thinkpad-acpi: Fix procfs hotkey reset command
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / mballoc.c
blobf8e923fc784e04ab313db91b75d84068273e6356
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
78 * pa_free.
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
100 * inode as:
102 * { page }
103 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
131 * The regular allocator(using the buddy cache) support few tunables.
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
265 * Logic in few words:
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
293 * - discard inode's preallocations:
297 * Locking rules
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
304 * Paths:
305 * - new pa
306 * object
307 * group
309 * - find and use pa:
310 * pa
312 * - release consumed pa:
313 * pa
314 * group
315 * object
317 * - generate in-core bitmap:
318 * group
319 * pa
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
337 ext4_group_t group);
338 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
339 ext4_group_t group);
340 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
342 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
348 #if BITS_PER_LONG == 64
349 *bit += ((unsigned long) addr & 7UL) << 3;
350 addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit += ((unsigned long) addr & 3UL) << 3;
353 addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 return addr;
360 static inline int mb_test_bit(int bit, void *addr)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 return ext4_test_bit(bit, addr);
370 static inline void mb_set_bit(int bit, void *addr)
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_set_bit(bit, addr);
376 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_set_bit_atomic(lock, bit, addr);
382 static inline void mb_clear_bit(int bit, void *addr)
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 ext4_clear_bit(bit, addr);
388 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_clear_bit_atomic(lock, bit, addr);
394 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
396 int fix = 0, ret, tmpmax;
397 addr = mb_correct_addr_and_bit(&fix, addr);
398 tmpmax = max + fix;
399 start += fix;
401 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
402 if (ret > max)
403 return max;
404 return ret;
407 static inline int mb_find_next_bit(void *addr, int max, int start)
409 int fix = 0, ret, tmpmax;
410 addr = mb_correct_addr_and_bit(&fix, addr);
411 tmpmax = max + fix;
412 start += fix;
414 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
415 if (ret > max)
416 return max;
417 return ret;
420 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
422 char *bb;
424 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
425 BUG_ON(max == NULL);
427 if (order > e4b->bd_blkbits + 1) {
428 *max = 0;
429 return NULL;
432 /* at order 0 we see each particular block */
433 *max = 1 << (e4b->bd_blkbits + 3);
434 if (order == 0)
435 return EXT4_MB_BITMAP(e4b);
437 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
438 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
440 return bb;
443 #ifdef DOUBLE_CHECK
444 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
445 int first, int count)
447 int i;
448 struct super_block *sb = e4b->bd_sb;
450 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
451 return;
452 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
453 for (i = 0; i < count; i++) {
454 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
455 ext4_fsblk_t blocknr;
456 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
457 blocknr += first + i;
458 blocknr +=
459 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
461 ext4_error(sb, __func__, "double-free of inode"
462 " %lu's block %llu(bit %u in group %lu)\n",
463 inode ? inode->i_ino : 0, blocknr,
464 first + i, e4b->bd_group);
466 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
470 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
472 int i;
474 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
475 return;
476 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
477 for (i = 0; i < count; i++) {
478 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
479 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
483 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
485 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
486 unsigned char *b1, *b2;
487 int i;
488 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
489 b2 = (unsigned char *) bitmap;
490 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
491 if (b1[i] != b2[i]) {
492 printk(KERN_ERR "corruption in group %lu "
493 "at byte %u(%u): %x in copy != %x "
494 "on disk/prealloc\n",
495 e4b->bd_group, i, i * 8, b1[i], b2[i]);
496 BUG();
502 #else
503 static inline void mb_free_blocks_double(struct inode *inode,
504 struct ext4_buddy *e4b, int first, int count)
506 return;
508 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
509 int first, int count)
511 return;
513 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
515 return;
517 #endif
519 #ifdef AGGRESSIVE_CHECK
521 #define MB_CHECK_ASSERT(assert) \
522 do { \
523 if (!(assert)) { \
524 printk(KERN_EMERG \
525 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
526 function, file, line, # assert); \
527 BUG(); \
529 } while (0)
531 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
532 const char *function, int line)
534 struct super_block *sb = e4b->bd_sb;
535 int order = e4b->bd_blkbits + 1;
536 int max;
537 int max2;
538 int i;
539 int j;
540 int k;
541 int count;
542 struct ext4_group_info *grp;
543 int fragments = 0;
544 int fstart;
545 struct list_head *cur;
546 void *buddy;
547 void *buddy2;
550 static int mb_check_counter;
551 if (mb_check_counter++ % 100 != 0)
552 return 0;
555 while (order > 1) {
556 buddy = mb_find_buddy(e4b, order, &max);
557 MB_CHECK_ASSERT(buddy);
558 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
559 MB_CHECK_ASSERT(buddy2);
560 MB_CHECK_ASSERT(buddy != buddy2);
561 MB_CHECK_ASSERT(max * 2 == max2);
563 count = 0;
564 for (i = 0; i < max; i++) {
566 if (mb_test_bit(i, buddy)) {
567 /* only single bit in buddy2 may be 1 */
568 if (!mb_test_bit(i << 1, buddy2)) {
569 MB_CHECK_ASSERT(
570 mb_test_bit((i<<1)+1, buddy2));
571 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
572 MB_CHECK_ASSERT(
573 mb_test_bit(i << 1, buddy2));
575 continue;
578 /* both bits in buddy2 must be 0 */
579 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
580 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
582 for (j = 0; j < (1 << order); j++) {
583 k = (i * (1 << order)) + j;
584 MB_CHECK_ASSERT(
585 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
587 count++;
589 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
590 order--;
593 fstart = -1;
594 buddy = mb_find_buddy(e4b, 0, &max);
595 for (i = 0; i < max; i++) {
596 if (!mb_test_bit(i, buddy)) {
597 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
598 if (fstart == -1) {
599 fragments++;
600 fstart = i;
602 continue;
604 fstart = -1;
605 /* check used bits only */
606 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
607 buddy2 = mb_find_buddy(e4b, j, &max2);
608 k = i >> j;
609 MB_CHECK_ASSERT(k < max2);
610 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
613 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
614 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
616 grp = ext4_get_group_info(sb, e4b->bd_group);
617 buddy = mb_find_buddy(e4b, 0, &max);
618 list_for_each(cur, &grp->bb_prealloc_list) {
619 ext4_group_t groupnr;
620 struct ext4_prealloc_space *pa;
621 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
622 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
623 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
624 for (i = 0; i < pa->pa_len; i++)
625 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
627 return 0;
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
631 __FILE__, __func__, __LINE__)
632 #else
633 #define mb_check_buddy(e4b)
634 #endif
636 /* FIXME!! need more doc */
637 static void ext4_mb_mark_free_simple(struct super_block *sb,
638 void *buddy, unsigned first, int len,
639 struct ext4_group_info *grp)
641 struct ext4_sb_info *sbi = EXT4_SB(sb);
642 unsigned short min;
643 unsigned short max;
644 unsigned short chunk;
645 unsigned short border;
647 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
649 border = 2 << sb->s_blocksize_bits;
651 while (len > 0) {
652 /* find how many blocks can be covered since this position */
653 max = ffs(first | border) - 1;
655 /* find how many blocks of power 2 we need to mark */
656 min = fls(len) - 1;
658 if (max < min)
659 min = max;
660 chunk = 1 << min;
662 /* mark multiblock chunks only */
663 grp->bb_counters[min]++;
664 if (min > 0)
665 mb_clear_bit(first >> min,
666 buddy + sbi->s_mb_offsets[min]);
668 len -= chunk;
669 first += chunk;
673 static void ext4_mb_generate_buddy(struct super_block *sb,
674 void *buddy, void *bitmap, ext4_group_t group)
676 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
677 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
678 unsigned short i = 0;
679 unsigned short first;
680 unsigned short len;
681 unsigned free = 0;
682 unsigned fragments = 0;
683 unsigned long long period = get_cycles();
685 /* initialize buddy from bitmap which is aggregation
686 * of on-disk bitmap and preallocations */
687 i = mb_find_next_zero_bit(bitmap, max, 0);
688 grp->bb_first_free = i;
689 while (i < max) {
690 fragments++;
691 first = i;
692 i = mb_find_next_bit(bitmap, max, i);
693 len = i - first;
694 free += len;
695 if (len > 1)
696 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
697 else
698 grp->bb_counters[0]++;
699 if (i < max)
700 i = mb_find_next_zero_bit(bitmap, max, i);
702 grp->bb_fragments = fragments;
704 if (free != grp->bb_free) {
705 ext4_error(sb, __func__,
706 "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
707 group, free, grp->bb_free);
709 * If we intent to continue, we consider group descritor
710 * corrupt and update bb_free using bitmap value
712 grp->bb_free = free;
715 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
717 period = get_cycles() - period;
718 spin_lock(&EXT4_SB(sb)->s_bal_lock);
719 EXT4_SB(sb)->s_mb_buddies_generated++;
720 EXT4_SB(sb)->s_mb_generation_time += period;
721 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
724 /* The buddy information is attached the buddy cache inode
725 * for convenience. The information regarding each group
726 * is loaded via ext4_mb_load_buddy. The information involve
727 * block bitmap and buddy information. The information are
728 * stored in the inode as
730 * { page }
731 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
734 * one block each for bitmap and buddy information.
735 * So for each group we take up 2 blocks. A page can
736 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
737 * So it can have information regarding groups_per_page which
738 * is blocks_per_page/2
741 static int ext4_mb_init_cache(struct page *page, char *incore)
743 int blocksize;
744 int blocks_per_page;
745 int groups_per_page;
746 int err = 0;
747 int i;
748 ext4_group_t first_group;
749 int first_block;
750 struct super_block *sb;
751 struct buffer_head *bhs;
752 struct buffer_head **bh;
753 struct inode *inode;
754 char *data;
755 char *bitmap;
757 mb_debug("init page %lu\n", page->index);
759 inode = page->mapping->host;
760 sb = inode->i_sb;
761 blocksize = 1 << inode->i_blkbits;
762 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
764 groups_per_page = blocks_per_page >> 1;
765 if (groups_per_page == 0)
766 groups_per_page = 1;
768 /* allocate buffer_heads to read bitmaps */
769 if (groups_per_page > 1) {
770 err = -ENOMEM;
771 i = sizeof(struct buffer_head *) * groups_per_page;
772 bh = kzalloc(i, GFP_NOFS);
773 if (bh == NULL)
774 goto out;
775 } else
776 bh = &bhs;
778 first_group = page->index * blocks_per_page / 2;
780 /* read all groups the page covers into the cache */
781 for (i = 0; i < groups_per_page; i++) {
782 struct ext4_group_desc *desc;
784 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
785 break;
787 err = -EIO;
788 desc = ext4_get_group_desc(sb, first_group + i, NULL);
789 if (desc == NULL)
790 goto out;
792 err = -ENOMEM;
793 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
794 if (bh[i] == NULL)
795 goto out;
797 if (bitmap_uptodate(bh[i]))
798 continue;
800 lock_buffer(bh[i]);
801 if (bitmap_uptodate(bh[i])) {
802 unlock_buffer(bh[i]);
803 continue;
805 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
806 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
807 ext4_init_block_bitmap(sb, bh[i],
808 first_group + i, desc);
809 set_bitmap_uptodate(bh[i]);
810 set_buffer_uptodate(bh[i]);
811 unlock_buffer(bh[i]);
812 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
813 continue;
815 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
816 if (buffer_uptodate(bh[i])) {
818 * if not uninit if bh is uptodate,
819 * bitmap is also uptodate
821 set_bitmap_uptodate(bh[i]);
822 unlock_buffer(bh[i]);
823 continue;
825 get_bh(bh[i]);
827 * submit the buffer_head for read. We can
828 * safely mark the bitmap as uptodate now.
829 * We do it here so the bitmap uptodate bit
830 * get set with buffer lock held.
832 set_bitmap_uptodate(bh[i]);
833 bh[i]->b_end_io = end_buffer_read_sync;
834 submit_bh(READ, bh[i]);
835 mb_debug("read bitmap for group %lu\n", first_group + i);
838 /* wait for I/O completion */
839 for (i = 0; i < groups_per_page && bh[i]; i++)
840 wait_on_buffer(bh[i]);
842 err = -EIO;
843 for (i = 0; i < groups_per_page && bh[i]; i++)
844 if (!buffer_uptodate(bh[i]))
845 goto out;
847 err = 0;
848 first_block = page->index * blocks_per_page;
849 /* init the page */
850 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
851 for (i = 0; i < blocks_per_page; i++) {
852 int group;
853 struct ext4_group_info *grinfo;
855 group = (first_block + i) >> 1;
856 if (group >= EXT4_SB(sb)->s_groups_count)
857 break;
860 * data carry information regarding this
861 * particular group in the format specified
862 * above
865 data = page_address(page) + (i * blocksize);
866 bitmap = bh[group - first_group]->b_data;
869 * We place the buddy block and bitmap block
870 * close together
872 if ((first_block + i) & 1) {
873 /* this is block of buddy */
874 BUG_ON(incore == NULL);
875 mb_debug("put buddy for group %u in page %lu/%x\n",
876 group, page->index, i * blocksize);
877 grinfo = ext4_get_group_info(sb, group);
878 grinfo->bb_fragments = 0;
879 memset(grinfo->bb_counters, 0,
880 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
882 * incore got set to the group block bitmap below
884 ext4_lock_group(sb, group);
885 ext4_mb_generate_buddy(sb, data, incore, group);
886 ext4_unlock_group(sb, group);
887 incore = NULL;
888 } else {
889 /* this is block of bitmap */
890 BUG_ON(incore != NULL);
891 mb_debug("put bitmap for group %u in page %lu/%x\n",
892 group, page->index, i * blocksize);
894 /* see comments in ext4_mb_put_pa() */
895 ext4_lock_group(sb, group);
896 memcpy(data, bitmap, blocksize);
898 /* mark all preallocated blks used in in-core bitmap */
899 ext4_mb_generate_from_pa(sb, data, group);
900 ext4_mb_generate_from_freelist(sb, data, group);
901 ext4_unlock_group(sb, group);
903 /* set incore so that the buddy information can be
904 * generated using this
906 incore = data;
909 SetPageUptodate(page);
911 out:
912 if (bh) {
913 for (i = 0; i < groups_per_page && bh[i]; i++)
914 brelse(bh[i]);
915 if (bh != &bhs)
916 kfree(bh);
918 return err;
921 static noinline_for_stack int
922 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
923 struct ext4_buddy *e4b)
925 int blocks_per_page;
926 int block;
927 int pnum;
928 int poff;
929 struct page *page;
930 int ret;
931 struct ext4_group_info *grp;
932 struct ext4_sb_info *sbi = EXT4_SB(sb);
933 struct inode *inode = sbi->s_buddy_cache;
935 mb_debug("load group %lu\n", group);
937 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
938 grp = ext4_get_group_info(sb, group);
940 e4b->bd_blkbits = sb->s_blocksize_bits;
941 e4b->bd_info = ext4_get_group_info(sb, group);
942 e4b->bd_sb = sb;
943 e4b->bd_group = group;
944 e4b->bd_buddy_page = NULL;
945 e4b->bd_bitmap_page = NULL;
946 e4b->alloc_semp = &grp->alloc_sem;
948 /* Take the read lock on the group alloc
949 * sem. This would make sure a parallel
950 * ext4_mb_init_group happening on other
951 * groups mapped by the page is blocked
952 * till we are done with allocation
954 down_read(e4b->alloc_semp);
957 * the buddy cache inode stores the block bitmap
958 * and buddy information in consecutive blocks.
959 * So for each group we need two blocks.
961 block = group * 2;
962 pnum = block / blocks_per_page;
963 poff = block % blocks_per_page;
965 /* we could use find_or_create_page(), but it locks page
966 * what we'd like to avoid in fast path ... */
967 page = find_get_page(inode->i_mapping, pnum);
968 if (page == NULL || !PageUptodate(page)) {
969 if (page)
971 * drop the page reference and try
972 * to get the page with lock. If we
973 * are not uptodate that implies
974 * somebody just created the page but
975 * is yet to initialize the same. So
976 * wait for it to initialize.
978 page_cache_release(page);
979 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
980 if (page) {
981 BUG_ON(page->mapping != inode->i_mapping);
982 if (!PageUptodate(page)) {
983 ret = ext4_mb_init_cache(page, NULL);
984 if (ret) {
985 unlock_page(page);
986 goto err;
988 mb_cmp_bitmaps(e4b, page_address(page) +
989 (poff * sb->s_blocksize));
991 unlock_page(page);
994 if (page == NULL || !PageUptodate(page)) {
995 ret = -EIO;
996 goto err;
998 e4b->bd_bitmap_page = page;
999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 mark_page_accessed(page);
1002 block++;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1006 page = find_get_page(inode->i_mapping, pnum);
1007 if (page == NULL || !PageUptodate(page)) {
1008 if (page)
1009 page_cache_release(page);
1010 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1011 if (page) {
1012 BUG_ON(page->mapping != inode->i_mapping);
1013 if (!PageUptodate(page)) {
1014 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1015 if (ret) {
1016 unlock_page(page);
1017 goto err;
1020 unlock_page(page);
1023 if (page == NULL || !PageUptodate(page)) {
1024 ret = -EIO;
1025 goto err;
1027 e4b->bd_buddy_page = page;
1028 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1029 mark_page_accessed(page);
1031 BUG_ON(e4b->bd_bitmap_page == NULL);
1032 BUG_ON(e4b->bd_buddy_page == NULL);
1034 return 0;
1036 err:
1037 if (e4b->bd_bitmap_page)
1038 page_cache_release(e4b->bd_bitmap_page);
1039 if (e4b->bd_buddy_page)
1040 page_cache_release(e4b->bd_buddy_page);
1041 e4b->bd_buddy = NULL;
1042 e4b->bd_bitmap = NULL;
1044 /* Done with the buddy cache */
1045 up_read(e4b->alloc_semp);
1046 return ret;
1049 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1051 if (e4b->bd_bitmap_page)
1052 page_cache_release(e4b->bd_bitmap_page);
1053 if (e4b->bd_buddy_page)
1054 page_cache_release(e4b->bd_buddy_page);
1055 /* Done with the buddy cache */
1056 if (e4b->alloc_semp)
1057 up_read(e4b->alloc_semp);
1061 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1063 int order = 1;
1064 void *bb;
1066 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1067 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1069 bb = EXT4_MB_BUDDY(e4b);
1070 while (order <= e4b->bd_blkbits + 1) {
1071 block = block >> 1;
1072 if (!mb_test_bit(block, bb)) {
1073 /* this block is part of buddy of order 'order' */
1074 return order;
1076 bb += 1 << (e4b->bd_blkbits - order);
1077 order++;
1079 return 0;
1082 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1084 __u32 *addr;
1086 len = cur + len;
1087 while (cur < len) {
1088 if ((cur & 31) == 0 && (len - cur) >= 32) {
1089 /* fast path: clear whole word at once */
1090 addr = bm + (cur >> 3);
1091 *addr = 0;
1092 cur += 32;
1093 continue;
1095 if (lock)
1096 mb_clear_bit_atomic(lock, cur, bm);
1097 else
1098 mb_clear_bit(cur, bm);
1099 cur++;
1103 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1105 __u32 *addr;
1107 len = cur + len;
1108 while (cur < len) {
1109 if ((cur & 31) == 0 && (len - cur) >= 32) {
1110 /* fast path: set whole word at once */
1111 addr = bm + (cur >> 3);
1112 *addr = 0xffffffff;
1113 cur += 32;
1114 continue;
1116 if (lock)
1117 mb_set_bit_atomic(lock, cur, bm);
1118 else
1119 mb_set_bit(cur, bm);
1120 cur++;
1124 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1125 int first, int count)
1127 int block = 0;
1128 int max = 0;
1129 int order;
1130 void *buddy;
1131 void *buddy2;
1132 struct super_block *sb = e4b->bd_sb;
1134 BUG_ON(first + count > (sb->s_blocksize << 3));
1135 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1136 mb_check_buddy(e4b);
1137 mb_free_blocks_double(inode, e4b, first, count);
1139 e4b->bd_info->bb_free += count;
1140 if (first < e4b->bd_info->bb_first_free)
1141 e4b->bd_info->bb_first_free = first;
1143 /* let's maintain fragments counter */
1144 if (first != 0)
1145 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1146 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1147 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1148 if (block && max)
1149 e4b->bd_info->bb_fragments--;
1150 else if (!block && !max)
1151 e4b->bd_info->bb_fragments++;
1153 /* let's maintain buddy itself */
1154 while (count-- > 0) {
1155 block = first++;
1156 order = 0;
1158 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1159 ext4_fsblk_t blocknr;
1160 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1161 blocknr += block;
1162 blocknr +=
1163 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1164 ext4_unlock_group(sb, e4b->bd_group);
1165 ext4_error(sb, __func__, "double-free of inode"
1166 " %lu's block %llu(bit %u in group %lu)\n",
1167 inode ? inode->i_ino : 0, blocknr, block,
1168 e4b->bd_group);
1169 ext4_lock_group(sb, e4b->bd_group);
1171 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1172 e4b->bd_info->bb_counters[order]++;
1174 /* start of the buddy */
1175 buddy = mb_find_buddy(e4b, order, &max);
1177 do {
1178 block &= ~1UL;
1179 if (mb_test_bit(block, buddy) ||
1180 mb_test_bit(block + 1, buddy))
1181 break;
1183 /* both the buddies are free, try to coalesce them */
1184 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1186 if (!buddy2)
1187 break;
1189 if (order > 0) {
1190 /* for special purposes, we don't set
1191 * free bits in bitmap */
1192 mb_set_bit(block, buddy);
1193 mb_set_bit(block + 1, buddy);
1195 e4b->bd_info->bb_counters[order]--;
1196 e4b->bd_info->bb_counters[order]--;
1198 block = block >> 1;
1199 order++;
1200 e4b->bd_info->bb_counters[order]++;
1202 mb_clear_bit(block, buddy2);
1203 buddy = buddy2;
1204 } while (1);
1206 mb_check_buddy(e4b);
1209 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1210 int needed, struct ext4_free_extent *ex)
1212 int next = block;
1213 int max;
1214 int ord;
1215 void *buddy;
1217 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1218 BUG_ON(ex == NULL);
1220 buddy = mb_find_buddy(e4b, order, &max);
1221 BUG_ON(buddy == NULL);
1222 BUG_ON(block >= max);
1223 if (mb_test_bit(block, buddy)) {
1224 ex->fe_len = 0;
1225 ex->fe_start = 0;
1226 ex->fe_group = 0;
1227 return 0;
1230 /* FIXME dorp order completely ? */
1231 if (likely(order == 0)) {
1232 /* find actual order */
1233 order = mb_find_order_for_block(e4b, block);
1234 block = block >> order;
1237 ex->fe_len = 1 << order;
1238 ex->fe_start = block << order;
1239 ex->fe_group = e4b->bd_group;
1241 /* calc difference from given start */
1242 next = next - ex->fe_start;
1243 ex->fe_len -= next;
1244 ex->fe_start += next;
1246 while (needed > ex->fe_len &&
1247 (buddy = mb_find_buddy(e4b, order, &max))) {
1249 if (block + 1 >= max)
1250 break;
1252 next = (block + 1) * (1 << order);
1253 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1254 break;
1256 ord = mb_find_order_for_block(e4b, next);
1258 order = ord;
1259 block = next >> order;
1260 ex->fe_len += 1 << order;
1263 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1264 return ex->fe_len;
1267 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1269 int ord;
1270 int mlen = 0;
1271 int max = 0;
1272 int cur;
1273 int start = ex->fe_start;
1274 int len = ex->fe_len;
1275 unsigned ret = 0;
1276 int len0 = len;
1277 void *buddy;
1279 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1280 BUG_ON(e4b->bd_group != ex->fe_group);
1281 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1282 mb_check_buddy(e4b);
1283 mb_mark_used_double(e4b, start, len);
1285 e4b->bd_info->bb_free -= len;
1286 if (e4b->bd_info->bb_first_free == start)
1287 e4b->bd_info->bb_first_free += len;
1289 /* let's maintain fragments counter */
1290 if (start != 0)
1291 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1292 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1293 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1294 if (mlen && max)
1295 e4b->bd_info->bb_fragments++;
1296 else if (!mlen && !max)
1297 e4b->bd_info->bb_fragments--;
1299 /* let's maintain buddy itself */
1300 while (len) {
1301 ord = mb_find_order_for_block(e4b, start);
1303 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1304 /* the whole chunk may be allocated at once! */
1305 mlen = 1 << ord;
1306 buddy = mb_find_buddy(e4b, ord, &max);
1307 BUG_ON((start >> ord) >= max);
1308 mb_set_bit(start >> ord, buddy);
1309 e4b->bd_info->bb_counters[ord]--;
1310 start += mlen;
1311 len -= mlen;
1312 BUG_ON(len < 0);
1313 continue;
1316 /* store for history */
1317 if (ret == 0)
1318 ret = len | (ord << 16);
1320 /* we have to split large buddy */
1321 BUG_ON(ord <= 0);
1322 buddy = mb_find_buddy(e4b, ord, &max);
1323 mb_set_bit(start >> ord, buddy);
1324 e4b->bd_info->bb_counters[ord]--;
1326 ord--;
1327 cur = (start >> ord) & ~1U;
1328 buddy = mb_find_buddy(e4b, ord, &max);
1329 mb_clear_bit(cur, buddy);
1330 mb_clear_bit(cur + 1, buddy);
1331 e4b->bd_info->bb_counters[ord]++;
1332 e4b->bd_info->bb_counters[ord]++;
1335 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1336 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1337 mb_check_buddy(e4b);
1339 return ret;
1343 * Must be called under group lock!
1345 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1346 struct ext4_buddy *e4b)
1348 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1349 int ret;
1351 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1352 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1354 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1355 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1356 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1358 /* preallocation can change ac_b_ex, thus we store actually
1359 * allocated blocks for history */
1360 ac->ac_f_ex = ac->ac_b_ex;
1362 ac->ac_status = AC_STATUS_FOUND;
1363 ac->ac_tail = ret & 0xffff;
1364 ac->ac_buddy = ret >> 16;
1367 * take the page reference. We want the page to be pinned
1368 * so that we don't get a ext4_mb_init_cache_call for this
1369 * group until we update the bitmap. That would mean we
1370 * double allocate blocks. The reference is dropped
1371 * in ext4_mb_release_context
1373 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1374 get_page(ac->ac_bitmap_page);
1375 ac->ac_buddy_page = e4b->bd_buddy_page;
1376 get_page(ac->ac_buddy_page);
1377 /* on allocation we use ac to track the held semaphore */
1378 ac->alloc_semp = e4b->alloc_semp;
1379 e4b->alloc_semp = NULL;
1380 /* store last allocated for subsequent stream allocation */
1381 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1382 spin_lock(&sbi->s_md_lock);
1383 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1384 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1385 spin_unlock(&sbi->s_md_lock);
1390 * regular allocator, for general purposes allocation
1393 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1394 struct ext4_buddy *e4b,
1395 int finish_group)
1397 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1398 struct ext4_free_extent *bex = &ac->ac_b_ex;
1399 struct ext4_free_extent *gex = &ac->ac_g_ex;
1400 struct ext4_free_extent ex;
1401 int max;
1403 if (ac->ac_status == AC_STATUS_FOUND)
1404 return;
1406 * We don't want to scan for a whole year
1408 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1409 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1410 ac->ac_status = AC_STATUS_BREAK;
1411 return;
1415 * Haven't found good chunk so far, let's continue
1417 if (bex->fe_len < gex->fe_len)
1418 return;
1420 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1421 && bex->fe_group == e4b->bd_group) {
1422 /* recheck chunk's availability - we don't know
1423 * when it was found (within this lock-unlock
1424 * period or not) */
1425 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1426 if (max >= gex->fe_len) {
1427 ext4_mb_use_best_found(ac, e4b);
1428 return;
1434 * The routine checks whether found extent is good enough. If it is,
1435 * then the extent gets marked used and flag is set to the context
1436 * to stop scanning. Otherwise, the extent is compared with the
1437 * previous found extent and if new one is better, then it's stored
1438 * in the context. Later, the best found extent will be used, if
1439 * mballoc can't find good enough extent.
1441 * FIXME: real allocation policy is to be designed yet!
1443 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1444 struct ext4_free_extent *ex,
1445 struct ext4_buddy *e4b)
1447 struct ext4_free_extent *bex = &ac->ac_b_ex;
1448 struct ext4_free_extent *gex = &ac->ac_g_ex;
1450 BUG_ON(ex->fe_len <= 0);
1451 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1452 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1453 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1455 ac->ac_found++;
1458 * The special case - take what you catch first
1460 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1461 *bex = *ex;
1462 ext4_mb_use_best_found(ac, e4b);
1463 return;
1467 * Let's check whether the chuck is good enough
1469 if (ex->fe_len == gex->fe_len) {
1470 *bex = *ex;
1471 ext4_mb_use_best_found(ac, e4b);
1472 return;
1476 * If this is first found extent, just store it in the context
1478 if (bex->fe_len == 0) {
1479 *bex = *ex;
1480 return;
1484 * If new found extent is better, store it in the context
1486 if (bex->fe_len < gex->fe_len) {
1487 /* if the request isn't satisfied, any found extent
1488 * larger than previous best one is better */
1489 if (ex->fe_len > bex->fe_len)
1490 *bex = *ex;
1491 } else if (ex->fe_len > gex->fe_len) {
1492 /* if the request is satisfied, then we try to find
1493 * an extent that still satisfy the request, but is
1494 * smaller than previous one */
1495 if (ex->fe_len < bex->fe_len)
1496 *bex = *ex;
1499 ext4_mb_check_limits(ac, e4b, 0);
1502 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1503 struct ext4_buddy *e4b)
1505 struct ext4_free_extent ex = ac->ac_b_ex;
1506 ext4_group_t group = ex.fe_group;
1507 int max;
1508 int err;
1510 BUG_ON(ex.fe_len <= 0);
1511 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1512 if (err)
1513 return err;
1515 ext4_lock_group(ac->ac_sb, group);
1516 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1518 if (max > 0) {
1519 ac->ac_b_ex = ex;
1520 ext4_mb_use_best_found(ac, e4b);
1523 ext4_unlock_group(ac->ac_sb, group);
1524 ext4_mb_release_desc(e4b);
1526 return 0;
1529 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1530 struct ext4_buddy *e4b)
1532 ext4_group_t group = ac->ac_g_ex.fe_group;
1533 int max;
1534 int err;
1535 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1536 struct ext4_super_block *es = sbi->s_es;
1537 struct ext4_free_extent ex;
1539 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1540 return 0;
1542 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1543 if (err)
1544 return err;
1546 ext4_lock_group(ac->ac_sb, group);
1547 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1548 ac->ac_g_ex.fe_len, &ex);
1550 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1551 ext4_fsblk_t start;
1553 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1554 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1555 /* use do_div to get remainder (would be 64-bit modulo) */
1556 if (do_div(start, sbi->s_stripe) == 0) {
1557 ac->ac_found++;
1558 ac->ac_b_ex = ex;
1559 ext4_mb_use_best_found(ac, e4b);
1561 } else if (max >= ac->ac_g_ex.fe_len) {
1562 BUG_ON(ex.fe_len <= 0);
1563 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1564 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1565 ac->ac_found++;
1566 ac->ac_b_ex = ex;
1567 ext4_mb_use_best_found(ac, e4b);
1568 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1569 /* Sometimes, caller may want to merge even small
1570 * number of blocks to an existing extent */
1571 BUG_ON(ex.fe_len <= 0);
1572 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1573 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1574 ac->ac_found++;
1575 ac->ac_b_ex = ex;
1576 ext4_mb_use_best_found(ac, e4b);
1578 ext4_unlock_group(ac->ac_sb, group);
1579 ext4_mb_release_desc(e4b);
1581 return 0;
1585 * The routine scans buddy structures (not bitmap!) from given order
1586 * to max order and tries to find big enough chunk to satisfy the req
1588 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1589 struct ext4_buddy *e4b)
1591 struct super_block *sb = ac->ac_sb;
1592 struct ext4_group_info *grp = e4b->bd_info;
1593 void *buddy;
1594 int i;
1595 int k;
1596 int max;
1598 BUG_ON(ac->ac_2order <= 0);
1599 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1600 if (grp->bb_counters[i] == 0)
1601 continue;
1603 buddy = mb_find_buddy(e4b, i, &max);
1604 BUG_ON(buddy == NULL);
1606 k = mb_find_next_zero_bit(buddy, max, 0);
1607 BUG_ON(k >= max);
1609 ac->ac_found++;
1611 ac->ac_b_ex.fe_len = 1 << i;
1612 ac->ac_b_ex.fe_start = k << i;
1613 ac->ac_b_ex.fe_group = e4b->bd_group;
1615 ext4_mb_use_best_found(ac, e4b);
1617 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1619 if (EXT4_SB(sb)->s_mb_stats)
1620 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1622 break;
1627 * The routine scans the group and measures all found extents.
1628 * In order to optimize scanning, caller must pass number of
1629 * free blocks in the group, so the routine can know upper limit.
1631 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1632 struct ext4_buddy *e4b)
1634 struct super_block *sb = ac->ac_sb;
1635 void *bitmap = EXT4_MB_BITMAP(e4b);
1636 struct ext4_free_extent ex;
1637 int i;
1638 int free;
1640 free = e4b->bd_info->bb_free;
1641 BUG_ON(free <= 0);
1643 i = e4b->bd_info->bb_first_free;
1645 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1646 i = mb_find_next_zero_bit(bitmap,
1647 EXT4_BLOCKS_PER_GROUP(sb), i);
1648 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1650 * IF we have corrupt bitmap, we won't find any
1651 * free blocks even though group info says we
1652 * we have free blocks
1654 ext4_error(sb, __func__, "%d free blocks as per "
1655 "group info. But bitmap says 0\n",
1656 free);
1657 break;
1660 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1661 BUG_ON(ex.fe_len <= 0);
1662 if (free < ex.fe_len) {
1663 ext4_error(sb, __func__, "%d free blocks as per "
1664 "group info. But got %d blocks\n",
1665 free, ex.fe_len);
1667 * The number of free blocks differs. This mostly
1668 * indicate that the bitmap is corrupt. So exit
1669 * without claiming the space.
1671 break;
1674 ext4_mb_measure_extent(ac, &ex, e4b);
1676 i += ex.fe_len;
1677 free -= ex.fe_len;
1680 ext4_mb_check_limits(ac, e4b, 1);
1684 * This is a special case for storages like raid5
1685 * we try to find stripe-aligned chunks for stripe-size requests
1686 * XXX should do so at least for multiples of stripe size as well
1688 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1689 struct ext4_buddy *e4b)
1691 struct super_block *sb = ac->ac_sb;
1692 struct ext4_sb_info *sbi = EXT4_SB(sb);
1693 void *bitmap = EXT4_MB_BITMAP(e4b);
1694 struct ext4_free_extent ex;
1695 ext4_fsblk_t first_group_block;
1696 ext4_fsblk_t a;
1697 ext4_grpblk_t i;
1698 int max;
1700 BUG_ON(sbi->s_stripe == 0);
1702 /* find first stripe-aligned block in group */
1703 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1704 + le32_to_cpu(sbi->s_es->s_first_data_block);
1705 a = first_group_block + sbi->s_stripe - 1;
1706 do_div(a, sbi->s_stripe);
1707 i = (a * sbi->s_stripe) - first_group_block;
1709 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1710 if (!mb_test_bit(i, bitmap)) {
1711 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1712 if (max >= sbi->s_stripe) {
1713 ac->ac_found++;
1714 ac->ac_b_ex = ex;
1715 ext4_mb_use_best_found(ac, e4b);
1716 break;
1719 i += sbi->s_stripe;
1723 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1724 ext4_group_t group, int cr)
1726 unsigned free, fragments;
1727 unsigned i, bits;
1728 struct ext4_group_desc *desc;
1729 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1731 BUG_ON(cr < 0 || cr >= 4);
1732 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1734 free = grp->bb_free;
1735 fragments = grp->bb_fragments;
1736 if (free == 0)
1737 return 0;
1738 if (fragments == 0)
1739 return 0;
1741 switch (cr) {
1742 case 0:
1743 BUG_ON(ac->ac_2order == 0);
1744 /* If this group is uninitialized, skip it initially */
1745 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1746 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1747 return 0;
1749 bits = ac->ac_sb->s_blocksize_bits + 1;
1750 for (i = ac->ac_2order; i <= bits; i++)
1751 if (grp->bb_counters[i] > 0)
1752 return 1;
1753 break;
1754 case 1:
1755 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1756 return 1;
1757 break;
1758 case 2:
1759 if (free >= ac->ac_g_ex.fe_len)
1760 return 1;
1761 break;
1762 case 3:
1763 return 1;
1764 default:
1765 BUG();
1768 return 0;
1772 * lock the group_info alloc_sem of all the groups
1773 * belonging to the same buddy cache page. This
1774 * make sure other parallel operation on the buddy
1775 * cache doesn't happen whild holding the buddy cache
1776 * lock
1778 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1780 int i;
1781 int block, pnum;
1782 int blocks_per_page;
1783 int groups_per_page;
1784 ext4_group_t first_group;
1785 struct ext4_group_info *grp;
1787 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1789 * the buddy cache inode stores the block bitmap
1790 * and buddy information in consecutive blocks.
1791 * So for each group we need two blocks.
1793 block = group * 2;
1794 pnum = block / blocks_per_page;
1795 first_group = pnum * blocks_per_page / 2;
1797 groups_per_page = blocks_per_page >> 1;
1798 if (groups_per_page == 0)
1799 groups_per_page = 1;
1800 /* read all groups the page covers into the cache */
1801 for (i = 0; i < groups_per_page; i++) {
1803 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1804 break;
1805 grp = ext4_get_group_info(sb, first_group + i);
1806 /* take all groups write allocation
1807 * semaphore. This make sure there is
1808 * no block allocation going on in any
1809 * of that groups
1811 down_write(&grp->alloc_sem);
1813 return i;
1816 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1817 ext4_group_t group, int locked_group)
1819 int i;
1820 int block, pnum;
1821 int blocks_per_page;
1822 ext4_group_t first_group;
1823 struct ext4_group_info *grp;
1825 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1827 * the buddy cache inode stores the block bitmap
1828 * and buddy information in consecutive blocks.
1829 * So for each group we need two blocks.
1831 block = group * 2;
1832 pnum = block / blocks_per_page;
1833 first_group = pnum * blocks_per_page / 2;
1834 /* release locks on all the groups */
1835 for (i = 0; i < locked_group; i++) {
1837 grp = ext4_get_group_info(sb, first_group + i);
1838 /* take all groups write allocation
1839 * semaphore. This make sure there is
1840 * no block allocation going on in any
1841 * of that groups
1843 up_write(&grp->alloc_sem);
1848 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1851 int ret;
1852 void *bitmap;
1853 int blocks_per_page;
1854 int block, pnum, poff;
1855 int num_grp_locked = 0;
1856 struct ext4_group_info *this_grp;
1857 struct ext4_sb_info *sbi = EXT4_SB(sb);
1858 struct inode *inode = sbi->s_buddy_cache;
1859 struct page *page = NULL, *bitmap_page = NULL;
1861 mb_debug("init group %lu\n", group);
1862 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1863 this_grp = ext4_get_group_info(sb, group);
1865 * This ensures we don't add group
1866 * to this buddy cache via resize
1868 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1869 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1871 * somebody initialized the group
1872 * return without doing anything
1874 ret = 0;
1875 goto err;
1878 * the buddy cache inode stores the block bitmap
1879 * and buddy information in consecutive blocks.
1880 * So for each group we need two blocks.
1882 block = group * 2;
1883 pnum = block / blocks_per_page;
1884 poff = block % blocks_per_page;
1885 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1886 if (page) {
1887 BUG_ON(page->mapping != inode->i_mapping);
1888 ret = ext4_mb_init_cache(page, NULL);
1889 if (ret) {
1890 unlock_page(page);
1891 goto err;
1893 unlock_page(page);
1895 if (page == NULL || !PageUptodate(page)) {
1896 ret = -EIO;
1897 goto err;
1899 mark_page_accessed(page);
1900 bitmap_page = page;
1901 bitmap = page_address(page) + (poff * sb->s_blocksize);
1903 /* init buddy cache */
1904 block++;
1905 pnum = block / blocks_per_page;
1906 poff = block % blocks_per_page;
1907 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1908 if (page == bitmap_page) {
1910 * If both the bitmap and buddy are in
1911 * the same page we don't need to force
1912 * init the buddy
1914 unlock_page(page);
1915 } else if (page) {
1916 BUG_ON(page->mapping != inode->i_mapping);
1917 ret = ext4_mb_init_cache(page, bitmap);
1918 if (ret) {
1919 unlock_page(page);
1920 goto err;
1922 unlock_page(page);
1924 if (page == NULL || !PageUptodate(page)) {
1925 ret = -EIO;
1926 goto err;
1928 mark_page_accessed(page);
1929 err:
1930 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1931 if (bitmap_page)
1932 page_cache_release(bitmap_page);
1933 if (page)
1934 page_cache_release(page);
1935 return ret;
1938 static noinline_for_stack int
1939 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1941 ext4_group_t group;
1942 ext4_group_t i;
1943 int cr;
1944 int err = 0;
1945 int bsbits;
1946 struct ext4_sb_info *sbi;
1947 struct super_block *sb;
1948 struct ext4_buddy e4b;
1949 loff_t size, isize;
1951 sb = ac->ac_sb;
1952 sbi = EXT4_SB(sb);
1953 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1955 /* first, try the goal */
1956 err = ext4_mb_find_by_goal(ac, &e4b);
1957 if (err || ac->ac_status == AC_STATUS_FOUND)
1958 goto out;
1960 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1961 goto out;
1964 * ac->ac2_order is set only if the fe_len is a power of 2
1965 * if ac2_order is set we also set criteria to 0 so that we
1966 * try exact allocation using buddy.
1968 i = fls(ac->ac_g_ex.fe_len);
1969 ac->ac_2order = 0;
1971 * We search using buddy data only if the order of the request
1972 * is greater than equal to the sbi_s_mb_order2_reqs
1973 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1975 if (i >= sbi->s_mb_order2_reqs) {
1977 * This should tell if fe_len is exactly power of 2
1979 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1980 ac->ac_2order = i - 1;
1983 bsbits = ac->ac_sb->s_blocksize_bits;
1984 /* if stream allocation is enabled, use global goal */
1985 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1986 isize = i_size_read(ac->ac_inode) >> bsbits;
1987 if (size < isize)
1988 size = isize;
1990 if (size < sbi->s_mb_stream_request &&
1991 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1992 /* TBD: may be hot point */
1993 spin_lock(&sbi->s_md_lock);
1994 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1995 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1996 spin_unlock(&sbi->s_md_lock);
1998 /* Let's just scan groups to find more-less suitable blocks */
1999 cr = ac->ac_2order ? 0 : 1;
2001 * cr == 0 try to get exact allocation,
2002 * cr == 3 try to get anything
2004 repeat:
2005 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2006 ac->ac_criteria = cr;
2008 * searching for the right group start
2009 * from the goal value specified
2011 group = ac->ac_g_ex.fe_group;
2013 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
2014 struct ext4_group_info *grp;
2015 struct ext4_group_desc *desc;
2017 if (group == EXT4_SB(sb)->s_groups_count)
2018 group = 0;
2020 /* quick check to skip empty groups */
2021 grp = ext4_get_group_info(sb, group);
2022 if (grp->bb_free == 0)
2023 continue;
2026 * if the group is already init we check whether it is
2027 * a good group and if not we don't load the buddy
2029 if (EXT4_MB_GRP_NEED_INIT(grp)) {
2031 * we need full data about the group
2032 * to make a good selection
2034 err = ext4_mb_init_group(sb, group);
2035 if (err)
2036 goto out;
2040 * If the particular group doesn't satisfy our
2041 * criteria we continue with the next group
2043 if (!ext4_mb_good_group(ac, group, cr))
2044 continue;
2046 err = ext4_mb_load_buddy(sb, group, &e4b);
2047 if (err)
2048 goto out;
2050 ext4_lock_group(sb, group);
2051 if (!ext4_mb_good_group(ac, group, cr)) {
2052 /* someone did allocation from this group */
2053 ext4_unlock_group(sb, group);
2054 ext4_mb_release_desc(&e4b);
2055 continue;
2058 ac->ac_groups_scanned++;
2059 desc = ext4_get_group_desc(sb, group, NULL);
2060 if (cr == 0 || (desc->bg_flags &
2061 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2062 ac->ac_2order != 0))
2063 ext4_mb_simple_scan_group(ac, &e4b);
2064 else if (cr == 1 &&
2065 ac->ac_g_ex.fe_len == sbi->s_stripe)
2066 ext4_mb_scan_aligned(ac, &e4b);
2067 else
2068 ext4_mb_complex_scan_group(ac, &e4b);
2070 ext4_unlock_group(sb, group);
2071 ext4_mb_release_desc(&e4b);
2073 if (ac->ac_status != AC_STATUS_CONTINUE)
2074 break;
2078 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2079 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2081 * We've been searching too long. Let's try to allocate
2082 * the best chunk we've found so far
2085 ext4_mb_try_best_found(ac, &e4b);
2086 if (ac->ac_status != AC_STATUS_FOUND) {
2088 * Someone more lucky has already allocated it.
2089 * The only thing we can do is just take first
2090 * found block(s)
2091 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2093 ac->ac_b_ex.fe_group = 0;
2094 ac->ac_b_ex.fe_start = 0;
2095 ac->ac_b_ex.fe_len = 0;
2096 ac->ac_status = AC_STATUS_CONTINUE;
2097 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2098 cr = 3;
2099 atomic_inc(&sbi->s_mb_lost_chunks);
2100 goto repeat;
2103 out:
2104 return err;
2107 #ifdef EXT4_MB_HISTORY
2108 struct ext4_mb_proc_session {
2109 struct ext4_mb_history *history;
2110 struct super_block *sb;
2111 int start;
2112 int max;
2115 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2116 struct ext4_mb_history *hs,
2117 int first)
2119 if (hs == s->history + s->max)
2120 hs = s->history;
2121 if (!first && hs == s->history + s->start)
2122 return NULL;
2123 while (hs->orig.fe_len == 0) {
2124 hs++;
2125 if (hs == s->history + s->max)
2126 hs = s->history;
2127 if (hs == s->history + s->start)
2128 return NULL;
2130 return hs;
2133 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2135 struct ext4_mb_proc_session *s = seq->private;
2136 struct ext4_mb_history *hs;
2137 int l = *pos;
2139 if (l == 0)
2140 return SEQ_START_TOKEN;
2141 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2142 if (!hs)
2143 return NULL;
2144 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2145 return hs;
2148 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2149 loff_t *pos)
2151 struct ext4_mb_proc_session *s = seq->private;
2152 struct ext4_mb_history *hs = v;
2154 ++*pos;
2155 if (v == SEQ_START_TOKEN)
2156 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2157 else
2158 return ext4_mb_history_skip_empty(s, ++hs, 0);
2161 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2163 char buf[25], buf2[25], buf3[25], *fmt;
2164 struct ext4_mb_history *hs = v;
2166 if (v == SEQ_START_TOKEN) {
2167 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2168 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2169 "pid", "inode", "original", "goal", "result", "found",
2170 "grps", "cr", "flags", "merge", "tail", "broken");
2171 return 0;
2174 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2175 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2176 "%-5u %-5s %-5u %-6u\n";
2177 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
2178 hs->result.fe_start, hs->result.fe_len,
2179 hs->result.fe_logical);
2180 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
2181 hs->orig.fe_start, hs->orig.fe_len,
2182 hs->orig.fe_logical);
2183 sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
2184 hs->goal.fe_start, hs->goal.fe_len,
2185 hs->goal.fe_logical);
2186 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2187 hs->found, hs->groups, hs->cr, hs->flags,
2188 hs->merged ? "M" : "", hs->tail,
2189 hs->buddy ? 1 << hs->buddy : 0);
2190 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2191 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2192 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
2193 hs->result.fe_start, hs->result.fe_len,
2194 hs->result.fe_logical);
2195 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
2196 hs->orig.fe_start, hs->orig.fe_len,
2197 hs->orig.fe_logical);
2198 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2199 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2200 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
2201 hs->result.fe_start, hs->result.fe_len);
2202 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2203 hs->pid, hs->ino, buf2);
2204 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2205 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
2206 hs->result.fe_start, hs->result.fe_len);
2207 seq_printf(seq, "%-5u %-8u %-23s free\n",
2208 hs->pid, hs->ino, buf2);
2210 return 0;
2213 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2217 static struct seq_operations ext4_mb_seq_history_ops = {
2218 .start = ext4_mb_seq_history_start,
2219 .next = ext4_mb_seq_history_next,
2220 .stop = ext4_mb_seq_history_stop,
2221 .show = ext4_mb_seq_history_show,
2224 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2226 struct super_block *sb = PDE(inode)->data;
2227 struct ext4_sb_info *sbi = EXT4_SB(sb);
2228 struct ext4_mb_proc_session *s;
2229 int rc;
2230 int size;
2232 if (unlikely(sbi->s_mb_history == NULL))
2233 return -ENOMEM;
2234 s = kmalloc(sizeof(*s), GFP_KERNEL);
2235 if (s == NULL)
2236 return -ENOMEM;
2237 s->sb = sb;
2238 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2239 s->history = kmalloc(size, GFP_KERNEL);
2240 if (s->history == NULL) {
2241 kfree(s);
2242 return -ENOMEM;
2245 spin_lock(&sbi->s_mb_history_lock);
2246 memcpy(s->history, sbi->s_mb_history, size);
2247 s->max = sbi->s_mb_history_max;
2248 s->start = sbi->s_mb_history_cur % s->max;
2249 spin_unlock(&sbi->s_mb_history_lock);
2251 rc = seq_open(file, &ext4_mb_seq_history_ops);
2252 if (rc == 0) {
2253 struct seq_file *m = (struct seq_file *)file->private_data;
2254 m->private = s;
2255 } else {
2256 kfree(s->history);
2257 kfree(s);
2259 return rc;
2263 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2265 struct seq_file *seq = (struct seq_file *)file->private_data;
2266 struct ext4_mb_proc_session *s = seq->private;
2267 kfree(s->history);
2268 kfree(s);
2269 return seq_release(inode, file);
2272 static ssize_t ext4_mb_seq_history_write(struct file *file,
2273 const char __user *buffer,
2274 size_t count, loff_t *ppos)
2276 struct seq_file *seq = (struct seq_file *)file->private_data;
2277 struct ext4_mb_proc_session *s = seq->private;
2278 struct super_block *sb = s->sb;
2279 char str[32];
2280 int value;
2282 if (count >= sizeof(str)) {
2283 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2284 "mb_history", (int)sizeof(str));
2285 return -EOVERFLOW;
2288 if (copy_from_user(str, buffer, count))
2289 return -EFAULT;
2291 value = simple_strtol(str, NULL, 0);
2292 if (value < 0)
2293 return -ERANGE;
2294 EXT4_SB(sb)->s_mb_history_filter = value;
2296 return count;
2299 static struct file_operations ext4_mb_seq_history_fops = {
2300 .owner = THIS_MODULE,
2301 .open = ext4_mb_seq_history_open,
2302 .read = seq_read,
2303 .write = ext4_mb_seq_history_write,
2304 .llseek = seq_lseek,
2305 .release = ext4_mb_seq_history_release,
2308 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2310 struct super_block *sb = seq->private;
2311 struct ext4_sb_info *sbi = EXT4_SB(sb);
2312 ext4_group_t group;
2314 if (*pos < 0 || *pos >= sbi->s_groups_count)
2315 return NULL;
2317 group = *pos + 1;
2318 return (void *) group;
2321 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2323 struct super_block *sb = seq->private;
2324 struct ext4_sb_info *sbi = EXT4_SB(sb);
2325 ext4_group_t group;
2327 ++*pos;
2328 if (*pos < 0 || *pos >= sbi->s_groups_count)
2329 return NULL;
2330 group = *pos + 1;
2331 return (void *) group;;
2334 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2336 struct super_block *sb = seq->private;
2337 long group = (long) v;
2338 int i;
2339 int err;
2340 struct ext4_buddy e4b;
2341 struct sg {
2342 struct ext4_group_info info;
2343 unsigned short counters[16];
2344 } sg;
2346 group--;
2347 if (group == 0)
2348 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2349 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2350 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2351 "group", "free", "frags", "first",
2352 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2353 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2355 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2356 sizeof(struct ext4_group_info);
2357 err = ext4_mb_load_buddy(sb, group, &e4b);
2358 if (err) {
2359 seq_printf(seq, "#%-5lu: I/O error\n", group);
2360 return 0;
2362 ext4_lock_group(sb, group);
2363 memcpy(&sg, ext4_get_group_info(sb, group), i);
2364 ext4_unlock_group(sb, group);
2365 ext4_mb_release_desc(&e4b);
2367 seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2368 sg.info.bb_fragments, sg.info.bb_first_free);
2369 for (i = 0; i <= 13; i++)
2370 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2371 sg.info.bb_counters[i] : 0);
2372 seq_printf(seq, " ]\n");
2374 return 0;
2377 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2381 static struct seq_operations ext4_mb_seq_groups_ops = {
2382 .start = ext4_mb_seq_groups_start,
2383 .next = ext4_mb_seq_groups_next,
2384 .stop = ext4_mb_seq_groups_stop,
2385 .show = ext4_mb_seq_groups_show,
2388 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2390 struct super_block *sb = PDE(inode)->data;
2391 int rc;
2393 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2394 if (rc == 0) {
2395 struct seq_file *m = (struct seq_file *)file->private_data;
2396 m->private = sb;
2398 return rc;
2402 static struct file_operations ext4_mb_seq_groups_fops = {
2403 .owner = THIS_MODULE,
2404 .open = ext4_mb_seq_groups_open,
2405 .read = seq_read,
2406 .llseek = seq_lseek,
2407 .release = seq_release,
2410 static void ext4_mb_history_release(struct super_block *sb)
2412 struct ext4_sb_info *sbi = EXT4_SB(sb);
2414 if (sbi->s_proc != NULL) {
2415 remove_proc_entry("mb_groups", sbi->s_proc);
2416 remove_proc_entry("mb_history", sbi->s_proc);
2418 kfree(sbi->s_mb_history);
2421 static void ext4_mb_history_init(struct super_block *sb)
2423 struct ext4_sb_info *sbi = EXT4_SB(sb);
2424 int i;
2426 if (sbi->s_proc != NULL) {
2427 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2428 &ext4_mb_seq_history_fops, sb);
2429 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2430 &ext4_mb_seq_groups_fops, sb);
2433 sbi->s_mb_history_max = 1000;
2434 sbi->s_mb_history_cur = 0;
2435 spin_lock_init(&sbi->s_mb_history_lock);
2436 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2437 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2438 /* if we can't allocate history, then we simple won't use it */
2441 static noinline_for_stack void
2442 ext4_mb_store_history(struct ext4_allocation_context *ac)
2444 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2445 struct ext4_mb_history h;
2447 if (unlikely(sbi->s_mb_history == NULL))
2448 return;
2450 if (!(ac->ac_op & sbi->s_mb_history_filter))
2451 return;
2453 h.op = ac->ac_op;
2454 h.pid = current->pid;
2455 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2456 h.orig = ac->ac_o_ex;
2457 h.result = ac->ac_b_ex;
2458 h.flags = ac->ac_flags;
2459 h.found = ac->ac_found;
2460 h.groups = ac->ac_groups_scanned;
2461 h.cr = ac->ac_criteria;
2462 h.tail = ac->ac_tail;
2463 h.buddy = ac->ac_buddy;
2464 h.merged = 0;
2465 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2466 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2467 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2468 h.merged = 1;
2469 h.goal = ac->ac_g_ex;
2470 h.result = ac->ac_f_ex;
2473 spin_lock(&sbi->s_mb_history_lock);
2474 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2475 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2476 sbi->s_mb_history_cur = 0;
2477 spin_unlock(&sbi->s_mb_history_lock);
2480 #else
2481 #define ext4_mb_history_release(sb)
2482 #define ext4_mb_history_init(sb)
2483 #endif
2486 /* Create and initialize ext4_group_info data for the given group. */
2487 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2488 struct ext4_group_desc *desc)
2490 int i, len;
2491 int metalen = 0;
2492 struct ext4_sb_info *sbi = EXT4_SB(sb);
2493 struct ext4_group_info **meta_group_info;
2496 * First check if this group is the first of a reserved block.
2497 * If it's true, we have to allocate a new table of pointers
2498 * to ext4_group_info structures
2500 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2501 metalen = sizeof(*meta_group_info) <<
2502 EXT4_DESC_PER_BLOCK_BITS(sb);
2503 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2504 if (meta_group_info == NULL) {
2505 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2506 "buddy group\n");
2507 goto exit_meta_group_info;
2509 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2510 meta_group_info;
2514 * calculate needed size. if change bb_counters size,
2515 * don't forget about ext4_mb_generate_buddy()
2517 len = offsetof(typeof(**meta_group_info),
2518 bb_counters[sb->s_blocksize_bits + 2]);
2520 meta_group_info =
2521 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2522 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2524 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2525 if (meta_group_info[i] == NULL) {
2526 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2527 goto exit_group_info;
2529 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2530 &(meta_group_info[i]->bb_state));
2533 * initialize bb_free to be able to skip
2534 * empty groups without initialization
2536 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2537 meta_group_info[i]->bb_free =
2538 ext4_free_blocks_after_init(sb, group, desc);
2539 } else {
2540 meta_group_info[i]->bb_free =
2541 le16_to_cpu(desc->bg_free_blocks_count);
2544 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2545 init_rwsem(&meta_group_info[i]->alloc_sem);
2546 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2548 #ifdef DOUBLE_CHECK
2550 struct buffer_head *bh;
2551 meta_group_info[i]->bb_bitmap =
2552 kmalloc(sb->s_blocksize, GFP_KERNEL);
2553 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2554 bh = ext4_read_block_bitmap(sb, group);
2555 BUG_ON(bh == NULL);
2556 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2557 sb->s_blocksize);
2558 put_bh(bh);
2560 #endif
2562 return 0;
2564 exit_group_info:
2565 /* If a meta_group_info table has been allocated, release it now */
2566 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2567 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2568 exit_meta_group_info:
2569 return -ENOMEM;
2570 } /* ext4_mb_add_groupinfo */
2573 * Update an existing group.
2574 * This function is used for online resize
2576 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2578 grp->bb_free += add;
2581 static int ext4_mb_init_backend(struct super_block *sb)
2583 ext4_group_t i;
2584 int metalen;
2585 struct ext4_sb_info *sbi = EXT4_SB(sb);
2586 struct ext4_super_block *es = sbi->s_es;
2587 int num_meta_group_infos;
2588 int num_meta_group_infos_max;
2589 int array_size;
2590 struct ext4_group_info **meta_group_info;
2591 struct ext4_group_desc *desc;
2593 /* This is the number of blocks used by GDT */
2594 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2595 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2598 * This is the total number of blocks used by GDT including
2599 * the number of reserved blocks for GDT.
2600 * The s_group_info array is allocated with this value
2601 * to allow a clean online resize without a complex
2602 * manipulation of pointer.
2603 * The drawback is the unused memory when no resize
2604 * occurs but it's very low in terms of pages
2605 * (see comments below)
2606 * Need to handle this properly when META_BG resizing is allowed
2608 num_meta_group_infos_max = num_meta_group_infos +
2609 le16_to_cpu(es->s_reserved_gdt_blocks);
2612 * array_size is the size of s_group_info array. We round it
2613 * to the next power of two because this approximation is done
2614 * internally by kmalloc so we can have some more memory
2615 * for free here (e.g. may be used for META_BG resize).
2617 array_size = 1;
2618 while (array_size < sizeof(*sbi->s_group_info) *
2619 num_meta_group_infos_max)
2620 array_size = array_size << 1;
2621 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2622 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2623 * So a two level scheme suffices for now. */
2624 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2625 if (sbi->s_group_info == NULL) {
2626 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2627 return -ENOMEM;
2629 sbi->s_buddy_cache = new_inode(sb);
2630 if (sbi->s_buddy_cache == NULL) {
2631 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2632 goto err_freesgi;
2634 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2636 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2637 for (i = 0; i < num_meta_group_infos; i++) {
2638 if ((i + 1) == num_meta_group_infos)
2639 metalen = sizeof(*meta_group_info) *
2640 (sbi->s_groups_count -
2641 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2642 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2643 if (meta_group_info == NULL) {
2644 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2645 "buddy group\n");
2646 goto err_freemeta;
2648 sbi->s_group_info[i] = meta_group_info;
2651 for (i = 0; i < sbi->s_groups_count; i++) {
2652 desc = ext4_get_group_desc(sb, i, NULL);
2653 if (desc == NULL) {
2654 printk(KERN_ERR
2655 "EXT4-fs: can't read descriptor %lu\n", i);
2656 goto err_freebuddy;
2658 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2659 goto err_freebuddy;
2662 return 0;
2664 err_freebuddy:
2665 while (i-- > 0)
2666 kfree(ext4_get_group_info(sb, i));
2667 i = num_meta_group_infos;
2668 err_freemeta:
2669 while (i-- > 0)
2670 kfree(sbi->s_group_info[i]);
2671 iput(sbi->s_buddy_cache);
2672 err_freesgi:
2673 kfree(sbi->s_group_info);
2674 return -ENOMEM;
2677 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2679 struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 unsigned i, j;
2681 unsigned offset;
2682 unsigned max;
2683 int ret;
2685 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2687 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2688 if (sbi->s_mb_offsets == NULL) {
2689 return -ENOMEM;
2692 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2693 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2694 if (sbi->s_mb_maxs == NULL) {
2695 kfree(sbi->s_mb_maxs);
2696 return -ENOMEM;
2699 /* order 0 is regular bitmap */
2700 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2701 sbi->s_mb_offsets[0] = 0;
2703 i = 1;
2704 offset = 0;
2705 max = sb->s_blocksize << 2;
2706 do {
2707 sbi->s_mb_offsets[i] = offset;
2708 sbi->s_mb_maxs[i] = max;
2709 offset += 1 << (sb->s_blocksize_bits - i);
2710 max = max >> 1;
2711 i++;
2712 } while (i <= sb->s_blocksize_bits + 1);
2714 /* init file for buddy data */
2715 ret = ext4_mb_init_backend(sb);
2716 if (ret != 0) {
2717 kfree(sbi->s_mb_offsets);
2718 kfree(sbi->s_mb_maxs);
2719 return ret;
2722 spin_lock_init(&sbi->s_md_lock);
2723 spin_lock_init(&sbi->s_bal_lock);
2725 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2726 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2727 sbi->s_mb_stats = MB_DEFAULT_STATS;
2728 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2729 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2730 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2731 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2733 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2734 if (sbi->s_locality_groups == NULL) {
2735 kfree(sbi->s_mb_offsets);
2736 kfree(sbi->s_mb_maxs);
2737 return -ENOMEM;
2739 for_each_possible_cpu(i) {
2740 struct ext4_locality_group *lg;
2741 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2742 mutex_init(&lg->lg_mutex);
2743 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2744 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2745 spin_lock_init(&lg->lg_prealloc_lock);
2748 ext4_mb_init_per_dev_proc(sb);
2749 ext4_mb_history_init(sb);
2751 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2753 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2754 return 0;
2757 /* need to called with ext4 group lock (ext4_lock_group) */
2758 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2760 struct ext4_prealloc_space *pa;
2761 struct list_head *cur, *tmp;
2762 int count = 0;
2764 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2766 list_del(&pa->pa_group_list);
2767 count++;
2768 kmem_cache_free(ext4_pspace_cachep, pa);
2770 if (count)
2771 mb_debug("mballoc: %u PAs left\n", count);
2775 int ext4_mb_release(struct super_block *sb)
2777 ext4_group_t i;
2778 int num_meta_group_infos;
2779 struct ext4_group_info *grinfo;
2780 struct ext4_sb_info *sbi = EXT4_SB(sb);
2782 if (sbi->s_group_info) {
2783 for (i = 0; i < sbi->s_groups_count; i++) {
2784 grinfo = ext4_get_group_info(sb, i);
2785 #ifdef DOUBLE_CHECK
2786 kfree(grinfo->bb_bitmap);
2787 #endif
2788 ext4_lock_group(sb, i);
2789 ext4_mb_cleanup_pa(grinfo);
2790 ext4_unlock_group(sb, i);
2791 kfree(grinfo);
2793 num_meta_group_infos = (sbi->s_groups_count +
2794 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2795 EXT4_DESC_PER_BLOCK_BITS(sb);
2796 for (i = 0; i < num_meta_group_infos; i++)
2797 kfree(sbi->s_group_info[i]);
2798 kfree(sbi->s_group_info);
2800 kfree(sbi->s_mb_offsets);
2801 kfree(sbi->s_mb_maxs);
2802 if (sbi->s_buddy_cache)
2803 iput(sbi->s_buddy_cache);
2804 if (sbi->s_mb_stats) {
2805 printk(KERN_INFO
2806 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2807 atomic_read(&sbi->s_bal_allocated),
2808 atomic_read(&sbi->s_bal_reqs),
2809 atomic_read(&sbi->s_bal_success));
2810 printk(KERN_INFO
2811 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2812 "%u 2^N hits, %u breaks, %u lost\n",
2813 atomic_read(&sbi->s_bal_ex_scanned),
2814 atomic_read(&sbi->s_bal_goals),
2815 atomic_read(&sbi->s_bal_2orders),
2816 atomic_read(&sbi->s_bal_breaks),
2817 atomic_read(&sbi->s_mb_lost_chunks));
2818 printk(KERN_INFO
2819 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2820 sbi->s_mb_buddies_generated++,
2821 sbi->s_mb_generation_time);
2822 printk(KERN_INFO
2823 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2824 atomic_read(&sbi->s_mb_preallocated),
2825 atomic_read(&sbi->s_mb_discarded));
2828 free_percpu(sbi->s_locality_groups);
2829 ext4_mb_history_release(sb);
2830 ext4_mb_destroy_per_dev_proc(sb);
2832 return 0;
2836 * This function is called by the jbd2 layer once the commit has finished,
2837 * so we know we can free the blocks that were released with that commit.
2839 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2841 struct super_block *sb = journal->j_private;
2842 struct ext4_buddy e4b;
2843 struct ext4_group_info *db;
2844 int err, count = 0, count2 = 0;
2845 struct ext4_free_data *entry;
2846 ext4_fsblk_t discard_block;
2847 struct list_head *l, *ltmp;
2849 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2850 entry = list_entry(l, struct ext4_free_data, list);
2852 mb_debug("gonna free %u blocks in group %lu (0x%p):",
2853 entry->count, entry->group, entry);
2855 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2856 /* we expect to find existing buddy because it's pinned */
2857 BUG_ON(err != 0);
2859 db = e4b.bd_info;
2860 /* there are blocks to put in buddy to make them really free */
2861 count += entry->count;
2862 count2++;
2863 ext4_lock_group(sb, entry->group);
2864 /* Take it out of per group rb tree */
2865 rb_erase(&entry->node, &(db->bb_free_root));
2866 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2868 if (!db->bb_free_root.rb_node) {
2869 /* No more items in the per group rb tree
2870 * balance refcounts from ext4_mb_free_metadata()
2872 page_cache_release(e4b.bd_buddy_page);
2873 page_cache_release(e4b.bd_bitmap_page);
2875 ext4_unlock_group(sb, entry->group);
2876 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2877 + entry->start_blk
2878 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2879 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", sb->s_id,
2880 (unsigned long long) discard_block, entry->count);
2881 sb_issue_discard(sb, discard_block, entry->count);
2883 kmem_cache_free(ext4_free_ext_cachep, entry);
2884 ext4_mb_release_desc(&e4b);
2887 mb_debug("freed %u blocks in %u structures\n", count, count2);
2890 #define EXT4_MB_STATS_NAME "stats"
2891 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2892 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2893 #define EXT4_MB_ORDER2_REQ "order2_req"
2894 #define EXT4_MB_STREAM_REQ "stream_req"
2895 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2897 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2899 #ifdef CONFIG_PROC_FS
2900 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2901 struct ext4_sb_info *sbi = EXT4_SB(sb);
2902 struct proc_dir_entry *proc;
2904 if (sbi->s_proc == NULL)
2905 return -EINVAL;
2907 EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2908 EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2909 EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2910 EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2911 EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2912 EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2913 return 0;
2915 err_out:
2916 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2917 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2918 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2919 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2920 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2921 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2922 return -ENOMEM;
2923 #else
2924 return 0;
2925 #endif
2928 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2930 #ifdef CONFIG_PROC_FS
2931 struct ext4_sb_info *sbi = EXT4_SB(sb);
2933 if (sbi->s_proc == NULL)
2934 return -EINVAL;
2936 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2937 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2938 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2939 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2940 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2941 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2942 #endif
2943 return 0;
2946 int __init init_ext4_mballoc(void)
2948 ext4_pspace_cachep =
2949 kmem_cache_create("ext4_prealloc_space",
2950 sizeof(struct ext4_prealloc_space),
2951 0, SLAB_RECLAIM_ACCOUNT, NULL);
2952 if (ext4_pspace_cachep == NULL)
2953 return -ENOMEM;
2955 ext4_ac_cachep =
2956 kmem_cache_create("ext4_alloc_context",
2957 sizeof(struct ext4_allocation_context),
2958 0, SLAB_RECLAIM_ACCOUNT, NULL);
2959 if (ext4_ac_cachep == NULL) {
2960 kmem_cache_destroy(ext4_pspace_cachep);
2961 return -ENOMEM;
2964 ext4_free_ext_cachep =
2965 kmem_cache_create("ext4_free_block_extents",
2966 sizeof(struct ext4_free_data),
2967 0, SLAB_RECLAIM_ACCOUNT, NULL);
2968 if (ext4_free_ext_cachep == NULL) {
2969 kmem_cache_destroy(ext4_pspace_cachep);
2970 kmem_cache_destroy(ext4_ac_cachep);
2971 return -ENOMEM;
2973 return 0;
2976 void exit_ext4_mballoc(void)
2978 /* XXX: synchronize_rcu(); */
2979 kmem_cache_destroy(ext4_pspace_cachep);
2980 kmem_cache_destroy(ext4_ac_cachep);
2981 kmem_cache_destroy(ext4_free_ext_cachep);
2986 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2987 * Returns 0 if success or error code
2989 static noinline_for_stack int
2990 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2991 handle_t *handle, unsigned long reserv_blks)
2993 struct buffer_head *bitmap_bh = NULL;
2994 struct ext4_super_block *es;
2995 struct ext4_group_desc *gdp;
2996 struct buffer_head *gdp_bh;
2997 struct ext4_sb_info *sbi;
2998 struct super_block *sb;
2999 ext4_fsblk_t block;
3000 int err, len;
3002 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3003 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3005 sb = ac->ac_sb;
3006 sbi = EXT4_SB(sb);
3007 es = sbi->s_es;
3010 err = -EIO;
3011 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3012 if (!bitmap_bh)
3013 goto out_err;
3015 err = ext4_journal_get_write_access(handle, bitmap_bh);
3016 if (err)
3017 goto out_err;
3019 err = -EIO;
3020 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3021 if (!gdp)
3022 goto out_err;
3024 ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
3025 gdp->bg_free_blocks_count);
3027 err = ext4_journal_get_write_access(handle, gdp_bh);
3028 if (err)
3029 goto out_err;
3031 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3032 + ac->ac_b_ex.fe_start
3033 + le32_to_cpu(es->s_first_data_block);
3035 len = ac->ac_b_ex.fe_len;
3036 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3037 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3038 in_range(block, ext4_inode_table(sb, gdp),
3039 EXT4_SB(sb)->s_itb_per_group) ||
3040 in_range(block + len - 1, ext4_inode_table(sb, gdp),
3041 EXT4_SB(sb)->s_itb_per_group)) {
3042 ext4_error(sb, __func__,
3043 "Allocating block %llu in system zone of %d group\n",
3044 block, ac->ac_b_ex.fe_group);
3045 /* File system mounted not to panic on error
3046 * Fix the bitmap and repeat the block allocation
3047 * We leak some of the blocks here.
3049 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3050 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3051 ac->ac_b_ex.fe_len);
3052 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
3053 if (!err)
3054 err = -EAGAIN;
3055 goto out_err;
3057 #ifdef AGGRESSIVE_CHECK
3059 int i;
3060 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3061 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3062 bitmap_bh->b_data));
3065 #endif
3066 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3067 mb_set_bits(NULL, bitmap_bh->b_data,
3068 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3069 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3070 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3071 gdp->bg_free_blocks_count =
3072 cpu_to_le16(ext4_free_blocks_after_init(sb,
3073 ac->ac_b_ex.fe_group,
3074 gdp));
3076 le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
3077 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3078 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3079 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3081 * Now reduce the dirty block count also. Should not go negative
3083 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3084 /* release all the reserved blocks if non delalloc */
3085 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3086 else
3087 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3088 ac->ac_b_ex.fe_len);
3090 if (sbi->s_log_groups_per_flex) {
3091 ext4_group_t flex_group = ext4_flex_group(sbi,
3092 ac->ac_b_ex.fe_group);
3093 spin_lock(sb_bgl_lock(sbi, flex_group));
3094 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3095 spin_unlock(sb_bgl_lock(sbi, flex_group));
3098 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
3099 if (err)
3100 goto out_err;
3101 err = ext4_journal_dirty_metadata(handle, gdp_bh);
3103 out_err:
3104 sb->s_dirt = 1;
3105 brelse(bitmap_bh);
3106 return err;
3110 * here we normalize request for locality group
3111 * Group request are normalized to s_strip size if we set the same via mount
3112 * option. If not we set it to s_mb_group_prealloc which can be configured via
3113 * /proc/fs/ext4/<partition>/group_prealloc
3115 * XXX: should we try to preallocate more than the group has now?
3117 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3119 struct super_block *sb = ac->ac_sb;
3120 struct ext4_locality_group *lg = ac->ac_lg;
3122 BUG_ON(lg == NULL);
3123 if (EXT4_SB(sb)->s_stripe)
3124 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3125 else
3126 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3127 mb_debug("#%u: goal %u blocks for locality group\n",
3128 current->pid, ac->ac_g_ex.fe_len);
3132 * Normalization means making request better in terms of
3133 * size and alignment
3135 static noinline_for_stack void
3136 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3137 struct ext4_allocation_request *ar)
3139 int bsbits, max;
3140 ext4_lblk_t end;
3141 loff_t size, orig_size, start_off;
3142 ext4_lblk_t start, orig_start;
3143 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3144 struct ext4_prealloc_space *pa;
3146 /* do normalize only data requests, metadata requests
3147 do not need preallocation */
3148 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3149 return;
3151 /* sometime caller may want exact blocks */
3152 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3153 return;
3155 /* caller may indicate that preallocation isn't
3156 * required (it's a tail, for example) */
3157 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3158 return;
3160 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3161 ext4_mb_normalize_group_request(ac);
3162 return ;
3165 bsbits = ac->ac_sb->s_blocksize_bits;
3167 /* first, let's learn actual file size
3168 * given current request is allocated */
3169 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3170 size = size << bsbits;
3171 if (size < i_size_read(ac->ac_inode))
3172 size = i_size_read(ac->ac_inode);
3174 /* max size of free chunks */
3175 max = 2 << bsbits;
3177 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3178 (req <= (size) || max <= (chunk_size))
3180 /* first, try to predict filesize */
3181 /* XXX: should this table be tunable? */
3182 start_off = 0;
3183 if (size <= 16 * 1024) {
3184 size = 16 * 1024;
3185 } else if (size <= 32 * 1024) {
3186 size = 32 * 1024;
3187 } else if (size <= 64 * 1024) {
3188 size = 64 * 1024;
3189 } else if (size <= 128 * 1024) {
3190 size = 128 * 1024;
3191 } else if (size <= 256 * 1024) {
3192 size = 256 * 1024;
3193 } else if (size <= 512 * 1024) {
3194 size = 512 * 1024;
3195 } else if (size <= 1024 * 1024) {
3196 size = 1024 * 1024;
3197 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3198 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3199 (21 - bsbits)) << 21;
3200 size = 2 * 1024 * 1024;
3201 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3202 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3203 (22 - bsbits)) << 22;
3204 size = 4 * 1024 * 1024;
3205 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3206 (8<<20)>>bsbits, max, 8 * 1024)) {
3207 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3208 (23 - bsbits)) << 23;
3209 size = 8 * 1024 * 1024;
3210 } else {
3211 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3212 size = ac->ac_o_ex.fe_len << bsbits;
3214 orig_size = size = size >> bsbits;
3215 orig_start = start = start_off >> bsbits;
3217 /* don't cover already allocated blocks in selected range */
3218 if (ar->pleft && start <= ar->lleft) {
3219 size -= ar->lleft + 1 - start;
3220 start = ar->lleft + 1;
3222 if (ar->pright && start + size - 1 >= ar->lright)
3223 size -= start + size - ar->lright;
3225 end = start + size;
3227 /* check we don't cross already preallocated blocks */
3228 rcu_read_lock();
3229 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3230 unsigned long pa_end;
3232 if (pa->pa_deleted)
3233 continue;
3234 spin_lock(&pa->pa_lock);
3235 if (pa->pa_deleted) {
3236 spin_unlock(&pa->pa_lock);
3237 continue;
3240 pa_end = pa->pa_lstart + pa->pa_len;
3242 /* PA must not overlap original request */
3243 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3244 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3246 /* skip PA normalized request doesn't overlap with */
3247 if (pa->pa_lstart >= end) {
3248 spin_unlock(&pa->pa_lock);
3249 continue;
3251 if (pa_end <= start) {
3252 spin_unlock(&pa->pa_lock);
3253 continue;
3255 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3257 if (pa_end <= ac->ac_o_ex.fe_logical) {
3258 BUG_ON(pa_end < start);
3259 start = pa_end;
3262 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3263 BUG_ON(pa->pa_lstart > end);
3264 end = pa->pa_lstart;
3266 spin_unlock(&pa->pa_lock);
3268 rcu_read_unlock();
3269 size = end - start;
3271 /* XXX: extra loop to check we really don't overlap preallocations */
3272 rcu_read_lock();
3273 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3274 unsigned long pa_end;
3275 spin_lock(&pa->pa_lock);
3276 if (pa->pa_deleted == 0) {
3277 pa_end = pa->pa_lstart + pa->pa_len;
3278 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3280 spin_unlock(&pa->pa_lock);
3282 rcu_read_unlock();
3284 if (start + size <= ac->ac_o_ex.fe_logical &&
3285 start > ac->ac_o_ex.fe_logical) {
3286 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3287 (unsigned long) start, (unsigned long) size,
3288 (unsigned long) ac->ac_o_ex.fe_logical);
3290 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3291 start > ac->ac_o_ex.fe_logical);
3292 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3294 /* now prepare goal request */
3296 /* XXX: is it better to align blocks WRT to logical
3297 * placement or satisfy big request as is */
3298 ac->ac_g_ex.fe_logical = start;
3299 ac->ac_g_ex.fe_len = size;
3301 /* define goal start in order to merge */
3302 if (ar->pright && (ar->lright == (start + size))) {
3303 /* merge to the right */
3304 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3305 &ac->ac_f_ex.fe_group,
3306 &ac->ac_f_ex.fe_start);
3307 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3309 if (ar->pleft && (ar->lleft + 1 == start)) {
3310 /* merge to the left */
3311 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3312 &ac->ac_f_ex.fe_group,
3313 &ac->ac_f_ex.fe_start);
3314 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3317 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3318 (unsigned) orig_size, (unsigned) start);
3321 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3323 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3325 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3326 atomic_inc(&sbi->s_bal_reqs);
3327 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3328 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3329 atomic_inc(&sbi->s_bal_success);
3330 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3331 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3332 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3333 atomic_inc(&sbi->s_bal_goals);
3334 if (ac->ac_found > sbi->s_mb_max_to_scan)
3335 atomic_inc(&sbi->s_bal_breaks);
3338 ext4_mb_store_history(ac);
3342 * use blocks preallocated to inode
3344 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3345 struct ext4_prealloc_space *pa)
3347 ext4_fsblk_t start;
3348 ext4_fsblk_t end;
3349 int len;
3351 /* found preallocated blocks, use them */
3352 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3353 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3354 len = end - start;
3355 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3356 &ac->ac_b_ex.fe_start);
3357 ac->ac_b_ex.fe_len = len;
3358 ac->ac_status = AC_STATUS_FOUND;
3359 ac->ac_pa = pa;
3361 BUG_ON(start < pa->pa_pstart);
3362 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3363 BUG_ON(pa->pa_free < len);
3364 pa->pa_free -= len;
3366 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3370 * use blocks preallocated to locality group
3372 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3373 struct ext4_prealloc_space *pa)
3375 unsigned int len = ac->ac_o_ex.fe_len;
3377 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3378 &ac->ac_b_ex.fe_group,
3379 &ac->ac_b_ex.fe_start);
3380 ac->ac_b_ex.fe_len = len;
3381 ac->ac_status = AC_STATUS_FOUND;
3382 ac->ac_pa = pa;
3384 /* we don't correct pa_pstart or pa_plen here to avoid
3385 * possible race when the group is being loaded concurrently
3386 * instead we correct pa later, after blocks are marked
3387 * in on-disk bitmap -- see ext4_mb_release_context()
3388 * Other CPUs are prevented from allocating from this pa by lg_mutex
3390 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3394 * Return the prealloc space that have minimal distance
3395 * from the goal block. @cpa is the prealloc
3396 * space that is having currently known minimal distance
3397 * from the goal block.
3399 static struct ext4_prealloc_space *
3400 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3401 struct ext4_prealloc_space *pa,
3402 struct ext4_prealloc_space *cpa)
3404 ext4_fsblk_t cur_distance, new_distance;
3406 if (cpa == NULL) {
3407 atomic_inc(&pa->pa_count);
3408 return pa;
3410 cur_distance = abs(goal_block - cpa->pa_pstart);
3411 new_distance = abs(goal_block - pa->pa_pstart);
3413 if (cur_distance < new_distance)
3414 return cpa;
3416 /* drop the previous reference */
3417 atomic_dec(&cpa->pa_count);
3418 atomic_inc(&pa->pa_count);
3419 return pa;
3423 * search goal blocks in preallocated space
3425 static noinline_for_stack int
3426 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3428 int order, i;
3429 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3430 struct ext4_locality_group *lg;
3431 struct ext4_prealloc_space *pa, *cpa = NULL;
3432 ext4_fsblk_t goal_block;
3434 /* only data can be preallocated */
3435 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3436 return 0;
3438 /* first, try per-file preallocation */
3439 rcu_read_lock();
3440 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3442 /* all fields in this condition don't change,
3443 * so we can skip locking for them */
3444 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3445 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3446 continue;
3448 /* found preallocated blocks, use them */
3449 spin_lock(&pa->pa_lock);
3450 if (pa->pa_deleted == 0 && pa->pa_free) {
3451 atomic_inc(&pa->pa_count);
3452 ext4_mb_use_inode_pa(ac, pa);
3453 spin_unlock(&pa->pa_lock);
3454 ac->ac_criteria = 10;
3455 rcu_read_unlock();
3456 return 1;
3458 spin_unlock(&pa->pa_lock);
3460 rcu_read_unlock();
3462 /* can we use group allocation? */
3463 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3464 return 0;
3466 /* inode may have no locality group for some reason */
3467 lg = ac->ac_lg;
3468 if (lg == NULL)
3469 return 0;
3470 order = fls(ac->ac_o_ex.fe_len) - 1;
3471 if (order > PREALLOC_TB_SIZE - 1)
3472 /* The max size of hash table is PREALLOC_TB_SIZE */
3473 order = PREALLOC_TB_SIZE - 1;
3475 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3476 ac->ac_g_ex.fe_start +
3477 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3479 * search for the prealloc space that is having
3480 * minimal distance from the goal block.
3482 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3483 rcu_read_lock();
3484 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3485 pa_inode_list) {
3486 spin_lock(&pa->pa_lock);
3487 if (pa->pa_deleted == 0 &&
3488 pa->pa_free >= ac->ac_o_ex.fe_len) {
3490 cpa = ext4_mb_check_group_pa(goal_block,
3491 pa, cpa);
3493 spin_unlock(&pa->pa_lock);
3495 rcu_read_unlock();
3497 if (cpa) {
3498 ext4_mb_use_group_pa(ac, cpa);
3499 ac->ac_criteria = 20;
3500 return 1;
3502 return 0;
3506 * the function goes through all block freed in the group
3507 * but not yet committed and marks them used in in-core bitmap.
3508 * buddy must be generated from this bitmap
3509 * Need to be called with ext4 group lock (ext4_lock_group)
3511 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3512 ext4_group_t group)
3514 struct rb_node *n;
3515 struct ext4_group_info *grp;
3516 struct ext4_free_data *entry;
3518 grp = ext4_get_group_info(sb, group);
3519 n = rb_first(&(grp->bb_free_root));
3521 while (n) {
3522 entry = rb_entry(n, struct ext4_free_data, node);
3523 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3524 bitmap, entry->start_blk,
3525 entry->count);
3526 n = rb_next(n);
3528 return;
3532 * the function goes through all preallocation in this group and marks them
3533 * used in in-core bitmap. buddy must be generated from this bitmap
3534 * Need to be called with ext4 group lock (ext4_lock_group)
3536 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3537 ext4_group_t group)
3539 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3540 struct ext4_prealloc_space *pa;
3541 struct list_head *cur;
3542 ext4_group_t groupnr;
3543 ext4_grpblk_t start;
3544 int preallocated = 0;
3545 int count = 0;
3546 int len;
3548 /* all form of preallocation discards first load group,
3549 * so the only competing code is preallocation use.
3550 * we don't need any locking here
3551 * notice we do NOT ignore preallocations with pa_deleted
3552 * otherwise we could leave used blocks available for
3553 * allocation in buddy when concurrent ext4_mb_put_pa()
3554 * is dropping preallocation
3556 list_for_each(cur, &grp->bb_prealloc_list) {
3557 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3558 spin_lock(&pa->pa_lock);
3559 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3560 &groupnr, &start);
3561 len = pa->pa_len;
3562 spin_unlock(&pa->pa_lock);
3563 if (unlikely(len == 0))
3564 continue;
3565 BUG_ON(groupnr != group);
3566 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3567 bitmap, start, len);
3568 preallocated += len;
3569 count++;
3571 mb_debug("prellocated %u for group %lu\n", preallocated, group);
3574 static void ext4_mb_pa_callback(struct rcu_head *head)
3576 struct ext4_prealloc_space *pa;
3577 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3578 kmem_cache_free(ext4_pspace_cachep, pa);
3582 * drops a reference to preallocated space descriptor
3583 * if this was the last reference and the space is consumed
3585 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3586 struct super_block *sb, struct ext4_prealloc_space *pa)
3588 unsigned long grp;
3590 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3591 return;
3593 /* in this short window concurrent discard can set pa_deleted */
3594 spin_lock(&pa->pa_lock);
3595 if (pa->pa_deleted == 1) {
3596 spin_unlock(&pa->pa_lock);
3597 return;
3600 pa->pa_deleted = 1;
3601 spin_unlock(&pa->pa_lock);
3603 /* -1 is to protect from crossing allocation group */
3604 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3607 * possible race:
3609 * P1 (buddy init) P2 (regular allocation)
3610 * find block B in PA
3611 * copy on-disk bitmap to buddy
3612 * mark B in on-disk bitmap
3613 * drop PA from group
3614 * mark all PAs in buddy
3616 * thus, P1 initializes buddy with B available. to prevent this
3617 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3618 * against that pair
3620 ext4_lock_group(sb, grp);
3621 list_del(&pa->pa_group_list);
3622 ext4_unlock_group(sb, grp);
3624 spin_lock(pa->pa_obj_lock);
3625 list_del_rcu(&pa->pa_inode_list);
3626 spin_unlock(pa->pa_obj_lock);
3628 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3632 * creates new preallocated space for given inode
3634 static noinline_for_stack int
3635 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3637 struct super_block *sb = ac->ac_sb;
3638 struct ext4_prealloc_space *pa;
3639 struct ext4_group_info *grp;
3640 struct ext4_inode_info *ei;
3642 /* preallocate only when found space is larger then requested */
3643 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3644 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3645 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3647 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3648 if (pa == NULL)
3649 return -ENOMEM;
3651 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3652 int winl;
3653 int wins;
3654 int win;
3655 int offs;
3657 /* we can't allocate as much as normalizer wants.
3658 * so, found space must get proper lstart
3659 * to cover original request */
3660 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3661 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3663 /* we're limited by original request in that
3664 * logical block must be covered any way
3665 * winl is window we can move our chunk within */
3666 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3668 /* also, we should cover whole original request */
3669 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3671 /* the smallest one defines real window */
3672 win = min(winl, wins);
3674 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3675 if (offs && offs < win)
3676 win = offs;
3678 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3679 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3680 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3683 /* preallocation can change ac_b_ex, thus we store actually
3684 * allocated blocks for history */
3685 ac->ac_f_ex = ac->ac_b_ex;
3687 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3688 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3689 pa->pa_len = ac->ac_b_ex.fe_len;
3690 pa->pa_free = pa->pa_len;
3691 atomic_set(&pa->pa_count, 1);
3692 spin_lock_init(&pa->pa_lock);
3693 INIT_LIST_HEAD(&pa->pa_inode_list);
3694 INIT_LIST_HEAD(&pa->pa_group_list);
3695 pa->pa_deleted = 0;
3696 pa->pa_linear = 0;
3698 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3699 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3701 ext4_mb_use_inode_pa(ac, pa);
3702 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3704 ei = EXT4_I(ac->ac_inode);
3705 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3707 pa->pa_obj_lock = &ei->i_prealloc_lock;
3708 pa->pa_inode = ac->ac_inode;
3710 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3711 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3712 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3714 spin_lock(pa->pa_obj_lock);
3715 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3716 spin_unlock(pa->pa_obj_lock);
3718 return 0;
3722 * creates new preallocated space for locality group inodes belongs to
3724 static noinline_for_stack int
3725 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3727 struct super_block *sb = ac->ac_sb;
3728 struct ext4_locality_group *lg;
3729 struct ext4_prealloc_space *pa;
3730 struct ext4_group_info *grp;
3732 /* preallocate only when found space is larger then requested */
3733 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3734 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3735 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3737 BUG_ON(ext4_pspace_cachep == NULL);
3738 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3739 if (pa == NULL)
3740 return -ENOMEM;
3742 /* preallocation can change ac_b_ex, thus we store actually
3743 * allocated blocks for history */
3744 ac->ac_f_ex = ac->ac_b_ex;
3746 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3747 pa->pa_lstart = pa->pa_pstart;
3748 pa->pa_len = ac->ac_b_ex.fe_len;
3749 pa->pa_free = pa->pa_len;
3750 atomic_set(&pa->pa_count, 1);
3751 spin_lock_init(&pa->pa_lock);
3752 INIT_LIST_HEAD(&pa->pa_inode_list);
3753 INIT_LIST_HEAD(&pa->pa_group_list);
3754 pa->pa_deleted = 0;
3755 pa->pa_linear = 1;
3757 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3758 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3760 ext4_mb_use_group_pa(ac, pa);
3761 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3763 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3764 lg = ac->ac_lg;
3765 BUG_ON(lg == NULL);
3767 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3768 pa->pa_inode = NULL;
3770 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3771 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3772 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3775 * We will later add the new pa to the right bucket
3776 * after updating the pa_free in ext4_mb_release_context
3778 return 0;
3781 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3783 int err;
3785 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3786 err = ext4_mb_new_group_pa(ac);
3787 else
3788 err = ext4_mb_new_inode_pa(ac);
3789 return err;
3793 * finds all unused blocks in on-disk bitmap, frees them in
3794 * in-core bitmap and buddy.
3795 * @pa must be unlinked from inode and group lists, so that
3796 * nobody else can find/use it.
3797 * the caller MUST hold group/inode locks.
3798 * TODO: optimize the case when there are no in-core structures yet
3800 static noinline_for_stack int
3801 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3802 struct ext4_prealloc_space *pa,
3803 struct ext4_allocation_context *ac)
3805 struct super_block *sb = e4b->bd_sb;
3806 struct ext4_sb_info *sbi = EXT4_SB(sb);
3807 unsigned long end;
3808 unsigned long next;
3809 ext4_group_t group;
3810 ext4_grpblk_t bit;
3811 sector_t start;
3812 int err = 0;
3813 int free = 0;
3815 BUG_ON(pa->pa_deleted == 0);
3816 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3817 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3818 end = bit + pa->pa_len;
3820 if (ac) {
3821 ac->ac_sb = sb;
3822 ac->ac_inode = pa->pa_inode;
3823 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3826 while (bit < end) {
3827 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3828 if (bit >= end)
3829 break;
3830 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3831 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3832 le32_to_cpu(sbi->s_es->s_first_data_block);
3833 mb_debug(" free preallocated %u/%u in group %u\n",
3834 (unsigned) start, (unsigned) next - bit,
3835 (unsigned) group);
3836 free += next - bit;
3838 if (ac) {
3839 ac->ac_b_ex.fe_group = group;
3840 ac->ac_b_ex.fe_start = bit;
3841 ac->ac_b_ex.fe_len = next - bit;
3842 ac->ac_b_ex.fe_logical = 0;
3843 ext4_mb_store_history(ac);
3846 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3847 bit = next + 1;
3849 if (free != pa->pa_free) {
3850 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3851 pa, (unsigned long) pa->pa_lstart,
3852 (unsigned long) pa->pa_pstart,
3853 (unsigned long) pa->pa_len);
3854 ext4_error(sb, __func__, "free %u, pa_free %u\n",
3855 free, pa->pa_free);
3857 * pa is already deleted so we use the value obtained
3858 * from the bitmap and continue.
3861 atomic_add(free, &sbi->s_mb_discarded);
3863 return err;
3866 static noinline_for_stack int
3867 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3868 struct ext4_prealloc_space *pa,
3869 struct ext4_allocation_context *ac)
3871 struct super_block *sb = e4b->bd_sb;
3872 ext4_group_t group;
3873 ext4_grpblk_t bit;
3875 if (ac)
3876 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3878 BUG_ON(pa->pa_deleted == 0);
3879 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3880 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3881 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3882 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3884 if (ac) {
3885 ac->ac_sb = sb;
3886 ac->ac_inode = NULL;
3887 ac->ac_b_ex.fe_group = group;
3888 ac->ac_b_ex.fe_start = bit;
3889 ac->ac_b_ex.fe_len = pa->pa_len;
3890 ac->ac_b_ex.fe_logical = 0;
3891 ext4_mb_store_history(ac);
3894 return 0;
3898 * releases all preallocations in given group
3900 * first, we need to decide discard policy:
3901 * - when do we discard
3902 * 1) ENOSPC
3903 * - how many do we discard
3904 * 1) how many requested
3906 static noinline_for_stack int
3907 ext4_mb_discard_group_preallocations(struct super_block *sb,
3908 ext4_group_t group, int needed)
3910 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3911 struct buffer_head *bitmap_bh = NULL;
3912 struct ext4_prealloc_space *pa, *tmp;
3913 struct ext4_allocation_context *ac;
3914 struct list_head list;
3915 struct ext4_buddy e4b;
3916 int err;
3917 int busy = 0;
3918 int free = 0;
3920 mb_debug("discard preallocation for group %lu\n", group);
3922 if (list_empty(&grp->bb_prealloc_list))
3923 return 0;
3925 bitmap_bh = ext4_read_block_bitmap(sb, group);
3926 if (bitmap_bh == NULL) {
3927 ext4_error(sb, __func__, "Error in reading block "
3928 "bitmap for %lu\n", group);
3929 return 0;
3932 err = ext4_mb_load_buddy(sb, group, &e4b);
3933 if (err) {
3934 ext4_error(sb, __func__, "Error in loading buddy "
3935 "information for %lu\n", group);
3936 put_bh(bitmap_bh);
3937 return 0;
3940 if (needed == 0)
3941 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3943 INIT_LIST_HEAD(&list);
3944 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3945 repeat:
3946 ext4_lock_group(sb, group);
3947 list_for_each_entry_safe(pa, tmp,
3948 &grp->bb_prealloc_list, pa_group_list) {
3949 spin_lock(&pa->pa_lock);
3950 if (atomic_read(&pa->pa_count)) {
3951 spin_unlock(&pa->pa_lock);
3952 busy = 1;
3953 continue;
3955 if (pa->pa_deleted) {
3956 spin_unlock(&pa->pa_lock);
3957 continue;
3960 /* seems this one can be freed ... */
3961 pa->pa_deleted = 1;
3963 /* we can trust pa_free ... */
3964 free += pa->pa_free;
3966 spin_unlock(&pa->pa_lock);
3968 list_del(&pa->pa_group_list);
3969 list_add(&pa->u.pa_tmp_list, &list);
3972 /* if we still need more blocks and some PAs were used, try again */
3973 if (free < needed && busy) {
3974 busy = 0;
3975 ext4_unlock_group(sb, group);
3977 * Yield the CPU here so that we don't get soft lockup
3978 * in non preempt case.
3980 yield();
3981 goto repeat;
3984 /* found anything to free? */
3985 if (list_empty(&list)) {
3986 BUG_ON(free != 0);
3987 goto out;
3990 /* now free all selected PAs */
3991 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3993 /* remove from object (inode or locality group) */
3994 spin_lock(pa->pa_obj_lock);
3995 list_del_rcu(&pa->pa_inode_list);
3996 spin_unlock(pa->pa_obj_lock);
3998 if (pa->pa_linear)
3999 ext4_mb_release_group_pa(&e4b, pa, ac);
4000 else
4001 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4003 list_del(&pa->u.pa_tmp_list);
4004 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4007 out:
4008 ext4_unlock_group(sb, group);
4009 if (ac)
4010 kmem_cache_free(ext4_ac_cachep, ac);
4011 ext4_mb_release_desc(&e4b);
4012 put_bh(bitmap_bh);
4013 return free;
4017 * releases all non-used preallocated blocks for given inode
4019 * It's important to discard preallocations under i_data_sem
4020 * We don't want another block to be served from the prealloc
4021 * space when we are discarding the inode prealloc space.
4023 * FIXME!! Make sure it is valid at all the call sites
4025 void ext4_discard_preallocations(struct inode *inode)
4027 struct ext4_inode_info *ei = EXT4_I(inode);
4028 struct super_block *sb = inode->i_sb;
4029 struct buffer_head *bitmap_bh = NULL;
4030 struct ext4_prealloc_space *pa, *tmp;
4031 struct ext4_allocation_context *ac;
4032 ext4_group_t group = 0;
4033 struct list_head list;
4034 struct ext4_buddy e4b;
4035 int err;
4037 if (!S_ISREG(inode->i_mode)) {
4038 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4039 return;
4042 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4044 INIT_LIST_HEAD(&list);
4046 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4047 repeat:
4048 /* first, collect all pa's in the inode */
4049 spin_lock(&ei->i_prealloc_lock);
4050 while (!list_empty(&ei->i_prealloc_list)) {
4051 pa = list_entry(ei->i_prealloc_list.next,
4052 struct ext4_prealloc_space, pa_inode_list);
4053 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4054 spin_lock(&pa->pa_lock);
4055 if (atomic_read(&pa->pa_count)) {
4056 /* this shouldn't happen often - nobody should
4057 * use preallocation while we're discarding it */
4058 spin_unlock(&pa->pa_lock);
4059 spin_unlock(&ei->i_prealloc_lock);
4060 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4061 WARN_ON(1);
4062 schedule_timeout_uninterruptible(HZ);
4063 goto repeat;
4066 if (pa->pa_deleted == 0) {
4067 pa->pa_deleted = 1;
4068 spin_unlock(&pa->pa_lock);
4069 list_del_rcu(&pa->pa_inode_list);
4070 list_add(&pa->u.pa_tmp_list, &list);
4071 continue;
4074 /* someone is deleting pa right now */
4075 spin_unlock(&pa->pa_lock);
4076 spin_unlock(&ei->i_prealloc_lock);
4078 /* we have to wait here because pa_deleted
4079 * doesn't mean pa is already unlinked from
4080 * the list. as we might be called from
4081 * ->clear_inode() the inode will get freed
4082 * and concurrent thread which is unlinking
4083 * pa from inode's list may access already
4084 * freed memory, bad-bad-bad */
4086 /* XXX: if this happens too often, we can
4087 * add a flag to force wait only in case
4088 * of ->clear_inode(), but not in case of
4089 * regular truncate */
4090 schedule_timeout_uninterruptible(HZ);
4091 goto repeat;
4093 spin_unlock(&ei->i_prealloc_lock);
4095 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4096 BUG_ON(pa->pa_linear != 0);
4097 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4099 err = ext4_mb_load_buddy(sb, group, &e4b);
4100 if (err) {
4101 ext4_error(sb, __func__, "Error in loading buddy "
4102 "information for %lu\n", group);
4103 continue;
4106 bitmap_bh = ext4_read_block_bitmap(sb, group);
4107 if (bitmap_bh == NULL) {
4108 ext4_error(sb, __func__, "Error in reading block "
4109 "bitmap for %lu\n", group);
4110 ext4_mb_release_desc(&e4b);
4111 continue;
4114 ext4_lock_group(sb, group);
4115 list_del(&pa->pa_group_list);
4116 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4117 ext4_unlock_group(sb, group);
4119 ext4_mb_release_desc(&e4b);
4120 put_bh(bitmap_bh);
4122 list_del(&pa->u.pa_tmp_list);
4123 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4125 if (ac)
4126 kmem_cache_free(ext4_ac_cachep, ac);
4130 * finds all preallocated spaces and return blocks being freed to them
4131 * if preallocated space becomes full (no block is used from the space)
4132 * then the function frees space in buddy
4133 * XXX: at the moment, truncate (which is the only way to free blocks)
4134 * discards all preallocations
4136 static void ext4_mb_return_to_preallocation(struct inode *inode,
4137 struct ext4_buddy *e4b,
4138 sector_t block, int count)
4140 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4142 #ifdef MB_DEBUG
4143 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4145 struct super_block *sb = ac->ac_sb;
4146 ext4_group_t i;
4148 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4149 " Allocation context details:\n");
4150 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4151 ac->ac_status, ac->ac_flags);
4152 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4153 "best %lu/%lu/%lu@%lu cr %d\n",
4154 (unsigned long)ac->ac_o_ex.fe_group,
4155 (unsigned long)ac->ac_o_ex.fe_start,
4156 (unsigned long)ac->ac_o_ex.fe_len,
4157 (unsigned long)ac->ac_o_ex.fe_logical,
4158 (unsigned long)ac->ac_g_ex.fe_group,
4159 (unsigned long)ac->ac_g_ex.fe_start,
4160 (unsigned long)ac->ac_g_ex.fe_len,
4161 (unsigned long)ac->ac_g_ex.fe_logical,
4162 (unsigned long)ac->ac_b_ex.fe_group,
4163 (unsigned long)ac->ac_b_ex.fe_start,
4164 (unsigned long)ac->ac_b_ex.fe_len,
4165 (unsigned long)ac->ac_b_ex.fe_logical,
4166 (int)ac->ac_criteria);
4167 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4168 ac->ac_found);
4169 printk(KERN_ERR "EXT4-fs: groups: \n");
4170 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4171 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4172 struct ext4_prealloc_space *pa;
4173 ext4_grpblk_t start;
4174 struct list_head *cur;
4175 ext4_lock_group(sb, i);
4176 list_for_each(cur, &grp->bb_prealloc_list) {
4177 pa = list_entry(cur, struct ext4_prealloc_space,
4178 pa_group_list);
4179 spin_lock(&pa->pa_lock);
4180 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4181 NULL, &start);
4182 spin_unlock(&pa->pa_lock);
4183 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4184 start, pa->pa_len);
4186 ext4_unlock_group(sb, i);
4188 if (grp->bb_free == 0)
4189 continue;
4190 printk(KERN_ERR "%lu: %d/%d \n",
4191 i, grp->bb_free, grp->bb_fragments);
4193 printk(KERN_ERR "\n");
4195 #else
4196 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4198 return;
4200 #endif
4203 * We use locality group preallocation for small size file. The size of the
4204 * file is determined by the current size or the resulting size after
4205 * allocation which ever is larger
4207 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4209 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4211 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4212 int bsbits = ac->ac_sb->s_blocksize_bits;
4213 loff_t size, isize;
4215 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4216 return;
4218 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4219 isize = i_size_read(ac->ac_inode) >> bsbits;
4220 size = max(size, isize);
4222 /* don't use group allocation for large files */
4223 if (size >= sbi->s_mb_stream_request)
4224 return;
4226 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4227 return;
4229 BUG_ON(ac->ac_lg != NULL);
4231 * locality group prealloc space are per cpu. The reason for having
4232 * per cpu locality group is to reduce the contention between block
4233 * request from multiple CPUs.
4235 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4237 /* we're going to use group allocation */
4238 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4240 /* serialize all allocations in the group */
4241 mutex_lock(&ac->ac_lg->lg_mutex);
4244 static noinline_for_stack int
4245 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4246 struct ext4_allocation_request *ar)
4248 struct super_block *sb = ar->inode->i_sb;
4249 struct ext4_sb_info *sbi = EXT4_SB(sb);
4250 struct ext4_super_block *es = sbi->s_es;
4251 ext4_group_t group;
4252 unsigned long len;
4253 unsigned long goal;
4254 ext4_grpblk_t block;
4256 /* we can't allocate > group size */
4257 len = ar->len;
4259 /* just a dirty hack to filter too big requests */
4260 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4261 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4263 /* start searching from the goal */
4264 goal = ar->goal;
4265 if (goal < le32_to_cpu(es->s_first_data_block) ||
4266 goal >= ext4_blocks_count(es))
4267 goal = le32_to_cpu(es->s_first_data_block);
4268 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4270 /* set up allocation goals */
4271 ac->ac_b_ex.fe_logical = ar->logical;
4272 ac->ac_b_ex.fe_group = 0;
4273 ac->ac_b_ex.fe_start = 0;
4274 ac->ac_b_ex.fe_len = 0;
4275 ac->ac_status = AC_STATUS_CONTINUE;
4276 ac->ac_groups_scanned = 0;
4277 ac->ac_ex_scanned = 0;
4278 ac->ac_found = 0;
4279 ac->ac_sb = sb;
4280 ac->ac_inode = ar->inode;
4281 ac->ac_o_ex.fe_logical = ar->logical;
4282 ac->ac_o_ex.fe_group = group;
4283 ac->ac_o_ex.fe_start = block;
4284 ac->ac_o_ex.fe_len = len;
4285 ac->ac_g_ex.fe_logical = ar->logical;
4286 ac->ac_g_ex.fe_group = group;
4287 ac->ac_g_ex.fe_start = block;
4288 ac->ac_g_ex.fe_len = len;
4289 ac->ac_f_ex.fe_len = 0;
4290 ac->ac_flags = ar->flags;
4291 ac->ac_2order = 0;
4292 ac->ac_criteria = 0;
4293 ac->ac_pa = NULL;
4294 ac->ac_bitmap_page = NULL;
4295 ac->ac_buddy_page = NULL;
4296 ac->alloc_semp = NULL;
4297 ac->ac_lg = NULL;
4299 /* we have to define context: we'll we work with a file or
4300 * locality group. this is a policy, actually */
4301 ext4_mb_group_or_file(ac);
4303 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4304 "left: %u/%u, right %u/%u to %swritable\n",
4305 (unsigned) ar->len, (unsigned) ar->logical,
4306 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4307 (unsigned) ar->lleft, (unsigned) ar->pleft,
4308 (unsigned) ar->lright, (unsigned) ar->pright,
4309 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4310 return 0;
4314 static noinline_for_stack void
4315 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4316 struct ext4_locality_group *lg,
4317 int order, int total_entries)
4319 ext4_group_t group = 0;
4320 struct ext4_buddy e4b;
4321 struct list_head discard_list;
4322 struct ext4_prealloc_space *pa, *tmp;
4323 struct ext4_allocation_context *ac;
4325 mb_debug("discard locality group preallocation\n");
4327 INIT_LIST_HEAD(&discard_list);
4328 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4330 spin_lock(&lg->lg_prealloc_lock);
4331 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4332 pa_inode_list) {
4333 spin_lock(&pa->pa_lock);
4334 if (atomic_read(&pa->pa_count)) {
4336 * This is the pa that we just used
4337 * for block allocation. So don't
4338 * free that
4340 spin_unlock(&pa->pa_lock);
4341 continue;
4343 if (pa->pa_deleted) {
4344 spin_unlock(&pa->pa_lock);
4345 continue;
4347 /* only lg prealloc space */
4348 BUG_ON(!pa->pa_linear);
4350 /* seems this one can be freed ... */
4351 pa->pa_deleted = 1;
4352 spin_unlock(&pa->pa_lock);
4354 list_del_rcu(&pa->pa_inode_list);
4355 list_add(&pa->u.pa_tmp_list, &discard_list);
4357 total_entries--;
4358 if (total_entries <= 5) {
4360 * we want to keep only 5 entries
4361 * allowing it to grow to 8. This
4362 * mak sure we don't call discard
4363 * soon for this list.
4365 break;
4368 spin_unlock(&lg->lg_prealloc_lock);
4370 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4372 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4373 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4374 ext4_error(sb, __func__, "Error in loading buddy "
4375 "information for %lu\n", group);
4376 continue;
4378 ext4_lock_group(sb, group);
4379 list_del(&pa->pa_group_list);
4380 ext4_mb_release_group_pa(&e4b, pa, ac);
4381 ext4_unlock_group(sb, group);
4383 ext4_mb_release_desc(&e4b);
4384 list_del(&pa->u.pa_tmp_list);
4385 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4387 if (ac)
4388 kmem_cache_free(ext4_ac_cachep, ac);
4392 * We have incremented pa_count. So it cannot be freed at this
4393 * point. Also we hold lg_mutex. So no parallel allocation is
4394 * possible from this lg. That means pa_free cannot be updated.
4396 * A parallel ext4_mb_discard_group_preallocations is possible.
4397 * which can cause the lg_prealloc_list to be updated.
4400 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4402 int order, added = 0, lg_prealloc_count = 1;
4403 struct super_block *sb = ac->ac_sb;
4404 struct ext4_locality_group *lg = ac->ac_lg;
4405 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4407 order = fls(pa->pa_free) - 1;
4408 if (order > PREALLOC_TB_SIZE - 1)
4409 /* The max size of hash table is PREALLOC_TB_SIZE */
4410 order = PREALLOC_TB_SIZE - 1;
4411 /* Add the prealloc space to lg */
4412 rcu_read_lock();
4413 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4414 pa_inode_list) {
4415 spin_lock(&tmp_pa->pa_lock);
4416 if (tmp_pa->pa_deleted) {
4417 spin_unlock(&pa->pa_lock);
4418 continue;
4420 if (!added && pa->pa_free < tmp_pa->pa_free) {
4421 /* Add to the tail of the previous entry */
4422 list_add_tail_rcu(&pa->pa_inode_list,
4423 &tmp_pa->pa_inode_list);
4424 added = 1;
4426 * we want to count the total
4427 * number of entries in the list
4430 spin_unlock(&tmp_pa->pa_lock);
4431 lg_prealloc_count++;
4433 if (!added)
4434 list_add_tail_rcu(&pa->pa_inode_list,
4435 &lg->lg_prealloc_list[order]);
4436 rcu_read_unlock();
4438 /* Now trim the list to be not more than 8 elements */
4439 if (lg_prealloc_count > 8) {
4440 ext4_mb_discard_lg_preallocations(sb, lg,
4441 order, lg_prealloc_count);
4442 return;
4444 return ;
4448 * release all resource we used in allocation
4450 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4452 struct ext4_prealloc_space *pa = ac->ac_pa;
4453 if (pa) {
4454 if (pa->pa_linear) {
4455 /* see comment in ext4_mb_use_group_pa() */
4456 spin_lock(&pa->pa_lock);
4457 pa->pa_pstart += ac->ac_b_ex.fe_len;
4458 pa->pa_lstart += ac->ac_b_ex.fe_len;
4459 pa->pa_free -= ac->ac_b_ex.fe_len;
4460 pa->pa_len -= ac->ac_b_ex.fe_len;
4461 spin_unlock(&pa->pa_lock);
4464 if (ac->alloc_semp)
4465 up_read(ac->alloc_semp);
4466 if (pa) {
4468 * We want to add the pa to the right bucket.
4469 * Remove it from the list and while adding
4470 * make sure the list to which we are adding
4471 * doesn't grow big. We need to release
4472 * alloc_semp before calling ext4_mb_add_n_trim()
4474 if (pa->pa_linear && likely(pa->pa_free)) {
4475 spin_lock(pa->pa_obj_lock);
4476 list_del_rcu(&pa->pa_inode_list);
4477 spin_unlock(pa->pa_obj_lock);
4478 ext4_mb_add_n_trim(ac);
4480 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4482 if (ac->ac_bitmap_page)
4483 page_cache_release(ac->ac_bitmap_page);
4484 if (ac->ac_buddy_page)
4485 page_cache_release(ac->ac_buddy_page);
4486 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4487 mutex_unlock(&ac->ac_lg->lg_mutex);
4488 ext4_mb_collect_stats(ac);
4489 return 0;
4492 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4494 ext4_group_t i;
4495 int ret;
4496 int freed = 0;
4498 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4499 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4500 freed += ret;
4501 needed -= ret;
4504 return freed;
4508 * Main entry point into mballoc to allocate blocks
4509 * it tries to use preallocation first, then falls back
4510 * to usual allocation
4512 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4513 struct ext4_allocation_request *ar, int *errp)
4515 int freed;
4516 struct ext4_allocation_context *ac = NULL;
4517 struct ext4_sb_info *sbi;
4518 struct super_block *sb;
4519 ext4_fsblk_t block = 0;
4520 unsigned long inquota;
4521 unsigned long reserv_blks = 0;
4523 sb = ar->inode->i_sb;
4524 sbi = EXT4_SB(sb);
4526 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4528 * With delalloc we already reserved the blocks
4530 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4531 /* let others to free the space */
4532 yield();
4533 ar->len = ar->len >> 1;
4535 if (!ar->len) {
4536 *errp = -ENOSPC;
4537 return 0;
4539 reserv_blks = ar->len;
4541 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4542 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4543 ar->len--;
4545 if (ar->len == 0) {
4546 *errp = -EDQUOT;
4547 goto out3;
4549 inquota = ar->len;
4551 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4552 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4554 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4555 if (!ac) {
4556 ar->len = 0;
4557 *errp = -ENOMEM;
4558 goto out1;
4561 *errp = ext4_mb_initialize_context(ac, ar);
4562 if (*errp) {
4563 ar->len = 0;
4564 goto out2;
4567 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4568 if (!ext4_mb_use_preallocated(ac)) {
4569 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4570 ext4_mb_normalize_request(ac, ar);
4571 repeat:
4572 /* allocate space in core */
4573 ext4_mb_regular_allocator(ac);
4575 /* as we've just preallocated more space than
4576 * user requested orinally, we store allocated
4577 * space in a special descriptor */
4578 if (ac->ac_status == AC_STATUS_FOUND &&
4579 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4580 ext4_mb_new_preallocation(ac);
4582 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4583 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4584 if (*errp == -EAGAIN) {
4586 * drop the reference that we took
4587 * in ext4_mb_use_best_found
4589 ext4_mb_release_context(ac);
4590 ac->ac_b_ex.fe_group = 0;
4591 ac->ac_b_ex.fe_start = 0;
4592 ac->ac_b_ex.fe_len = 0;
4593 ac->ac_status = AC_STATUS_CONTINUE;
4594 goto repeat;
4595 } else if (*errp) {
4596 ac->ac_b_ex.fe_len = 0;
4597 ar->len = 0;
4598 ext4_mb_show_ac(ac);
4599 } else {
4600 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4601 ar->len = ac->ac_b_ex.fe_len;
4603 } else {
4604 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4605 if (freed)
4606 goto repeat;
4607 *errp = -ENOSPC;
4608 ac->ac_b_ex.fe_len = 0;
4609 ar->len = 0;
4610 ext4_mb_show_ac(ac);
4613 ext4_mb_release_context(ac);
4615 out2:
4616 kmem_cache_free(ext4_ac_cachep, ac);
4617 out1:
4618 if (ar->len < inquota)
4619 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4620 out3:
4621 if (!ar->len) {
4622 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4623 /* release all the reserved blocks if non delalloc */
4624 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4625 reserv_blks);
4628 return block;
4632 * We can merge two free data extents only if the physical blocks
4633 * are contiguous, AND the extents were freed by the same transaction,
4634 * AND the blocks are associated with the same group.
4636 static int can_merge(struct ext4_free_data *entry1,
4637 struct ext4_free_data *entry2)
4639 if ((entry1->t_tid == entry2->t_tid) &&
4640 (entry1->group == entry2->group) &&
4641 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4642 return 1;
4643 return 0;
4646 static noinline_for_stack int
4647 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4648 struct ext4_free_data *new_entry)
4650 ext4_grpblk_t block;
4651 struct ext4_free_data *entry;
4652 struct ext4_group_info *db = e4b->bd_info;
4653 struct super_block *sb = e4b->bd_sb;
4654 struct ext4_sb_info *sbi = EXT4_SB(sb);
4655 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4656 struct rb_node *parent = NULL, *new_node;
4659 BUG_ON(e4b->bd_bitmap_page == NULL);
4660 BUG_ON(e4b->bd_buddy_page == NULL);
4662 new_node = &new_entry->node;
4663 block = new_entry->start_blk;
4665 if (!*n) {
4666 /* first free block exent. We need to
4667 protect buddy cache from being freed,
4668 * otherwise we'll refresh it from
4669 * on-disk bitmap and lose not-yet-available
4670 * blocks */
4671 page_cache_get(e4b->bd_buddy_page);
4672 page_cache_get(e4b->bd_bitmap_page);
4674 while (*n) {
4675 parent = *n;
4676 entry = rb_entry(parent, struct ext4_free_data, node);
4677 if (block < entry->start_blk)
4678 n = &(*n)->rb_left;
4679 else if (block >= (entry->start_blk + entry->count))
4680 n = &(*n)->rb_right;
4681 else {
4682 ext4_error(sb, __func__,
4683 "Double free of blocks %d (%d %d)\n",
4684 block, entry->start_blk, entry->count);
4685 return 0;
4689 rb_link_node(new_node, parent, n);
4690 rb_insert_color(new_node, &db->bb_free_root);
4692 /* Now try to see the extent can be merged to left and right */
4693 node = rb_prev(new_node);
4694 if (node) {
4695 entry = rb_entry(node, struct ext4_free_data, node);
4696 if (can_merge(entry, new_entry)) {
4697 new_entry->start_blk = entry->start_blk;
4698 new_entry->count += entry->count;
4699 rb_erase(node, &(db->bb_free_root));
4700 spin_lock(&sbi->s_md_lock);
4701 list_del(&entry->list);
4702 spin_unlock(&sbi->s_md_lock);
4703 kmem_cache_free(ext4_free_ext_cachep, entry);
4707 node = rb_next(new_node);
4708 if (node) {
4709 entry = rb_entry(node, struct ext4_free_data, node);
4710 if (can_merge(new_entry, entry)) {
4711 new_entry->count += entry->count;
4712 rb_erase(node, &(db->bb_free_root));
4713 spin_lock(&sbi->s_md_lock);
4714 list_del(&entry->list);
4715 spin_unlock(&sbi->s_md_lock);
4716 kmem_cache_free(ext4_free_ext_cachep, entry);
4719 /* Add the extent to transaction's private list */
4720 spin_lock(&sbi->s_md_lock);
4721 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4722 spin_unlock(&sbi->s_md_lock);
4723 return 0;
4727 * Main entry point into mballoc to free blocks
4729 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4730 unsigned long block, unsigned long count,
4731 int metadata, unsigned long *freed)
4733 struct buffer_head *bitmap_bh = NULL;
4734 struct super_block *sb = inode->i_sb;
4735 struct ext4_allocation_context *ac = NULL;
4736 struct ext4_group_desc *gdp;
4737 struct ext4_super_block *es;
4738 unsigned long overflow;
4739 ext4_grpblk_t bit;
4740 struct buffer_head *gd_bh;
4741 ext4_group_t block_group;
4742 struct ext4_sb_info *sbi;
4743 struct ext4_buddy e4b;
4744 int err = 0;
4745 int ret;
4747 *freed = 0;
4749 sbi = EXT4_SB(sb);
4750 es = EXT4_SB(sb)->s_es;
4751 if (block < le32_to_cpu(es->s_first_data_block) ||
4752 block + count < block ||
4753 block + count > ext4_blocks_count(es)) {
4754 ext4_error(sb, __func__,
4755 "Freeing blocks not in datazone - "
4756 "block = %lu, count = %lu", block, count);
4757 goto error_return;
4760 ext4_debug("freeing block %lu\n", block);
4762 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4763 if (ac) {
4764 ac->ac_op = EXT4_MB_HISTORY_FREE;
4765 ac->ac_inode = inode;
4766 ac->ac_sb = sb;
4769 do_more:
4770 overflow = 0;
4771 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4774 * Check to see if we are freeing blocks across a group
4775 * boundary.
4777 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4778 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4779 count -= overflow;
4781 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4782 if (!bitmap_bh) {
4783 err = -EIO;
4784 goto error_return;
4786 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4787 if (!gdp) {
4788 err = -EIO;
4789 goto error_return;
4792 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4793 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4794 in_range(block, ext4_inode_table(sb, gdp),
4795 EXT4_SB(sb)->s_itb_per_group) ||
4796 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4797 EXT4_SB(sb)->s_itb_per_group)) {
4799 ext4_error(sb, __func__,
4800 "Freeing blocks in system zone - "
4801 "Block = %lu, count = %lu", block, count);
4802 /* err = 0. ext4_std_error should be a no op */
4803 goto error_return;
4806 BUFFER_TRACE(bitmap_bh, "getting write access");
4807 err = ext4_journal_get_write_access(handle, bitmap_bh);
4808 if (err)
4809 goto error_return;
4812 * We are about to modify some metadata. Call the journal APIs
4813 * to unshare ->b_data if a currently-committing transaction is
4814 * using it
4816 BUFFER_TRACE(gd_bh, "get_write_access");
4817 err = ext4_journal_get_write_access(handle, gd_bh);
4818 if (err)
4819 goto error_return;
4820 #ifdef AGGRESSIVE_CHECK
4822 int i;
4823 for (i = 0; i < count; i++)
4824 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4826 #endif
4827 if (ac) {
4828 ac->ac_b_ex.fe_group = block_group;
4829 ac->ac_b_ex.fe_start = bit;
4830 ac->ac_b_ex.fe_len = count;
4831 ext4_mb_store_history(ac);
4834 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4835 if (err)
4836 goto error_return;
4837 if (metadata) {
4838 struct ext4_free_data *new_entry;
4840 * blocks being freed are metadata. these blocks shouldn't
4841 * be used until this transaction is committed
4843 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4844 new_entry->start_blk = bit;
4845 new_entry->group = block_group;
4846 new_entry->count = count;
4847 new_entry->t_tid = handle->h_transaction->t_tid;
4848 ext4_lock_group(sb, block_group);
4849 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4850 bit, count);
4851 ext4_mb_free_metadata(handle, &e4b, new_entry);
4852 ext4_unlock_group(sb, block_group);
4853 } else {
4854 ext4_lock_group(sb, block_group);
4855 /* need to update group_info->bb_free and bitmap
4856 * with group lock held. generate_buddy look at
4857 * them with group lock_held
4859 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4860 bit, count);
4861 mb_free_blocks(inode, &e4b, bit, count);
4862 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4863 ext4_unlock_group(sb, block_group);
4866 spin_lock(sb_bgl_lock(sbi, block_group));
4867 le16_add_cpu(&gdp->bg_free_blocks_count, count);
4868 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4869 spin_unlock(sb_bgl_lock(sbi, block_group));
4870 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4872 if (sbi->s_log_groups_per_flex) {
4873 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4874 spin_lock(sb_bgl_lock(sbi, flex_group));
4875 sbi->s_flex_groups[flex_group].free_blocks += count;
4876 spin_unlock(sb_bgl_lock(sbi, flex_group));
4879 ext4_mb_release_desc(&e4b);
4881 *freed += count;
4883 /* We dirtied the bitmap block */
4884 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4885 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4887 /* And the group descriptor block */
4888 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4889 ret = ext4_journal_dirty_metadata(handle, gd_bh);
4890 if (!err)
4891 err = ret;
4893 if (overflow && !err) {
4894 block += count;
4895 count = overflow;
4896 put_bh(bitmap_bh);
4897 goto do_more;
4899 sb->s_dirt = 1;
4900 error_return:
4901 brelse(bitmap_bh);
4902 ext4_std_error(sb, err);
4903 if (ac)
4904 kmem_cache_free(ext4_ac_cachep, ac);
4905 return;