Linux 2.6.32.16
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / rdma.c
blob8dc83d2caa58d02d7036ea697a5fac65f470b564
1 /*
2 * Copyright (c) 2007 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/pagemap.h>
34 #include <linux/rbtree.h>
35 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 #include "rdma.h"
40 * XXX
41 * - build with sparse
42 * - should we limit the size of a mr region? let transport return failure?
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
57 if ((vec->addr + vec->bytes <= vec->addr) ||
58 (vec->bytes > (u64)UINT_MAX))
59 return 0;
61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 (vec->addr >> PAGE_SHIFT);
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 struct rds_mr *insert)
68 struct rb_node **p = &root->rb_node;
69 struct rb_node *parent = NULL;
70 struct rds_mr *mr;
72 while (*p) {
73 parent = *p;
74 mr = rb_entry(parent, struct rds_mr, r_rb_node);
76 if (key < mr->r_key)
77 p = &(*p)->rb_left;
78 else if (key > mr->r_key)
79 p = &(*p)->rb_right;
80 else
81 return mr;
84 if (insert) {
85 rb_link_node(&insert->r_rb_node, parent, p);
86 rb_insert_color(&insert->r_rb_node, root);
87 atomic_inc(&insert->r_refcount);
89 return NULL;
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr *mr)
97 struct rds_sock *rs = mr->r_sock;
98 void *trans_private = NULL;
99 unsigned long flags;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr->r_key, atomic_read(&mr->r_refcount));
104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 return;
107 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 trans_private = mr->r_trans_private;
111 mr->r_trans_private = NULL;
112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
114 if (trans_private)
115 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
118 void __rds_put_mr_final(struct rds_mr *mr)
120 rds_destroy_mr(mr);
121 kfree(mr);
125 * By the time this is called we can't have any more ioctls called on
126 * the socket so we don't need to worry about racing with others.
128 void rds_rdma_drop_keys(struct rds_sock *rs)
130 struct rds_mr *mr;
131 struct rb_node *node;
133 /* Release any MRs associated with this socket */
134 while ((node = rb_first(&rs->rs_rdma_keys))) {
135 mr = container_of(node, struct rds_mr, r_rb_node);
136 if (mr->r_trans == rs->rs_transport)
137 mr->r_invalidate = 0;
138 rds_mr_put(mr);
141 if (rs->rs_transport && rs->rs_transport->flush_mrs)
142 rs->rs_transport->flush_mrs();
146 * Helper function to pin user pages.
148 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
149 struct page **pages, int write)
151 int ret;
153 ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
155 if (ret >= 0 && ret < nr_pages) {
156 while (ret--)
157 put_page(pages[ret]);
158 ret = -EFAULT;
161 return ret;
164 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
165 u64 *cookie_ret, struct rds_mr **mr_ret)
167 struct rds_mr *mr = NULL, *found;
168 unsigned int nr_pages;
169 struct page **pages = NULL;
170 struct scatterlist *sg;
171 void *trans_private;
172 unsigned long flags;
173 rds_rdma_cookie_t cookie;
174 unsigned int nents;
175 long i;
176 int ret;
178 if (rs->rs_bound_addr == 0) {
179 ret = -ENOTCONN; /* XXX not a great errno */
180 goto out;
183 if (rs->rs_transport->get_mr == NULL) {
184 ret = -EOPNOTSUPP;
185 goto out;
188 nr_pages = rds_pages_in_vec(&args->vec);
189 if (nr_pages == 0) {
190 ret = -EINVAL;
191 goto out;
194 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
195 args->vec.addr, args->vec.bytes, nr_pages);
197 /* XXX clamp nr_pages to limit the size of this alloc? */
198 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
199 if (pages == NULL) {
200 ret = -ENOMEM;
201 goto out;
204 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
205 if (mr == NULL) {
206 ret = -ENOMEM;
207 goto out;
210 atomic_set(&mr->r_refcount, 1);
211 RB_CLEAR_NODE(&mr->r_rb_node);
212 mr->r_trans = rs->rs_transport;
213 mr->r_sock = rs;
215 if (args->flags & RDS_RDMA_USE_ONCE)
216 mr->r_use_once = 1;
217 if (args->flags & RDS_RDMA_INVALIDATE)
218 mr->r_invalidate = 1;
219 if (args->flags & RDS_RDMA_READWRITE)
220 mr->r_write = 1;
223 * Pin the pages that make up the user buffer and transfer the page
224 * pointers to the mr's sg array. We check to see if we've mapped
225 * the whole region after transferring the partial page references
226 * to the sg array so that we can have one page ref cleanup path.
228 * For now we have no flag that tells us whether the mapping is
229 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
230 * the zero page.
232 ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1);
233 if (ret < 0)
234 goto out;
236 nents = ret;
237 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
238 if (sg == NULL) {
239 ret = -ENOMEM;
240 goto out;
242 WARN_ON(!nents);
243 sg_init_table(sg, nents);
245 /* Stick all pages into the scatterlist */
246 for (i = 0 ; i < nents; i++)
247 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
249 rdsdebug("RDS: trans_private nents is %u\n", nents);
251 /* Obtain a transport specific MR. If this succeeds, the
252 * s/g list is now owned by the MR.
253 * Note that dma_map() implies that pending writes are
254 * flushed to RAM, so no dma_sync is needed here. */
255 trans_private = rs->rs_transport->get_mr(sg, nents, rs,
256 &mr->r_key);
258 if (IS_ERR(trans_private)) {
259 for (i = 0 ; i < nents; i++)
260 put_page(sg_page(&sg[i]));
261 kfree(sg);
262 ret = PTR_ERR(trans_private);
263 goto out;
266 mr->r_trans_private = trans_private;
268 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
269 mr->r_key, (void *)(unsigned long) args->cookie_addr);
271 /* The user may pass us an unaligned address, but we can only
272 * map page aligned regions. So we keep the offset, and build
273 * a 64bit cookie containing <R_Key, offset> and pass that
274 * around. */
275 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
276 if (cookie_ret)
277 *cookie_ret = cookie;
279 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
280 ret = -EFAULT;
281 goto out;
284 /* Inserting the new MR into the rbtree bumps its
285 * reference count. */
286 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
287 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
288 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
290 BUG_ON(found && found != mr);
292 rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
293 if (mr_ret) {
294 atomic_inc(&mr->r_refcount);
295 *mr_ret = mr;
298 ret = 0;
299 out:
300 kfree(pages);
301 if (mr)
302 rds_mr_put(mr);
303 return ret;
306 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
308 struct rds_get_mr_args args;
310 if (optlen != sizeof(struct rds_get_mr_args))
311 return -EINVAL;
313 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
314 sizeof(struct rds_get_mr_args)))
315 return -EFAULT;
317 return __rds_rdma_map(rs, &args, NULL, NULL);
321 * Free the MR indicated by the given R_Key
323 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
325 struct rds_free_mr_args args;
326 struct rds_mr *mr;
327 unsigned long flags;
329 if (optlen != sizeof(struct rds_free_mr_args))
330 return -EINVAL;
332 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
333 sizeof(struct rds_free_mr_args)))
334 return -EFAULT;
336 /* Special case - a null cookie means flush all unused MRs */
337 if (args.cookie == 0) {
338 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
339 return -EINVAL;
340 rs->rs_transport->flush_mrs();
341 return 0;
344 /* Look up the MR given its R_key and remove it from the rbtree
345 * so nobody else finds it.
346 * This should also prevent races with rds_rdma_unuse.
348 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
349 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
350 if (mr) {
351 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
352 RB_CLEAR_NODE(&mr->r_rb_node);
353 if (args.flags & RDS_RDMA_INVALIDATE)
354 mr->r_invalidate = 1;
356 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
358 if (!mr)
359 return -EINVAL;
362 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
363 * we return. If we let rds_mr_put() do it it might not happen until
364 * someone else drops their ref.
366 rds_destroy_mr(mr);
367 rds_mr_put(mr);
368 return 0;
372 * This is called when we receive an extension header that
373 * tells us this MR was used. It allows us to implement
374 * use_once semantics
376 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
378 struct rds_mr *mr;
379 unsigned long flags;
380 int zot_me = 0;
382 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
383 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
384 if (mr && (mr->r_use_once || force)) {
385 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
386 RB_CLEAR_NODE(&mr->r_rb_node);
387 zot_me = 1;
388 } else if (mr)
389 atomic_inc(&mr->r_refcount);
390 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
392 /* May have to issue a dma_sync on this memory region.
393 * Note we could avoid this if the operation was a RDMA READ,
394 * but at this point we can't tell. */
395 if (mr != NULL) {
396 if (mr->r_trans->sync_mr)
397 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
399 /* If the MR was marked as invalidate, this will
400 * trigger an async flush. */
401 if (zot_me)
402 rds_destroy_mr(mr);
403 rds_mr_put(mr);
407 void rds_rdma_free_op(struct rds_rdma_op *ro)
409 unsigned int i;
411 for (i = 0; i < ro->r_nents; i++) {
412 struct page *page = sg_page(&ro->r_sg[i]);
414 /* Mark page dirty if it was possibly modified, which
415 * is the case for a RDMA_READ which copies from remote
416 * to local memory */
417 if (!ro->r_write)
418 set_page_dirty(page);
419 put_page(page);
422 kfree(ro->r_notifier);
423 kfree(ro);
427 * args is a pointer to an in-kernel copy in the sendmsg cmsg.
429 static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs,
430 struct rds_rdma_args *args)
432 struct rds_iovec vec;
433 struct rds_rdma_op *op = NULL;
434 unsigned int nr_pages;
435 unsigned int max_pages;
436 unsigned int nr_bytes;
437 struct page **pages = NULL;
438 struct rds_iovec __user *local_vec;
439 struct scatterlist *sg;
440 unsigned int nr;
441 unsigned int i, j;
442 int ret;
445 if (rs->rs_bound_addr == 0) {
446 ret = -ENOTCONN; /* XXX not a great errno */
447 goto out;
450 if (args->nr_local > (u64)UINT_MAX) {
451 ret = -EMSGSIZE;
452 goto out;
455 nr_pages = 0;
456 max_pages = 0;
458 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
460 /* figure out the number of pages in the vector */
461 for (i = 0; i < args->nr_local; i++) {
462 if (copy_from_user(&vec, &local_vec[i],
463 sizeof(struct rds_iovec))) {
464 ret = -EFAULT;
465 goto out;
468 nr = rds_pages_in_vec(&vec);
469 if (nr == 0) {
470 ret = -EINVAL;
471 goto out;
474 max_pages = max(nr, max_pages);
475 nr_pages += nr;
478 pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL);
479 if (pages == NULL) {
480 ret = -ENOMEM;
481 goto out;
484 op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL);
485 if (op == NULL) {
486 ret = -ENOMEM;
487 goto out;
490 op->r_write = !!(args->flags & RDS_RDMA_READWRITE);
491 op->r_fence = !!(args->flags & RDS_RDMA_FENCE);
492 op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
493 op->r_recverr = rs->rs_recverr;
494 WARN_ON(!nr_pages);
495 sg_init_table(op->r_sg, nr_pages);
497 if (op->r_notify || op->r_recverr) {
498 /* We allocate an uninitialized notifier here, because
499 * we don't want to do that in the completion handler. We
500 * would have to use GFP_ATOMIC there, and don't want to deal
501 * with failed allocations.
503 op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
504 if (!op->r_notifier) {
505 ret = -ENOMEM;
506 goto out;
508 op->r_notifier->n_user_token = args->user_token;
509 op->r_notifier->n_status = RDS_RDMA_SUCCESS;
512 /* The cookie contains the R_Key of the remote memory region, and
513 * optionally an offset into it. This is how we implement RDMA into
514 * unaligned memory.
515 * When setting up the RDMA, we need to add that offset to the
516 * destination address (which is really an offset into the MR)
517 * FIXME: We may want to move this into ib_rdma.c
519 op->r_key = rds_rdma_cookie_key(args->cookie);
520 op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
522 nr_bytes = 0;
524 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
525 (unsigned long long)args->nr_local,
526 (unsigned long long)args->remote_vec.addr,
527 op->r_key);
529 for (i = 0; i < args->nr_local; i++) {
530 if (copy_from_user(&vec, &local_vec[i],
531 sizeof(struct rds_iovec))) {
532 ret = -EFAULT;
533 goto out;
536 nr = rds_pages_in_vec(&vec);
537 if (nr == 0) {
538 ret = -EINVAL;
539 goto out;
542 rs->rs_user_addr = vec.addr;
543 rs->rs_user_bytes = vec.bytes;
545 /* did the user change the vec under us? */
546 if (nr > max_pages || op->r_nents + nr > nr_pages) {
547 ret = -EINVAL;
548 goto out;
550 /* If it's a WRITE operation, we want to pin the pages for reading.
551 * If it's a READ operation, we need to pin the pages for writing.
553 ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write);
554 if (ret < 0)
555 goto out;
557 rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n",
558 nr_bytes, nr, vec.bytes, vec.addr);
560 nr_bytes += vec.bytes;
562 for (j = 0; j < nr; j++) {
563 unsigned int offset = vec.addr & ~PAGE_MASK;
565 sg = &op->r_sg[op->r_nents + j];
566 sg_set_page(sg, pages[j],
567 min_t(unsigned int, vec.bytes, PAGE_SIZE - offset),
568 offset);
570 rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n",
571 sg->offset, sg->length, vec.addr, vec.bytes);
573 vec.addr += sg->length;
574 vec.bytes -= sg->length;
577 op->r_nents += nr;
581 if (nr_bytes > args->remote_vec.bytes) {
582 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
583 nr_bytes,
584 (unsigned int) args->remote_vec.bytes);
585 ret = -EINVAL;
586 goto out;
588 op->r_bytes = nr_bytes;
590 ret = 0;
591 out:
592 kfree(pages);
593 if (ret) {
594 if (op)
595 rds_rdma_free_op(op);
596 op = ERR_PTR(ret);
598 return op;
602 * The application asks for a RDMA transfer.
603 * Extract all arguments and set up the rdma_op
605 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
606 struct cmsghdr *cmsg)
608 struct rds_rdma_op *op;
610 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
611 || rm->m_rdma_op != NULL)
612 return -EINVAL;
614 op = rds_rdma_prepare(rs, CMSG_DATA(cmsg));
615 if (IS_ERR(op))
616 return PTR_ERR(op);
617 rds_stats_inc(s_send_rdma);
618 rm->m_rdma_op = op;
619 return 0;
623 * The application wants us to pass an RDMA destination (aka MR)
624 * to the remote
626 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
627 struct cmsghdr *cmsg)
629 unsigned long flags;
630 struct rds_mr *mr;
631 u32 r_key;
632 int err = 0;
634 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t))
635 || rm->m_rdma_cookie != 0)
636 return -EINVAL;
638 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
640 /* We are reusing a previously mapped MR here. Most likely, the
641 * application has written to the buffer, so we need to explicitly
642 * flush those writes to RAM. Otherwise the HCA may not see them
643 * when doing a DMA from that buffer.
645 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
647 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
648 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
649 if (mr == NULL)
650 err = -EINVAL; /* invalid r_key */
651 else
652 atomic_inc(&mr->r_refcount);
653 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
655 if (mr) {
656 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
657 rm->m_rdma_mr = mr;
659 return err;
663 * The application passes us an address range it wants to enable RDMA
664 * to/from. We map the area, and save the <R_Key,offset> pair
665 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
666 * in an extension header.
668 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
669 struct cmsghdr *cmsg)
671 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args))
672 || rm->m_rdma_cookie != 0)
673 return -EINVAL;
675 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr);