btrfs: separate superblock items out of fs_info
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / super.c
blobf7e9de724ef29e5c8490871a53a93f0907b967cf
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 char nbuf[16])
67 char *errstr = NULL;
69 switch (errno) {
70 case -EIO:
71 errstr = "IO failure";
72 break;
73 case -ENOMEM:
74 errstr = "Out of memory";
75 break;
76 case -EROFS:
77 errstr = "Readonly filesystem";
78 break;
79 default:
80 if (nbuf) {
81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82 errstr = nbuf;
84 break;
87 return errstr;
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
93 * today we only save the error info into ram. Long term we'll
94 * also send it down to the disk
96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
99 /* NOTE:
100 * We move write_super stuff at umount in order to avoid deadlock
101 * for umount hold all lock.
103 static void save_error_info(struct btrfs_fs_info *fs_info)
105 __save_error_info(fs_info);
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 struct super_block *sb = fs_info->sb;
113 if (sb->s_flags & MS_RDONLY)
114 return;
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
123 * __btrfs_std_error decodes expected errors from the caller and
124 * invokes the approciate error response.
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127 unsigned int line, int errno)
129 struct super_block *sb = fs_info->sb;
130 char nbuf[16];
131 const char *errstr;
134 * Special case: if the error is EROFS, and we're already
135 * under MS_RDONLY, then it is safe here.
137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 return;
140 errstr = btrfs_decode_error(fs_info, errno, nbuf);
141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142 sb->s_id, function, line, errstr);
143 save_error_info(fs_info);
145 btrfs_handle_error(fs_info);
148 static void btrfs_put_super(struct super_block *sb)
150 struct btrfs_root *root = btrfs_sb(sb);
151 int ret;
153 ret = close_ctree(root);
154 sb->s_fs_info = NULL;
156 (void)ret; /* FIXME: need to fix VFS to return error? */
159 enum {
160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167 Opt_inode_cache, Opt_no_space_cache, Opt_err,
170 static match_table_t tokens = {
171 {Opt_degraded, "degraded"},
172 {Opt_subvol, "subvol=%s"},
173 {Opt_subvolid, "subvolid=%d"},
174 {Opt_device, "device=%s"},
175 {Opt_nodatasum, "nodatasum"},
176 {Opt_nodatacow, "nodatacow"},
177 {Opt_nobarrier, "nobarrier"},
178 {Opt_max_inline, "max_inline=%s"},
179 {Opt_alloc_start, "alloc_start=%s"},
180 {Opt_thread_pool, "thread_pool=%d"},
181 {Opt_compress, "compress"},
182 {Opt_compress_type, "compress=%s"},
183 {Opt_compress_force, "compress-force"},
184 {Opt_compress_force_type, "compress-force=%s"},
185 {Opt_ssd, "ssd"},
186 {Opt_ssd_spread, "ssd_spread"},
187 {Opt_nossd, "nossd"},
188 {Opt_noacl, "noacl"},
189 {Opt_notreelog, "notreelog"},
190 {Opt_flushoncommit, "flushoncommit"},
191 {Opt_ratio, "metadata_ratio=%d"},
192 {Opt_discard, "discard"},
193 {Opt_space_cache, "space_cache"},
194 {Opt_clear_cache, "clear_cache"},
195 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196 {Opt_enospc_debug, "enospc_debug"},
197 {Opt_subvolrootid, "subvolrootid=%d"},
198 {Opt_defrag, "autodefrag"},
199 {Opt_inode_cache, "inode_cache"},
200 {Opt_no_space_cache, "no_space_cache"},
201 {Opt_err, NULL},
205 * Regular mount options parser. Everything that is needed only when
206 * reading in a new superblock is parsed here.
208 int btrfs_parse_options(struct btrfs_root *root, char *options)
210 struct btrfs_fs_info *info = root->fs_info;
211 substring_t args[MAX_OPT_ARGS];
212 char *p, *num, *orig = NULL;
213 u64 cache_gen;
214 int intarg;
215 int ret = 0;
216 char *compress_type;
217 bool compress_force = false;
219 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
220 if (cache_gen)
221 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
223 if (!options)
224 goto out;
227 * strsep changes the string, duplicate it because parse_options
228 * gets called twice
230 options = kstrdup(options, GFP_NOFS);
231 if (!options)
232 return -ENOMEM;
234 orig = options;
236 while ((p = strsep(&options, ",")) != NULL) {
237 int token;
238 if (!*p)
239 continue;
241 token = match_token(p, tokens, args);
242 switch (token) {
243 case Opt_degraded:
244 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
245 btrfs_set_opt(info->mount_opt, DEGRADED);
246 break;
247 case Opt_subvol:
248 case Opt_subvolid:
249 case Opt_subvolrootid:
250 case Opt_device:
252 * These are parsed by btrfs_parse_early_options
253 * and can be happily ignored here.
255 break;
256 case Opt_nodatasum:
257 printk(KERN_INFO "btrfs: setting nodatasum\n");
258 btrfs_set_opt(info->mount_opt, NODATASUM);
259 break;
260 case Opt_nodatacow:
261 printk(KERN_INFO "btrfs: setting nodatacow\n");
262 btrfs_set_opt(info->mount_opt, NODATACOW);
263 btrfs_set_opt(info->mount_opt, NODATASUM);
264 break;
265 case Opt_compress_force:
266 case Opt_compress_force_type:
267 compress_force = true;
268 case Opt_compress:
269 case Opt_compress_type:
270 if (token == Opt_compress ||
271 token == Opt_compress_force ||
272 strcmp(args[0].from, "zlib") == 0) {
273 compress_type = "zlib";
274 info->compress_type = BTRFS_COMPRESS_ZLIB;
275 } else if (strcmp(args[0].from, "lzo") == 0) {
276 compress_type = "lzo";
277 info->compress_type = BTRFS_COMPRESS_LZO;
278 } else {
279 ret = -EINVAL;
280 goto out;
283 btrfs_set_opt(info->mount_opt, COMPRESS);
284 if (compress_force) {
285 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
286 pr_info("btrfs: force %s compression\n",
287 compress_type);
288 } else
289 pr_info("btrfs: use %s compression\n",
290 compress_type);
291 break;
292 case Opt_ssd:
293 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
294 btrfs_set_opt(info->mount_opt, SSD);
295 break;
296 case Opt_ssd_spread:
297 printk(KERN_INFO "btrfs: use spread ssd "
298 "allocation scheme\n");
299 btrfs_set_opt(info->mount_opt, SSD);
300 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
301 break;
302 case Opt_nossd:
303 printk(KERN_INFO "btrfs: not using ssd allocation "
304 "scheme\n");
305 btrfs_set_opt(info->mount_opt, NOSSD);
306 btrfs_clear_opt(info->mount_opt, SSD);
307 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
308 break;
309 case Opt_nobarrier:
310 printk(KERN_INFO "btrfs: turning off barriers\n");
311 btrfs_set_opt(info->mount_opt, NOBARRIER);
312 break;
313 case Opt_thread_pool:
314 intarg = 0;
315 match_int(&args[0], &intarg);
316 if (intarg) {
317 info->thread_pool_size = intarg;
318 printk(KERN_INFO "btrfs: thread pool %d\n",
319 info->thread_pool_size);
321 break;
322 case Opt_max_inline:
323 num = match_strdup(&args[0]);
324 if (num) {
325 info->max_inline = memparse(num, NULL);
326 kfree(num);
328 if (info->max_inline) {
329 info->max_inline = max_t(u64,
330 info->max_inline,
331 root->sectorsize);
333 printk(KERN_INFO "btrfs: max_inline at %llu\n",
334 (unsigned long long)info->max_inline);
336 break;
337 case Opt_alloc_start:
338 num = match_strdup(&args[0]);
339 if (num) {
340 info->alloc_start = memparse(num, NULL);
341 kfree(num);
342 printk(KERN_INFO
343 "btrfs: allocations start at %llu\n",
344 (unsigned long long)info->alloc_start);
346 break;
347 case Opt_noacl:
348 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
349 break;
350 case Opt_notreelog:
351 printk(KERN_INFO "btrfs: disabling tree log\n");
352 btrfs_set_opt(info->mount_opt, NOTREELOG);
353 break;
354 case Opt_flushoncommit:
355 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
356 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
357 break;
358 case Opt_ratio:
359 intarg = 0;
360 match_int(&args[0], &intarg);
361 if (intarg) {
362 info->metadata_ratio = intarg;
363 printk(KERN_INFO "btrfs: metadata ratio %d\n",
364 info->metadata_ratio);
366 break;
367 case Opt_discard:
368 btrfs_set_opt(info->mount_opt, DISCARD);
369 break;
370 case Opt_space_cache:
371 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
372 break;
373 case Opt_no_space_cache:
374 printk(KERN_INFO "btrfs: disabling disk space caching\n");
375 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
376 break;
377 case Opt_inode_cache:
378 printk(KERN_INFO "btrfs: enabling inode map caching\n");
379 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
380 break;
381 case Opt_clear_cache:
382 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
383 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
384 break;
385 case Opt_user_subvol_rm_allowed:
386 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
387 break;
388 case Opt_enospc_debug:
389 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
390 break;
391 case Opt_defrag:
392 printk(KERN_INFO "btrfs: enabling auto defrag");
393 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
394 break;
395 case Opt_err:
396 printk(KERN_INFO "btrfs: unrecognized mount option "
397 "'%s'\n", p);
398 ret = -EINVAL;
399 goto out;
400 default:
401 break;
404 out:
405 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
406 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
407 kfree(orig);
408 return ret;
412 * Parse mount options that are required early in the mount process.
414 * All other options will be parsed on much later in the mount process and
415 * only when we need to allocate a new super block.
417 static int btrfs_parse_early_options(const char *options, fmode_t flags,
418 void *holder, char **subvol_name, u64 *subvol_objectid,
419 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
421 substring_t args[MAX_OPT_ARGS];
422 char *device_name, *opts, *orig, *p;
423 int error = 0;
424 int intarg;
426 if (!options)
427 return 0;
430 * strsep changes the string, duplicate it because parse_options
431 * gets called twice
433 opts = kstrdup(options, GFP_KERNEL);
434 if (!opts)
435 return -ENOMEM;
436 orig = opts;
438 while ((p = strsep(&opts, ",")) != NULL) {
439 int token;
440 if (!*p)
441 continue;
443 token = match_token(p, tokens, args);
444 switch (token) {
445 case Opt_subvol:
446 *subvol_name = match_strdup(&args[0]);
447 break;
448 case Opt_subvolid:
449 intarg = 0;
450 error = match_int(&args[0], &intarg);
451 if (!error) {
452 /* we want the original fs_tree */
453 if (!intarg)
454 *subvol_objectid =
455 BTRFS_FS_TREE_OBJECTID;
456 else
457 *subvol_objectid = intarg;
459 break;
460 case Opt_subvolrootid:
461 intarg = 0;
462 error = match_int(&args[0], &intarg);
463 if (!error) {
464 /* we want the original fs_tree */
465 if (!intarg)
466 *subvol_rootid =
467 BTRFS_FS_TREE_OBJECTID;
468 else
469 *subvol_rootid = intarg;
471 break;
472 case Opt_device:
473 device_name = match_strdup(&args[0]);
474 if (!device_name) {
475 error = -ENOMEM;
476 goto out;
478 error = btrfs_scan_one_device(device_name,
479 flags, holder, fs_devices);
480 kfree(device_name);
481 if (error)
482 goto out;
483 break;
484 default:
485 break;
489 out:
490 kfree(orig);
491 return error;
494 static struct dentry *get_default_root(struct super_block *sb,
495 u64 subvol_objectid)
497 struct btrfs_root *root = sb->s_fs_info;
498 struct btrfs_root *new_root;
499 struct btrfs_dir_item *di;
500 struct btrfs_path *path;
501 struct btrfs_key location;
502 struct inode *inode;
503 u64 dir_id;
504 int new = 0;
507 * We have a specific subvol we want to mount, just setup location and
508 * go look up the root.
510 if (subvol_objectid) {
511 location.objectid = subvol_objectid;
512 location.type = BTRFS_ROOT_ITEM_KEY;
513 location.offset = (u64)-1;
514 goto find_root;
517 path = btrfs_alloc_path();
518 if (!path)
519 return ERR_PTR(-ENOMEM);
520 path->leave_spinning = 1;
523 * Find the "default" dir item which points to the root item that we
524 * will mount by default if we haven't been given a specific subvolume
525 * to mount.
527 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
528 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
529 if (IS_ERR(di)) {
530 btrfs_free_path(path);
531 return ERR_CAST(di);
533 if (!di) {
535 * Ok the default dir item isn't there. This is weird since
536 * it's always been there, but don't freak out, just try and
537 * mount to root most subvolume.
539 btrfs_free_path(path);
540 dir_id = BTRFS_FIRST_FREE_OBJECTID;
541 new_root = root->fs_info->fs_root;
542 goto setup_root;
545 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
546 btrfs_free_path(path);
548 find_root:
549 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
550 if (IS_ERR(new_root))
551 return ERR_CAST(new_root);
553 if (btrfs_root_refs(&new_root->root_item) == 0)
554 return ERR_PTR(-ENOENT);
556 dir_id = btrfs_root_dirid(&new_root->root_item);
557 setup_root:
558 location.objectid = dir_id;
559 location.type = BTRFS_INODE_ITEM_KEY;
560 location.offset = 0;
562 inode = btrfs_iget(sb, &location, new_root, &new);
563 if (IS_ERR(inode))
564 return ERR_CAST(inode);
567 * If we're just mounting the root most subvol put the inode and return
568 * a reference to the dentry. We will have already gotten a reference
569 * to the inode in btrfs_fill_super so we're good to go.
571 if (!new && sb->s_root->d_inode == inode) {
572 iput(inode);
573 return dget(sb->s_root);
576 return d_obtain_alias(inode);
579 static int btrfs_fill_super(struct super_block *sb,
580 struct btrfs_fs_devices *fs_devices,
581 void *data, int silent)
583 struct inode *inode;
584 struct dentry *root_dentry;
585 struct btrfs_root *tree_root;
586 struct btrfs_key key;
587 int err;
589 sb->s_maxbytes = MAX_LFS_FILESIZE;
590 sb->s_magic = BTRFS_SUPER_MAGIC;
591 sb->s_op = &btrfs_super_ops;
592 sb->s_d_op = &btrfs_dentry_operations;
593 sb->s_export_op = &btrfs_export_ops;
594 sb->s_xattr = btrfs_xattr_handlers;
595 sb->s_time_gran = 1;
596 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
597 sb->s_flags |= MS_POSIXACL;
598 #endif
600 tree_root = open_ctree(sb, fs_devices, (char *)data);
602 if (IS_ERR(tree_root)) {
603 printk("btrfs: open_ctree failed\n");
604 return PTR_ERR(tree_root);
606 sb->s_fs_info = tree_root;
608 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
609 key.type = BTRFS_INODE_ITEM_KEY;
610 key.offset = 0;
611 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
612 if (IS_ERR(inode)) {
613 err = PTR_ERR(inode);
614 goto fail_close;
617 root_dentry = d_alloc_root(inode);
618 if (!root_dentry) {
619 iput(inode);
620 err = -ENOMEM;
621 goto fail_close;
624 sb->s_root = root_dentry;
626 save_mount_options(sb, data);
627 cleancache_init_fs(sb);
628 return 0;
630 fail_close:
631 close_ctree(tree_root);
632 return err;
635 int btrfs_sync_fs(struct super_block *sb, int wait)
637 struct btrfs_trans_handle *trans;
638 struct btrfs_root *root = btrfs_sb(sb);
639 int ret;
641 trace_btrfs_sync_fs(wait);
643 if (!wait) {
644 filemap_flush(root->fs_info->btree_inode->i_mapping);
645 return 0;
648 btrfs_start_delalloc_inodes(root, 0);
649 btrfs_wait_ordered_extents(root, 0, 0);
651 trans = btrfs_start_transaction(root, 0);
652 if (IS_ERR(trans))
653 return PTR_ERR(trans);
654 ret = btrfs_commit_transaction(trans, root);
655 return ret;
658 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
660 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
661 struct btrfs_fs_info *info = root->fs_info;
662 char *compress_type;
664 if (btrfs_test_opt(root, DEGRADED))
665 seq_puts(seq, ",degraded");
666 if (btrfs_test_opt(root, NODATASUM))
667 seq_puts(seq, ",nodatasum");
668 if (btrfs_test_opt(root, NODATACOW))
669 seq_puts(seq, ",nodatacow");
670 if (btrfs_test_opt(root, NOBARRIER))
671 seq_puts(seq, ",nobarrier");
672 if (info->max_inline != 8192 * 1024)
673 seq_printf(seq, ",max_inline=%llu",
674 (unsigned long long)info->max_inline);
675 if (info->alloc_start != 0)
676 seq_printf(seq, ",alloc_start=%llu",
677 (unsigned long long)info->alloc_start);
678 if (info->thread_pool_size != min_t(unsigned long,
679 num_online_cpus() + 2, 8))
680 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
681 if (btrfs_test_opt(root, COMPRESS)) {
682 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
683 compress_type = "zlib";
684 else
685 compress_type = "lzo";
686 if (btrfs_test_opt(root, FORCE_COMPRESS))
687 seq_printf(seq, ",compress-force=%s", compress_type);
688 else
689 seq_printf(seq, ",compress=%s", compress_type);
691 if (btrfs_test_opt(root, NOSSD))
692 seq_puts(seq, ",nossd");
693 if (btrfs_test_opt(root, SSD_SPREAD))
694 seq_puts(seq, ",ssd_spread");
695 else if (btrfs_test_opt(root, SSD))
696 seq_puts(seq, ",ssd");
697 if (btrfs_test_opt(root, NOTREELOG))
698 seq_puts(seq, ",notreelog");
699 if (btrfs_test_opt(root, FLUSHONCOMMIT))
700 seq_puts(seq, ",flushoncommit");
701 if (btrfs_test_opt(root, DISCARD))
702 seq_puts(seq, ",discard");
703 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
704 seq_puts(seq, ",noacl");
705 if (btrfs_test_opt(root, SPACE_CACHE))
706 seq_puts(seq, ",space_cache");
707 else
708 seq_puts(seq, ",no_space_cache");
709 if (btrfs_test_opt(root, CLEAR_CACHE))
710 seq_puts(seq, ",clear_cache");
711 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
712 seq_puts(seq, ",user_subvol_rm_allowed");
713 if (btrfs_test_opt(root, ENOSPC_DEBUG))
714 seq_puts(seq, ",enospc_debug");
715 if (btrfs_test_opt(root, AUTO_DEFRAG))
716 seq_puts(seq, ",autodefrag");
717 if (btrfs_test_opt(root, INODE_MAP_CACHE))
718 seq_puts(seq, ",inode_cache");
719 return 0;
722 static int btrfs_test_super(struct super_block *s, void *data)
724 struct btrfs_root *test_root = data;
725 struct btrfs_root *root = btrfs_sb(s);
728 * If this super block is going away, return false as it
729 * can't match as an existing super block.
731 if (!atomic_read(&s->s_active))
732 return 0;
733 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
736 static int btrfs_set_super(struct super_block *s, void *data)
738 s->s_fs_info = data;
740 return set_anon_super(s, data);
744 * subvolumes are identified by ino 256
746 static inline int is_subvolume_inode(struct inode *inode)
748 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
749 return 1;
750 return 0;
754 * This will strip out the subvol=%s argument for an argument string and add
755 * subvolid=0 to make sure we get the actual tree root for path walking to the
756 * subvol we want.
758 static char *setup_root_args(char *args)
760 unsigned copied = 0;
761 unsigned len = strlen(args) + 2;
762 char *pos;
763 char *ret;
766 * We need the same args as before, but minus
768 * subvol=a
770 * and add
772 * subvolid=0
774 * which is a difference of 2 characters, so we allocate strlen(args) +
775 * 2 characters.
777 ret = kzalloc(len * sizeof(char), GFP_NOFS);
778 if (!ret)
779 return NULL;
780 pos = strstr(args, "subvol=");
782 /* This shouldn't happen, but just in case.. */
783 if (!pos) {
784 kfree(ret);
785 return NULL;
789 * The subvol=<> arg is not at the front of the string, copy everybody
790 * up to that into ret.
792 if (pos != args) {
793 *pos = '\0';
794 strcpy(ret, args);
795 copied += strlen(args);
796 pos++;
799 strncpy(ret + copied, "subvolid=0", len - copied);
801 /* Length of subvolid=0 */
802 copied += 10;
805 * If there is no , after the subvol= option then we know there's no
806 * other options and we can just return.
808 pos = strchr(pos, ',');
809 if (!pos)
810 return ret;
812 /* Copy the rest of the arguments into our buffer */
813 strncpy(ret + copied, pos, len - copied);
814 copied += strlen(pos);
816 return ret;
819 static struct dentry *mount_subvol(const char *subvol_name, int flags,
820 const char *device_name, char *data)
822 struct super_block *s;
823 struct dentry *root;
824 struct vfsmount *mnt;
825 struct mnt_namespace *ns_private;
826 char *newargs;
827 struct path path;
828 int error;
830 newargs = setup_root_args(data);
831 if (!newargs)
832 return ERR_PTR(-ENOMEM);
833 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
834 newargs);
835 kfree(newargs);
836 if (IS_ERR(mnt))
837 return ERR_CAST(mnt);
839 ns_private = create_mnt_ns(mnt);
840 if (IS_ERR(ns_private)) {
841 mntput(mnt);
842 return ERR_CAST(ns_private);
846 * This will trigger the automount of the subvol so we can just
847 * drop the mnt we have here and return the dentry that we
848 * found.
850 error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
851 LOOKUP_FOLLOW, &path);
852 put_mnt_ns(ns_private);
853 if (error)
854 return ERR_PTR(error);
856 if (!is_subvolume_inode(path.dentry->d_inode)) {
857 path_put(&path);
858 mntput(mnt);
859 error = -EINVAL;
860 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
861 subvol_name);
862 return ERR_PTR(-EINVAL);
865 /* Get a ref to the sb and the dentry we found and return it */
866 s = path.mnt->mnt_sb;
867 atomic_inc(&s->s_active);
868 root = dget(path.dentry);
869 path_put(&path);
870 down_write(&s->s_umount);
872 return root;
876 * Find a superblock for the given device / mount point.
878 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
879 * for multiple device setup. Make sure to keep it in sync.
881 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
882 const char *device_name, void *data)
884 struct block_device *bdev = NULL;
885 struct super_block *s;
886 struct dentry *root;
887 struct btrfs_fs_devices *fs_devices = NULL;
888 struct btrfs_root *tree_root = NULL;
889 struct btrfs_fs_info *fs_info = NULL;
890 fmode_t mode = FMODE_READ;
891 char *subvol_name = NULL;
892 u64 subvol_objectid = 0;
893 u64 subvol_rootid = 0;
894 int error = 0;
896 if (!(flags & MS_RDONLY))
897 mode |= FMODE_WRITE;
899 error = btrfs_parse_early_options(data, mode, fs_type,
900 &subvol_name, &subvol_objectid,
901 &subvol_rootid, &fs_devices);
902 if (error)
903 return ERR_PTR(error);
905 if (subvol_name) {
906 root = mount_subvol(subvol_name, flags, device_name, data);
907 kfree(subvol_name);
908 return root;
911 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
912 if (error)
913 return ERR_PTR(error);
915 error = btrfs_open_devices(fs_devices, mode, fs_type);
916 if (error)
917 return ERR_PTR(error);
919 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
920 error = -EACCES;
921 goto error_close_devices;
925 * Setup a dummy root and fs_info for test/set super. This is because
926 * we don't actually fill this stuff out until open_ctree, but we need
927 * it for searching for existing supers, so this lets us do that and
928 * then open_ctree will properly initialize everything later.
930 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
931 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
932 if (!fs_info || !tree_root) {
933 error = -ENOMEM;
934 goto error_close_devices;
936 fs_info->tree_root = tree_root;
937 fs_info->fs_devices = fs_devices;
938 tree_root->fs_info = fs_info;
940 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
941 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
942 if (!fs_info->super_copy || !fs_info->super_for_commit) {
943 error = -ENOMEM;
944 goto error_close_devices;
947 bdev = fs_devices->latest_bdev;
948 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
949 if (IS_ERR(s)) {
950 error = PTR_ERR(s);
951 goto error_close_devices;
954 if (s->s_root) {
955 if ((flags ^ s->s_flags) & MS_RDONLY) {
956 deactivate_locked_super(s);
957 return ERR_PTR(-EBUSY);
960 btrfs_close_devices(fs_devices);
961 free_fs_info(fs_info);
962 kfree(tree_root);
963 } else {
964 char b[BDEVNAME_SIZE];
966 s->s_flags = flags | MS_NOSEC;
967 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
968 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
969 error = btrfs_fill_super(s, fs_devices, data,
970 flags & MS_SILENT ? 1 : 0);
971 if (error) {
972 deactivate_locked_super(s);
973 return ERR_PTR(error);
976 s->s_flags |= MS_ACTIVE;
979 root = get_default_root(s, subvol_objectid);
980 if (IS_ERR(root)) {
981 deactivate_locked_super(s);
982 return root;
985 return root;
987 error_close_devices:
988 btrfs_close_devices(fs_devices);
989 free_fs_info(fs_info);
990 kfree(tree_root);
991 return ERR_PTR(error);
994 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
996 struct btrfs_root *root = btrfs_sb(sb);
997 int ret;
999 ret = btrfs_parse_options(root, data);
1000 if (ret)
1001 return -EINVAL;
1003 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1004 return 0;
1006 if (*flags & MS_RDONLY) {
1007 sb->s_flags |= MS_RDONLY;
1009 ret = btrfs_commit_super(root);
1010 WARN_ON(ret);
1011 } else {
1012 if (root->fs_info->fs_devices->rw_devices == 0)
1013 return -EACCES;
1015 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1016 return -EINVAL;
1018 ret = btrfs_cleanup_fs_roots(root->fs_info);
1019 WARN_ON(ret);
1021 /* recover relocation */
1022 ret = btrfs_recover_relocation(root);
1023 WARN_ON(ret);
1025 sb->s_flags &= ~MS_RDONLY;
1028 return 0;
1031 /* Used to sort the devices by max_avail(descending sort) */
1032 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1033 const void *dev_info2)
1035 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1036 ((struct btrfs_device_info *)dev_info2)->max_avail)
1037 return -1;
1038 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1039 ((struct btrfs_device_info *)dev_info2)->max_avail)
1040 return 1;
1041 else
1042 return 0;
1046 * sort the devices by max_avail, in which max free extent size of each device
1047 * is stored.(Descending Sort)
1049 static inline void btrfs_descending_sort_devices(
1050 struct btrfs_device_info *devices,
1051 size_t nr_devices)
1053 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1054 btrfs_cmp_device_free_bytes, NULL);
1058 * The helper to calc the free space on the devices that can be used to store
1059 * file data.
1061 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1063 struct btrfs_fs_info *fs_info = root->fs_info;
1064 struct btrfs_device_info *devices_info;
1065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1066 struct btrfs_device *device;
1067 u64 skip_space;
1068 u64 type;
1069 u64 avail_space;
1070 u64 used_space;
1071 u64 min_stripe_size;
1072 int min_stripes = 1;
1073 int i = 0, nr_devices;
1074 int ret;
1076 nr_devices = fs_info->fs_devices->rw_devices;
1077 BUG_ON(!nr_devices);
1079 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1080 GFP_NOFS);
1081 if (!devices_info)
1082 return -ENOMEM;
1084 /* calc min stripe number for data space alloction */
1085 type = btrfs_get_alloc_profile(root, 1);
1086 if (type & BTRFS_BLOCK_GROUP_RAID0)
1087 min_stripes = 2;
1088 else if (type & BTRFS_BLOCK_GROUP_RAID1)
1089 min_stripes = 2;
1090 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1091 min_stripes = 4;
1093 if (type & BTRFS_BLOCK_GROUP_DUP)
1094 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1095 else
1096 min_stripe_size = BTRFS_STRIPE_LEN;
1098 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1099 if (!device->in_fs_metadata)
1100 continue;
1102 avail_space = device->total_bytes - device->bytes_used;
1104 /* align with stripe_len */
1105 do_div(avail_space, BTRFS_STRIPE_LEN);
1106 avail_space *= BTRFS_STRIPE_LEN;
1109 * In order to avoid overwritting the superblock on the drive,
1110 * btrfs starts at an offset of at least 1MB when doing chunk
1111 * allocation.
1113 skip_space = 1024 * 1024;
1115 /* user can set the offset in fs_info->alloc_start. */
1116 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1117 device->total_bytes)
1118 skip_space = max(fs_info->alloc_start, skip_space);
1121 * btrfs can not use the free space in [0, skip_space - 1],
1122 * we must subtract it from the total. In order to implement
1123 * it, we account the used space in this range first.
1125 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1126 &used_space);
1127 if (ret) {
1128 kfree(devices_info);
1129 return ret;
1132 /* calc the free space in [0, skip_space - 1] */
1133 skip_space -= used_space;
1136 * we can use the free space in [0, skip_space - 1], subtract
1137 * it from the total.
1139 if (avail_space && avail_space >= skip_space)
1140 avail_space -= skip_space;
1141 else
1142 avail_space = 0;
1144 if (avail_space < min_stripe_size)
1145 continue;
1147 devices_info[i].dev = device;
1148 devices_info[i].max_avail = avail_space;
1150 i++;
1153 nr_devices = i;
1155 btrfs_descending_sort_devices(devices_info, nr_devices);
1157 i = nr_devices - 1;
1158 avail_space = 0;
1159 while (nr_devices >= min_stripes) {
1160 if (devices_info[i].max_avail >= min_stripe_size) {
1161 int j;
1162 u64 alloc_size;
1164 avail_space += devices_info[i].max_avail * min_stripes;
1165 alloc_size = devices_info[i].max_avail;
1166 for (j = i + 1 - min_stripes; j <= i; j++)
1167 devices_info[j].max_avail -= alloc_size;
1169 i--;
1170 nr_devices--;
1173 kfree(devices_info);
1174 *free_bytes = avail_space;
1175 return 0;
1178 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1180 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1181 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1182 struct list_head *head = &root->fs_info->space_info;
1183 struct btrfs_space_info *found;
1184 u64 total_used = 0;
1185 u64 total_free_data = 0;
1186 int bits = dentry->d_sb->s_blocksize_bits;
1187 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1188 int ret;
1190 /* holding chunk_muext to avoid allocating new chunks */
1191 mutex_lock(&root->fs_info->chunk_mutex);
1192 rcu_read_lock();
1193 list_for_each_entry_rcu(found, head, list) {
1194 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1195 total_free_data += found->disk_total - found->disk_used;
1196 total_free_data -=
1197 btrfs_account_ro_block_groups_free_space(found);
1200 total_used += found->disk_used;
1202 rcu_read_unlock();
1204 buf->f_namelen = BTRFS_NAME_LEN;
1205 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1206 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1207 buf->f_bsize = dentry->d_sb->s_blocksize;
1208 buf->f_type = BTRFS_SUPER_MAGIC;
1209 buf->f_bavail = total_free_data;
1210 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1211 if (ret) {
1212 mutex_unlock(&root->fs_info->chunk_mutex);
1213 return ret;
1215 buf->f_bavail += total_free_data;
1216 buf->f_bavail = buf->f_bavail >> bits;
1217 mutex_unlock(&root->fs_info->chunk_mutex);
1219 /* We treat it as constant endianness (it doesn't matter _which_)
1220 because we want the fsid to come out the same whether mounted
1221 on a big-endian or little-endian host */
1222 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1223 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1224 /* Mask in the root object ID too, to disambiguate subvols */
1225 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1226 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1228 return 0;
1231 static struct file_system_type btrfs_fs_type = {
1232 .owner = THIS_MODULE,
1233 .name = "btrfs",
1234 .mount = btrfs_mount,
1235 .kill_sb = kill_anon_super,
1236 .fs_flags = FS_REQUIRES_DEV,
1240 * used by btrfsctl to scan devices when no FS is mounted
1242 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1243 unsigned long arg)
1245 struct btrfs_ioctl_vol_args *vol;
1246 struct btrfs_fs_devices *fs_devices;
1247 int ret = -ENOTTY;
1249 if (!capable(CAP_SYS_ADMIN))
1250 return -EPERM;
1252 vol = memdup_user((void __user *)arg, sizeof(*vol));
1253 if (IS_ERR(vol))
1254 return PTR_ERR(vol);
1256 switch (cmd) {
1257 case BTRFS_IOC_SCAN_DEV:
1258 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1259 &btrfs_fs_type, &fs_devices);
1260 break;
1263 kfree(vol);
1264 return ret;
1267 static int btrfs_freeze(struct super_block *sb)
1269 struct btrfs_root *root = btrfs_sb(sb);
1270 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1271 mutex_lock(&root->fs_info->cleaner_mutex);
1272 return 0;
1275 static int btrfs_unfreeze(struct super_block *sb)
1277 struct btrfs_root *root = btrfs_sb(sb);
1278 mutex_unlock(&root->fs_info->cleaner_mutex);
1279 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1280 return 0;
1283 static const struct super_operations btrfs_super_ops = {
1284 .drop_inode = btrfs_drop_inode,
1285 .evict_inode = btrfs_evict_inode,
1286 .put_super = btrfs_put_super,
1287 .sync_fs = btrfs_sync_fs,
1288 .show_options = btrfs_show_options,
1289 .write_inode = btrfs_write_inode,
1290 .dirty_inode = btrfs_dirty_inode,
1291 .alloc_inode = btrfs_alloc_inode,
1292 .destroy_inode = btrfs_destroy_inode,
1293 .statfs = btrfs_statfs,
1294 .remount_fs = btrfs_remount,
1295 .freeze_fs = btrfs_freeze,
1296 .unfreeze_fs = btrfs_unfreeze,
1299 static const struct file_operations btrfs_ctl_fops = {
1300 .unlocked_ioctl = btrfs_control_ioctl,
1301 .compat_ioctl = btrfs_control_ioctl,
1302 .owner = THIS_MODULE,
1303 .llseek = noop_llseek,
1306 static struct miscdevice btrfs_misc = {
1307 .minor = BTRFS_MINOR,
1308 .name = "btrfs-control",
1309 .fops = &btrfs_ctl_fops
1312 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1313 MODULE_ALIAS("devname:btrfs-control");
1315 static int btrfs_interface_init(void)
1317 return misc_register(&btrfs_misc);
1320 static void btrfs_interface_exit(void)
1322 if (misc_deregister(&btrfs_misc) < 0)
1323 printk(KERN_INFO "misc_deregister failed for control device");
1326 static int __init init_btrfs_fs(void)
1328 int err;
1330 err = btrfs_init_sysfs();
1331 if (err)
1332 return err;
1334 err = btrfs_init_compress();
1335 if (err)
1336 goto free_sysfs;
1338 err = btrfs_init_cachep();
1339 if (err)
1340 goto free_compress;
1342 err = extent_io_init();
1343 if (err)
1344 goto free_cachep;
1346 err = extent_map_init();
1347 if (err)
1348 goto free_extent_io;
1350 err = btrfs_delayed_inode_init();
1351 if (err)
1352 goto free_extent_map;
1354 err = btrfs_interface_init();
1355 if (err)
1356 goto free_delayed_inode;
1358 err = register_filesystem(&btrfs_fs_type);
1359 if (err)
1360 goto unregister_ioctl;
1362 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1363 return 0;
1365 unregister_ioctl:
1366 btrfs_interface_exit();
1367 free_delayed_inode:
1368 btrfs_delayed_inode_exit();
1369 free_extent_map:
1370 extent_map_exit();
1371 free_extent_io:
1372 extent_io_exit();
1373 free_cachep:
1374 btrfs_destroy_cachep();
1375 free_compress:
1376 btrfs_exit_compress();
1377 free_sysfs:
1378 btrfs_exit_sysfs();
1379 return err;
1382 static void __exit exit_btrfs_fs(void)
1384 btrfs_destroy_cachep();
1385 btrfs_delayed_inode_exit();
1386 extent_map_exit();
1387 extent_io_exit();
1388 btrfs_interface_exit();
1389 unregister_filesystem(&btrfs_fs_type);
1390 btrfs_exit_sysfs();
1391 btrfs_cleanup_fs_uuids();
1392 btrfs_exit_compress();
1395 module_init(init_btrfs_fs)
1396 module_exit(exit_btrfs_fs)
1398 MODULE_LICENSE("GPL");