list covers more than one
210 * ordered extent, it is split across multiples.
212 int btrfs_add_ordered_sum(struct inode
*inode
,
213 struct btrfs_ordered_extent
*entry
,
214 struct btrfs_ordered_sum
*sum
)
216 struct btrfs_ordered_inode_tree
*tree
;
218 tree
= &BTRFS_I(inode
)->ordered_tree
;
219 mutex_lock(&tree
->mutex
);
220 list_add_tail(&sum
->list
, &entry
->list
);
221 mutex_unlock(&tree
->mutex
);
226 * this is used to account for finished IO across a given range
227 * of the file. The IO should not span ordered extents. If
228 * a given ordered_extent is completely done, 1 is returned, otherwise
231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
232 * to make sure this function only returns 1 once for a given ordered extent.
234 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
235 u64 file_offset
, u64 io_size
)
237 struct btrfs_ordered_inode_tree
*tree
;
238 struct rb_node
*node
;
239 struct btrfs_ordered_extent
*entry
;
242 tree
= &BTRFS_I(inode
)->ordered_tree
;
243 mutex_lock(&tree
->mutex
);
244 node
= tree_search(tree
, file_offset
);
250 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
251 if (!offset_in_entry(entry
, file_offset
)) {
256 if (io_size
> entry
->bytes_left
) {
257 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry
->bytes_left
,
259 (unsigned long long)io_size
);
261 entry
->bytes_left
-= io_size
;
262 if (entry
->bytes_left
== 0)
263 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
267 mutex_unlock(&tree
->mutex
);
272 * used to drop a reference on an ordered extent. This will free
273 * the extent if the last reference is dropped
275 int btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
277 struct list_head
*cur
;
278 struct btrfs_ordered_sum
*sum
;
280 if (atomic_dec_and_test(&entry
->refs
)) {
281 while (!list_empty(&entry
->list
)) {
282 cur
= entry
->list
.next
;
283 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
284 list_del(&sum
->list
);
293 * remove an ordered extent from the tree. No references are dropped
294 * but, anyone waiting on this extent is woken up.
296 int btrfs_remove_ordered_extent(struct inode
*inode
,
297 struct btrfs_ordered_extent
*entry
)
299 struct btrfs_ordered_inode_tree
*tree
;
300 struct rb_node
*node
;
302 tree
= &BTRFS_I(inode
)->ordered_tree
;
303 mutex_lock(&tree
->mutex
);
304 node
= &entry
->rb_node
;
305 rb_erase(node
, &tree
->tree
);
307 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
309 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
310 BTRFS_I(inode
)->outstanding_extents
--;
311 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
312 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode
)->root
,
315 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
316 list_del_init(&entry
->root_extent_list
);
319 * we have no more ordered extents for this inode and
320 * no dirty pages. We can safely remove it from the
321 * list of ordered extents
323 if (RB_EMPTY_ROOT(&tree
->tree
) &&
324 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
325 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
327 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
329 mutex_unlock(&tree
->mutex
);
330 wake_up(&entry
->wait
);
335 * wait for all the ordered extents in a root. This is done when balancing
336 * space between drives.
338 int btrfs_wait_ordered_extents(struct btrfs_root
*root
, int nocow_only
)
340 struct list_head splice
;
341 struct list_head
*cur
;
342 struct btrfs_ordered_extent
*ordered
;
345 INIT_LIST_HEAD(&splice
);
347 spin_lock(&root
->fs_info
->ordered_extent_lock
);
348 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
349 while (!list_empty(&splice
)) {
351 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
354 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
) &&
355 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
356 list_move(&ordered
->root_extent_list
,
357 &root
->fs_info
->ordered_extents
);
358 cond_resched_lock(&root
->fs_info
->ordered_extent_lock
);
362 list_del_init(&ordered
->root_extent_list
);
363 atomic_inc(&ordered
->refs
);
366 * the inode may be getting freed (in sys_unlink path).
368 inode
= igrab(ordered
->inode
);
370 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
373 btrfs_start_ordered_extent(inode
, ordered
, 1);
374 btrfs_put_ordered_extent(ordered
);
377 btrfs_put_ordered_extent(ordered
);
380 spin_lock(&root
->fs_info
->ordered_extent_lock
);
382 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
387 * this is used during transaction commit to write all the inodes
388 * added to the ordered operation list. These files must be fully on
389 * disk before the transaction commits.
391 * we have two modes here, one is to just start the IO via filemap_flush
392 * and the other is to wait for all the io. When we wait, we have an
393 * extra check to make sure the ordered operation list really is empty
396 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
398 struct btrfs_inode
*btrfs_inode
;
400 struct list_head splice
;
402 INIT_LIST_HEAD(&splice
);
404 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
405 spin_lock(&root
->fs_info
->ordered_extent_lock
);
407 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
409 while (!list_empty(&splice
)) {
410 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
413 inode
= &btrfs_inode
->vfs_inode
;
415 list_del_init(&btrfs_inode
->ordered_operations
);
418 * the inode may be getting freed (in sys_unlink path).
420 inode
= igrab(inode
);
422 if (!wait
&& inode
) {
423 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
424 &root
->fs_info
->ordered_operations
);
426 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
430 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
432 filemap_flush(inode
->i_mapping
);
437 spin_lock(&root
->fs_info
->ordered_extent_lock
);
439 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
442 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
443 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
449 * Used to start IO or wait for a given ordered extent to finish.
451 * If wait is one, this effectively waits on page writeback for all the pages
452 * in the extent, and it waits on the io completion code to insert
453 * metadata into the btree corresponding to the extent
455 void btrfs_start_ordered_extent(struct inode
*inode
,
456 struct btrfs_ordered_extent
*entry
,
459 u64 start
= entry
->file_offset
;
460 u64 end
= start
+ entry
->len
- 1;
463 * pages in the range can be dirty, clean or writeback. We
464 * start IO on any dirty ones so the wait doesn't stall waiting
465 * for pdflush to find them
467 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
469 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
475 * Used to wait on ordered extents across a large range of bytes.
477 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
482 struct btrfs_ordered_extent
*ordered
;
485 if (start
+ len
< start
) {
486 orig_end
= INT_LIMIT(loff_t
);
488 orig_end
= start
+ len
- 1;
489 if (orig_end
> INT_LIMIT(loff_t
))
490 orig_end
= INT_LIMIT(loff_t
);
494 /* start IO across the range first to instantiate any delalloc
497 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
499 /* The compression code will leave pages locked but return from
500 * writepage without setting the page writeback. Starting again
501 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
503 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
505 filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
510 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
513 if (ordered
->file_offset
> orig_end
) {
514 btrfs_put_ordered_extent(ordered
);
517 if (ordered
->file_offset
+ ordered
->len
< start
) {
518 btrfs_put_ordered_extent(ordered
);
522 btrfs_start_ordered_extent(inode
, ordered
, 1);
523 end
= ordered
->file_offset
;
524 btrfs_put_ordered_extent(ordered
);
525 if (end
== 0 || end
== start
)
529 if (found
|| test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, orig_end
,
530 EXTENT_DELALLOC
, 0, NULL
)) {
538 * find an ordered extent corresponding to file_offset. return NULL if
539 * nothing is found, otherwise take a reference on the extent and return it
541 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
544 struct btrfs_ordered_inode_tree
*tree
;
545 struct rb_node
*node
;
546 struct btrfs_ordered_extent
*entry
= NULL
;
548 tree
= &BTRFS_I(inode
)->ordered_tree
;
549 mutex_lock(&tree
->mutex
);
550 node
= tree_search(tree
, file_offset
);
554 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
555 if (!offset_in_entry(entry
, file_offset
))
558 atomic_inc(&entry
->refs
);
560 mutex_unlock(&tree
->mutex
);
565 * lookup and return any extent before 'file_offset'. NULL is returned
568 struct btrfs_ordered_extent
*
569 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
571 struct btrfs_ordered_inode_tree
*tree
;
572 struct rb_node
*node
;
573 struct btrfs_ordered_extent
*entry
= NULL
;
575 tree
= &BTRFS_I(inode
)->ordered_tree
;
576 mutex_lock(&tree
->mutex
);
577 node
= tree_search(tree
, file_offset
);
581 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
582 atomic_inc(&entry
->refs
);
584 mutex_unlock(&tree
->mutex
);
589 * After an extent is done, call this to conditionally update the on disk
590 * i_size. i_size is updated to cover any fully written part of the file.
592 int btrfs_ordered_update_i_size(struct inode
*inode
,
593 struct btrfs_ordered_extent
*ordered
)
595 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
596 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
600 struct rb_node
*node
;
601 struct btrfs_ordered_extent
*test
;
603 mutex_lock(&tree
->mutex
);
604 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
607 * if the disk i_size is already at the inode->i_size, or
608 * this ordered extent is inside the disk i_size, we're done
610 if (disk_i_size
>= inode
->i_size
||
611 ordered
->file_offset
+ ordered
->len
<= disk_i_size
) {
616 * we can't update the disk_isize if there are delalloc bytes
617 * between disk_i_size and this ordered extent
619 if (test_range_bit(io_tree
, disk_i_size
,
620 ordered
->file_offset
+ ordered
->len
- 1,
621 EXTENT_DELALLOC
, 0, NULL
)) {
625 * walk backward from this ordered extent to disk_i_size.
626 * if we find an ordered extent then we can't update disk i_size
629 node
= &ordered
->rb_node
;
631 node
= rb_prev(node
);
634 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
635 if (test
->file_offset
+ test
->len
<= disk_i_size
)
637 if (test
->file_offset
>= inode
->i_size
)
639 if (test
->file_offset
>= disk_i_size
)
642 new_i_size
= min_t(u64
, entry_end(ordered
), i_size_read(inode
));
645 * at this point, we know we can safely update i_size to at least
646 * the offset from this ordered extent. But, we need to
647 * walk forward and see if ios from higher up in the file have
650 node
= rb_next(&ordered
->rb_node
);
654 * do we have an area where IO might have finished
655 * between our ordered extent and the next one.
657 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
658 if (test
->file_offset
> entry_end(ordered
))
659 i_size_test
= test
->file_offset
;
661 i_size_test
= i_size_read(inode
);
665 * i_size_test is the end of a region after this ordered
666 * extent where there are no ordered extents. As long as there
667 * are no delalloc bytes in this area, it is safe to update
668 * disk_i_size to the end of the region.
670 if (i_size_test
> entry_end(ordered
) &&
671 !test_range_bit(io_tree
, entry_end(ordered
), i_size_test
- 1,
672 EXTENT_DELALLOC
, 0, NULL
)) {
673 new_i_size
= min_t(u64
, i_size_test
, i_size_read(inode
));
675 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
677 mutex_unlock(&tree
->mutex
);
682 * search the ordered extents for one corresponding to 'offset' and
683 * try to find a checksum. This is used because we allow pages to
684 * be reclaimed before their checksum is actually put into the btree
686 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
689 struct btrfs_ordered_sum
*ordered_sum
;
690 struct btrfs_sector_sum
*sector_sums
;
691 struct btrfs_ordered_extent
*ordered
;
692 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
693 unsigned long num_sectors
;
695 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
698 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
702 mutex_lock(&tree
->mutex
);
703 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
704 if (disk_bytenr
>= ordered_sum
->bytenr
) {
705 num_sectors
= ordered_sum
->len
/ sectorsize
;
706 sector_sums
= ordered_sum
->sums
;
707 for (i
= 0; i
< num_sectors
; i
++) {
708 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
709 *sum
= sector_sums
[i
].sum
;
717 mutex_unlock(&tree
->mutex
);
718 btrfs_put_ordered_extent(ordered
);
724 * add a given inode to the list of inodes that must be fully on
725 * disk before a transaction commit finishes.
727 * This basically gives us the ext3 style data=ordered mode, and it is mostly
728 * used to make sure renamed files are fully on disk.
730 * It is a noop if the inode is already fully on disk.
732 * If trans is not null, we'll do a friendly check for a transaction that
733 * is already flushing things and force the IO down ourselves.
735 int btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
736 struct btrfs_root
*root
,
741 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
744 * if this file hasn't been changed since the last transaction
745 * commit, we can safely return without doing anything
747 if (last_mod
< root
->fs_info
->last_trans_committed
)
751 * the transaction is already committing. Just start the IO and
752 * don't bother with all of this list nonsense
754 if (trans
&& root
->fs_info
->running_transaction
->blocked
) {
755 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
759 spin_lock(&root
->fs_info
->ordered_extent_lock
);
760 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
761 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
762 &root
->fs_info
->ordered_operations
);
764 spin_unlock(&root
->fs_info
->ordered_extent_lock
);