JFFS2: add missing verify buffer allocation/deallocation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blobf4be1eedb2cd47beba104992e13d5368d7cb12db
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <trace/sched.h>
65 #include <linux/magic.h>
67 #include <asm/pgtable.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/cacheflush.h>
72 #include <asm/tlbflush.h>
75 * Protected counters by write_lock_irq(&tasklist_lock)
77 unsigned long total_forks; /* Handle normal Linux uptimes. */
78 int nr_threads; /* The idle threads do not count.. */
80 int max_threads; /* tunable limit on nr_threads */
82 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
84 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
86 DEFINE_TRACE(sched_process_fork);
88 int nr_processes(void)
90 int cpu;
91 int total = 0;
93 for_each_online_cpu(cpu)
94 total += per_cpu(process_counts, cpu);
96 return total;
99 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
100 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
101 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
102 static struct kmem_cache *task_struct_cachep;
103 #endif
105 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
106 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 #ifdef CONFIG_DEBUG_STACK_USAGE
109 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
110 #else
111 gfp_t mask = GFP_KERNEL;
112 #endif
113 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
116 static inline void free_thread_info(struct thread_info *ti)
118 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 #endif
122 /* SLAB cache for signal_struct structures (tsk->signal) */
123 static struct kmem_cache *signal_cachep;
125 /* SLAB cache for sighand_struct structures (tsk->sighand) */
126 struct kmem_cache *sighand_cachep;
128 /* SLAB cache for files_struct structures (tsk->files) */
129 struct kmem_cache *files_cachep;
131 /* SLAB cache for fs_struct structures (tsk->fs) */
132 struct kmem_cache *fs_cachep;
134 /* SLAB cache for vm_area_struct structures */
135 struct kmem_cache *vm_area_cachep;
137 /* SLAB cache for mm_struct structures (tsk->mm) */
138 static struct kmem_cache *mm_cachep;
140 void free_task(struct task_struct *tsk)
142 prop_local_destroy_single(&tsk->dirties);
143 free_thread_info(tsk->stack);
144 rt_mutex_debug_task_free(tsk);
145 ftrace_graph_exit_task(tsk);
146 free_task_struct(tsk);
148 EXPORT_SYMBOL(free_task);
150 void __put_task_struct(struct task_struct *tsk)
152 WARN_ON(!tsk->exit_state);
153 WARN_ON(atomic_read(&tsk->usage));
154 WARN_ON(tsk == current);
156 put_cred(tsk->real_cred);
157 put_cred(tsk->cred);
158 delayacct_tsk_free(tsk);
160 if (!profile_handoff_task(tsk))
161 free_task(tsk);
165 * macro override instead of weak attribute alias, to workaround
166 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
168 #ifndef arch_task_cache_init
169 #define arch_task_cache_init()
170 #endif
172 void __init fork_init(unsigned long mempages)
174 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
175 #ifndef ARCH_MIN_TASKALIGN
176 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
177 #endif
178 /* create a slab on which task_structs can be allocated */
179 task_struct_cachep =
180 kmem_cache_create("task_struct", sizeof(struct task_struct),
181 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
182 #endif
184 /* do the arch specific task caches init */
185 arch_task_cache_init();
188 * The default maximum number of threads is set to a safe
189 * value: the thread structures can take up at most half
190 * of memory.
192 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
195 * we need to allow at least 20 threads to boot a system
197 if(max_threads < 20)
198 max_threads = 20;
200 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
201 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
202 init_task.signal->rlim[RLIMIT_SIGPENDING] =
203 init_task.signal->rlim[RLIMIT_NPROC];
206 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
207 struct task_struct *src)
209 *dst = *src;
210 return 0;
213 static struct task_struct *dup_task_struct(struct task_struct *orig)
215 struct task_struct *tsk;
216 struct thread_info *ti;
217 unsigned long *stackend;
219 int err;
221 prepare_to_copy(orig);
223 tsk = alloc_task_struct();
224 if (!tsk)
225 return NULL;
227 ti = alloc_thread_info(tsk);
228 if (!ti) {
229 free_task_struct(tsk);
230 return NULL;
233 err = arch_dup_task_struct(tsk, orig);
234 if (err)
235 goto out;
237 tsk->stack = ti;
239 err = prop_local_init_single(&tsk->dirties);
240 if (err)
241 goto out;
243 setup_thread_stack(tsk, orig);
244 stackend = end_of_stack(tsk);
245 *stackend = STACK_END_MAGIC; /* for overflow detection */
247 #ifdef CONFIG_CC_STACKPROTECTOR
248 tsk->stack_canary = get_random_int();
249 #endif
251 /* One for us, one for whoever does the "release_task()" (usually parent) */
252 atomic_set(&tsk->usage,2);
253 atomic_set(&tsk->fs_excl, 0);
254 #ifdef CONFIG_BLK_DEV_IO_TRACE
255 tsk->btrace_seq = 0;
256 #endif
257 tsk->splice_pipe = NULL;
258 return tsk;
260 out:
261 free_thread_info(ti);
262 free_task_struct(tsk);
263 return NULL;
266 #ifdef CONFIG_MMU
267 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
269 struct vm_area_struct *mpnt, *tmp, **pprev;
270 struct rb_node **rb_link, *rb_parent;
271 int retval;
272 unsigned long charge;
273 struct mempolicy *pol;
275 down_write(&oldmm->mmap_sem);
276 flush_cache_dup_mm(oldmm);
278 * Not linked in yet - no deadlock potential:
280 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
282 mm->locked_vm = 0;
283 mm->mmap = NULL;
284 mm->mmap_cache = NULL;
285 mm->free_area_cache = oldmm->mmap_base;
286 mm->cached_hole_size = ~0UL;
287 mm->map_count = 0;
288 cpumask_clear(mm_cpumask(mm));
289 mm->mm_rb = RB_ROOT;
290 rb_link = &mm->mm_rb.rb_node;
291 rb_parent = NULL;
292 pprev = &mm->mmap;
294 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
295 struct file *file;
297 if (mpnt->vm_flags & VM_DONTCOPY) {
298 long pages = vma_pages(mpnt);
299 mm->total_vm -= pages;
300 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
301 -pages);
302 continue;
304 charge = 0;
305 if (mpnt->vm_flags & VM_ACCOUNT) {
306 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
307 if (security_vm_enough_memory(len))
308 goto fail_nomem;
309 charge = len;
311 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
312 if (!tmp)
313 goto fail_nomem;
314 *tmp = *mpnt;
315 pol = mpol_dup(vma_policy(mpnt));
316 retval = PTR_ERR(pol);
317 if (IS_ERR(pol))
318 goto fail_nomem_policy;
319 vma_set_policy(tmp, pol);
320 tmp->vm_flags &= ~VM_LOCKED;
321 tmp->vm_mm = mm;
322 tmp->vm_next = NULL;
323 anon_vma_link(tmp);
324 file = tmp->vm_file;
325 if (file) {
326 struct inode *inode = file->f_path.dentry->d_inode;
327 struct address_space *mapping = file->f_mapping;
329 get_file(file);
330 if (tmp->vm_flags & VM_DENYWRITE)
331 atomic_dec(&inode->i_writecount);
332 spin_lock(&mapping->i_mmap_lock);
333 if (tmp->vm_flags & VM_SHARED)
334 mapping->i_mmap_writable++;
335 tmp->vm_truncate_count = mpnt->vm_truncate_count;
336 flush_dcache_mmap_lock(mapping);
337 /* insert tmp into the share list, just after mpnt */
338 vma_prio_tree_add(tmp, mpnt);
339 flush_dcache_mmap_unlock(mapping);
340 spin_unlock(&mapping->i_mmap_lock);
344 * Clear hugetlb-related page reserves for children. This only
345 * affects MAP_PRIVATE mappings. Faults generated by the child
346 * are not guaranteed to succeed, even if read-only
348 if (is_vm_hugetlb_page(tmp))
349 reset_vma_resv_huge_pages(tmp);
352 * Link in the new vma and copy the page table entries.
354 *pprev = tmp;
355 pprev = &tmp->vm_next;
357 __vma_link_rb(mm, tmp, rb_link, rb_parent);
358 rb_link = &tmp->vm_rb.rb_right;
359 rb_parent = &tmp->vm_rb;
361 mm->map_count++;
362 retval = copy_page_range(mm, oldmm, mpnt);
364 if (tmp->vm_ops && tmp->vm_ops->open)
365 tmp->vm_ops->open(tmp);
367 if (retval)
368 goto out;
370 /* a new mm has just been created */
371 arch_dup_mmap(oldmm, mm);
372 retval = 0;
373 out:
374 up_write(&mm->mmap_sem);
375 flush_tlb_mm(oldmm);
376 up_write(&oldmm->mmap_sem);
377 return retval;
378 fail_nomem_policy:
379 kmem_cache_free(vm_area_cachep, tmp);
380 fail_nomem:
381 retval = -ENOMEM;
382 vm_unacct_memory(charge);
383 goto out;
386 static inline int mm_alloc_pgd(struct mm_struct * mm)
388 mm->pgd = pgd_alloc(mm);
389 if (unlikely(!mm->pgd))
390 return -ENOMEM;
391 return 0;
394 static inline void mm_free_pgd(struct mm_struct * mm)
396 pgd_free(mm, mm->pgd);
398 #else
399 #define dup_mmap(mm, oldmm) (0)
400 #define mm_alloc_pgd(mm) (0)
401 #define mm_free_pgd(mm)
402 #endif /* CONFIG_MMU */
404 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
406 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
407 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
409 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
411 static int __init coredump_filter_setup(char *s)
413 default_dump_filter =
414 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
415 MMF_DUMP_FILTER_MASK;
416 return 1;
419 __setup("coredump_filter=", coredump_filter_setup);
421 #include <linux/init_task.h>
423 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
425 atomic_set(&mm->mm_users, 1);
426 atomic_set(&mm->mm_count, 1);
427 init_rwsem(&mm->mmap_sem);
428 INIT_LIST_HEAD(&mm->mmlist);
429 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
430 mm->core_state = NULL;
431 mm->nr_ptes = 0;
432 set_mm_counter(mm, file_rss, 0);
433 set_mm_counter(mm, anon_rss, 0);
434 spin_lock_init(&mm->page_table_lock);
435 spin_lock_init(&mm->ioctx_lock);
436 INIT_HLIST_HEAD(&mm->ioctx_list);
437 mm->free_area_cache = TASK_UNMAPPED_BASE;
438 mm->cached_hole_size = ~0UL;
439 mm_init_owner(mm, p);
441 if (likely(!mm_alloc_pgd(mm))) {
442 mm->def_flags = 0;
443 mmu_notifier_mm_init(mm);
444 return mm;
447 free_mm(mm);
448 return NULL;
452 * Allocate and initialize an mm_struct.
454 struct mm_struct * mm_alloc(void)
456 struct mm_struct * mm;
458 mm = allocate_mm();
459 if (mm) {
460 memset(mm, 0, sizeof(*mm));
461 mm = mm_init(mm, current);
463 return mm;
467 * Called when the last reference to the mm
468 * is dropped: either by a lazy thread or by
469 * mmput. Free the page directory and the mm.
471 void __mmdrop(struct mm_struct *mm)
473 BUG_ON(mm == &init_mm);
474 mm_free_pgd(mm);
475 destroy_context(mm);
476 mmu_notifier_mm_destroy(mm);
477 free_mm(mm);
479 EXPORT_SYMBOL_GPL(__mmdrop);
482 * Decrement the use count and release all resources for an mm.
484 void mmput(struct mm_struct *mm)
486 might_sleep();
488 if (atomic_dec_and_test(&mm->mm_users)) {
489 exit_aio(mm);
490 exit_mmap(mm);
491 set_mm_exe_file(mm, NULL);
492 if (!list_empty(&mm->mmlist)) {
493 spin_lock(&mmlist_lock);
494 list_del(&mm->mmlist);
495 spin_unlock(&mmlist_lock);
497 put_swap_token(mm);
498 mmdrop(mm);
501 EXPORT_SYMBOL_GPL(mmput);
504 * get_task_mm - acquire a reference to the task's mm
506 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
507 * this kernel workthread has transiently adopted a user mm with use_mm,
508 * to do its AIO) is not set and if so returns a reference to it, after
509 * bumping up the use count. User must release the mm via mmput()
510 * after use. Typically used by /proc and ptrace.
512 struct mm_struct *get_task_mm(struct task_struct *task)
514 struct mm_struct *mm;
516 task_lock(task);
517 mm = task->mm;
518 if (mm) {
519 if (task->flags & PF_KTHREAD)
520 mm = NULL;
521 else
522 atomic_inc(&mm->mm_users);
524 task_unlock(task);
525 return mm;
527 EXPORT_SYMBOL_GPL(get_task_mm);
529 /* Please note the differences between mmput and mm_release.
530 * mmput is called whenever we stop holding onto a mm_struct,
531 * error success whatever.
533 * mm_release is called after a mm_struct has been removed
534 * from the current process.
536 * This difference is important for error handling, when we
537 * only half set up a mm_struct for a new process and need to restore
538 * the old one. Because we mmput the new mm_struct before
539 * restoring the old one. . .
540 * Eric Biederman 10 January 1998
542 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
544 struct completion *vfork_done = tsk->vfork_done;
546 /* Get rid of any futexes when releasing the mm */
547 #ifdef CONFIG_FUTEX
548 if (unlikely(tsk->robust_list))
549 exit_robust_list(tsk);
550 #ifdef CONFIG_COMPAT
551 if (unlikely(tsk->compat_robust_list))
552 compat_exit_robust_list(tsk);
553 #endif
554 #endif
556 /* Get rid of any cached register state */
557 deactivate_mm(tsk, mm);
559 /* notify parent sleeping on vfork() */
560 if (vfork_done) {
561 tsk->vfork_done = NULL;
562 complete(vfork_done);
566 * If we're exiting normally, clear a user-space tid field if
567 * requested. We leave this alone when dying by signal, to leave
568 * the value intact in a core dump, and to save the unnecessary
569 * trouble otherwise. Userland only wants this done for a sys_exit.
571 if (tsk->clear_child_tid) {
572 if (!(tsk->flags & PF_SIGNALED) &&
573 atomic_read(&mm->mm_users) > 1) {
575 * We don't check the error code - if userspace has
576 * not set up a proper pointer then tough luck.
578 put_user(0, tsk->clear_child_tid);
579 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
580 1, NULL, NULL, 0);
582 tsk->clear_child_tid = NULL;
587 * Allocate a new mm structure and copy contents from the
588 * mm structure of the passed in task structure.
590 struct mm_struct *dup_mm(struct task_struct *tsk)
592 struct mm_struct *mm, *oldmm = current->mm;
593 int err;
595 if (!oldmm)
596 return NULL;
598 mm = allocate_mm();
599 if (!mm)
600 goto fail_nomem;
602 memcpy(mm, oldmm, sizeof(*mm));
604 /* Initializing for Swap token stuff */
605 mm->token_priority = 0;
606 mm->last_interval = 0;
608 if (!mm_init(mm, tsk))
609 goto fail_nomem;
611 if (init_new_context(tsk, mm))
612 goto fail_nocontext;
614 dup_mm_exe_file(oldmm, mm);
616 err = dup_mmap(mm, oldmm);
617 if (err)
618 goto free_pt;
620 mm->hiwater_rss = get_mm_rss(mm);
621 mm->hiwater_vm = mm->total_vm;
623 return mm;
625 free_pt:
626 mmput(mm);
628 fail_nomem:
629 return NULL;
631 fail_nocontext:
633 * If init_new_context() failed, we cannot use mmput() to free the mm
634 * because it calls destroy_context()
636 mm_free_pgd(mm);
637 free_mm(mm);
638 return NULL;
641 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
643 struct mm_struct * mm, *oldmm;
644 int retval;
646 tsk->min_flt = tsk->maj_flt = 0;
647 tsk->nvcsw = tsk->nivcsw = 0;
648 #ifdef CONFIG_DETECT_HUNG_TASK
649 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
650 #endif
652 tsk->mm = NULL;
653 tsk->active_mm = NULL;
656 * Are we cloning a kernel thread?
658 * We need to steal a active VM for that..
660 oldmm = current->mm;
661 if (!oldmm)
662 return 0;
664 if (clone_flags & CLONE_VM) {
665 atomic_inc(&oldmm->mm_users);
666 mm = oldmm;
667 goto good_mm;
670 retval = -ENOMEM;
671 mm = dup_mm(tsk);
672 if (!mm)
673 goto fail_nomem;
675 good_mm:
676 /* Initializing for Swap token stuff */
677 mm->token_priority = 0;
678 mm->last_interval = 0;
680 tsk->mm = mm;
681 tsk->active_mm = mm;
682 return 0;
684 fail_nomem:
685 return retval;
688 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
690 struct fs_struct *fs = current->fs;
691 if (clone_flags & CLONE_FS) {
692 /* tsk->fs is already what we want */
693 write_lock(&fs->lock);
694 if (fs->in_exec) {
695 write_unlock(&fs->lock);
696 return -EAGAIN;
698 fs->users++;
699 write_unlock(&fs->lock);
700 return 0;
702 tsk->fs = copy_fs_struct(fs);
703 if (!tsk->fs)
704 return -ENOMEM;
705 return 0;
708 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
710 struct files_struct *oldf, *newf;
711 int error = 0;
714 * A background process may not have any files ...
716 oldf = current->files;
717 if (!oldf)
718 goto out;
720 if (clone_flags & CLONE_FILES) {
721 atomic_inc(&oldf->count);
722 goto out;
725 newf = dup_fd(oldf, &error);
726 if (!newf)
727 goto out;
729 tsk->files = newf;
730 error = 0;
731 out:
732 return error;
735 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
737 #ifdef CONFIG_BLOCK
738 struct io_context *ioc = current->io_context;
740 if (!ioc)
741 return 0;
743 * Share io context with parent, if CLONE_IO is set
745 if (clone_flags & CLONE_IO) {
746 tsk->io_context = ioc_task_link(ioc);
747 if (unlikely(!tsk->io_context))
748 return -ENOMEM;
749 } else if (ioprio_valid(ioc->ioprio)) {
750 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
751 if (unlikely(!tsk->io_context))
752 return -ENOMEM;
754 tsk->io_context->ioprio = ioc->ioprio;
756 #endif
757 return 0;
760 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
762 struct sighand_struct *sig;
764 if (clone_flags & CLONE_SIGHAND) {
765 atomic_inc(&current->sighand->count);
766 return 0;
768 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
769 rcu_assign_pointer(tsk->sighand, sig);
770 if (!sig)
771 return -ENOMEM;
772 atomic_set(&sig->count, 1);
773 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
774 return 0;
777 void __cleanup_sighand(struct sighand_struct *sighand)
779 if (atomic_dec_and_test(&sighand->count))
780 kmem_cache_free(sighand_cachep, sighand);
785 * Initialize POSIX timer handling for a thread group.
787 static void posix_cpu_timers_init_group(struct signal_struct *sig)
789 /* Thread group counters. */
790 thread_group_cputime_init(sig);
792 /* Expiration times and increments. */
793 sig->it_virt_expires = cputime_zero;
794 sig->it_virt_incr = cputime_zero;
795 sig->it_prof_expires = cputime_zero;
796 sig->it_prof_incr = cputime_zero;
798 /* Cached expiration times. */
799 sig->cputime_expires.prof_exp = cputime_zero;
800 sig->cputime_expires.virt_exp = cputime_zero;
801 sig->cputime_expires.sched_exp = 0;
803 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
804 sig->cputime_expires.prof_exp =
805 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
806 sig->cputimer.running = 1;
809 /* The timer lists. */
810 INIT_LIST_HEAD(&sig->cpu_timers[0]);
811 INIT_LIST_HEAD(&sig->cpu_timers[1]);
812 INIT_LIST_HEAD(&sig->cpu_timers[2]);
815 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
817 struct signal_struct *sig;
819 if (clone_flags & CLONE_THREAD)
820 return 0;
822 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
823 tsk->signal = sig;
824 if (!sig)
825 return -ENOMEM;
827 atomic_set(&sig->count, 1);
828 atomic_set(&sig->live, 1);
829 init_waitqueue_head(&sig->wait_chldexit);
830 sig->flags = 0;
831 if (clone_flags & CLONE_NEWPID)
832 sig->flags |= SIGNAL_UNKILLABLE;
833 sig->group_exit_code = 0;
834 sig->group_exit_task = NULL;
835 sig->group_stop_count = 0;
836 sig->curr_target = tsk;
837 init_sigpending(&sig->shared_pending);
838 INIT_LIST_HEAD(&sig->posix_timers);
840 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
841 sig->it_real_incr.tv64 = 0;
842 sig->real_timer.function = it_real_fn;
844 sig->leader = 0; /* session leadership doesn't inherit */
845 sig->tty_old_pgrp = NULL;
846 sig->tty = NULL;
848 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
849 sig->gtime = cputime_zero;
850 sig->cgtime = cputime_zero;
851 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
852 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
853 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
854 task_io_accounting_init(&sig->ioac);
855 sig->sum_sched_runtime = 0;
856 taskstats_tgid_init(sig);
858 task_lock(current->group_leader);
859 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
860 task_unlock(current->group_leader);
862 posix_cpu_timers_init_group(sig);
864 acct_init_pacct(&sig->pacct);
866 tty_audit_fork(sig);
868 return 0;
871 void __cleanup_signal(struct signal_struct *sig)
873 thread_group_cputime_free(sig);
874 tty_kref_put(sig->tty);
875 kmem_cache_free(signal_cachep, sig);
878 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
880 unsigned long new_flags = p->flags;
882 new_flags &= ~PF_SUPERPRIV;
883 new_flags |= PF_FORKNOEXEC;
884 new_flags |= PF_STARTING;
885 p->flags = new_flags;
886 clear_freeze_flag(p);
889 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
891 current->clear_child_tid = tidptr;
893 return task_pid_vnr(current);
896 static void rt_mutex_init_task(struct task_struct *p)
898 spin_lock_init(&p->pi_lock);
899 #ifdef CONFIG_RT_MUTEXES
900 plist_head_init(&p->pi_waiters, &p->pi_lock);
901 p->pi_blocked_on = NULL;
902 #endif
905 #ifdef CONFIG_MM_OWNER
906 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
908 mm->owner = p;
910 #endif /* CONFIG_MM_OWNER */
913 * Initialize POSIX timer handling for a single task.
915 static void posix_cpu_timers_init(struct task_struct *tsk)
917 tsk->cputime_expires.prof_exp = cputime_zero;
918 tsk->cputime_expires.virt_exp = cputime_zero;
919 tsk->cputime_expires.sched_exp = 0;
920 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
921 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
922 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
926 * This creates a new process as a copy of the old one,
927 * but does not actually start it yet.
929 * It copies the registers, and all the appropriate
930 * parts of the process environment (as per the clone
931 * flags). The actual kick-off is left to the caller.
933 static struct task_struct *copy_process(unsigned long clone_flags,
934 unsigned long stack_start,
935 struct pt_regs *regs,
936 unsigned long stack_size,
937 int __user *child_tidptr,
938 struct pid *pid,
939 int trace)
941 int retval;
942 struct task_struct *p;
943 int cgroup_callbacks_done = 0;
945 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
946 return ERR_PTR(-EINVAL);
949 * Thread groups must share signals as well, and detached threads
950 * can only be started up within the thread group.
952 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
953 return ERR_PTR(-EINVAL);
956 * Shared signal handlers imply shared VM. By way of the above,
957 * thread groups also imply shared VM. Blocking this case allows
958 * for various simplifications in other code.
960 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
961 return ERR_PTR(-EINVAL);
963 retval = security_task_create(clone_flags);
964 if (retval)
965 goto fork_out;
967 retval = -ENOMEM;
968 p = dup_task_struct(current);
969 if (!p)
970 goto fork_out;
972 rt_mutex_init_task(p);
974 #ifdef CONFIG_PROVE_LOCKING
975 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
976 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
977 #endif
978 retval = -EAGAIN;
979 if (atomic_read(&p->real_cred->user->processes) >=
980 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
981 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
982 p->real_cred->user != INIT_USER)
983 goto bad_fork_free;
986 retval = copy_creds(p, clone_flags);
987 if (retval < 0)
988 goto bad_fork_free;
991 * If multiple threads are within copy_process(), then this check
992 * triggers too late. This doesn't hurt, the check is only there
993 * to stop root fork bombs.
995 retval = -EAGAIN;
996 if (nr_threads >= max_threads)
997 goto bad_fork_cleanup_count;
999 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1000 goto bad_fork_cleanup_count;
1002 if (p->binfmt && !try_module_get(p->binfmt->module))
1003 goto bad_fork_cleanup_put_domain;
1005 p->did_exec = 0;
1006 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1007 copy_flags(clone_flags, p);
1008 INIT_LIST_HEAD(&p->children);
1009 INIT_LIST_HEAD(&p->sibling);
1010 #ifdef CONFIG_PREEMPT_RCU
1011 p->rcu_read_lock_nesting = 0;
1012 p->rcu_flipctr_idx = 0;
1013 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1014 p->vfork_done = NULL;
1015 spin_lock_init(&p->alloc_lock);
1017 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1018 init_sigpending(&p->pending);
1020 p->utime = cputime_zero;
1021 p->stime = cputime_zero;
1022 p->gtime = cputime_zero;
1023 p->utimescaled = cputime_zero;
1024 p->stimescaled = cputime_zero;
1025 p->prev_utime = cputime_zero;
1026 p->prev_stime = cputime_zero;
1028 p->default_timer_slack_ns = current->timer_slack_ns;
1030 task_io_accounting_init(&p->ioac);
1031 acct_clear_integrals(p);
1033 posix_cpu_timers_init(p);
1035 p->lock_depth = -1; /* -1 = no lock */
1036 do_posix_clock_monotonic_gettime(&p->start_time);
1037 p->real_start_time = p->start_time;
1038 monotonic_to_bootbased(&p->real_start_time);
1039 p->io_context = NULL;
1040 p->audit_context = NULL;
1041 cgroup_fork(p);
1042 #ifdef CONFIG_NUMA
1043 p->mempolicy = mpol_dup(p->mempolicy);
1044 if (IS_ERR(p->mempolicy)) {
1045 retval = PTR_ERR(p->mempolicy);
1046 p->mempolicy = NULL;
1047 goto bad_fork_cleanup_cgroup;
1049 mpol_fix_fork_child_flag(p);
1050 #endif
1051 #ifdef CONFIG_TRACE_IRQFLAGS
1052 p->irq_events = 0;
1053 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1054 p->hardirqs_enabled = 1;
1055 #else
1056 p->hardirqs_enabled = 0;
1057 #endif
1058 p->hardirq_enable_ip = 0;
1059 p->hardirq_enable_event = 0;
1060 p->hardirq_disable_ip = _THIS_IP_;
1061 p->hardirq_disable_event = 0;
1062 p->softirqs_enabled = 1;
1063 p->softirq_enable_ip = _THIS_IP_;
1064 p->softirq_enable_event = 0;
1065 p->softirq_disable_ip = 0;
1066 p->softirq_disable_event = 0;
1067 p->hardirq_context = 0;
1068 p->softirq_context = 0;
1069 #endif
1070 #ifdef CONFIG_LOCKDEP
1071 p->lockdep_depth = 0; /* no locks held yet */
1072 p->curr_chain_key = 0;
1073 p->lockdep_recursion = 0;
1074 #endif
1076 #ifdef CONFIG_DEBUG_MUTEXES
1077 p->blocked_on = NULL; /* not blocked yet */
1078 #endif
1079 if (unlikely(current->ptrace))
1080 ptrace_fork(p, clone_flags);
1082 /* Perform scheduler related setup. Assign this task to a CPU. */
1083 sched_fork(p, clone_flags);
1085 if ((retval = audit_alloc(p)))
1086 goto bad_fork_cleanup_policy;
1087 /* copy all the process information */
1088 if ((retval = copy_semundo(clone_flags, p)))
1089 goto bad_fork_cleanup_audit;
1090 if ((retval = copy_files(clone_flags, p)))
1091 goto bad_fork_cleanup_semundo;
1092 if ((retval = copy_fs(clone_flags, p)))
1093 goto bad_fork_cleanup_files;
1094 if ((retval = copy_sighand(clone_flags, p)))
1095 goto bad_fork_cleanup_fs;
1096 if ((retval = copy_signal(clone_flags, p)))
1097 goto bad_fork_cleanup_sighand;
1098 if ((retval = copy_mm(clone_flags, p)))
1099 goto bad_fork_cleanup_signal;
1100 if ((retval = copy_namespaces(clone_flags, p)))
1101 goto bad_fork_cleanup_mm;
1102 if ((retval = copy_io(clone_flags, p)))
1103 goto bad_fork_cleanup_namespaces;
1104 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1105 if (retval)
1106 goto bad_fork_cleanup_io;
1108 if (pid != &init_struct_pid) {
1109 retval = -ENOMEM;
1110 pid = alloc_pid(p->nsproxy->pid_ns);
1111 if (!pid)
1112 goto bad_fork_cleanup_io;
1114 if (clone_flags & CLONE_NEWPID) {
1115 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1116 if (retval < 0)
1117 goto bad_fork_free_pid;
1121 ftrace_graph_init_task(p);
1123 p->pid = pid_nr(pid);
1124 p->tgid = p->pid;
1125 if (clone_flags & CLONE_THREAD)
1126 p->tgid = current->tgid;
1128 if (current->nsproxy != p->nsproxy) {
1129 retval = ns_cgroup_clone(p, pid);
1130 if (retval)
1131 goto bad_fork_free_graph;
1134 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1136 * Clear TID on mm_release()?
1138 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1139 #ifdef CONFIG_FUTEX
1140 p->robust_list = NULL;
1141 #ifdef CONFIG_COMPAT
1142 p->compat_robust_list = NULL;
1143 #endif
1144 INIT_LIST_HEAD(&p->pi_state_list);
1145 p->pi_state_cache = NULL;
1146 #endif
1148 * sigaltstack should be cleared when sharing the same VM
1150 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1151 p->sas_ss_sp = p->sas_ss_size = 0;
1154 * Syscall tracing should be turned off in the child regardless
1155 * of CLONE_PTRACE.
1157 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1158 #ifdef TIF_SYSCALL_EMU
1159 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1160 #endif
1161 clear_all_latency_tracing(p);
1163 /* ok, now we should be set up.. */
1164 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1165 p->pdeath_signal = 0;
1166 p->exit_state = 0;
1169 * Ok, make it visible to the rest of the system.
1170 * We dont wake it up yet.
1172 p->group_leader = p;
1173 INIT_LIST_HEAD(&p->thread_group);
1175 /* Now that the task is set up, run cgroup callbacks if
1176 * necessary. We need to run them before the task is visible
1177 * on the tasklist. */
1178 cgroup_fork_callbacks(p);
1179 cgroup_callbacks_done = 1;
1181 /* Need tasklist lock for parent etc handling! */
1182 write_lock_irq(&tasklist_lock);
1185 * The task hasn't been attached yet, so its cpus_allowed mask will
1186 * not be changed, nor will its assigned CPU.
1188 * The cpus_allowed mask of the parent may have changed after it was
1189 * copied first time - so re-copy it here, then check the child's CPU
1190 * to ensure it is on a valid CPU (and if not, just force it back to
1191 * parent's CPU). This avoids alot of nasty races.
1193 p->cpus_allowed = current->cpus_allowed;
1194 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1195 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1196 !cpu_online(task_cpu(p))))
1197 set_task_cpu(p, smp_processor_id());
1199 /* CLONE_PARENT re-uses the old parent */
1200 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1201 p->real_parent = current->real_parent;
1202 p->parent_exec_id = current->parent_exec_id;
1203 } else {
1204 p->real_parent = current;
1205 p->parent_exec_id = current->self_exec_id;
1208 spin_lock(&current->sighand->siglock);
1211 * Process group and session signals need to be delivered to just the
1212 * parent before the fork or both the parent and the child after the
1213 * fork. Restart if a signal comes in before we add the new process to
1214 * it's process group.
1215 * A fatal signal pending means that current will exit, so the new
1216 * thread can't slip out of an OOM kill (or normal SIGKILL).
1218 recalc_sigpending();
1219 if (signal_pending(current)) {
1220 spin_unlock(&current->sighand->siglock);
1221 write_unlock_irq(&tasklist_lock);
1222 retval = -ERESTARTNOINTR;
1223 goto bad_fork_free_graph;
1226 if (clone_flags & CLONE_THREAD) {
1227 atomic_inc(&current->signal->count);
1228 atomic_inc(&current->signal->live);
1229 p->group_leader = current->group_leader;
1230 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1233 if (likely(p->pid)) {
1234 list_add_tail(&p->sibling, &p->real_parent->children);
1235 tracehook_finish_clone(p, clone_flags, trace);
1237 if (thread_group_leader(p)) {
1238 if (clone_flags & CLONE_NEWPID)
1239 p->nsproxy->pid_ns->child_reaper = p;
1241 p->signal->leader_pid = pid;
1242 tty_kref_put(p->signal->tty);
1243 p->signal->tty = tty_kref_get(current->signal->tty);
1244 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1245 attach_pid(p, PIDTYPE_SID, task_session(current));
1246 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1247 __get_cpu_var(process_counts)++;
1249 attach_pid(p, PIDTYPE_PID, pid);
1250 nr_threads++;
1253 total_forks++;
1254 spin_unlock(&current->sighand->siglock);
1255 write_unlock_irq(&tasklist_lock);
1256 proc_fork_connector(p);
1257 cgroup_post_fork(p);
1258 return p;
1260 bad_fork_free_graph:
1261 ftrace_graph_exit_task(p);
1262 bad_fork_free_pid:
1263 if (pid != &init_struct_pid)
1264 free_pid(pid);
1265 bad_fork_cleanup_io:
1266 put_io_context(p->io_context);
1267 bad_fork_cleanup_namespaces:
1268 exit_task_namespaces(p);
1269 bad_fork_cleanup_mm:
1270 if (p->mm)
1271 mmput(p->mm);
1272 bad_fork_cleanup_signal:
1273 if (!(clone_flags & CLONE_THREAD))
1274 __cleanup_signal(p->signal);
1275 bad_fork_cleanup_sighand:
1276 __cleanup_sighand(p->sighand);
1277 bad_fork_cleanup_fs:
1278 exit_fs(p); /* blocking */
1279 bad_fork_cleanup_files:
1280 exit_files(p); /* blocking */
1281 bad_fork_cleanup_semundo:
1282 exit_sem(p);
1283 bad_fork_cleanup_audit:
1284 audit_free(p);
1285 bad_fork_cleanup_policy:
1286 #ifdef CONFIG_NUMA
1287 mpol_put(p->mempolicy);
1288 bad_fork_cleanup_cgroup:
1289 #endif
1290 cgroup_exit(p, cgroup_callbacks_done);
1291 delayacct_tsk_free(p);
1292 if (p->binfmt)
1293 module_put(p->binfmt->module);
1294 bad_fork_cleanup_put_domain:
1295 module_put(task_thread_info(p)->exec_domain->module);
1296 bad_fork_cleanup_count:
1297 atomic_dec(&p->cred->user->processes);
1298 put_cred(p->real_cred);
1299 put_cred(p->cred);
1300 bad_fork_free:
1301 free_task(p);
1302 fork_out:
1303 return ERR_PTR(retval);
1306 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1308 memset(regs, 0, sizeof(struct pt_regs));
1309 return regs;
1312 struct task_struct * __cpuinit fork_idle(int cpu)
1314 struct task_struct *task;
1315 struct pt_regs regs;
1317 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1318 &init_struct_pid, 0);
1319 if (!IS_ERR(task))
1320 init_idle(task, cpu);
1322 return task;
1326 * Ok, this is the main fork-routine.
1328 * It copies the process, and if successful kick-starts
1329 * it and waits for it to finish using the VM if required.
1331 long do_fork(unsigned long clone_flags,
1332 unsigned long stack_start,
1333 struct pt_regs *regs,
1334 unsigned long stack_size,
1335 int __user *parent_tidptr,
1336 int __user *child_tidptr)
1338 struct task_struct *p;
1339 int trace = 0;
1340 long nr;
1343 * Do some preliminary argument and permissions checking before we
1344 * actually start allocating stuff
1346 if (clone_flags & CLONE_NEWUSER) {
1347 if (clone_flags & CLONE_THREAD)
1348 return -EINVAL;
1349 /* hopefully this check will go away when userns support is
1350 * complete
1352 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1353 !capable(CAP_SETGID))
1354 return -EPERM;
1358 * We hope to recycle these flags after 2.6.26
1360 if (unlikely(clone_flags & CLONE_STOPPED)) {
1361 static int __read_mostly count = 100;
1363 if (count > 0 && printk_ratelimit()) {
1364 char comm[TASK_COMM_LEN];
1366 count--;
1367 printk(KERN_INFO "fork(): process `%s' used deprecated "
1368 "clone flags 0x%lx\n",
1369 get_task_comm(comm, current),
1370 clone_flags & CLONE_STOPPED);
1375 * When called from kernel_thread, don't do user tracing stuff.
1377 if (likely(user_mode(regs)))
1378 trace = tracehook_prepare_clone(clone_flags);
1380 p = copy_process(clone_flags, stack_start, regs, stack_size,
1381 child_tidptr, NULL, trace);
1383 * Do this prior waking up the new thread - the thread pointer
1384 * might get invalid after that point, if the thread exits quickly.
1386 if (!IS_ERR(p)) {
1387 struct completion vfork;
1389 trace_sched_process_fork(current, p);
1391 nr = task_pid_vnr(p);
1393 if (clone_flags & CLONE_PARENT_SETTID)
1394 put_user(nr, parent_tidptr);
1396 if (clone_flags & CLONE_VFORK) {
1397 p->vfork_done = &vfork;
1398 init_completion(&vfork);
1401 audit_finish_fork(p);
1402 tracehook_report_clone(regs, clone_flags, nr, p);
1405 * We set PF_STARTING at creation in case tracing wants to
1406 * use this to distinguish a fully live task from one that
1407 * hasn't gotten to tracehook_report_clone() yet. Now we
1408 * clear it and set the child going.
1410 p->flags &= ~PF_STARTING;
1412 if (unlikely(clone_flags & CLONE_STOPPED)) {
1414 * We'll start up with an immediate SIGSTOP.
1416 sigaddset(&p->pending.signal, SIGSTOP);
1417 set_tsk_thread_flag(p, TIF_SIGPENDING);
1418 __set_task_state(p, TASK_STOPPED);
1419 } else {
1420 wake_up_new_task(p, clone_flags);
1423 tracehook_report_clone_complete(trace, regs,
1424 clone_flags, nr, p);
1426 if (clone_flags & CLONE_VFORK) {
1427 freezer_do_not_count();
1428 wait_for_completion(&vfork);
1429 freezer_count();
1430 tracehook_report_vfork_done(p, nr);
1432 } else {
1433 nr = PTR_ERR(p);
1435 return nr;
1438 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1439 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1440 #endif
1442 static void sighand_ctor(void *data)
1444 struct sighand_struct *sighand = data;
1446 spin_lock_init(&sighand->siglock);
1447 init_waitqueue_head(&sighand->signalfd_wqh);
1450 void __init proc_caches_init(void)
1452 sighand_cachep = kmem_cache_create("sighand_cache",
1453 sizeof(struct sighand_struct), 0,
1454 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1455 sighand_ctor);
1456 signal_cachep = kmem_cache_create("signal_cache",
1457 sizeof(struct signal_struct), 0,
1458 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1459 files_cachep = kmem_cache_create("files_cache",
1460 sizeof(struct files_struct), 0,
1461 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1462 fs_cachep = kmem_cache_create("fs_cache",
1463 sizeof(struct fs_struct), 0,
1464 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1465 mm_cachep = kmem_cache_create("mm_struct",
1466 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1468 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1469 mmap_init();
1473 * Check constraints on flags passed to the unshare system call and
1474 * force unsharing of additional process context as appropriate.
1476 static void check_unshare_flags(unsigned long *flags_ptr)
1479 * If unsharing a thread from a thread group, must also
1480 * unshare vm.
1482 if (*flags_ptr & CLONE_THREAD)
1483 *flags_ptr |= CLONE_VM;
1486 * If unsharing vm, must also unshare signal handlers.
1488 if (*flags_ptr & CLONE_VM)
1489 *flags_ptr |= CLONE_SIGHAND;
1492 * If unsharing signal handlers and the task was created
1493 * using CLONE_THREAD, then must unshare the thread
1495 if ((*flags_ptr & CLONE_SIGHAND) &&
1496 (atomic_read(&current->signal->count) > 1))
1497 *flags_ptr |= CLONE_THREAD;
1500 * If unsharing namespace, must also unshare filesystem information.
1502 if (*flags_ptr & CLONE_NEWNS)
1503 *flags_ptr |= CLONE_FS;
1507 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1509 static int unshare_thread(unsigned long unshare_flags)
1511 if (unshare_flags & CLONE_THREAD)
1512 return -EINVAL;
1514 return 0;
1518 * Unshare the filesystem structure if it is being shared
1520 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1522 struct fs_struct *fs = current->fs;
1524 if (!(unshare_flags & CLONE_FS) || !fs)
1525 return 0;
1527 /* don't need lock here; in the worst case we'll do useless copy */
1528 if (fs->users == 1)
1529 return 0;
1531 *new_fsp = copy_fs_struct(fs);
1532 if (!*new_fsp)
1533 return -ENOMEM;
1535 return 0;
1539 * Unsharing of sighand is not supported yet
1541 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1543 struct sighand_struct *sigh = current->sighand;
1545 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1546 return -EINVAL;
1547 else
1548 return 0;
1552 * Unshare vm if it is being shared
1554 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1556 struct mm_struct *mm = current->mm;
1558 if ((unshare_flags & CLONE_VM) &&
1559 (mm && atomic_read(&mm->mm_users) > 1)) {
1560 return -EINVAL;
1563 return 0;
1567 * Unshare file descriptor table if it is being shared
1569 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1571 struct files_struct *fd = current->files;
1572 int error = 0;
1574 if ((unshare_flags & CLONE_FILES) &&
1575 (fd && atomic_read(&fd->count) > 1)) {
1576 *new_fdp = dup_fd(fd, &error);
1577 if (!*new_fdp)
1578 return error;
1581 return 0;
1585 * unshare allows a process to 'unshare' part of the process
1586 * context which was originally shared using clone. copy_*
1587 * functions used by do_fork() cannot be used here directly
1588 * because they modify an inactive task_struct that is being
1589 * constructed. Here we are modifying the current, active,
1590 * task_struct.
1592 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1594 int err = 0;
1595 struct fs_struct *fs, *new_fs = NULL;
1596 struct sighand_struct *new_sigh = NULL;
1597 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1598 struct files_struct *fd, *new_fd = NULL;
1599 struct nsproxy *new_nsproxy = NULL;
1600 int do_sysvsem = 0;
1602 check_unshare_flags(&unshare_flags);
1604 /* Return -EINVAL for all unsupported flags */
1605 err = -EINVAL;
1606 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1607 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1608 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1609 goto bad_unshare_out;
1612 * CLONE_NEWIPC must also detach from the undolist: after switching
1613 * to a new ipc namespace, the semaphore arrays from the old
1614 * namespace are unreachable.
1616 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1617 do_sysvsem = 1;
1618 if ((err = unshare_thread(unshare_flags)))
1619 goto bad_unshare_out;
1620 if ((err = unshare_fs(unshare_flags, &new_fs)))
1621 goto bad_unshare_cleanup_thread;
1622 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1623 goto bad_unshare_cleanup_fs;
1624 if ((err = unshare_vm(unshare_flags, &new_mm)))
1625 goto bad_unshare_cleanup_sigh;
1626 if ((err = unshare_fd(unshare_flags, &new_fd)))
1627 goto bad_unshare_cleanup_vm;
1628 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1629 new_fs)))
1630 goto bad_unshare_cleanup_fd;
1632 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1633 if (do_sysvsem) {
1635 * CLONE_SYSVSEM is equivalent to sys_exit().
1637 exit_sem(current);
1640 if (new_nsproxy) {
1641 switch_task_namespaces(current, new_nsproxy);
1642 new_nsproxy = NULL;
1645 task_lock(current);
1647 if (new_fs) {
1648 fs = current->fs;
1649 write_lock(&fs->lock);
1650 current->fs = new_fs;
1651 if (--fs->users)
1652 new_fs = NULL;
1653 else
1654 new_fs = fs;
1655 write_unlock(&fs->lock);
1658 if (new_mm) {
1659 mm = current->mm;
1660 active_mm = current->active_mm;
1661 current->mm = new_mm;
1662 current->active_mm = new_mm;
1663 activate_mm(active_mm, new_mm);
1664 new_mm = mm;
1667 if (new_fd) {
1668 fd = current->files;
1669 current->files = new_fd;
1670 new_fd = fd;
1673 task_unlock(current);
1676 if (new_nsproxy)
1677 put_nsproxy(new_nsproxy);
1679 bad_unshare_cleanup_fd:
1680 if (new_fd)
1681 put_files_struct(new_fd);
1683 bad_unshare_cleanup_vm:
1684 if (new_mm)
1685 mmput(new_mm);
1687 bad_unshare_cleanup_sigh:
1688 if (new_sigh)
1689 if (atomic_dec_and_test(&new_sigh->count))
1690 kmem_cache_free(sighand_cachep, new_sigh);
1692 bad_unshare_cleanup_fs:
1693 if (new_fs)
1694 free_fs_struct(new_fs);
1696 bad_unshare_cleanup_thread:
1697 bad_unshare_out:
1698 return err;
1702 * Helper to unshare the files of the current task.
1703 * We don't want to expose copy_files internals to
1704 * the exec layer of the kernel.
1707 int unshare_files(struct files_struct **displaced)
1709 struct task_struct *task = current;
1710 struct files_struct *copy = NULL;
1711 int error;
1713 error = unshare_fd(CLONE_FILES, &copy);
1714 if (error || !copy) {
1715 *displaced = NULL;
1716 return error;
1718 *displaced = task->files;
1719 task_lock(task);
1720 task->files = copy;
1721 task_unlock(task);
1722 return 0;