2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
32 #include <asm/uaccess.h>
44 * ntfs_file_open - called when an inode is about to be opened
45 * @vi: inode to be opened
46 * @filp: file structure describing the inode
48 * Limit file size to the page cache limit on architectures where unsigned long
49 * is 32-bits. This is the most we can do for now without overflowing the page
50 * cache page index. Doing it this way means we don't run into problems because
51 * of existing too large files. It would be better to allow the user to read
52 * the beginning of the file but I doubt very much anyone is going to hit this
53 * check on a 32-bit architecture, so there is no point in adding the extra
54 * complexity required to support this.
56 * On 64-bit architectures, the check is hopefully optimized away by the
59 * After the check passes, just call generic_file_open() to do its work.
61 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
63 if (sizeof(unsigned long) < 8) {
64 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
67 return generic_file_open(vi
, filp
);
73 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
74 * @ni: ntfs inode of the attribute to extend
75 * @new_init_size: requested new initialized size in bytes
76 * @cached_page: store any allocated but unused page here
77 * @lru_pvec: lru-buffering pagevec of the caller
79 * Extend the initialized size of an attribute described by the ntfs inode @ni
80 * to @new_init_size bytes. This involves zeroing any non-sparse space between
81 * the old initialized size and @new_init_size both in the page cache and on
82 * disk (if relevant complete pages are already uptodate in the page cache then
83 * these are simply marked dirty).
85 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
86 * in the resident attribute case, it is tied to the initialized size and, in
87 * the non-resident attribute case, it may not fall below the initialized size.
89 * Note that if the attribute is resident, we do not need to touch the page
90 * cache at all. This is because if the page cache page is not uptodate we
91 * bring it uptodate later, when doing the write to the mft record since we
92 * then already have the page mapped. And if the page is uptodate, the
93 * non-initialized region will already have been zeroed when the page was
94 * brought uptodate and the region may in fact already have been overwritten
95 * with new data via mmap() based writes, so we cannot just zero it. And since
96 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
97 * is unspecified, we choose not to do zeroing and thus we do not need to touch
98 * the page at all. For a more detailed explanation see ntfs_truncate() in
101 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
104 * Return 0 on success and -errno on error. In the case that an error is
105 * encountered it is possible that the initialized size will already have been
106 * incremented some way towards @new_init_size but it is guaranteed that if
107 * this is the case, the necessary zeroing will also have happened and that all
108 * metadata is self-consistent.
110 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
111 * held by the caller.
113 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
,
114 struct page
**cached_page
, struct pagevec
*lru_pvec
)
118 pgoff_t index
, end_index
;
120 struct inode
*vi
= VFS_I(ni
);
122 MFT_RECORD
*m
= NULL
;
124 ntfs_attr_search_ctx
*ctx
= NULL
;
125 struct address_space
*mapping
;
126 struct page
*page
= NULL
;
131 read_lock_irqsave(&ni
->size_lock
, flags
);
132 old_init_size
= ni
->initialized_size
;
133 old_i_size
= i_size_read(vi
);
134 BUG_ON(new_init_size
> ni
->allocated_size
);
135 read_unlock_irqrestore(&ni
->size_lock
, flags
);
136 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
137 "old_initialized_size 0x%llx, "
138 "new_initialized_size 0x%llx, i_size 0x%llx.",
139 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
140 (unsigned long long)old_init_size
,
141 (unsigned long long)new_init_size
, old_i_size
);
145 base_ni
= ni
->ext
.base_ntfs_ino
;
146 /* Use goto to reduce indentation and we need the label below anyway. */
147 if (NInoNonResident(ni
))
148 goto do_non_resident_extend
;
149 BUG_ON(old_init_size
!= old_i_size
);
150 m
= map_mft_record(base_ni
);
156 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
157 if (unlikely(!ctx
)) {
161 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
162 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
170 BUG_ON(a
->non_resident
);
171 /* The total length of the attribute value. */
172 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
173 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
175 * Do the zeroing in the mft record and update the attribute size in
178 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
179 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
180 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
181 /* Finally, update the sizes in the vfs and ntfs inodes. */
182 write_lock_irqsave(&ni
->size_lock
, flags
);
183 i_size_write(vi
, new_init_size
);
184 ni
->initialized_size
= new_init_size
;
185 write_unlock_irqrestore(&ni
->size_lock
, flags
);
187 do_non_resident_extend
:
189 * If the new initialized size @new_init_size exceeds the current file
190 * size (vfs inode->i_size), we need to extend the file size to the
191 * new initialized size.
193 if (new_init_size
> old_i_size
) {
194 m
= map_mft_record(base_ni
);
200 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
201 if (unlikely(!ctx
)) {
205 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
206 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
214 BUG_ON(!a
->non_resident
);
215 BUG_ON(old_i_size
!= (loff_t
)
216 sle64_to_cpu(a
->data
.non_resident
.data_size
));
217 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
218 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
219 mark_mft_record_dirty(ctx
->ntfs_ino
);
220 /* Update the file size in the vfs inode. */
221 i_size_write(vi
, new_init_size
);
222 ntfs_attr_put_search_ctx(ctx
);
224 unmap_mft_record(base_ni
);
227 mapping
= vi
->i_mapping
;
228 index
= old_init_size
>> PAGE_CACHE_SHIFT
;
229 end_index
= (new_init_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
232 * Read the page. If the page is not present, this will zero
233 * the uninitialized regions for us.
235 page
= read_mapping_page(mapping
, index
, NULL
);
240 if (unlikely(PageError(page
))) {
241 page_cache_release(page
);
246 * Update the initialized size in the ntfs inode. This is
247 * enough to make ntfs_writepage() work.
249 write_lock_irqsave(&ni
->size_lock
, flags
);
250 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
251 if (ni
->initialized_size
> new_init_size
)
252 ni
->initialized_size
= new_init_size
;
253 write_unlock_irqrestore(&ni
->size_lock
, flags
);
254 /* Set the page dirty so it gets written out. */
255 set_page_dirty(page
);
256 page_cache_release(page
);
258 * Play nice with the vm and the rest of the system. This is
259 * very much needed as we can potentially be modifying the
260 * initialised size from a very small value to a really huge
262 * f = open(somefile, O_TRUNC);
263 * truncate(f, 10GiB);
266 * And this would mean we would be marking dirty hundreds of
267 * thousands of pages or as in the above example more than
268 * two and a half million pages!
270 * TODO: For sparse pages could optimize this workload by using
271 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
272 * would be set in readpage for sparse pages and here we would
273 * not need to mark dirty any pages which have this bit set.
274 * The only caveat is that we have to clear the bit everywhere
275 * where we allocate any clusters that lie in the page or that
278 * TODO: An even greater optimization would be for us to only
279 * call readpage() on pages which are not in sparse regions as
280 * determined from the runlist. This would greatly reduce the
281 * number of pages we read and make dirty in the case of sparse
284 balance_dirty_pages_ratelimited(mapping
);
286 } while (++index
< end_index
);
287 read_lock_irqsave(&ni
->size_lock
, flags
);
288 BUG_ON(ni
->initialized_size
!= new_init_size
);
289 read_unlock_irqrestore(&ni
->size_lock
, flags
);
290 /* Now bring in sync the initialized_size in the mft record. */
291 m
= map_mft_record(base_ni
);
297 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
298 if (unlikely(!ctx
)) {
302 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
303 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
311 BUG_ON(!a
->non_resident
);
312 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
314 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
315 mark_mft_record_dirty(ctx
->ntfs_ino
);
317 ntfs_attr_put_search_ctx(ctx
);
319 unmap_mft_record(base_ni
);
320 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
321 (unsigned long long)new_init_size
, i_size_read(vi
));
324 write_lock_irqsave(&ni
->size_lock
, flags
);
325 ni
->initialized_size
= old_init_size
;
326 write_unlock_irqrestore(&ni
->size_lock
, flags
);
329 ntfs_attr_put_search_ctx(ctx
);
331 unmap_mft_record(base_ni
);
332 ntfs_debug("Failed. Returning error code %i.", err
);
337 * ntfs_fault_in_pages_readable -
339 * Fault a number of userspace pages into pagetables.
341 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
342 * with more than two userspace pages as well as handling the single page case
345 * If you find this difficult to understand, then think of the while loop being
346 * the following code, except that we do without the integer variable ret:
349 * ret = __get_user(c, uaddr);
350 * uaddr += PAGE_SIZE;
351 * } while (!ret && uaddr < end);
353 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
354 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
355 * this is only a read and not a write, and since it is still in the same page,
356 * it should not matter and this makes the code much simpler.
358 static inline void ntfs_fault_in_pages_readable(const char __user
*uaddr
,
361 const char __user
*end
;
364 /* Set @end to the first byte outside the last page we care about. */
365 end
= (const char __user
*)PAGE_ALIGN((unsigned long)uaddr
+ bytes
);
367 while (!__get_user(c
, uaddr
) && (uaddr
+= PAGE_SIZE
, uaddr
< end
))
372 * ntfs_fault_in_pages_readable_iovec -
374 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
376 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec
*iov
,
377 size_t iov_ofs
, int bytes
)
380 const char __user
*buf
;
383 buf
= iov
->iov_base
+ iov_ofs
;
384 len
= iov
->iov_len
- iov_ofs
;
387 ntfs_fault_in_pages_readable(buf
, len
);
395 * __ntfs_grab_cache_pages - obtain a number of locked pages
396 * @mapping: address space mapping from which to obtain page cache pages
397 * @index: starting index in @mapping at which to begin obtaining pages
398 * @nr_pages: number of page cache pages to obtain
399 * @pages: array of pages in which to return the obtained page cache pages
400 * @cached_page: allocated but as yet unused page
401 * @lru_pvec: lru-buffering pagevec of caller
403 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
404 * starting at index @index.
406 * If a page is newly created, increment its refcount and add it to the
407 * caller's lru-buffering pagevec @lru_pvec.
409 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
410 * are obtained at once instead of just one page and that 0 is returned on
411 * success and -errno on error.
413 * Note, the page locks are obtained in ascending page index order.
415 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
416 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
417 struct page
**cached_page
, struct pagevec
*lru_pvec
)
424 pages
[nr
] = find_lock_page(mapping
, index
);
427 *cached_page
= page_cache_alloc(mapping
);
428 if (unlikely(!*cached_page
)) {
433 err
= add_to_page_cache(*cached_page
, mapping
, index
,
440 pages
[nr
] = *cached_page
;
441 page_cache_get(*cached_page
);
442 if (unlikely(!pagevec_add(lru_pvec
, *cached_page
)))
443 __pagevec_lru_add_file(lru_pvec
);
448 } while (nr
< nr_pages
);
453 unlock_page(pages
[--nr
]);
454 page_cache_release(pages
[nr
]);
459 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
463 bh
->b_end_io
= end_buffer_read_sync
;
464 return submit_bh(READ
, bh
);
468 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
469 * @pages: array of destination pages
470 * @nr_pages: number of pages in @pages
471 * @pos: byte position in file at which the write begins
472 * @bytes: number of bytes to be written
474 * This is called for non-resident attributes from ntfs_file_buffered_write()
475 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
476 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
477 * data has not yet been copied into the @pages.
479 * Need to fill any holes with actual clusters, allocate buffers if necessary,
480 * ensure all the buffers are mapped, and bring uptodate any buffers that are
481 * only partially being written to.
483 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
484 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
485 * the same cluster and that they are the entirety of that cluster, and that
486 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
488 * i_size is not to be modified yet.
490 * Return 0 on success or -errno on error.
492 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
493 unsigned nr_pages
, s64 pos
, size_t bytes
)
495 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
497 s64 bh_pos
, vcn_len
, end
, initialized_size
;
501 ntfs_inode
*ni
, *base_ni
= NULL
;
503 runlist_element
*rl
, *rl2
;
504 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
505 ntfs_attr_search_ctx
*ctx
= NULL
;
506 MFT_RECORD
*m
= NULL
;
507 ATTR_RECORD
*a
= NULL
;
509 u32 attr_rec_len
= 0;
510 unsigned blocksize
, u
;
512 bool rl_write_locked
, was_hole
, is_retry
;
513 unsigned char blocksize_bits
;
516 u8 mft_attr_mapped
:1;
519 } status
= { 0, 0, 0, 0 };
524 vi
= pages
[0]->mapping
->host
;
527 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
528 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
529 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
530 (long long)pos
, bytes
);
531 blocksize
= vol
->sb
->s_blocksize
;
532 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
538 * create_empty_buffers() will create uptodate/dirty buffers if
539 * the page is uptodate/dirty.
541 if (!page_has_buffers(page
)) {
542 create_empty_buffers(page
, blocksize
, 0);
543 if (unlikely(!page_has_buffers(page
)))
546 } while (++u
< nr_pages
);
547 rl_write_locked
= false;
554 cpos
= pos
>> vol
->cluster_size_bits
;
556 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
558 * Loop over each page and for each page over each buffer. Use goto to
559 * reduce indentation.
564 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
565 bh
= head
= page_buffers(page
);
571 /* Clear buffer_new on all buffers to reinitialise state. */
573 clear_buffer_new(bh
);
574 bh_end
= bh_pos
+ blocksize
;
575 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
576 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
577 if (buffer_mapped(bh
)) {
579 * The buffer is already mapped. If it is uptodate,
582 if (buffer_uptodate(bh
))
585 * The buffer is not uptodate. If the page is uptodate
586 * set the buffer uptodate and otherwise ignore it.
588 if (PageUptodate(page
)) {
589 set_buffer_uptodate(bh
);
593 * Neither the page nor the buffer are uptodate. If
594 * the buffer is only partially being written to, we
595 * need to read it in before the write, i.e. now.
597 if ((bh_pos
< pos
&& bh_end
> pos
) ||
598 (bh_pos
< end
&& bh_end
> end
)) {
600 * If the buffer is fully or partially within
601 * the initialized size, do an actual read.
602 * Otherwise, simply zero the buffer.
604 read_lock_irqsave(&ni
->size_lock
, flags
);
605 initialized_size
= ni
->initialized_size
;
606 read_unlock_irqrestore(&ni
->size_lock
, flags
);
607 if (bh_pos
< initialized_size
) {
608 ntfs_submit_bh_for_read(bh
);
611 zero_user(page
, bh_offset(bh
),
613 set_buffer_uptodate(bh
);
618 /* Unmapped buffer. Need to map it. */
619 bh
->b_bdev
= vol
->sb
->s_bdev
;
621 * If the current buffer is in the same clusters as the map
622 * cache, there is no need to check the runlist again. The
623 * map cache is made up of @vcn, which is the first cached file
624 * cluster, @vcn_len which is the number of cached file
625 * clusters, @lcn is the device cluster corresponding to @vcn,
626 * and @lcn_block is the block number corresponding to @lcn.
628 cdelta
= bh_cpos
- vcn
;
629 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
632 bh
->b_blocknr
= lcn_block
+
633 (cdelta
<< (vol
->cluster_size_bits
-
635 (bh_cofs
>> blocksize_bits
);
636 set_buffer_mapped(bh
);
638 * If the page is uptodate so is the buffer. If the
639 * buffer is fully outside the write, we ignore it if
640 * it was already allocated and we mark it dirty so it
641 * gets written out if we allocated it. On the other
642 * hand, if we allocated the buffer but we are not
643 * marking it dirty we set buffer_new so we can do
646 if (PageUptodate(page
)) {
647 if (!buffer_uptodate(bh
))
648 set_buffer_uptodate(bh
);
649 if (unlikely(was_hole
)) {
650 /* We allocated the buffer. */
651 unmap_underlying_metadata(bh
->b_bdev
,
653 if (bh_end
<= pos
|| bh_pos
>= end
)
654 mark_buffer_dirty(bh
);
660 /* Page is _not_ uptodate. */
661 if (likely(!was_hole
)) {
663 * Buffer was already allocated. If it is not
664 * uptodate and is only partially being written
665 * to, we need to read it in before the write,
668 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
673 * If the buffer is fully or partially
674 * within the initialized size, do an
675 * actual read. Otherwise, simply zero
678 read_lock_irqsave(&ni
->size_lock
,
680 initialized_size
= ni
->initialized_size
;
681 read_unlock_irqrestore(&ni
->size_lock
,
683 if (bh_pos
< initialized_size
) {
684 ntfs_submit_bh_for_read(bh
);
687 zero_user(page
, bh_offset(bh
),
689 set_buffer_uptodate(bh
);
694 /* We allocated the buffer. */
695 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
697 * If the buffer is fully outside the write, zero it,
698 * set it uptodate, and mark it dirty so it gets
699 * written out. If it is partially being written to,
700 * zero region surrounding the write but leave it to
701 * commit write to do anything else. Finally, if the
702 * buffer is fully being overwritten, do nothing.
704 if (bh_end
<= pos
|| bh_pos
>= end
) {
705 if (!buffer_uptodate(bh
)) {
706 zero_user(page
, bh_offset(bh
),
708 set_buffer_uptodate(bh
);
710 mark_buffer_dirty(bh
);
714 if (!buffer_uptodate(bh
) &&
715 (bh_pos
< pos
|| bh_end
> end
)) {
719 kaddr
= kmap_atomic(page
, KM_USER0
);
721 pofs
= bh_pos
& ~PAGE_CACHE_MASK
;
722 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
725 pofs
= end
& ~PAGE_CACHE_MASK
;
726 memset(kaddr
+ pofs
, 0, bh_end
- end
);
728 kunmap_atomic(kaddr
, KM_USER0
);
729 flush_dcache_page(page
);
734 * Slow path: this is the first buffer in the cluster. If it
735 * is outside allocated size and is not uptodate, zero it and
738 read_lock_irqsave(&ni
->size_lock
, flags
);
739 initialized_size
= ni
->allocated_size
;
740 read_unlock_irqrestore(&ni
->size_lock
, flags
);
741 if (bh_pos
> initialized_size
) {
742 if (PageUptodate(page
)) {
743 if (!buffer_uptodate(bh
))
744 set_buffer_uptodate(bh
);
745 } else if (!buffer_uptodate(bh
)) {
746 zero_user(page
, bh_offset(bh
), blocksize
);
747 set_buffer_uptodate(bh
);
753 down_read(&ni
->runlist
.lock
);
757 if (likely(rl
!= NULL
)) {
758 /* Seek to element containing target cluster. */
759 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
761 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
762 if (likely(lcn
>= 0)) {
764 * Successful remap, setup the map cache and
765 * use that to deal with the buffer.
769 vcn_len
= rl
[1].vcn
- vcn
;
770 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
774 * If the number of remaining clusters touched
775 * by the write is smaller or equal to the
776 * number of cached clusters, unlock the
777 * runlist as the map cache will be used from
780 if (likely(vcn
+ vcn_len
>= cend
)) {
781 if (rl_write_locked
) {
782 up_write(&ni
->runlist
.lock
);
783 rl_write_locked
= false;
785 up_read(&ni
->runlist
.lock
);
788 goto map_buffer_cached
;
791 lcn
= LCN_RL_NOT_MAPPED
;
793 * If it is not a hole and not out of bounds, the runlist is
794 * probably unmapped so try to map it now.
796 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
797 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
798 /* Attempt to map runlist. */
799 if (!rl_write_locked
) {
801 * We need the runlist locked for
802 * writing, so if it is locked for
803 * reading relock it now and retry in
804 * case it changed whilst we dropped
807 up_read(&ni
->runlist
.lock
);
808 down_write(&ni
->runlist
.lock
);
809 rl_write_locked
= true;
812 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
819 * If @vcn is out of bounds, pretend @lcn is
820 * LCN_ENOENT. As long as the buffer is out
821 * of bounds this will work fine.
823 if (err
== -ENOENT
) {
826 goto rl_not_mapped_enoent
;
830 /* Failed to map the buffer, even after retrying. */
832 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
833 "attribute type 0x%x, vcn 0x%llx, "
834 "vcn offset 0x%x, because its "
835 "location on disk could not be "
836 "determined%s (error code %i).",
837 ni
->mft_no
, ni
->type
,
838 (unsigned long long)bh_cpos
,
840 vol
->cluster_size_mask
,
841 is_retry
? " even after retrying" : "",
845 rl_not_mapped_enoent
:
847 * The buffer is in a hole or out of bounds. We need to fill
848 * the hole, unless the buffer is in a cluster which is not
849 * touched by the write, in which case we just leave the buffer
850 * unmapped. This can only happen when the cluster size is
851 * less than the page cache size.
853 if (unlikely(vol
->cluster_size
< PAGE_CACHE_SIZE
)) {
854 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
855 vol
->cluster_size_bits
;
856 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
859 * If the buffer is uptodate we skip it. If it
860 * is not but the page is uptodate, we can set
861 * the buffer uptodate. If the page is not
862 * uptodate, we can clear the buffer and set it
863 * uptodate. Whether this is worthwhile is
864 * debatable and this could be removed.
866 if (PageUptodate(page
)) {
867 if (!buffer_uptodate(bh
))
868 set_buffer_uptodate(bh
);
869 } else if (!buffer_uptodate(bh
)) {
870 zero_user(page
, bh_offset(bh
),
872 set_buffer_uptodate(bh
);
878 * Out of bounds buffer is invalid if it was not really out of
881 BUG_ON(lcn
!= LCN_HOLE
);
883 * We need the runlist locked for writing, so if it is locked
884 * for reading relock it now and retry in case it changed
885 * whilst we dropped the lock.
888 if (!rl_write_locked
) {
889 up_read(&ni
->runlist
.lock
);
890 down_write(&ni
->runlist
.lock
);
891 rl_write_locked
= true;
894 /* Find the previous last allocated cluster. */
895 BUG_ON(rl
->lcn
!= LCN_HOLE
);
898 while (--rl2
>= ni
->runlist
.rl
) {
900 lcn
= rl2
->lcn
+ rl2
->length
;
904 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
908 ntfs_debug("Failed to allocate cluster, error code %i.",
913 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
918 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
919 ntfs_error(vol
->sb
, "Failed to release "
920 "allocated cluster in error "
921 "code path. Run chkdsk to "
922 "recover the lost cluster.");
929 status
.runlist_merged
= 1;
930 ntfs_debug("Allocated cluster, lcn 0x%llx.",
931 (unsigned long long)lcn
);
932 /* Map and lock the mft record and get the attribute record. */
936 base_ni
= ni
->ext
.base_ntfs_ino
;
937 m
= map_mft_record(base_ni
);
942 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
943 if (unlikely(!ctx
)) {
945 unmap_mft_record(base_ni
);
948 status
.mft_attr_mapped
= 1;
949 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
950 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
959 * Find the runlist element with which the attribute extent
960 * starts. Note, we cannot use the _attr_ version because we
961 * have mapped the mft record. That is ok because we know the
962 * runlist fragment must be mapped already to have ever gotten
963 * here, so we can just use the _rl_ version.
965 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
966 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
968 BUG_ON(!rl2
->length
);
969 BUG_ON(rl2
->lcn
< LCN_HOLE
);
970 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
972 * If @highest_vcn is zero, calculate the real highest_vcn
973 * (which can really be zero).
976 highest_vcn
= (sle64_to_cpu(
977 a
->data
.non_resident
.allocated_size
) >>
978 vol
->cluster_size_bits
) - 1;
980 * Determine the size of the mapping pairs array for the new
981 * extent, i.e. the old extent with the hole filled.
983 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
985 if (unlikely(mp_size
<= 0)) {
986 if (!(err
= mp_size
))
988 ntfs_debug("Failed to get size for mapping pairs "
989 "array, error code %i.", err
);
993 * Resize the attribute record to fit the new mapping pairs
996 attr_rec_len
= le32_to_cpu(a
->length
);
997 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
998 a
->data
.non_resident
.mapping_pairs_offset
));
1000 BUG_ON(err
!= -ENOSPC
);
1001 // TODO: Deal with this by using the current attribute
1002 // and fill it with as much of the mapping pairs
1003 // array as possible. Then loop over each attribute
1004 // extent rewriting the mapping pairs arrays as we go
1005 // along and if when we reach the end we have not
1006 // enough space, try to resize the last attribute
1007 // extent and if even that fails, add a new attribute
1009 // We could also try to resize at each step in the hope
1010 // that we will not need to rewrite every single extent.
1011 // Note, we may need to decompress some extents to fill
1012 // the runlist as we are walking the extents...
1013 ntfs_error(vol
->sb
, "Not enough space in the mft "
1014 "record for the extended attribute "
1015 "record. This case is not "
1016 "implemented yet.");
1020 status
.mp_rebuilt
= 1;
1022 * Generate the mapping pairs array directly into the attribute
1025 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1026 a
->data
.non_resident
.mapping_pairs_offset
),
1027 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1028 if (unlikely(err
)) {
1029 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1030 "attribute type 0x%x, because building "
1031 "the mapping pairs failed with error "
1032 "code %i.", vi
->i_ino
,
1033 (unsigned)le32_to_cpu(ni
->type
), err
);
1037 /* Update the highest_vcn but only if it was not set. */
1038 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1039 a
->data
.non_resident
.highest_vcn
=
1040 cpu_to_sle64(highest_vcn
);
1042 * If the attribute is sparse/compressed, update the compressed
1043 * size in the ntfs_inode structure and the attribute record.
1045 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1047 * If we are not in the first attribute extent, switch
1048 * to it, but first ensure the changes will make it to
1051 if (a
->data
.non_resident
.lowest_vcn
) {
1052 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1053 mark_mft_record_dirty(ctx
->ntfs_ino
);
1054 ntfs_attr_reinit_search_ctx(ctx
);
1055 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1056 ni
->name_len
, CASE_SENSITIVE
,
1058 if (unlikely(err
)) {
1059 status
.attr_switched
= 1;
1062 /* @m is not used any more so do not set it. */
1065 write_lock_irqsave(&ni
->size_lock
, flags
);
1066 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1067 a
->data
.non_resident
.compressed_size
=
1068 cpu_to_sle64(ni
->itype
.compressed
.size
);
1069 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1071 /* Ensure the changes make it to disk. */
1072 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1073 mark_mft_record_dirty(ctx
->ntfs_ino
);
1074 ntfs_attr_put_search_ctx(ctx
);
1075 unmap_mft_record(base_ni
);
1076 /* Successfully filled the hole. */
1077 status
.runlist_merged
= 0;
1078 status
.mft_attr_mapped
= 0;
1079 status
.mp_rebuilt
= 0;
1080 /* Setup the map cache and use that to deal with the buffer. */
1084 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1087 * If the number of remaining clusters in the @pages is smaller
1088 * or equal to the number of cached clusters, unlock the
1089 * runlist as the map cache will be used from now on.
1091 if (likely(vcn
+ vcn_len
>= cend
)) {
1092 up_write(&ni
->runlist
.lock
);
1093 rl_write_locked
= false;
1096 goto map_buffer_cached
;
1097 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1098 /* If there are no errors, do the next page. */
1099 if (likely(!err
&& ++u
< nr_pages
))
1101 /* If there are no errors, release the runlist lock if we took it. */
1103 if (unlikely(rl_write_locked
)) {
1104 up_write(&ni
->runlist
.lock
);
1105 rl_write_locked
= false;
1106 } else if (unlikely(rl
))
1107 up_read(&ni
->runlist
.lock
);
1110 /* If we issued read requests, let them complete. */
1111 read_lock_irqsave(&ni
->size_lock
, flags
);
1112 initialized_size
= ni
->initialized_size
;
1113 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1114 while (wait_bh
> wait
) {
1117 if (likely(buffer_uptodate(bh
))) {
1119 bh_pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1122 * If the buffer overflows the initialized size, need
1123 * to zero the overflowing region.
1125 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1128 if (likely(bh_pos
< initialized_size
))
1129 ofs
= initialized_size
- bh_pos
;
1130 zero_user_segment(page
, bh_offset(bh
) + ofs
,
1133 } else /* if (unlikely(!buffer_uptodate(bh))) */
1137 /* Clear buffer_new on all buffers. */
1140 bh
= head
= page_buffers(pages
[u
]);
1143 clear_buffer_new(bh
);
1144 } while ((bh
= bh
->b_this_page
) != head
);
1145 } while (++u
< nr_pages
);
1146 ntfs_debug("Done.");
1149 if (status
.attr_switched
) {
1150 /* Get back to the attribute extent we modified. */
1151 ntfs_attr_reinit_search_ctx(ctx
);
1152 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1153 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1154 ntfs_error(vol
->sb
, "Failed to find required "
1155 "attribute extent of attribute in "
1156 "error code path. Run chkdsk to "
1158 write_lock_irqsave(&ni
->size_lock
, flags
);
1159 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1160 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1161 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1162 mark_mft_record_dirty(ctx
->ntfs_ino
);
1164 * The only thing that is now wrong is the compressed
1165 * size of the base attribute extent which chkdsk
1166 * should be able to fix.
1172 status
.attr_switched
= 0;
1176 * If the runlist has been modified, need to restore it by punching a
1177 * hole into it and we then need to deallocate the on-disk cluster as
1178 * well. Note, we only modify the runlist if we are able to generate a
1179 * new mapping pairs array, i.e. only when the mapped attribute extent
1182 if (status
.runlist_merged
&& !status
.attr_switched
) {
1183 BUG_ON(!rl_write_locked
);
1184 /* Make the file cluster we allocated sparse in the runlist. */
1185 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1186 ntfs_error(vol
->sb
, "Failed to punch hole into "
1187 "attribute runlist in error code "
1188 "path. Run chkdsk to recover the "
1191 } else /* if (success) */ {
1192 status
.runlist_merged
= 0;
1194 * Deallocate the on-disk cluster we allocated but only
1195 * if we succeeded in punching its vcn out of the
1198 down_write(&vol
->lcnbmp_lock
);
1199 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1200 ntfs_error(vol
->sb
, "Failed to release "
1201 "allocated cluster in error "
1202 "code path. Run chkdsk to "
1203 "recover the lost cluster.");
1206 up_write(&vol
->lcnbmp_lock
);
1210 * Resize the attribute record to its old size and rebuild the mapping
1211 * pairs array. Note, we only can do this if the runlist has been
1212 * restored to its old state which also implies that the mapped
1213 * attribute extent is not switched.
1215 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1216 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1217 ntfs_error(vol
->sb
, "Failed to restore attribute "
1218 "record in error code path. Run "
1219 "chkdsk to recover.");
1221 } else /* if (success) */ {
1222 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1223 le16_to_cpu(a
->data
.non_resident
.
1224 mapping_pairs_offset
), attr_rec_len
-
1225 le16_to_cpu(a
->data
.non_resident
.
1226 mapping_pairs_offset
), ni
->runlist
.rl
,
1227 vcn
, highest_vcn
, NULL
)) {
1228 ntfs_error(vol
->sb
, "Failed to restore "
1229 "mapping pairs array in error "
1230 "code path. Run chkdsk to "
1234 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1235 mark_mft_record_dirty(ctx
->ntfs_ino
);
1238 /* Release the mft record and the attribute. */
1239 if (status
.mft_attr_mapped
) {
1240 ntfs_attr_put_search_ctx(ctx
);
1241 unmap_mft_record(base_ni
);
1243 /* Release the runlist lock. */
1244 if (rl_write_locked
)
1245 up_write(&ni
->runlist
.lock
);
1247 up_read(&ni
->runlist
.lock
);
1249 * Zero out any newly allocated blocks to avoid exposing stale data.
1250 * If BH_New is set, we know that the block was newly allocated above
1251 * and that it has not been fully zeroed and marked dirty yet.
1255 end
= bh_cpos
<< vol
->cluster_size_bits
;
1258 bh
= head
= page_buffers(page
);
1260 if (u
== nr_pages
&&
1261 ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1262 bh_offset(bh
) >= end
)
1264 if (!buffer_new(bh
))
1266 clear_buffer_new(bh
);
1267 if (!buffer_uptodate(bh
)) {
1268 if (PageUptodate(page
))
1269 set_buffer_uptodate(bh
);
1271 zero_user(page
, bh_offset(bh
),
1273 set_buffer_uptodate(bh
);
1276 mark_buffer_dirty(bh
);
1277 } while ((bh
= bh
->b_this_page
) != head
);
1278 } while (++u
<= nr_pages
);
1279 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1284 * Copy as much as we can into the pages and return the number of bytes which
1285 * were successfully copied. If a fault is encountered then clear the pages
1286 * out to (ofs + bytes) and return the number of bytes which were copied.
1288 static inline size_t ntfs_copy_from_user(struct page
**pages
,
1289 unsigned nr_pages
, unsigned ofs
, const char __user
*buf
,
1292 struct page
**last_page
= pages
+ nr_pages
;
1299 len
= PAGE_CACHE_SIZE
- ofs
;
1302 addr
= kmap_atomic(*pages
, KM_USER0
);
1303 left
= __copy_from_user_inatomic(addr
+ ofs
, buf
, len
);
1304 kunmap_atomic(addr
, KM_USER0
);
1305 if (unlikely(left
)) {
1306 /* Do it the slow way. */
1307 addr
= kmap(*pages
);
1308 left
= __copy_from_user(addr
+ ofs
, buf
, len
);
1319 } while (++pages
< last_page
);
1323 total
+= len
- left
;
1324 /* Zero the rest of the target like __copy_from_user(). */
1325 while (++pages
< last_page
) {
1329 len
= PAGE_CACHE_SIZE
;
1332 zero_user(*pages
, 0, len
);
1337 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr
,
1338 const struct iovec
*iov
, size_t iov_ofs
, size_t bytes
)
1343 const char __user
*buf
= iov
->iov_base
+ iov_ofs
;
1347 len
= iov
->iov_len
- iov_ofs
;
1350 left
= __copy_from_user_inatomic(vaddr
, buf
, len
);
1354 if (unlikely(left
)) {
1366 static inline void ntfs_set_next_iovec(const struct iovec
**iovp
,
1367 size_t *iov_ofsp
, size_t bytes
)
1369 const struct iovec
*iov
= *iovp
;
1370 size_t iov_ofs
= *iov_ofsp
;
1375 len
= iov
->iov_len
- iov_ofs
;
1380 if (iov
->iov_len
== iov_ofs
) {
1386 *iov_ofsp
= iov_ofs
;
1390 * This has the same side-effects and return value as ntfs_copy_from_user().
1391 * The difference is that on a fault we need to memset the remainder of the
1392 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1393 * single-segment behaviour.
1395 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1396 * when atomic and when not atomic. This is ok because
1397 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1398 * and it is ok to call this when non-atomic.
1399 * Infact, the only difference between __copy_from_user_inatomic() and
1400 * __copy_from_user() is that the latter calls might_sleep() and the former
1401 * should not zero the tail of the buffer on error. And on many
1402 * architectures __copy_from_user_inatomic() is just defined to
1403 * __copy_from_user() so it makes no difference at all on those architectures.
1405 static inline size_t ntfs_copy_from_user_iovec(struct page
**pages
,
1406 unsigned nr_pages
, unsigned ofs
, const struct iovec
**iov
,
1407 size_t *iov_ofs
, size_t bytes
)
1409 struct page
**last_page
= pages
+ nr_pages
;
1411 size_t copied
, len
, total
= 0;
1414 len
= PAGE_CACHE_SIZE
- ofs
;
1417 addr
= kmap_atomic(*pages
, KM_USER0
);
1418 copied
= __ntfs_copy_from_user_iovec_inatomic(addr
+ ofs
,
1419 *iov
, *iov_ofs
, len
);
1420 kunmap_atomic(addr
, KM_USER0
);
1421 if (unlikely(copied
!= len
)) {
1422 /* Do it the slow way. */
1423 addr
= kmap(*pages
);
1424 copied
= __ntfs_copy_from_user_iovec_inatomic(addr
+ ofs
,
1425 *iov
, *iov_ofs
, len
);
1427 * Zero the rest of the target like __copy_from_user().
1429 memset(addr
+ ofs
+ copied
, 0, len
- copied
);
1431 if (unlikely(copied
!= len
))
1438 ntfs_set_next_iovec(iov
, iov_ofs
, len
);
1440 } while (++pages
< last_page
);
1445 /* Zero the rest of the target like __copy_from_user(). */
1446 while (++pages
< last_page
) {
1450 len
= PAGE_CACHE_SIZE
;
1453 zero_user(*pages
, 0, len
);
1458 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1463 * Warning: Do not do the decrement at the same time as the call to
1464 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1465 * decrement never happens so the loop never terminates.
1469 flush_dcache_page(pages
[nr_pages
]);
1470 } while (nr_pages
> 0);
1474 * ntfs_commit_pages_after_non_resident_write - commit the received data
1475 * @pages: array of destination pages
1476 * @nr_pages: number of pages in @pages
1477 * @pos: byte position in file at which the write begins
1478 * @bytes: number of bytes to be written
1480 * See description of ntfs_commit_pages_after_write(), below.
1482 static inline int ntfs_commit_pages_after_non_resident_write(
1483 struct page
**pages
, const unsigned nr_pages
,
1484 s64 pos
, size_t bytes
)
1486 s64 end
, initialized_size
;
1488 ntfs_inode
*ni
, *base_ni
;
1489 struct buffer_head
*bh
, *head
;
1490 ntfs_attr_search_ctx
*ctx
;
1493 unsigned long flags
;
1494 unsigned blocksize
, u
;
1497 vi
= pages
[0]->mapping
->host
;
1499 blocksize
= vi
->i_sb
->s_blocksize
;
1508 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
1509 bh
= head
= page_buffers(page
);
1514 bh_end
= bh_pos
+ blocksize
;
1515 if (bh_end
<= pos
|| bh_pos
>= end
) {
1516 if (!buffer_uptodate(bh
))
1519 set_buffer_uptodate(bh
);
1520 mark_buffer_dirty(bh
);
1522 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1524 * If all buffers are now uptodate but the page is not, set the
1527 if (!partial
&& !PageUptodate(page
))
1528 SetPageUptodate(page
);
1529 } while (++u
< nr_pages
);
1531 * Finally, if we do not need to update initialized_size or i_size we
1534 read_lock_irqsave(&ni
->size_lock
, flags
);
1535 initialized_size
= ni
->initialized_size
;
1536 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1537 if (end
<= initialized_size
) {
1538 ntfs_debug("Done.");
1542 * Update initialized_size/i_size as appropriate, both in the inode and
1548 base_ni
= ni
->ext
.base_ntfs_ino
;
1549 /* Map, pin, and lock the mft record. */
1550 m
= map_mft_record(base_ni
);
1557 BUG_ON(!NInoNonResident(ni
));
1558 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1559 if (unlikely(!ctx
)) {
1563 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1564 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1565 if (unlikely(err
)) {
1571 BUG_ON(!a
->non_resident
);
1572 write_lock_irqsave(&ni
->size_lock
, flags
);
1573 BUG_ON(end
> ni
->allocated_size
);
1574 ni
->initialized_size
= end
;
1575 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1576 if (end
> i_size_read(vi
)) {
1577 i_size_write(vi
, end
);
1578 a
->data
.non_resident
.data_size
=
1579 a
->data
.non_resident
.initialized_size
;
1581 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1582 /* Mark the mft record dirty, so it gets written back. */
1583 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1584 mark_mft_record_dirty(ctx
->ntfs_ino
);
1585 ntfs_attr_put_search_ctx(ctx
);
1586 unmap_mft_record(base_ni
);
1587 ntfs_debug("Done.");
1591 ntfs_attr_put_search_ctx(ctx
);
1593 unmap_mft_record(base_ni
);
1594 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1597 NVolSetErrors(ni
->vol
);
1602 * ntfs_commit_pages_after_write - commit the received data
1603 * @pages: array of destination pages
1604 * @nr_pages: number of pages in @pages
1605 * @pos: byte position in file at which the write begins
1606 * @bytes: number of bytes to be written
1608 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1609 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1610 * locked but not kmap()ped. The source data has already been copied into the
1611 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1612 * the data was copied (for non-resident attributes only) and it returned
1615 * Need to set uptodate and mark dirty all buffers within the boundary of the
1616 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1618 * Setting the buffers dirty ensures that they get written out later when
1619 * ntfs_writepage() is invoked by the VM.
1621 * Finally, we need to update i_size and initialized_size as appropriate both
1622 * in the inode and the mft record.
1624 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1625 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1626 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1627 * that case, it also marks the inode dirty.
1629 * If things have gone as outlined in
1630 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1631 * content modifications here for non-resident attributes. For resident
1632 * attributes we need to do the uptodate bringing here which we combine with
1633 * the copying into the mft record which means we save one atomic kmap.
1635 * Return 0 on success or -errno on error.
1637 static int ntfs_commit_pages_after_write(struct page
**pages
,
1638 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1640 s64 end
, initialized_size
;
1643 ntfs_inode
*ni
, *base_ni
;
1645 ntfs_attr_search_ctx
*ctx
;
1648 char *kattr
, *kaddr
;
1649 unsigned long flags
;
1657 vi
= page
->mapping
->host
;
1659 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1660 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1661 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1662 (long long)pos
, bytes
);
1663 if (NInoNonResident(ni
))
1664 return ntfs_commit_pages_after_non_resident_write(pages
,
1665 nr_pages
, pos
, bytes
);
1666 BUG_ON(nr_pages
> 1);
1668 * Attribute is resident, implying it is not compressed, encrypted, or
1674 base_ni
= ni
->ext
.base_ntfs_ino
;
1675 BUG_ON(NInoNonResident(ni
));
1676 /* Map, pin, and lock the mft record. */
1677 m
= map_mft_record(base_ni
);
1684 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1685 if (unlikely(!ctx
)) {
1689 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1690 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1691 if (unlikely(err
)) {
1697 BUG_ON(a
->non_resident
);
1698 /* The total length of the attribute value. */
1699 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1700 i_size
= i_size_read(vi
);
1701 BUG_ON(attr_len
!= i_size
);
1702 BUG_ON(pos
> attr_len
);
1704 BUG_ON(end
> le32_to_cpu(a
->length
) -
1705 le16_to_cpu(a
->data
.resident
.value_offset
));
1706 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1707 kaddr
= kmap_atomic(page
, KM_USER0
);
1708 /* Copy the received data from the page to the mft record. */
1709 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1710 /* Update the attribute length if necessary. */
1711 if (end
> attr_len
) {
1713 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1716 * If the page is not uptodate, bring the out of bounds area(s)
1717 * uptodate by copying data from the mft record to the page.
1719 if (!PageUptodate(page
)) {
1721 memcpy(kaddr
, kattr
, pos
);
1723 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1724 /* Zero the region outside the end of the attribute value. */
1725 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1726 flush_dcache_page(page
);
1727 SetPageUptodate(page
);
1729 kunmap_atomic(kaddr
, KM_USER0
);
1730 /* Update initialized_size/i_size if necessary. */
1731 read_lock_irqsave(&ni
->size_lock
, flags
);
1732 initialized_size
= ni
->initialized_size
;
1733 BUG_ON(end
> ni
->allocated_size
);
1734 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1735 BUG_ON(initialized_size
!= i_size
);
1736 if (end
> initialized_size
) {
1737 write_lock_irqsave(&ni
->size_lock
, flags
);
1738 ni
->initialized_size
= end
;
1739 i_size_write(vi
, end
);
1740 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1742 /* Mark the mft record dirty, so it gets written back. */
1743 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1744 mark_mft_record_dirty(ctx
->ntfs_ino
);
1745 ntfs_attr_put_search_ctx(ctx
);
1746 unmap_mft_record(base_ni
);
1747 ntfs_debug("Done.");
1750 if (err
== -ENOMEM
) {
1751 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1752 "commit the write.");
1753 if (PageUptodate(page
)) {
1754 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1755 "dirty so the write will be retried "
1756 "later on by the VM.");
1758 * Put the page on mapping->dirty_pages, but leave its
1759 * buffers' dirty state as-is.
1761 __set_page_dirty_nobuffers(page
);
1764 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1765 "data has been lost.");
1767 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1768 "with error %i.", err
);
1769 NVolSetErrors(ni
->vol
);
1772 ntfs_attr_put_search_ctx(ctx
);
1774 unmap_mft_record(base_ni
);
1779 * ntfs_file_buffered_write -
1781 * Locking: The vfs is holding ->i_mutex on the inode.
1783 static ssize_t
ntfs_file_buffered_write(struct kiocb
*iocb
,
1784 const struct iovec
*iov
, unsigned long nr_segs
,
1785 loff_t pos
, loff_t
*ppos
, size_t count
)
1787 struct file
*file
= iocb
->ki_filp
;
1788 struct address_space
*mapping
= file
->f_mapping
;
1789 struct inode
*vi
= mapping
->host
;
1790 ntfs_inode
*ni
= NTFS_I(vi
);
1791 ntfs_volume
*vol
= ni
->vol
;
1792 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1793 struct page
*cached_page
= NULL
;
1794 char __user
*buf
= NULL
;
1798 unsigned long flags
;
1799 size_t bytes
, iov_ofs
= 0; /* Offset in the current iovec. */
1800 ssize_t status
, written
;
1803 struct pagevec lru_pvec
;
1805 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1806 "pos 0x%llx, count 0x%lx.",
1807 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
1808 (unsigned long long)pos
, (unsigned long)count
);
1809 if (unlikely(!count
))
1811 BUG_ON(NInoMstProtected(ni
));
1813 * If the attribute is not an index root and it is encrypted or
1814 * compressed, we cannot write to it yet. Note we need to check for
1815 * AT_INDEX_ALLOCATION since this is the type of both directory and
1818 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
1819 /* If file is encrypted, deny access, just like NT4. */
1820 if (NInoEncrypted(ni
)) {
1822 * Reminder for later: Encrypted files are _always_
1823 * non-resident so that the content can always be
1826 ntfs_debug("Denying write access to encrypted file.");
1829 if (NInoCompressed(ni
)) {
1830 /* Only unnamed $DATA attribute can be compressed. */
1831 BUG_ON(ni
->type
!= AT_DATA
);
1832 BUG_ON(ni
->name_len
);
1834 * Reminder for later: If resident, the data is not
1835 * actually compressed. Only on the switch to non-
1836 * resident does compression kick in. This is in
1837 * contrast to encrypted files (see above).
1839 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1840 "not implemented yet. Sorry.");
1845 * If a previous ntfs_truncate() failed, repeat it and abort if it
1848 if (unlikely(NInoTruncateFailed(ni
))) {
1849 down_write(&vi
->i_alloc_sem
);
1850 err
= ntfs_truncate(vi
);
1851 up_write(&vi
->i_alloc_sem
);
1852 if (err
|| NInoTruncateFailed(ni
)) {
1855 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1856 "0x%lx, attribute type 0x%x, because "
1857 "ntfs_truncate() failed (error code "
1859 (unsigned)le32_to_cpu(ni
->type
), err
);
1863 /* The first byte after the write. */
1866 * If the write goes beyond the allocated size, extend the allocation
1867 * to cover the whole of the write, rounded up to the nearest cluster.
1869 read_lock_irqsave(&ni
->size_lock
, flags
);
1870 ll
= ni
->allocated_size
;
1871 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1873 /* Extend the allocation without changing the data size. */
1874 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
1875 if (likely(ll
>= 0)) {
1877 /* If the extension was partial truncate the write. */
1879 ntfs_debug("Truncating write to inode 0x%lx, "
1880 "attribute type 0x%x, because "
1881 "the allocation was only "
1882 "partially extended.",
1883 vi
->i_ino
, (unsigned)
1884 le32_to_cpu(ni
->type
));
1890 read_lock_irqsave(&ni
->size_lock
, flags
);
1891 ll
= ni
->allocated_size
;
1892 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1893 /* Perform a partial write if possible or fail. */
1895 ntfs_debug("Truncating write to inode 0x%lx, "
1896 "attribute type 0x%x, because "
1897 "extending the allocation "
1898 "failed (error code %i).",
1899 vi
->i_ino
, (unsigned)
1900 le32_to_cpu(ni
->type
), err
);
1904 ntfs_error(vol
->sb
, "Cannot perform write to "
1905 "inode 0x%lx, attribute type "
1906 "0x%x, because extending the "
1907 "allocation failed (error "
1908 "code %i).", vi
->i_ino
,
1910 le32_to_cpu(ni
->type
), err
);
1915 pagevec_init(&lru_pvec
, 0);
1918 * If the write starts beyond the initialized size, extend it up to the
1919 * beginning of the write and initialize all non-sparse space between
1920 * the old initialized size and the new one. This automatically also
1921 * increments the vfs inode->i_size to keep it above or equal to the
1924 read_lock_irqsave(&ni
->size_lock
, flags
);
1925 ll
= ni
->initialized_size
;
1926 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1928 err
= ntfs_attr_extend_initialized(ni
, pos
, &cached_page
,
1931 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1932 "0x%lx, attribute type 0x%x, because "
1933 "extending the initialized size "
1934 "failed (error code %i).", vi
->i_ino
,
1935 (unsigned)le32_to_cpu(ni
->type
), err
);
1941 * Determine the number of pages per cluster for non-resident
1945 if (vol
->cluster_size
> PAGE_CACHE_SIZE
&& NInoNonResident(ni
))
1946 nr_pages
= vol
->cluster_size
>> PAGE_CACHE_SHIFT
;
1947 /* Finally, perform the actual write. */
1949 if (likely(nr_segs
== 1))
1950 buf
= iov
->iov_base
;
1953 pgoff_t idx
, start_idx
;
1954 unsigned ofs
, do_pages
, u
;
1957 start_idx
= idx
= pos
>> PAGE_CACHE_SHIFT
;
1958 ofs
= pos
& ~PAGE_CACHE_MASK
;
1959 bytes
= PAGE_CACHE_SIZE
- ofs
;
1962 vcn
= pos
>> vol
->cluster_size_bits
;
1963 if (vcn
!= last_vcn
) {
1966 * Get the lcn of the vcn the write is in. If
1967 * it is a hole, need to lock down all pages in
1970 down_read(&ni
->runlist
.lock
);
1971 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
1972 vol
->cluster_size_bits
, false);
1973 up_read(&ni
->runlist
.lock
);
1974 if (unlikely(lcn
< LCN_HOLE
)) {
1976 if (lcn
== LCN_ENOMEM
)
1979 ntfs_error(vol
->sb
, "Cannot "
1982 "attribute type 0x%x, "
1983 "because the attribute "
1985 vi
->i_ino
, (unsigned)
1986 le32_to_cpu(ni
->type
));
1989 if (lcn
== LCN_HOLE
) {
1990 start_idx
= (pos
& ~(s64
)
1991 vol
->cluster_size_mask
)
1992 >> PAGE_CACHE_SHIFT
;
1993 bytes
= vol
->cluster_size
- (pos
&
1994 vol
->cluster_size_mask
);
1995 do_pages
= nr_pages
;
2002 * Bring in the user page(s) that we will copy from _first_.
2003 * Otherwise there is a nasty deadlock on copying from the same
2004 * page(s) as we are writing to, without it/them being marked
2005 * up-to-date. Note, at present there is nothing to stop the
2006 * pages being swapped out between us bringing them into memory
2007 * and doing the actual copying.
2009 if (likely(nr_segs
== 1))
2010 ntfs_fault_in_pages_readable(buf
, bytes
);
2012 ntfs_fault_in_pages_readable_iovec(iov
, iov_ofs
, bytes
);
2013 /* Get and lock @do_pages starting at index @start_idx. */
2014 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
2015 pages
, &cached_page
, &lru_pvec
);
2016 if (unlikely(status
))
2019 * For non-resident attributes, we need to fill any holes with
2020 * actual clusters and ensure all bufferes are mapped. We also
2021 * need to bring uptodate any buffers that are only partially
2024 if (NInoNonResident(ni
)) {
2025 status
= ntfs_prepare_pages_for_non_resident_write(
2026 pages
, do_pages
, pos
, bytes
);
2027 if (unlikely(status
)) {
2031 unlock_page(pages
[--do_pages
]);
2032 page_cache_release(pages
[do_pages
]);
2035 * The write preparation may have instantiated
2036 * allocated space outside i_size. Trim this
2037 * off again. We can ignore any errors in this
2038 * case as we will just be waisting a bit of
2039 * allocated space, which is not a disaster.
2041 i_size
= i_size_read(vi
);
2042 if (pos
+ bytes
> i_size
)
2043 vmtruncate(vi
, i_size
);
2047 u
= (pos
>> PAGE_CACHE_SHIFT
) - pages
[0]->index
;
2048 if (likely(nr_segs
== 1)) {
2049 copied
= ntfs_copy_from_user(pages
+ u
, do_pages
- u
,
2053 copied
= ntfs_copy_from_user_iovec(pages
+ u
,
2054 do_pages
- u
, ofs
, &iov
, &iov_ofs
,
2056 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
2057 status
= ntfs_commit_pages_after_write(pages
, do_pages
, pos
,
2059 if (likely(!status
)) {
2063 if (unlikely(copied
!= bytes
))
2067 unlock_page(pages
[--do_pages
]);
2068 mark_page_accessed(pages
[do_pages
]);
2069 page_cache_release(pages
[do_pages
]);
2071 if (unlikely(status
))
2073 balance_dirty_pages_ratelimited(mapping
);
2079 page_cache_release(cached_page
);
2080 pagevec_lru_add_file(&lru_pvec
);
2081 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2082 written
? "written" : "status", (unsigned long)written
,
2084 return written
? written
: status
;
2088 * ntfs_file_aio_write_nolock -
2090 static ssize_t
ntfs_file_aio_write_nolock(struct kiocb
*iocb
,
2091 const struct iovec
*iov
, unsigned long nr_segs
, loff_t
*ppos
)
2093 struct file
*file
= iocb
->ki_filp
;
2094 struct address_space
*mapping
= file
->f_mapping
;
2095 struct inode
*inode
= mapping
->host
;
2097 size_t count
; /* after file limit checks */
2098 ssize_t written
, err
;
2101 err
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_READ
);
2105 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2106 /* We can write back this queue in page reclaim. */
2107 current
->backing_dev_info
= mapping
->backing_dev_info
;
2109 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2114 err
= file_remove_suid(file
);
2117 file_update_time(file
);
2118 written
= ntfs_file_buffered_write(iocb
, iov
, nr_segs
, pos
, ppos
,
2121 current
->backing_dev_info
= NULL
;
2122 return written
? written
: err
;
2126 * ntfs_file_aio_write -
2128 static ssize_t
ntfs_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2129 unsigned long nr_segs
, loff_t pos
)
2131 struct file
*file
= iocb
->ki_filp
;
2132 struct address_space
*mapping
= file
->f_mapping
;
2133 struct inode
*inode
= mapping
->host
;
2136 BUG_ON(iocb
->ki_pos
!= pos
);
2138 mutex_lock(&inode
->i_mutex
);
2139 ret
= ntfs_file_aio_write_nolock(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2140 mutex_unlock(&inode
->i_mutex
);
2142 int err
= generic_write_sync(file
, pos
, ret
);
2150 * ntfs_file_fsync - sync a file to disk
2151 * @filp: file to be synced
2152 * @dentry: dentry describing the file to sync
2153 * @datasync: if non-zero only flush user data and not metadata
2155 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2156 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2158 * If @datasync is false, write the mft record and all associated extent mft
2159 * records as well as the $DATA attribute and then sync the block device.
2161 * If @datasync is true and the attribute is non-resident, we skip the writing
2162 * of the mft record and all associated extent mft records (this might still
2163 * happen due to the write_inode_now() call).
2165 * Also, if @datasync is true, we do not wait on the inode to be written out
2166 * but we always wait on the page cache pages to be written out.
2168 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2171 * Locking: Caller must hold i_mutex on the inode.
2173 * TODO: We should probably also write all attribute/index inodes associated
2174 * with this inode but since we have no simple way of getting to them we ignore
2175 * this problem for now.
2177 static int ntfs_file_fsync(struct file
*filp
, struct dentry
*dentry
,
2180 struct inode
*vi
= dentry
->d_inode
;
2183 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2184 BUG_ON(S_ISDIR(vi
->i_mode
));
2185 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
2186 ret
= __ntfs_write_inode(vi
, 1);
2187 write_inode_now(vi
, !datasync
);
2189 * NOTE: If we were to use mapping->private_list (see ext2 and
2190 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2191 * sync_mapping_buffers(vi->i_mapping).
2193 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
2194 if (unlikely(err
&& !ret
))
2197 ntfs_debug("Done.");
2199 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
2200 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2204 #endif /* NTFS_RW */
2206 const struct file_operations ntfs_file_ops
= {
2207 .llseek
= generic_file_llseek
, /* Seek inside file. */
2208 .read
= do_sync_read
, /* Read from file. */
2209 .aio_read
= generic_file_aio_read
, /* Async read from file. */
2211 .write
= do_sync_write
, /* Write to file. */
2212 .aio_write
= ntfs_file_aio_write
, /* Async write to file. */
2213 /*.release = ,*/ /* Last file is closed. See
2215 ext2_release_file() for
2216 how to use this to discard
2217 preallocated space for
2218 write opened files. */
2219 .fsync
= ntfs_file_fsync
, /* Sync a file to disk. */
2220 /*.aio_fsync = ,*/ /* Sync all outstanding async
2223 #endif /* NTFS_RW */
2224 /*.ioctl = ,*/ /* Perform function on the
2225 mounted filesystem. */
2226 .mmap
= generic_file_mmap
, /* Mmap file. */
2227 .open
= ntfs_file_open
, /* Open file. */
2228 .splice_read
= generic_file_splice_read
/* Zero-copy data send with
2229 the data source being on
2230 the ntfs partition. We do
2231 not need to care about the
2232 data destination. */
2233 /*.sendpage = ,*/ /* Zero-copy data send with
2234 the data destination being
2235 on the ntfs partition. We
2236 do not need to care about
2240 const struct inode_operations ntfs_file_inode_ops
= {
2242 .truncate
= ntfs_truncate_vfs
,
2243 .setattr
= ntfs_setattr
,
2244 #endif /* NTFS_RW */
2247 const struct file_operations ntfs_empty_file_ops
= {};
2249 const struct inode_operations ntfs_empty_inode_ops
= {};