drm/i915: use new macros to access the ring start register
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobf65c6f01c47580b7e24e7fc6bda1764668cf4d21
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct rb_node *active;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
96 * Per process-grouping structure
98 struct cfq_queue {
99 /* reference count */
100 atomic_t ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
133 /* pending metadata requests */
134 int meta_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class, org_ioprio_class;
142 pid_t pid;
144 u32 seek_history;
145 sector_t last_request_pos;
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 struct cfq_group *orig_cfqg;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
159 enum wl_prio_t {
160 BE_WORKLOAD = 0,
161 RT_WORKLOAD = 1,
162 IDLE_WORKLOAD = 2,
166 * Second index in the service_trees.
168 enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182 bool on_st;
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
187 /* Per group busy queus average. Useful for workload slice calc. */
188 unsigned int busy_queues_avg[2];
190 * rr lists of queues with requests, onle rr for each priority class.
191 * Counts are embedded in the cfq_rb_root
193 struct cfq_rb_root service_trees[2][3];
194 struct cfq_rb_root service_tree_idle;
196 unsigned long saved_workload_slice;
197 enum wl_type_t saved_workload;
198 enum wl_prio_t saved_serving_prio;
199 struct blkio_group blkg;
200 #ifdef CONFIG_CFQ_GROUP_IOSCHED
201 struct hlist_node cfqd_node;
202 atomic_t ref;
203 #endif
204 /* number of requests that are on the dispatch list or inside driver */
205 int dispatched;
209 * Per block device queue structure
211 struct cfq_data {
212 struct request_queue *queue;
213 /* Root service tree for cfq_groups */
214 struct cfq_rb_root grp_service_tree;
215 struct cfq_group root_group;
218 * The priority currently being served
220 enum wl_prio_t serving_prio;
221 enum wl_type_t serving_type;
222 unsigned long workload_expires;
223 struct cfq_group *serving_group;
224 bool noidle_tree_requires_idle;
227 * Each priority tree is sorted by next_request position. These
228 * trees are used when determining if two or more queues are
229 * interleaving requests (see cfq_close_cooperator).
231 struct rb_root prio_trees[CFQ_PRIO_LISTS];
233 unsigned int busy_queues;
235 int rq_in_driver;
236 int rq_in_flight[2];
239 * queue-depth detection
241 int rq_queued;
242 int hw_tag;
244 * hw_tag can be
245 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
246 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
247 * 0 => no NCQ
249 int hw_tag_est_depth;
250 unsigned int hw_tag_samples;
253 * idle window management
255 struct timer_list idle_slice_timer;
256 struct work_struct unplug_work;
258 struct cfq_queue *active_queue;
259 struct cfq_io_context *active_cic;
262 * async queue for each priority case
264 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
265 struct cfq_queue *async_idle_cfqq;
267 sector_t last_position;
270 * tunables, see top of file
272 unsigned int cfq_quantum;
273 unsigned int cfq_fifo_expire[2];
274 unsigned int cfq_back_penalty;
275 unsigned int cfq_back_max;
276 unsigned int cfq_slice[2];
277 unsigned int cfq_slice_async_rq;
278 unsigned int cfq_slice_idle;
279 unsigned int cfq_group_idle;
280 unsigned int cfq_latency;
281 unsigned int cfq_group_isolation;
283 unsigned int cic_index;
284 struct list_head cic_list;
287 * Fallback dummy cfqq for extreme OOM conditions
289 struct cfq_queue oom_cfqq;
291 unsigned long last_delayed_sync;
293 /* List of cfq groups being managed on this device*/
294 struct hlist_head cfqg_list;
295 struct rcu_head rcu;
298 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
300 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
301 enum wl_prio_t prio,
302 enum wl_type_t type)
304 if (!cfqg)
305 return NULL;
307 if (prio == IDLE_WORKLOAD)
308 return &cfqg->service_tree_idle;
310 return &cfqg->service_trees[prio][type];
313 enum cfqq_state_flags {
314 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
315 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
316 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
317 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
318 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
319 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
320 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
321 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
322 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
323 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
324 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
325 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
326 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
329 #define CFQ_CFQQ_FNS(name) \
330 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
332 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
334 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
336 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
338 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
340 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
343 CFQ_CFQQ_FNS(on_rr);
344 CFQ_CFQQ_FNS(wait_request);
345 CFQ_CFQQ_FNS(must_dispatch);
346 CFQ_CFQQ_FNS(must_alloc_slice);
347 CFQ_CFQQ_FNS(fifo_expire);
348 CFQ_CFQQ_FNS(idle_window);
349 CFQ_CFQQ_FNS(prio_changed);
350 CFQ_CFQQ_FNS(slice_new);
351 CFQ_CFQQ_FNS(sync);
352 CFQ_CFQQ_FNS(coop);
353 CFQ_CFQQ_FNS(split_coop);
354 CFQ_CFQQ_FNS(deep);
355 CFQ_CFQQ_FNS(wait_busy);
356 #undef CFQ_CFQQ_FNS
358 #ifdef CONFIG_CFQ_GROUP_IOSCHED
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
361 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
362 blkg_path(&(cfqq)->cfqg->blkg), ##args);
364 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
366 blkg_path(&(cfqg)->blkg), ##args); \
368 #else
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
372 #endif
373 #define cfq_log(cfqd, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
376 /* Traverses through cfq group service trees */
377 #define for_each_cfqg_st(cfqg, i, j, st) \
378 for (i = 0; i <= IDLE_WORKLOAD; i++) \
379 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
380 : &cfqg->service_tree_idle; \
381 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
382 (i == IDLE_WORKLOAD && j == 0); \
383 j++, st = i < IDLE_WORKLOAD ? \
384 &cfqg->service_trees[i][j]: NULL) \
387 static inline bool iops_mode(struct cfq_data *cfqd)
390 * If we are not idling on queues and it is a NCQ drive, parallel
391 * execution of requests is on and measuring time is not possible
392 * in most of the cases until and unless we drive shallower queue
393 * depths and that becomes a performance bottleneck. In such cases
394 * switch to start providing fairness in terms of number of IOs.
396 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
397 return true;
398 else
399 return false;
402 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
404 if (cfq_class_idle(cfqq))
405 return IDLE_WORKLOAD;
406 if (cfq_class_rt(cfqq))
407 return RT_WORKLOAD;
408 return BE_WORKLOAD;
412 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
414 if (!cfq_cfqq_sync(cfqq))
415 return ASYNC_WORKLOAD;
416 if (!cfq_cfqq_idle_window(cfqq))
417 return SYNC_NOIDLE_WORKLOAD;
418 return SYNC_WORKLOAD;
421 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
422 struct cfq_data *cfqd,
423 struct cfq_group *cfqg)
425 if (wl == IDLE_WORKLOAD)
426 return cfqg->service_tree_idle.count;
428 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
429 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
430 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
433 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
434 struct cfq_group *cfqg)
436 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
440 static void cfq_dispatch_insert(struct request_queue *, struct request *);
441 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
442 struct io_context *, gfp_t);
443 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
444 struct io_context *);
446 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
447 bool is_sync)
449 return cic->cfqq[is_sync];
452 static inline void cic_set_cfqq(struct cfq_io_context *cic,
453 struct cfq_queue *cfqq, bool is_sync)
455 cic->cfqq[is_sync] = cfqq;
458 #define CIC_DEAD_KEY 1ul
459 #define CIC_DEAD_INDEX_SHIFT 1
461 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
463 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
466 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
468 struct cfq_data *cfqd = cic->key;
470 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
471 return NULL;
473 return cfqd;
477 * We regard a request as SYNC, if it's either a read or has the SYNC bit
478 * set (in which case it could also be direct WRITE).
480 static inline bool cfq_bio_sync(struct bio *bio)
482 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
486 * scheduler run of queue, if there are requests pending and no one in the
487 * driver that will restart queueing
489 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
491 if (cfqd->busy_queues) {
492 cfq_log(cfqd, "schedule dispatch");
493 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
497 static int cfq_queue_empty(struct request_queue *q)
499 struct cfq_data *cfqd = q->elevator->elevator_data;
501 return !cfqd->rq_queued;
505 * Scale schedule slice based on io priority. Use the sync time slice only
506 * if a queue is marked sync and has sync io queued. A sync queue with async
507 * io only, should not get full sync slice length.
509 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
510 unsigned short prio)
512 const int base_slice = cfqd->cfq_slice[sync];
514 WARN_ON(prio >= IOPRIO_BE_NR);
516 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
519 static inline int
520 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
522 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
525 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
527 u64 d = delta << CFQ_SERVICE_SHIFT;
529 d = d * BLKIO_WEIGHT_DEFAULT;
530 do_div(d, cfqg->weight);
531 return d;
534 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
536 s64 delta = (s64)(vdisktime - min_vdisktime);
537 if (delta > 0)
538 min_vdisktime = vdisktime;
540 return min_vdisktime;
543 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
545 s64 delta = (s64)(vdisktime - min_vdisktime);
546 if (delta < 0)
547 min_vdisktime = vdisktime;
549 return min_vdisktime;
552 static void update_min_vdisktime(struct cfq_rb_root *st)
554 u64 vdisktime = st->min_vdisktime;
555 struct cfq_group *cfqg;
557 if (st->active) {
558 cfqg = rb_entry_cfqg(st->active);
559 vdisktime = cfqg->vdisktime;
562 if (st->left) {
563 cfqg = rb_entry_cfqg(st->left);
564 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
571 * get averaged number of queues of RT/BE priority.
572 * average is updated, with a formula that gives more weight to higher numbers,
573 * to quickly follows sudden increases and decrease slowly
576 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
577 struct cfq_group *cfqg, bool rt)
579 unsigned min_q, max_q;
580 unsigned mult = cfq_hist_divisor - 1;
581 unsigned round = cfq_hist_divisor / 2;
582 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
584 min_q = min(cfqg->busy_queues_avg[rt], busy);
585 max_q = max(cfqg->busy_queues_avg[rt], busy);
586 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
587 cfq_hist_divisor;
588 return cfqg->busy_queues_avg[rt];
591 static inline unsigned
592 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
594 struct cfq_rb_root *st = &cfqd->grp_service_tree;
596 return cfq_target_latency * cfqg->weight / st->total_weight;
599 static inline void
600 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
602 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
603 if (cfqd->cfq_latency) {
605 * interested queues (we consider only the ones with the same
606 * priority class in the cfq group)
608 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
609 cfq_class_rt(cfqq));
610 unsigned sync_slice = cfqd->cfq_slice[1];
611 unsigned expect_latency = sync_slice * iq;
612 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
614 if (expect_latency > group_slice) {
615 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
616 /* scale low_slice according to IO priority
617 * and sync vs async */
618 unsigned low_slice =
619 min(slice, base_low_slice * slice / sync_slice);
620 /* the adapted slice value is scaled to fit all iqs
621 * into the target latency */
622 slice = max(slice * group_slice / expect_latency,
623 low_slice);
626 cfqq->slice_start = jiffies;
627 cfqq->slice_end = jiffies + slice;
628 cfqq->allocated_slice = slice;
629 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
637 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
639 if (cfq_cfqq_slice_new(cfqq))
640 return 0;
641 if (time_before(jiffies, cfqq->slice_end))
642 return 0;
644 return 1;
648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
649 * We choose the request that is closest to the head right now. Distance
650 * behind the head is penalized and only allowed to a certain extent.
652 static struct request *
653 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
655 sector_t s1, s2, d1 = 0, d2 = 0;
656 unsigned long back_max;
657 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
661 if (rq1 == NULL || rq1 == rq2)
662 return rq2;
663 if (rq2 == NULL)
664 return rq1;
666 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
667 return rq1;
668 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
669 return rq2;
670 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
671 return rq1;
672 else if ((rq2->cmd_flags & REQ_META) &&
673 !(rq1->cmd_flags & REQ_META))
674 return rq2;
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
680 * by definition, 1KiB is 2 sectors
682 back_max = cfqd->cfq_back_max * 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
694 wrap |= CFQ_RQ1_WRAP;
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
701 wrap |= CFQ_RQ2_WRAP;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
709 switch (wrap) {
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711 if (d1 < d2)
712 return rq1;
713 else if (d2 < d1)
714 return rq2;
715 else {
716 if (s1 >= s2)
717 return rq1;
718 else
719 return rq2;
722 case CFQ_RQ2_WRAP:
723 return rq1;
724 case CFQ_RQ1_WRAP:
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727 default:
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
734 if (s1 <= s2)
735 return rq1;
736 else
737 return rq2;
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
750 if (!root->left)
751 root->left = rb_first(&root->rb);
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
756 return NULL;
759 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
761 if (!root->left)
762 root->left = rb_first(&root->rb);
764 if (root->left)
765 return rb_entry_cfqg(root->left);
767 return NULL;
770 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
776 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
778 if (root->left == n)
779 root->left = NULL;
780 rb_erase_init(n, &root->rb);
781 --root->count;
785 * would be nice to take fifo expire time into account as well
787 static struct request *
788 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
793 struct request *next = NULL, *prev = NULL;
795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
797 if (rbprev)
798 prev = rb_entry_rq(rbprev);
800 if (rbnext)
801 next = rb_entry_rq(rbnext);
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
805 next = rb_entry_rq(rbnext);
808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
811 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
815 * just an approximation, should be ok.
817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
821 static inline s64
822 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
824 return cfqg->vdisktime - st->min_vdisktime;
827 static void
828 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
848 if (left)
849 st->left = &cfqg->rb_node;
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
855 static void
856 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
858 struct cfq_rb_root *st = &cfqd->grp_service_tree;
859 struct cfq_group *__cfqg;
860 struct rb_node *n;
862 cfqg->nr_cfqq++;
863 if (cfqg->on_st)
864 return;
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
871 n = rb_last(&st->rb);
872 if (n) {
873 __cfqg = rb_entry_cfqg(n);
874 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
875 } else
876 cfqg->vdisktime = st->min_vdisktime;
878 __cfq_group_service_tree_add(st, cfqg);
879 cfqg->on_st = true;
880 st->total_weight += cfqg->weight;
883 static void
884 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888 if (st->active == &cfqg->rb_node)
889 st->active = NULL;
891 BUG_ON(cfqg->nr_cfqq < 1);
892 cfqg->nr_cfqq--;
894 /* If there are other cfq queues under this group, don't delete it */
895 if (cfqg->nr_cfqq)
896 return;
898 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
899 cfqg->on_st = false;
900 st->total_weight -= cfqg->weight;
901 if (!RB_EMPTY_NODE(&cfqg->rb_node))
902 cfq_rb_erase(&cfqg->rb_node, st);
903 cfqg->saved_workload_slice = 0;
904 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
907 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
909 unsigned int slice_used;
912 * Queue got expired before even a single request completed or
913 * got expired immediately after first request completion.
915 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
917 * Also charge the seek time incurred to the group, otherwise
918 * if there are mutiple queues in the group, each can dispatch
919 * a single request on seeky media and cause lots of seek time
920 * and group will never know it.
922 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
924 } else {
925 slice_used = jiffies - cfqq->slice_start;
926 if (slice_used > cfqq->allocated_slice)
927 slice_used = cfqq->allocated_slice;
930 return slice_used;
933 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
934 struct cfq_queue *cfqq)
936 struct cfq_rb_root *st = &cfqd->grp_service_tree;
937 unsigned int used_sl, charge;
938 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
939 - cfqg->service_tree_idle.count;
941 BUG_ON(nr_sync < 0);
942 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
944 if (iops_mode(cfqd))
945 charge = cfqq->slice_dispatch;
946 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
947 charge = cfqq->allocated_slice;
949 /* Can't update vdisktime while group is on service tree */
950 cfq_rb_erase(&cfqg->rb_node, st);
951 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
952 __cfq_group_service_tree_add(st, cfqg);
954 /* This group is being expired. Save the context */
955 if (time_after(cfqd->workload_expires, jiffies)) {
956 cfqg->saved_workload_slice = cfqd->workload_expires
957 - jiffies;
958 cfqg->saved_workload = cfqd->serving_type;
959 cfqg->saved_serving_prio = cfqd->serving_prio;
960 } else
961 cfqg->saved_workload_slice = 0;
963 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
964 st->min_vdisktime);
965 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
966 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
967 iops_mode(cfqd), cfqq->nr_sectors);
968 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
969 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
973 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
975 if (blkg)
976 return container_of(blkg, struct cfq_group, blkg);
977 return NULL;
980 void
981 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
983 cfqg_of_blkg(blkg)->weight = weight;
986 static struct cfq_group *
987 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
989 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
990 struct cfq_group *cfqg = NULL;
991 void *key = cfqd;
992 int i, j;
993 struct cfq_rb_root *st;
994 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
995 unsigned int major, minor;
997 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
998 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
999 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1000 cfqg->blkg.dev = MKDEV(major, minor);
1001 goto done;
1003 if (cfqg || !create)
1004 goto done;
1006 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1007 if (!cfqg)
1008 goto done;
1010 for_each_cfqg_st(cfqg, i, j, st)
1011 *st = CFQ_RB_ROOT;
1012 RB_CLEAR_NODE(&cfqg->rb_node);
1015 * Take the initial reference that will be released on destroy
1016 * This can be thought of a joint reference by cgroup and
1017 * elevator which will be dropped by either elevator exit
1018 * or cgroup deletion path depending on who is exiting first.
1020 atomic_set(&cfqg->ref, 1);
1022 /* Add group onto cgroup list */
1023 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1024 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1025 MKDEV(major, minor));
1026 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1028 /* Add group on cfqd list */
1029 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1031 done:
1032 return cfqg;
1036 * Search for the cfq group current task belongs to. If create = 1, then also
1037 * create the cfq group if it does not exist. request_queue lock must be held.
1039 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1041 struct cgroup *cgroup;
1042 struct cfq_group *cfqg = NULL;
1044 rcu_read_lock();
1045 cgroup = task_cgroup(current, blkio_subsys_id);
1046 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1047 if (!cfqg && create)
1048 cfqg = &cfqd->root_group;
1049 rcu_read_unlock();
1050 return cfqg;
1053 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1055 atomic_inc(&cfqg->ref);
1056 return cfqg;
1059 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1061 /* Currently, all async queues are mapped to root group */
1062 if (!cfq_cfqq_sync(cfqq))
1063 cfqg = &cfqq->cfqd->root_group;
1065 cfqq->cfqg = cfqg;
1066 /* cfqq reference on cfqg */
1067 atomic_inc(&cfqq->cfqg->ref);
1070 static void cfq_put_cfqg(struct cfq_group *cfqg)
1072 struct cfq_rb_root *st;
1073 int i, j;
1075 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1076 if (!atomic_dec_and_test(&cfqg->ref))
1077 return;
1078 for_each_cfqg_st(cfqg, i, j, st)
1079 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1080 kfree(cfqg);
1083 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1085 /* Something wrong if we are trying to remove same group twice */
1086 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1088 hlist_del_init(&cfqg->cfqd_node);
1091 * Put the reference taken at the time of creation so that when all
1092 * queues are gone, group can be destroyed.
1094 cfq_put_cfqg(cfqg);
1097 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1099 struct hlist_node *pos, *n;
1100 struct cfq_group *cfqg;
1102 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1104 * If cgroup removal path got to blk_group first and removed
1105 * it from cgroup list, then it will take care of destroying
1106 * cfqg also.
1108 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1109 cfq_destroy_cfqg(cfqd, cfqg);
1114 * Blk cgroup controller notification saying that blkio_group object is being
1115 * delinked as associated cgroup object is going away. That also means that
1116 * no new IO will come in this group. So get rid of this group as soon as
1117 * any pending IO in the group is finished.
1119 * This function is called under rcu_read_lock(). key is the rcu protected
1120 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1121 * read lock.
1123 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1124 * it should not be NULL as even if elevator was exiting, cgroup deltion
1125 * path got to it first.
1127 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1129 unsigned long flags;
1130 struct cfq_data *cfqd = key;
1132 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1133 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1134 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1137 #else /* GROUP_IOSCHED */
1138 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1140 return &cfqd->root_group;
1143 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1145 return cfqg;
1148 static inline void
1149 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1150 cfqq->cfqg = cfqg;
1153 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1154 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1156 #endif /* GROUP_IOSCHED */
1159 * The cfqd->service_trees holds all pending cfq_queue's that have
1160 * requests waiting to be processed. It is sorted in the order that
1161 * we will service the queues.
1163 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1164 bool add_front)
1166 struct rb_node **p, *parent;
1167 struct cfq_queue *__cfqq;
1168 unsigned long rb_key;
1169 struct cfq_rb_root *service_tree;
1170 int left;
1171 int new_cfqq = 1;
1172 int group_changed = 0;
1174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1175 if (!cfqd->cfq_group_isolation
1176 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1177 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1178 /* Move this cfq to root group */
1179 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1180 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1181 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1182 cfqq->orig_cfqg = cfqq->cfqg;
1183 cfqq->cfqg = &cfqd->root_group;
1184 atomic_inc(&cfqd->root_group.ref);
1185 group_changed = 1;
1186 } else if (!cfqd->cfq_group_isolation
1187 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1188 /* cfqq is sequential now needs to go to its original group */
1189 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1190 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1191 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1192 cfq_put_cfqg(cfqq->cfqg);
1193 cfqq->cfqg = cfqq->orig_cfqg;
1194 cfqq->orig_cfqg = NULL;
1195 group_changed = 1;
1196 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1198 #endif
1200 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1201 cfqq_type(cfqq));
1202 if (cfq_class_idle(cfqq)) {
1203 rb_key = CFQ_IDLE_DELAY;
1204 parent = rb_last(&service_tree->rb);
1205 if (parent && parent != &cfqq->rb_node) {
1206 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1207 rb_key += __cfqq->rb_key;
1208 } else
1209 rb_key += jiffies;
1210 } else if (!add_front) {
1212 * Get our rb key offset. Subtract any residual slice
1213 * value carried from last service. A negative resid
1214 * count indicates slice overrun, and this should position
1215 * the next service time further away in the tree.
1217 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1218 rb_key -= cfqq->slice_resid;
1219 cfqq->slice_resid = 0;
1220 } else {
1221 rb_key = -HZ;
1222 __cfqq = cfq_rb_first(service_tree);
1223 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1226 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1227 new_cfqq = 0;
1229 * same position, nothing more to do
1231 if (rb_key == cfqq->rb_key &&
1232 cfqq->service_tree == service_tree)
1233 return;
1235 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1236 cfqq->service_tree = NULL;
1239 left = 1;
1240 parent = NULL;
1241 cfqq->service_tree = service_tree;
1242 p = &service_tree->rb.rb_node;
1243 while (*p) {
1244 struct rb_node **n;
1246 parent = *p;
1247 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1250 * sort by key, that represents service time.
1252 if (time_before(rb_key, __cfqq->rb_key))
1253 n = &(*p)->rb_left;
1254 else {
1255 n = &(*p)->rb_right;
1256 left = 0;
1259 p = n;
1262 if (left)
1263 service_tree->left = &cfqq->rb_node;
1265 cfqq->rb_key = rb_key;
1266 rb_link_node(&cfqq->rb_node, parent, p);
1267 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1268 service_tree->count++;
1269 if ((add_front || !new_cfqq) && !group_changed)
1270 return;
1271 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1274 static struct cfq_queue *
1275 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1276 sector_t sector, struct rb_node **ret_parent,
1277 struct rb_node ***rb_link)
1279 struct rb_node **p, *parent;
1280 struct cfq_queue *cfqq = NULL;
1282 parent = NULL;
1283 p = &root->rb_node;
1284 while (*p) {
1285 struct rb_node **n;
1287 parent = *p;
1288 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1291 * Sort strictly based on sector. Smallest to the left,
1292 * largest to the right.
1294 if (sector > blk_rq_pos(cfqq->next_rq))
1295 n = &(*p)->rb_right;
1296 else if (sector < blk_rq_pos(cfqq->next_rq))
1297 n = &(*p)->rb_left;
1298 else
1299 break;
1300 p = n;
1301 cfqq = NULL;
1304 *ret_parent = parent;
1305 if (rb_link)
1306 *rb_link = p;
1307 return cfqq;
1310 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1312 struct rb_node **p, *parent;
1313 struct cfq_queue *__cfqq;
1315 if (cfqq->p_root) {
1316 rb_erase(&cfqq->p_node, cfqq->p_root);
1317 cfqq->p_root = NULL;
1320 if (cfq_class_idle(cfqq))
1321 return;
1322 if (!cfqq->next_rq)
1323 return;
1325 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1326 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1327 blk_rq_pos(cfqq->next_rq), &parent, &p);
1328 if (!__cfqq) {
1329 rb_link_node(&cfqq->p_node, parent, p);
1330 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1331 } else
1332 cfqq->p_root = NULL;
1336 * Update cfqq's position in the service tree.
1338 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1341 * Resorting requires the cfqq to be on the RR list already.
1343 if (cfq_cfqq_on_rr(cfqq)) {
1344 cfq_service_tree_add(cfqd, cfqq, 0);
1345 cfq_prio_tree_add(cfqd, cfqq);
1350 * add to busy list of queues for service, trying to be fair in ordering
1351 * the pending list according to last request service
1353 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1355 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1356 BUG_ON(cfq_cfqq_on_rr(cfqq));
1357 cfq_mark_cfqq_on_rr(cfqq);
1358 cfqd->busy_queues++;
1360 cfq_resort_rr_list(cfqd, cfqq);
1364 * Called when the cfqq no longer has requests pending, remove it from
1365 * the service tree.
1367 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1369 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1370 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1371 cfq_clear_cfqq_on_rr(cfqq);
1373 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1374 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1375 cfqq->service_tree = NULL;
1377 if (cfqq->p_root) {
1378 rb_erase(&cfqq->p_node, cfqq->p_root);
1379 cfqq->p_root = NULL;
1382 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1383 BUG_ON(!cfqd->busy_queues);
1384 cfqd->busy_queues--;
1388 * rb tree support functions
1390 static void cfq_del_rq_rb(struct request *rq)
1392 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1393 const int sync = rq_is_sync(rq);
1395 BUG_ON(!cfqq->queued[sync]);
1396 cfqq->queued[sync]--;
1398 elv_rb_del(&cfqq->sort_list, rq);
1400 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1402 * Queue will be deleted from service tree when we actually
1403 * expire it later. Right now just remove it from prio tree
1404 * as it is empty.
1406 if (cfqq->p_root) {
1407 rb_erase(&cfqq->p_node, cfqq->p_root);
1408 cfqq->p_root = NULL;
1413 static void cfq_add_rq_rb(struct request *rq)
1415 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1416 struct cfq_data *cfqd = cfqq->cfqd;
1417 struct request *__alias, *prev;
1419 cfqq->queued[rq_is_sync(rq)]++;
1422 * looks a little odd, but the first insert might return an alias.
1423 * if that happens, put the alias on the dispatch list
1425 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1426 cfq_dispatch_insert(cfqd->queue, __alias);
1428 if (!cfq_cfqq_on_rr(cfqq))
1429 cfq_add_cfqq_rr(cfqd, cfqq);
1432 * check if this request is a better next-serve candidate
1434 prev = cfqq->next_rq;
1435 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1438 * adjust priority tree position, if ->next_rq changes
1440 if (prev != cfqq->next_rq)
1441 cfq_prio_tree_add(cfqd, cfqq);
1443 BUG_ON(!cfqq->next_rq);
1446 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1448 elv_rb_del(&cfqq->sort_list, rq);
1449 cfqq->queued[rq_is_sync(rq)]--;
1450 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1451 rq_data_dir(rq), rq_is_sync(rq));
1452 cfq_add_rq_rb(rq);
1453 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1454 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1455 rq_is_sync(rq));
1458 static struct request *
1459 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1461 struct task_struct *tsk = current;
1462 struct cfq_io_context *cic;
1463 struct cfq_queue *cfqq;
1465 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1466 if (!cic)
1467 return NULL;
1469 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1470 if (cfqq) {
1471 sector_t sector = bio->bi_sector + bio_sectors(bio);
1473 return elv_rb_find(&cfqq->sort_list, sector);
1476 return NULL;
1479 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1481 struct cfq_data *cfqd = q->elevator->elevator_data;
1483 cfqd->rq_in_driver++;
1484 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1485 cfqd->rq_in_driver);
1487 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1490 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1492 struct cfq_data *cfqd = q->elevator->elevator_data;
1494 WARN_ON(!cfqd->rq_in_driver);
1495 cfqd->rq_in_driver--;
1496 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1497 cfqd->rq_in_driver);
1500 static void cfq_remove_request(struct request *rq)
1502 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1504 if (cfqq->next_rq == rq)
1505 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1507 list_del_init(&rq->queuelist);
1508 cfq_del_rq_rb(rq);
1510 cfqq->cfqd->rq_queued--;
1511 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1512 rq_data_dir(rq), rq_is_sync(rq));
1513 if (rq->cmd_flags & REQ_META) {
1514 WARN_ON(!cfqq->meta_pending);
1515 cfqq->meta_pending--;
1519 static int cfq_merge(struct request_queue *q, struct request **req,
1520 struct bio *bio)
1522 struct cfq_data *cfqd = q->elevator->elevator_data;
1523 struct request *__rq;
1525 __rq = cfq_find_rq_fmerge(cfqd, bio);
1526 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1527 *req = __rq;
1528 return ELEVATOR_FRONT_MERGE;
1531 return ELEVATOR_NO_MERGE;
1534 static void cfq_merged_request(struct request_queue *q, struct request *req,
1535 int type)
1537 if (type == ELEVATOR_FRONT_MERGE) {
1538 struct cfq_queue *cfqq = RQ_CFQQ(req);
1540 cfq_reposition_rq_rb(cfqq, req);
1544 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1545 struct bio *bio)
1547 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1548 bio_data_dir(bio), cfq_bio_sync(bio));
1551 static void
1552 cfq_merged_requests(struct request_queue *q, struct request *rq,
1553 struct request *next)
1555 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1557 * reposition in fifo if next is older than rq
1559 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1560 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1561 list_move(&rq->queuelist, &next->queuelist);
1562 rq_set_fifo_time(rq, rq_fifo_time(next));
1565 if (cfqq->next_rq == next)
1566 cfqq->next_rq = rq;
1567 cfq_remove_request(next);
1568 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1569 rq_data_dir(next), rq_is_sync(next));
1572 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1573 struct bio *bio)
1575 struct cfq_data *cfqd = q->elevator->elevator_data;
1576 struct cfq_io_context *cic;
1577 struct cfq_queue *cfqq;
1580 * Disallow merge of a sync bio into an async request.
1582 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1583 return false;
1586 * Lookup the cfqq that this bio will be queued with. Allow
1587 * merge only if rq is queued there.
1589 cic = cfq_cic_lookup(cfqd, current->io_context);
1590 if (!cic)
1591 return false;
1593 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1594 return cfqq == RQ_CFQQ(rq);
1597 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1599 del_timer(&cfqd->idle_slice_timer);
1600 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1603 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1604 struct cfq_queue *cfqq)
1606 if (cfqq) {
1607 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1608 cfqd->serving_prio, cfqd->serving_type);
1609 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1610 cfqq->slice_start = 0;
1611 cfqq->dispatch_start = jiffies;
1612 cfqq->allocated_slice = 0;
1613 cfqq->slice_end = 0;
1614 cfqq->slice_dispatch = 0;
1615 cfqq->nr_sectors = 0;
1617 cfq_clear_cfqq_wait_request(cfqq);
1618 cfq_clear_cfqq_must_dispatch(cfqq);
1619 cfq_clear_cfqq_must_alloc_slice(cfqq);
1620 cfq_clear_cfqq_fifo_expire(cfqq);
1621 cfq_mark_cfqq_slice_new(cfqq);
1623 cfq_del_timer(cfqd, cfqq);
1626 cfqd->active_queue = cfqq;
1630 * current cfqq expired its slice (or was too idle), select new one
1632 static void
1633 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1634 bool timed_out)
1636 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1638 if (cfq_cfqq_wait_request(cfqq))
1639 cfq_del_timer(cfqd, cfqq);
1641 cfq_clear_cfqq_wait_request(cfqq);
1642 cfq_clear_cfqq_wait_busy(cfqq);
1645 * If this cfqq is shared between multiple processes, check to
1646 * make sure that those processes are still issuing I/Os within
1647 * the mean seek distance. If not, it may be time to break the
1648 * queues apart again.
1650 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1651 cfq_mark_cfqq_split_coop(cfqq);
1654 * store what was left of this slice, if the queue idled/timed out
1656 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1657 cfqq->slice_resid = cfqq->slice_end - jiffies;
1658 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1661 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1663 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1664 cfq_del_cfqq_rr(cfqd, cfqq);
1666 cfq_resort_rr_list(cfqd, cfqq);
1668 if (cfqq == cfqd->active_queue)
1669 cfqd->active_queue = NULL;
1671 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1672 cfqd->grp_service_tree.active = NULL;
1674 if (cfqd->active_cic) {
1675 put_io_context(cfqd->active_cic->ioc);
1676 cfqd->active_cic = NULL;
1680 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1682 struct cfq_queue *cfqq = cfqd->active_queue;
1684 if (cfqq)
1685 __cfq_slice_expired(cfqd, cfqq, timed_out);
1689 * Get next queue for service. Unless we have a queue preemption,
1690 * we'll simply select the first cfqq in the service tree.
1692 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1694 struct cfq_rb_root *service_tree =
1695 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1696 cfqd->serving_type);
1698 if (!cfqd->rq_queued)
1699 return NULL;
1701 /* There is nothing to dispatch */
1702 if (!service_tree)
1703 return NULL;
1704 if (RB_EMPTY_ROOT(&service_tree->rb))
1705 return NULL;
1706 return cfq_rb_first(service_tree);
1709 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1711 struct cfq_group *cfqg;
1712 struct cfq_queue *cfqq;
1713 int i, j;
1714 struct cfq_rb_root *st;
1716 if (!cfqd->rq_queued)
1717 return NULL;
1719 cfqg = cfq_get_next_cfqg(cfqd);
1720 if (!cfqg)
1721 return NULL;
1723 for_each_cfqg_st(cfqg, i, j, st)
1724 if ((cfqq = cfq_rb_first(st)) != NULL)
1725 return cfqq;
1726 return NULL;
1730 * Get and set a new active queue for service.
1732 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1733 struct cfq_queue *cfqq)
1735 if (!cfqq)
1736 cfqq = cfq_get_next_queue(cfqd);
1738 __cfq_set_active_queue(cfqd, cfqq);
1739 return cfqq;
1742 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1743 struct request *rq)
1745 if (blk_rq_pos(rq) >= cfqd->last_position)
1746 return blk_rq_pos(rq) - cfqd->last_position;
1747 else
1748 return cfqd->last_position - blk_rq_pos(rq);
1751 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1752 struct request *rq)
1754 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1757 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1758 struct cfq_queue *cur_cfqq)
1760 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1761 struct rb_node *parent, *node;
1762 struct cfq_queue *__cfqq;
1763 sector_t sector = cfqd->last_position;
1765 if (RB_EMPTY_ROOT(root))
1766 return NULL;
1769 * First, if we find a request starting at the end of the last
1770 * request, choose it.
1772 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1773 if (__cfqq)
1774 return __cfqq;
1777 * If the exact sector wasn't found, the parent of the NULL leaf
1778 * will contain the closest sector.
1780 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1781 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1782 return __cfqq;
1784 if (blk_rq_pos(__cfqq->next_rq) < sector)
1785 node = rb_next(&__cfqq->p_node);
1786 else
1787 node = rb_prev(&__cfqq->p_node);
1788 if (!node)
1789 return NULL;
1791 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1792 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1793 return __cfqq;
1795 return NULL;
1799 * cfqd - obvious
1800 * cur_cfqq - passed in so that we don't decide that the current queue is
1801 * closely cooperating with itself.
1803 * So, basically we're assuming that that cur_cfqq has dispatched at least
1804 * one request, and that cfqd->last_position reflects a position on the disk
1805 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1806 * assumption.
1808 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1809 struct cfq_queue *cur_cfqq)
1811 struct cfq_queue *cfqq;
1813 if (cfq_class_idle(cur_cfqq))
1814 return NULL;
1815 if (!cfq_cfqq_sync(cur_cfqq))
1816 return NULL;
1817 if (CFQQ_SEEKY(cur_cfqq))
1818 return NULL;
1821 * Don't search priority tree if it's the only queue in the group.
1823 if (cur_cfqq->cfqg->nr_cfqq == 1)
1824 return NULL;
1827 * We should notice if some of the queues are cooperating, eg
1828 * working closely on the same area of the disk. In that case,
1829 * we can group them together and don't waste time idling.
1831 cfqq = cfqq_close(cfqd, cur_cfqq);
1832 if (!cfqq)
1833 return NULL;
1835 /* If new queue belongs to different cfq_group, don't choose it */
1836 if (cur_cfqq->cfqg != cfqq->cfqg)
1837 return NULL;
1840 * It only makes sense to merge sync queues.
1842 if (!cfq_cfqq_sync(cfqq))
1843 return NULL;
1844 if (CFQQ_SEEKY(cfqq))
1845 return NULL;
1848 * Do not merge queues of different priority classes
1850 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1851 return NULL;
1853 return cfqq;
1857 * Determine whether we should enforce idle window for this queue.
1860 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1862 enum wl_prio_t prio = cfqq_prio(cfqq);
1863 struct cfq_rb_root *service_tree = cfqq->service_tree;
1865 BUG_ON(!service_tree);
1866 BUG_ON(!service_tree->count);
1868 if (!cfqd->cfq_slice_idle)
1869 return false;
1871 /* We never do for idle class queues. */
1872 if (prio == IDLE_WORKLOAD)
1873 return false;
1875 /* We do for queues that were marked with idle window flag. */
1876 if (cfq_cfqq_idle_window(cfqq) &&
1877 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1878 return true;
1881 * Otherwise, we do only if they are the last ones
1882 * in their service tree.
1884 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1885 return 1;
1886 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1887 service_tree->count);
1888 return 0;
1891 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1893 struct cfq_queue *cfqq = cfqd->active_queue;
1894 struct cfq_io_context *cic;
1895 unsigned long sl, group_idle = 0;
1898 * SSD device without seek penalty, disable idling. But only do so
1899 * for devices that support queuing, otherwise we still have a problem
1900 * with sync vs async workloads.
1902 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1903 return;
1905 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1906 WARN_ON(cfq_cfqq_slice_new(cfqq));
1909 * idle is disabled, either manually or by past process history
1911 if (!cfq_should_idle(cfqd, cfqq)) {
1912 /* no queue idling. Check for group idling */
1913 if (cfqd->cfq_group_idle)
1914 group_idle = cfqd->cfq_group_idle;
1915 else
1916 return;
1920 * still active requests from this queue, don't idle
1922 if (cfqq->dispatched)
1923 return;
1926 * task has exited, don't wait
1928 cic = cfqd->active_cic;
1929 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1930 return;
1933 * If our average think time is larger than the remaining time
1934 * slice, then don't idle. This avoids overrunning the allotted
1935 * time slice.
1937 if (sample_valid(cic->ttime_samples) &&
1938 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1939 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1940 cic->ttime_mean);
1941 return;
1944 /* There are other queues in the group, don't do group idle */
1945 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1946 return;
1948 cfq_mark_cfqq_wait_request(cfqq);
1950 if (group_idle)
1951 sl = cfqd->cfq_group_idle;
1952 else
1953 sl = cfqd->cfq_slice_idle;
1955 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1956 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1957 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1958 group_idle ? 1 : 0);
1962 * Move request from internal lists to the request queue dispatch list.
1964 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1966 struct cfq_data *cfqd = q->elevator->elevator_data;
1967 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1969 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1971 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1972 cfq_remove_request(rq);
1973 cfqq->dispatched++;
1974 (RQ_CFQG(rq))->dispatched++;
1975 elv_dispatch_sort(q, rq);
1977 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1978 cfqq->nr_sectors += blk_rq_sectors(rq);
1979 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1980 rq_data_dir(rq), rq_is_sync(rq));
1984 * return expired entry, or NULL to just start from scratch in rbtree
1986 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1988 struct request *rq = NULL;
1990 if (cfq_cfqq_fifo_expire(cfqq))
1991 return NULL;
1993 cfq_mark_cfqq_fifo_expire(cfqq);
1995 if (list_empty(&cfqq->fifo))
1996 return NULL;
1998 rq = rq_entry_fifo(cfqq->fifo.next);
1999 if (time_before(jiffies, rq_fifo_time(rq)))
2000 rq = NULL;
2002 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2003 return rq;
2006 static inline int
2007 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2009 const int base_rq = cfqd->cfq_slice_async_rq;
2011 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2013 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2017 * Must be called with the queue_lock held.
2019 static int cfqq_process_refs(struct cfq_queue *cfqq)
2021 int process_refs, io_refs;
2023 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2024 process_refs = atomic_read(&cfqq->ref) - io_refs;
2025 BUG_ON(process_refs < 0);
2026 return process_refs;
2029 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2031 int process_refs, new_process_refs;
2032 struct cfq_queue *__cfqq;
2035 * If there are no process references on the new_cfqq, then it is
2036 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2037 * chain may have dropped their last reference (not just their
2038 * last process reference).
2040 if (!cfqq_process_refs(new_cfqq))
2041 return;
2043 /* Avoid a circular list and skip interim queue merges */
2044 while ((__cfqq = new_cfqq->new_cfqq)) {
2045 if (__cfqq == cfqq)
2046 return;
2047 new_cfqq = __cfqq;
2050 process_refs = cfqq_process_refs(cfqq);
2051 new_process_refs = cfqq_process_refs(new_cfqq);
2053 * If the process for the cfqq has gone away, there is no
2054 * sense in merging the queues.
2056 if (process_refs == 0 || new_process_refs == 0)
2057 return;
2060 * Merge in the direction of the lesser amount of work.
2062 if (new_process_refs >= process_refs) {
2063 cfqq->new_cfqq = new_cfqq;
2064 atomic_add(process_refs, &new_cfqq->ref);
2065 } else {
2066 new_cfqq->new_cfqq = cfqq;
2067 atomic_add(new_process_refs, &cfqq->ref);
2071 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2072 struct cfq_group *cfqg, enum wl_prio_t prio)
2074 struct cfq_queue *queue;
2075 int i;
2076 bool key_valid = false;
2077 unsigned long lowest_key = 0;
2078 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2080 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2081 /* select the one with lowest rb_key */
2082 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2083 if (queue &&
2084 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2085 lowest_key = queue->rb_key;
2086 cur_best = i;
2087 key_valid = true;
2091 return cur_best;
2094 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2096 unsigned slice;
2097 unsigned count;
2098 struct cfq_rb_root *st;
2099 unsigned group_slice;
2101 if (!cfqg) {
2102 cfqd->serving_prio = IDLE_WORKLOAD;
2103 cfqd->workload_expires = jiffies + 1;
2104 return;
2107 /* Choose next priority. RT > BE > IDLE */
2108 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2109 cfqd->serving_prio = RT_WORKLOAD;
2110 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2111 cfqd->serving_prio = BE_WORKLOAD;
2112 else {
2113 cfqd->serving_prio = IDLE_WORKLOAD;
2114 cfqd->workload_expires = jiffies + 1;
2115 return;
2119 * For RT and BE, we have to choose also the type
2120 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2121 * expiration time
2123 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2124 count = st->count;
2127 * check workload expiration, and that we still have other queues ready
2129 if (count && !time_after(jiffies, cfqd->workload_expires))
2130 return;
2132 /* otherwise select new workload type */
2133 cfqd->serving_type =
2134 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2135 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2136 count = st->count;
2139 * the workload slice is computed as a fraction of target latency
2140 * proportional to the number of queues in that workload, over
2141 * all the queues in the same priority class
2143 group_slice = cfq_group_slice(cfqd, cfqg);
2145 slice = group_slice * count /
2146 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2147 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2149 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2150 unsigned int tmp;
2153 * Async queues are currently system wide. Just taking
2154 * proportion of queues with-in same group will lead to higher
2155 * async ratio system wide as generally root group is going
2156 * to have higher weight. A more accurate thing would be to
2157 * calculate system wide asnc/sync ratio.
2159 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2160 tmp = tmp/cfqd->busy_queues;
2161 slice = min_t(unsigned, slice, tmp);
2163 /* async workload slice is scaled down according to
2164 * the sync/async slice ratio. */
2165 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2166 } else
2167 /* sync workload slice is at least 2 * cfq_slice_idle */
2168 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2170 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2171 cfq_log(cfqd, "workload slice:%d", slice);
2172 cfqd->workload_expires = jiffies + slice;
2173 cfqd->noidle_tree_requires_idle = false;
2176 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2178 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2179 struct cfq_group *cfqg;
2181 if (RB_EMPTY_ROOT(&st->rb))
2182 return NULL;
2183 cfqg = cfq_rb_first_group(st);
2184 st->active = &cfqg->rb_node;
2185 update_min_vdisktime(st);
2186 return cfqg;
2189 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2191 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2193 cfqd->serving_group = cfqg;
2195 /* Restore the workload type data */
2196 if (cfqg->saved_workload_slice) {
2197 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2198 cfqd->serving_type = cfqg->saved_workload;
2199 cfqd->serving_prio = cfqg->saved_serving_prio;
2200 } else
2201 cfqd->workload_expires = jiffies - 1;
2203 choose_service_tree(cfqd, cfqg);
2207 * Select a queue for service. If we have a current active queue,
2208 * check whether to continue servicing it, or retrieve and set a new one.
2210 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2212 struct cfq_queue *cfqq, *new_cfqq = NULL;
2214 cfqq = cfqd->active_queue;
2215 if (!cfqq)
2216 goto new_queue;
2218 if (!cfqd->rq_queued)
2219 return NULL;
2222 * We were waiting for group to get backlogged. Expire the queue
2224 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2225 goto expire;
2228 * The active queue has run out of time, expire it and select new.
2230 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2232 * If slice had not expired at the completion of last request
2233 * we might not have turned on wait_busy flag. Don't expire
2234 * the queue yet. Allow the group to get backlogged.
2236 * The very fact that we have used the slice, that means we
2237 * have been idling all along on this queue and it should be
2238 * ok to wait for this request to complete.
2240 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2241 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2242 cfqq = NULL;
2243 goto keep_queue;
2244 } else
2245 goto check_group_idle;
2249 * The active queue has requests and isn't expired, allow it to
2250 * dispatch.
2252 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2253 goto keep_queue;
2256 * If another queue has a request waiting within our mean seek
2257 * distance, let it run. The expire code will check for close
2258 * cooperators and put the close queue at the front of the service
2259 * tree. If possible, merge the expiring queue with the new cfqq.
2261 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2262 if (new_cfqq) {
2263 if (!cfqq->new_cfqq)
2264 cfq_setup_merge(cfqq, new_cfqq);
2265 goto expire;
2269 * No requests pending. If the active queue still has requests in
2270 * flight or is idling for a new request, allow either of these
2271 * conditions to happen (or time out) before selecting a new queue.
2273 if (timer_pending(&cfqd->idle_slice_timer)) {
2274 cfqq = NULL;
2275 goto keep_queue;
2278 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2279 cfqq = NULL;
2280 goto keep_queue;
2284 * If group idle is enabled and there are requests dispatched from
2285 * this group, wait for requests to complete.
2287 check_group_idle:
2288 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2289 && cfqq->cfqg->dispatched) {
2290 cfqq = NULL;
2291 goto keep_queue;
2294 expire:
2295 cfq_slice_expired(cfqd, 0);
2296 new_queue:
2298 * Current queue expired. Check if we have to switch to a new
2299 * service tree
2301 if (!new_cfqq)
2302 cfq_choose_cfqg(cfqd);
2304 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2305 keep_queue:
2306 return cfqq;
2309 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2311 int dispatched = 0;
2313 while (cfqq->next_rq) {
2314 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2315 dispatched++;
2318 BUG_ON(!list_empty(&cfqq->fifo));
2320 /* By default cfqq is not expired if it is empty. Do it explicitly */
2321 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2322 return dispatched;
2326 * Drain our current requests. Used for barriers and when switching
2327 * io schedulers on-the-fly.
2329 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2331 struct cfq_queue *cfqq;
2332 int dispatched = 0;
2334 /* Expire the timeslice of the current active queue first */
2335 cfq_slice_expired(cfqd, 0);
2336 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2337 __cfq_set_active_queue(cfqd, cfqq);
2338 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2341 BUG_ON(cfqd->busy_queues);
2343 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2344 return dispatched;
2347 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2348 struct cfq_queue *cfqq)
2350 /* the queue hasn't finished any request, can't estimate */
2351 if (cfq_cfqq_slice_new(cfqq))
2352 return 1;
2353 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2354 cfqq->slice_end))
2355 return 1;
2357 return 0;
2360 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2362 unsigned int max_dispatch;
2365 * Drain async requests before we start sync IO
2367 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2368 return false;
2371 * If this is an async queue and we have sync IO in flight, let it wait
2373 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2374 return false;
2376 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2377 if (cfq_class_idle(cfqq))
2378 max_dispatch = 1;
2381 * Does this cfqq already have too much IO in flight?
2383 if (cfqq->dispatched >= max_dispatch) {
2385 * idle queue must always only have a single IO in flight
2387 if (cfq_class_idle(cfqq))
2388 return false;
2391 * We have other queues, don't allow more IO from this one
2393 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2394 return false;
2397 * Sole queue user, no limit
2399 if (cfqd->busy_queues == 1)
2400 max_dispatch = -1;
2401 else
2403 * Normally we start throttling cfqq when cfq_quantum/2
2404 * requests have been dispatched. But we can drive
2405 * deeper queue depths at the beginning of slice
2406 * subjected to upper limit of cfq_quantum.
2407 * */
2408 max_dispatch = cfqd->cfq_quantum;
2412 * Async queues must wait a bit before being allowed dispatch.
2413 * We also ramp up the dispatch depth gradually for async IO,
2414 * based on the last sync IO we serviced
2416 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2417 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2418 unsigned int depth;
2420 depth = last_sync / cfqd->cfq_slice[1];
2421 if (!depth && !cfqq->dispatched)
2422 depth = 1;
2423 if (depth < max_dispatch)
2424 max_dispatch = depth;
2428 * If we're below the current max, allow a dispatch
2430 return cfqq->dispatched < max_dispatch;
2434 * Dispatch a request from cfqq, moving them to the request queue
2435 * dispatch list.
2437 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2439 struct request *rq;
2441 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2443 if (!cfq_may_dispatch(cfqd, cfqq))
2444 return false;
2447 * follow expired path, else get first next available
2449 rq = cfq_check_fifo(cfqq);
2450 if (!rq)
2451 rq = cfqq->next_rq;
2454 * insert request into driver dispatch list
2456 cfq_dispatch_insert(cfqd->queue, rq);
2458 if (!cfqd->active_cic) {
2459 struct cfq_io_context *cic = RQ_CIC(rq);
2461 atomic_long_inc(&cic->ioc->refcount);
2462 cfqd->active_cic = cic;
2465 return true;
2469 * Find the cfqq that we need to service and move a request from that to the
2470 * dispatch list
2472 static int cfq_dispatch_requests(struct request_queue *q, int force)
2474 struct cfq_data *cfqd = q->elevator->elevator_data;
2475 struct cfq_queue *cfqq;
2477 if (!cfqd->busy_queues)
2478 return 0;
2480 if (unlikely(force))
2481 return cfq_forced_dispatch(cfqd);
2483 cfqq = cfq_select_queue(cfqd);
2484 if (!cfqq)
2485 return 0;
2488 * Dispatch a request from this cfqq, if it is allowed
2490 if (!cfq_dispatch_request(cfqd, cfqq))
2491 return 0;
2493 cfqq->slice_dispatch++;
2494 cfq_clear_cfqq_must_dispatch(cfqq);
2497 * expire an async queue immediately if it has used up its slice. idle
2498 * queue always expire after 1 dispatch round.
2500 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2501 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2502 cfq_class_idle(cfqq))) {
2503 cfqq->slice_end = jiffies + 1;
2504 cfq_slice_expired(cfqd, 0);
2507 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2508 return 1;
2512 * task holds one reference to the queue, dropped when task exits. each rq
2513 * in-flight on this queue also holds a reference, dropped when rq is freed.
2515 * Each cfq queue took a reference on the parent group. Drop it now.
2516 * queue lock must be held here.
2518 static void cfq_put_queue(struct cfq_queue *cfqq)
2520 struct cfq_data *cfqd = cfqq->cfqd;
2521 struct cfq_group *cfqg, *orig_cfqg;
2523 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2525 if (!atomic_dec_and_test(&cfqq->ref))
2526 return;
2528 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2529 BUG_ON(rb_first(&cfqq->sort_list));
2530 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2531 cfqg = cfqq->cfqg;
2532 orig_cfqg = cfqq->orig_cfqg;
2534 if (unlikely(cfqd->active_queue == cfqq)) {
2535 __cfq_slice_expired(cfqd, cfqq, 0);
2536 cfq_schedule_dispatch(cfqd);
2539 BUG_ON(cfq_cfqq_on_rr(cfqq));
2540 kmem_cache_free(cfq_pool, cfqq);
2541 cfq_put_cfqg(cfqg);
2542 if (orig_cfqg)
2543 cfq_put_cfqg(orig_cfqg);
2547 * Must always be called with the rcu_read_lock() held
2549 static void
2550 __call_for_each_cic(struct io_context *ioc,
2551 void (*func)(struct io_context *, struct cfq_io_context *))
2553 struct cfq_io_context *cic;
2554 struct hlist_node *n;
2556 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2557 func(ioc, cic);
2561 * Call func for each cic attached to this ioc.
2563 static void
2564 call_for_each_cic(struct io_context *ioc,
2565 void (*func)(struct io_context *, struct cfq_io_context *))
2567 rcu_read_lock();
2568 __call_for_each_cic(ioc, func);
2569 rcu_read_unlock();
2572 static void cfq_cic_free_rcu(struct rcu_head *head)
2574 struct cfq_io_context *cic;
2576 cic = container_of(head, struct cfq_io_context, rcu_head);
2578 kmem_cache_free(cfq_ioc_pool, cic);
2579 elv_ioc_count_dec(cfq_ioc_count);
2581 if (ioc_gone) {
2583 * CFQ scheduler is exiting, grab exit lock and check
2584 * the pending io context count. If it hits zero,
2585 * complete ioc_gone and set it back to NULL
2587 spin_lock(&ioc_gone_lock);
2588 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2589 complete(ioc_gone);
2590 ioc_gone = NULL;
2592 spin_unlock(&ioc_gone_lock);
2596 static void cfq_cic_free(struct cfq_io_context *cic)
2598 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2601 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2603 unsigned long flags;
2604 unsigned long dead_key = (unsigned long) cic->key;
2606 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2608 spin_lock_irqsave(&ioc->lock, flags);
2609 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2610 hlist_del_rcu(&cic->cic_list);
2611 spin_unlock_irqrestore(&ioc->lock, flags);
2613 cfq_cic_free(cic);
2617 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2618 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2619 * and ->trim() which is called with the task lock held
2621 static void cfq_free_io_context(struct io_context *ioc)
2624 * ioc->refcount is zero here, or we are called from elv_unregister(),
2625 * so no more cic's are allowed to be linked into this ioc. So it
2626 * should be ok to iterate over the known list, we will see all cic's
2627 * since no new ones are added.
2629 __call_for_each_cic(ioc, cic_free_func);
2632 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2634 struct cfq_queue *__cfqq, *next;
2637 * If this queue was scheduled to merge with another queue, be
2638 * sure to drop the reference taken on that queue (and others in
2639 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2641 __cfqq = cfqq->new_cfqq;
2642 while (__cfqq) {
2643 if (__cfqq == cfqq) {
2644 WARN(1, "cfqq->new_cfqq loop detected\n");
2645 break;
2647 next = __cfqq->new_cfqq;
2648 cfq_put_queue(__cfqq);
2649 __cfqq = next;
2653 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2655 if (unlikely(cfqq == cfqd->active_queue)) {
2656 __cfq_slice_expired(cfqd, cfqq, 0);
2657 cfq_schedule_dispatch(cfqd);
2660 cfq_put_cooperator(cfqq);
2662 cfq_put_queue(cfqq);
2665 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2666 struct cfq_io_context *cic)
2668 struct io_context *ioc = cic->ioc;
2670 list_del_init(&cic->queue_list);
2673 * Make sure dead mark is seen for dead queues
2675 smp_wmb();
2676 cic->key = cfqd_dead_key(cfqd);
2678 if (ioc->ioc_data == cic)
2679 rcu_assign_pointer(ioc->ioc_data, NULL);
2681 if (cic->cfqq[BLK_RW_ASYNC]) {
2682 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2683 cic->cfqq[BLK_RW_ASYNC] = NULL;
2686 if (cic->cfqq[BLK_RW_SYNC]) {
2687 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2688 cic->cfqq[BLK_RW_SYNC] = NULL;
2692 static void cfq_exit_single_io_context(struct io_context *ioc,
2693 struct cfq_io_context *cic)
2695 struct cfq_data *cfqd = cic_to_cfqd(cic);
2697 if (cfqd) {
2698 struct request_queue *q = cfqd->queue;
2699 unsigned long flags;
2701 spin_lock_irqsave(q->queue_lock, flags);
2704 * Ensure we get a fresh copy of the ->key to prevent
2705 * race between exiting task and queue
2707 smp_read_barrier_depends();
2708 if (cic->key == cfqd)
2709 __cfq_exit_single_io_context(cfqd, cic);
2711 spin_unlock_irqrestore(q->queue_lock, flags);
2716 * The process that ioc belongs to has exited, we need to clean up
2717 * and put the internal structures we have that belongs to that process.
2719 static void cfq_exit_io_context(struct io_context *ioc)
2721 call_for_each_cic(ioc, cfq_exit_single_io_context);
2724 static struct cfq_io_context *
2725 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2727 struct cfq_io_context *cic;
2729 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2730 cfqd->queue->node);
2731 if (cic) {
2732 cic->last_end_request = jiffies;
2733 INIT_LIST_HEAD(&cic->queue_list);
2734 INIT_HLIST_NODE(&cic->cic_list);
2735 cic->dtor = cfq_free_io_context;
2736 cic->exit = cfq_exit_io_context;
2737 elv_ioc_count_inc(cfq_ioc_count);
2740 return cic;
2743 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2745 struct task_struct *tsk = current;
2746 int ioprio_class;
2748 if (!cfq_cfqq_prio_changed(cfqq))
2749 return;
2751 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2752 switch (ioprio_class) {
2753 default:
2754 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2755 case IOPRIO_CLASS_NONE:
2757 * no prio set, inherit CPU scheduling settings
2759 cfqq->ioprio = task_nice_ioprio(tsk);
2760 cfqq->ioprio_class = task_nice_ioclass(tsk);
2761 break;
2762 case IOPRIO_CLASS_RT:
2763 cfqq->ioprio = task_ioprio(ioc);
2764 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2765 break;
2766 case IOPRIO_CLASS_BE:
2767 cfqq->ioprio = task_ioprio(ioc);
2768 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2769 break;
2770 case IOPRIO_CLASS_IDLE:
2771 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2772 cfqq->ioprio = 7;
2773 cfq_clear_cfqq_idle_window(cfqq);
2774 break;
2778 * keep track of original prio settings in case we have to temporarily
2779 * elevate the priority of this queue
2781 cfqq->org_ioprio = cfqq->ioprio;
2782 cfqq->org_ioprio_class = cfqq->ioprio_class;
2783 cfq_clear_cfqq_prio_changed(cfqq);
2786 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2788 struct cfq_data *cfqd = cic_to_cfqd(cic);
2789 struct cfq_queue *cfqq;
2790 unsigned long flags;
2792 if (unlikely(!cfqd))
2793 return;
2795 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2797 cfqq = cic->cfqq[BLK_RW_ASYNC];
2798 if (cfqq) {
2799 struct cfq_queue *new_cfqq;
2800 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2801 GFP_ATOMIC);
2802 if (new_cfqq) {
2803 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2804 cfq_put_queue(cfqq);
2808 cfqq = cic->cfqq[BLK_RW_SYNC];
2809 if (cfqq)
2810 cfq_mark_cfqq_prio_changed(cfqq);
2812 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2815 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2817 call_for_each_cic(ioc, changed_ioprio);
2818 ioc->ioprio_changed = 0;
2821 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2822 pid_t pid, bool is_sync)
2824 RB_CLEAR_NODE(&cfqq->rb_node);
2825 RB_CLEAR_NODE(&cfqq->p_node);
2826 INIT_LIST_HEAD(&cfqq->fifo);
2828 atomic_set(&cfqq->ref, 0);
2829 cfqq->cfqd = cfqd;
2831 cfq_mark_cfqq_prio_changed(cfqq);
2833 if (is_sync) {
2834 if (!cfq_class_idle(cfqq))
2835 cfq_mark_cfqq_idle_window(cfqq);
2836 cfq_mark_cfqq_sync(cfqq);
2838 cfqq->pid = pid;
2841 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2842 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2844 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2845 struct cfq_data *cfqd = cic_to_cfqd(cic);
2846 unsigned long flags;
2847 struct request_queue *q;
2849 if (unlikely(!cfqd))
2850 return;
2852 q = cfqd->queue;
2854 spin_lock_irqsave(q->queue_lock, flags);
2856 if (sync_cfqq) {
2858 * Drop reference to sync queue. A new sync queue will be
2859 * assigned in new group upon arrival of a fresh request.
2861 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2862 cic_set_cfqq(cic, NULL, 1);
2863 cfq_put_queue(sync_cfqq);
2866 spin_unlock_irqrestore(q->queue_lock, flags);
2869 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2871 call_for_each_cic(ioc, changed_cgroup);
2872 ioc->cgroup_changed = 0;
2874 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2876 static struct cfq_queue *
2877 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2878 struct io_context *ioc, gfp_t gfp_mask)
2880 struct cfq_queue *cfqq, *new_cfqq = NULL;
2881 struct cfq_io_context *cic;
2882 struct cfq_group *cfqg;
2884 retry:
2885 cfqg = cfq_get_cfqg(cfqd, 1);
2886 cic = cfq_cic_lookup(cfqd, ioc);
2887 /* cic always exists here */
2888 cfqq = cic_to_cfqq(cic, is_sync);
2891 * Always try a new alloc if we fell back to the OOM cfqq
2892 * originally, since it should just be a temporary situation.
2894 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2895 cfqq = NULL;
2896 if (new_cfqq) {
2897 cfqq = new_cfqq;
2898 new_cfqq = NULL;
2899 } else if (gfp_mask & __GFP_WAIT) {
2900 spin_unlock_irq(cfqd->queue->queue_lock);
2901 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2902 gfp_mask | __GFP_ZERO,
2903 cfqd->queue->node);
2904 spin_lock_irq(cfqd->queue->queue_lock);
2905 if (new_cfqq)
2906 goto retry;
2907 } else {
2908 cfqq = kmem_cache_alloc_node(cfq_pool,
2909 gfp_mask | __GFP_ZERO,
2910 cfqd->queue->node);
2913 if (cfqq) {
2914 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2915 cfq_init_prio_data(cfqq, ioc);
2916 cfq_link_cfqq_cfqg(cfqq, cfqg);
2917 cfq_log_cfqq(cfqd, cfqq, "alloced");
2918 } else
2919 cfqq = &cfqd->oom_cfqq;
2922 if (new_cfqq)
2923 kmem_cache_free(cfq_pool, new_cfqq);
2925 return cfqq;
2928 static struct cfq_queue **
2929 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2931 switch (ioprio_class) {
2932 case IOPRIO_CLASS_RT:
2933 return &cfqd->async_cfqq[0][ioprio];
2934 case IOPRIO_CLASS_BE:
2935 return &cfqd->async_cfqq[1][ioprio];
2936 case IOPRIO_CLASS_IDLE:
2937 return &cfqd->async_idle_cfqq;
2938 default:
2939 BUG();
2943 static struct cfq_queue *
2944 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2945 gfp_t gfp_mask)
2947 const int ioprio = task_ioprio(ioc);
2948 const int ioprio_class = task_ioprio_class(ioc);
2949 struct cfq_queue **async_cfqq = NULL;
2950 struct cfq_queue *cfqq = NULL;
2952 if (!is_sync) {
2953 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2954 cfqq = *async_cfqq;
2957 if (!cfqq)
2958 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2961 * pin the queue now that it's allocated, scheduler exit will prune it
2963 if (!is_sync && !(*async_cfqq)) {
2964 atomic_inc(&cfqq->ref);
2965 *async_cfqq = cfqq;
2968 atomic_inc(&cfqq->ref);
2969 return cfqq;
2973 * We drop cfq io contexts lazily, so we may find a dead one.
2975 static void
2976 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2977 struct cfq_io_context *cic)
2979 unsigned long flags;
2981 WARN_ON(!list_empty(&cic->queue_list));
2982 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2984 spin_lock_irqsave(&ioc->lock, flags);
2986 BUG_ON(ioc->ioc_data == cic);
2988 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2989 hlist_del_rcu(&cic->cic_list);
2990 spin_unlock_irqrestore(&ioc->lock, flags);
2992 cfq_cic_free(cic);
2995 static struct cfq_io_context *
2996 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2998 struct cfq_io_context *cic;
2999 unsigned long flags;
3001 if (unlikely(!ioc))
3002 return NULL;
3004 rcu_read_lock();
3007 * we maintain a last-hit cache, to avoid browsing over the tree
3009 cic = rcu_dereference(ioc->ioc_data);
3010 if (cic && cic->key == cfqd) {
3011 rcu_read_unlock();
3012 return cic;
3015 do {
3016 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3017 rcu_read_unlock();
3018 if (!cic)
3019 break;
3020 if (unlikely(cic->key != cfqd)) {
3021 cfq_drop_dead_cic(cfqd, ioc, cic);
3022 rcu_read_lock();
3023 continue;
3026 spin_lock_irqsave(&ioc->lock, flags);
3027 rcu_assign_pointer(ioc->ioc_data, cic);
3028 spin_unlock_irqrestore(&ioc->lock, flags);
3029 break;
3030 } while (1);
3032 return cic;
3036 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3037 * the process specific cfq io context when entered from the block layer.
3038 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3040 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3041 struct cfq_io_context *cic, gfp_t gfp_mask)
3043 unsigned long flags;
3044 int ret;
3046 ret = radix_tree_preload(gfp_mask);
3047 if (!ret) {
3048 cic->ioc = ioc;
3049 cic->key = cfqd;
3051 spin_lock_irqsave(&ioc->lock, flags);
3052 ret = radix_tree_insert(&ioc->radix_root,
3053 cfqd->cic_index, cic);
3054 if (!ret)
3055 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3056 spin_unlock_irqrestore(&ioc->lock, flags);
3058 radix_tree_preload_end();
3060 if (!ret) {
3061 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3062 list_add(&cic->queue_list, &cfqd->cic_list);
3063 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3067 if (ret)
3068 printk(KERN_ERR "cfq: cic link failed!\n");
3070 return ret;
3074 * Setup general io context and cfq io context. There can be several cfq
3075 * io contexts per general io context, if this process is doing io to more
3076 * than one device managed by cfq.
3078 static struct cfq_io_context *
3079 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3081 struct io_context *ioc = NULL;
3082 struct cfq_io_context *cic;
3084 might_sleep_if(gfp_mask & __GFP_WAIT);
3086 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3087 if (!ioc)
3088 return NULL;
3090 cic = cfq_cic_lookup(cfqd, ioc);
3091 if (cic)
3092 goto out;
3094 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3095 if (cic == NULL)
3096 goto err;
3098 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3099 goto err_free;
3101 out:
3102 smp_read_barrier_depends();
3103 if (unlikely(ioc->ioprio_changed))
3104 cfq_ioc_set_ioprio(ioc);
3106 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3107 if (unlikely(ioc->cgroup_changed))
3108 cfq_ioc_set_cgroup(ioc);
3109 #endif
3110 return cic;
3111 err_free:
3112 cfq_cic_free(cic);
3113 err:
3114 put_io_context(ioc);
3115 return NULL;
3118 static void
3119 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3121 unsigned long elapsed = jiffies - cic->last_end_request;
3122 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3124 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3125 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3126 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3129 static void
3130 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3131 struct request *rq)
3133 sector_t sdist = 0;
3134 sector_t n_sec = blk_rq_sectors(rq);
3135 if (cfqq->last_request_pos) {
3136 if (cfqq->last_request_pos < blk_rq_pos(rq))
3137 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3138 else
3139 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3142 cfqq->seek_history <<= 1;
3143 if (blk_queue_nonrot(cfqd->queue))
3144 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3145 else
3146 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3150 * Disable idle window if the process thinks too long or seeks so much that
3151 * it doesn't matter
3153 static void
3154 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3155 struct cfq_io_context *cic)
3157 int old_idle, enable_idle;
3160 * Don't idle for async or idle io prio class
3162 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3163 return;
3165 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3167 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3168 cfq_mark_cfqq_deep(cfqq);
3170 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3171 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3172 enable_idle = 0;
3173 else if (sample_valid(cic->ttime_samples)) {
3174 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3175 enable_idle = 0;
3176 else
3177 enable_idle = 1;
3180 if (old_idle != enable_idle) {
3181 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3182 if (enable_idle)
3183 cfq_mark_cfqq_idle_window(cfqq);
3184 else
3185 cfq_clear_cfqq_idle_window(cfqq);
3190 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3191 * no or if we aren't sure, a 1 will cause a preempt.
3193 static bool
3194 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3195 struct request *rq)
3197 struct cfq_queue *cfqq;
3199 cfqq = cfqd->active_queue;
3200 if (!cfqq)
3201 return false;
3203 if (cfq_class_idle(new_cfqq))
3204 return false;
3206 if (cfq_class_idle(cfqq))
3207 return true;
3210 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3212 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3213 return false;
3216 * if the new request is sync, but the currently running queue is
3217 * not, let the sync request have priority.
3219 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3220 return true;
3222 if (new_cfqq->cfqg != cfqq->cfqg)
3223 return false;
3225 if (cfq_slice_used(cfqq))
3226 return true;
3228 /* Allow preemption only if we are idling on sync-noidle tree */
3229 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3230 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3231 new_cfqq->service_tree->count == 2 &&
3232 RB_EMPTY_ROOT(&cfqq->sort_list))
3233 return true;
3236 * So both queues are sync. Let the new request get disk time if
3237 * it's a metadata request and the current queue is doing regular IO.
3239 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3240 return true;
3243 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3245 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3246 return true;
3248 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3249 return false;
3252 * if this request is as-good as one we would expect from the
3253 * current cfqq, let it preempt
3255 if (cfq_rq_close(cfqd, cfqq, rq))
3256 return true;
3258 return false;
3262 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3263 * let it have half of its nominal slice.
3265 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3267 cfq_log_cfqq(cfqd, cfqq, "preempt");
3268 cfq_slice_expired(cfqd, 1);
3271 * Put the new queue at the front of the of the current list,
3272 * so we know that it will be selected next.
3274 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3276 cfq_service_tree_add(cfqd, cfqq, 1);
3278 cfqq->slice_end = 0;
3279 cfq_mark_cfqq_slice_new(cfqq);
3283 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3284 * something we should do about it
3286 static void
3287 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3288 struct request *rq)
3290 struct cfq_io_context *cic = RQ_CIC(rq);
3292 cfqd->rq_queued++;
3293 if (rq->cmd_flags & REQ_META)
3294 cfqq->meta_pending++;
3296 cfq_update_io_thinktime(cfqd, cic);
3297 cfq_update_io_seektime(cfqd, cfqq, rq);
3298 cfq_update_idle_window(cfqd, cfqq, cic);
3300 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3302 if (cfqq == cfqd->active_queue) {
3304 * Remember that we saw a request from this process, but
3305 * don't start queuing just yet. Otherwise we risk seeing lots
3306 * of tiny requests, because we disrupt the normal plugging
3307 * and merging. If the request is already larger than a single
3308 * page, let it rip immediately. For that case we assume that
3309 * merging is already done. Ditto for a busy system that
3310 * has other work pending, don't risk delaying until the
3311 * idle timer unplug to continue working.
3313 if (cfq_cfqq_wait_request(cfqq)) {
3314 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3315 cfqd->busy_queues > 1) {
3316 cfq_del_timer(cfqd, cfqq);
3317 cfq_clear_cfqq_wait_request(cfqq);
3318 __blk_run_queue(cfqd->queue);
3319 } else {
3320 cfq_blkiocg_update_idle_time_stats(
3321 &cfqq->cfqg->blkg);
3322 cfq_mark_cfqq_must_dispatch(cfqq);
3325 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3327 * not the active queue - expire current slice if it is
3328 * idle and has expired it's mean thinktime or this new queue
3329 * has some old slice time left and is of higher priority or
3330 * this new queue is RT and the current one is BE
3332 cfq_preempt_queue(cfqd, cfqq);
3333 __blk_run_queue(cfqd->queue);
3337 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3339 struct cfq_data *cfqd = q->elevator->elevator_data;
3340 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3342 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3343 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3345 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3346 list_add_tail(&rq->queuelist, &cfqq->fifo);
3347 cfq_add_rq_rb(rq);
3348 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3349 &cfqd->serving_group->blkg, rq_data_dir(rq),
3350 rq_is_sync(rq));
3351 cfq_rq_enqueued(cfqd, cfqq, rq);
3355 * Update hw_tag based on peak queue depth over 50 samples under
3356 * sufficient load.
3358 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3360 struct cfq_queue *cfqq = cfqd->active_queue;
3362 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3363 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3365 if (cfqd->hw_tag == 1)
3366 return;
3368 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3369 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3370 return;
3373 * If active queue hasn't enough requests and can idle, cfq might not
3374 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3375 * case
3377 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3378 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3379 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3380 return;
3382 if (cfqd->hw_tag_samples++ < 50)
3383 return;
3385 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3386 cfqd->hw_tag = 1;
3387 else
3388 cfqd->hw_tag = 0;
3391 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3393 struct cfq_io_context *cic = cfqd->active_cic;
3395 /* If there are other queues in the group, don't wait */
3396 if (cfqq->cfqg->nr_cfqq > 1)
3397 return false;
3399 if (cfq_slice_used(cfqq))
3400 return true;
3402 /* if slice left is less than think time, wait busy */
3403 if (cic && sample_valid(cic->ttime_samples)
3404 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3405 return true;
3408 * If think times is less than a jiffy than ttime_mean=0 and above
3409 * will not be true. It might happen that slice has not expired yet
3410 * but will expire soon (4-5 ns) during select_queue(). To cover the
3411 * case where think time is less than a jiffy, mark the queue wait
3412 * busy if only 1 jiffy is left in the slice.
3414 if (cfqq->slice_end - jiffies == 1)
3415 return true;
3417 return false;
3420 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3422 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3423 struct cfq_data *cfqd = cfqq->cfqd;
3424 const int sync = rq_is_sync(rq);
3425 unsigned long now;
3427 now = jiffies;
3428 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3429 !!(rq->cmd_flags & REQ_NOIDLE));
3431 cfq_update_hw_tag(cfqd);
3433 WARN_ON(!cfqd->rq_in_driver);
3434 WARN_ON(!cfqq->dispatched);
3435 cfqd->rq_in_driver--;
3436 cfqq->dispatched--;
3437 (RQ_CFQG(rq))->dispatched--;
3438 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3439 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3440 rq_data_dir(rq), rq_is_sync(rq));
3442 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3444 if (sync) {
3445 RQ_CIC(rq)->last_end_request = now;
3446 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3447 cfqd->last_delayed_sync = now;
3451 * If this is the active queue, check if it needs to be expired,
3452 * or if we want to idle in case it has no pending requests.
3454 if (cfqd->active_queue == cfqq) {
3455 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3457 if (cfq_cfqq_slice_new(cfqq)) {
3458 cfq_set_prio_slice(cfqd, cfqq);
3459 cfq_clear_cfqq_slice_new(cfqq);
3463 * Should we wait for next request to come in before we expire
3464 * the queue.
3466 if (cfq_should_wait_busy(cfqd, cfqq)) {
3467 unsigned long extend_sl = cfqd->cfq_slice_idle;
3468 if (!cfqd->cfq_slice_idle)
3469 extend_sl = cfqd->cfq_group_idle;
3470 cfqq->slice_end = jiffies + extend_sl;
3471 cfq_mark_cfqq_wait_busy(cfqq);
3472 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3476 * Idling is not enabled on:
3477 * - expired queues
3478 * - idle-priority queues
3479 * - async queues
3480 * - queues with still some requests queued
3481 * - when there is a close cooperator
3483 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3484 cfq_slice_expired(cfqd, 1);
3485 else if (sync && cfqq_empty &&
3486 !cfq_close_cooperator(cfqd, cfqq)) {
3487 cfqd->noidle_tree_requires_idle |=
3488 !(rq->cmd_flags & REQ_NOIDLE);
3490 * Idling is enabled for SYNC_WORKLOAD.
3491 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3492 * only if we processed at least one !REQ_NOIDLE request
3494 if (cfqd->serving_type == SYNC_WORKLOAD
3495 || cfqd->noidle_tree_requires_idle
3496 || cfqq->cfqg->nr_cfqq == 1)
3497 cfq_arm_slice_timer(cfqd);
3501 if (!cfqd->rq_in_driver)
3502 cfq_schedule_dispatch(cfqd);
3506 * we temporarily boost lower priority queues if they are holding fs exclusive
3507 * resources. they are boosted to normal prio (CLASS_BE/4)
3509 static void cfq_prio_boost(struct cfq_queue *cfqq)
3511 if (has_fs_excl()) {
3513 * boost idle prio on transactions that would lock out other
3514 * users of the filesystem
3516 if (cfq_class_idle(cfqq))
3517 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3518 if (cfqq->ioprio > IOPRIO_NORM)
3519 cfqq->ioprio = IOPRIO_NORM;
3520 } else {
3522 * unboost the queue (if needed)
3524 cfqq->ioprio_class = cfqq->org_ioprio_class;
3525 cfqq->ioprio = cfqq->org_ioprio;
3529 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3531 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3532 cfq_mark_cfqq_must_alloc_slice(cfqq);
3533 return ELV_MQUEUE_MUST;
3536 return ELV_MQUEUE_MAY;
3539 static int cfq_may_queue(struct request_queue *q, int rw)
3541 struct cfq_data *cfqd = q->elevator->elevator_data;
3542 struct task_struct *tsk = current;
3543 struct cfq_io_context *cic;
3544 struct cfq_queue *cfqq;
3547 * don't force setup of a queue from here, as a call to may_queue
3548 * does not necessarily imply that a request actually will be queued.
3549 * so just lookup a possibly existing queue, or return 'may queue'
3550 * if that fails
3552 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3553 if (!cic)
3554 return ELV_MQUEUE_MAY;
3556 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3557 if (cfqq) {
3558 cfq_init_prio_data(cfqq, cic->ioc);
3559 cfq_prio_boost(cfqq);
3561 return __cfq_may_queue(cfqq);
3564 return ELV_MQUEUE_MAY;
3568 * queue lock held here
3570 static void cfq_put_request(struct request *rq)
3572 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3574 if (cfqq) {
3575 const int rw = rq_data_dir(rq);
3577 BUG_ON(!cfqq->allocated[rw]);
3578 cfqq->allocated[rw]--;
3580 put_io_context(RQ_CIC(rq)->ioc);
3582 rq->elevator_private = NULL;
3583 rq->elevator_private2 = NULL;
3585 /* Put down rq reference on cfqg */
3586 cfq_put_cfqg(RQ_CFQG(rq));
3587 rq->elevator_private3 = NULL;
3589 cfq_put_queue(cfqq);
3593 static struct cfq_queue *
3594 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3595 struct cfq_queue *cfqq)
3597 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3598 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3599 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3600 cfq_put_queue(cfqq);
3601 return cic_to_cfqq(cic, 1);
3605 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3606 * was the last process referring to said cfqq.
3608 static struct cfq_queue *
3609 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3611 if (cfqq_process_refs(cfqq) == 1) {
3612 cfqq->pid = current->pid;
3613 cfq_clear_cfqq_coop(cfqq);
3614 cfq_clear_cfqq_split_coop(cfqq);
3615 return cfqq;
3618 cic_set_cfqq(cic, NULL, 1);
3620 cfq_put_cooperator(cfqq);
3622 cfq_put_queue(cfqq);
3623 return NULL;
3626 * Allocate cfq data structures associated with this request.
3628 static int
3629 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3631 struct cfq_data *cfqd = q->elevator->elevator_data;
3632 struct cfq_io_context *cic;
3633 const int rw = rq_data_dir(rq);
3634 const bool is_sync = rq_is_sync(rq);
3635 struct cfq_queue *cfqq;
3636 unsigned long flags;
3638 might_sleep_if(gfp_mask & __GFP_WAIT);
3640 cic = cfq_get_io_context(cfqd, gfp_mask);
3642 spin_lock_irqsave(q->queue_lock, flags);
3644 if (!cic)
3645 goto queue_fail;
3647 new_queue:
3648 cfqq = cic_to_cfqq(cic, is_sync);
3649 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3650 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3651 cic_set_cfqq(cic, cfqq, is_sync);
3652 } else {
3654 * If the queue was seeky for too long, break it apart.
3656 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3657 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3658 cfqq = split_cfqq(cic, cfqq);
3659 if (!cfqq)
3660 goto new_queue;
3664 * Check to see if this queue is scheduled to merge with
3665 * another, closely cooperating queue. The merging of
3666 * queues happens here as it must be done in process context.
3667 * The reference on new_cfqq was taken in merge_cfqqs.
3669 if (cfqq->new_cfqq)
3670 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3673 cfqq->allocated[rw]++;
3674 atomic_inc(&cfqq->ref);
3676 spin_unlock_irqrestore(q->queue_lock, flags);
3678 rq->elevator_private = cic;
3679 rq->elevator_private2 = cfqq;
3680 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3681 return 0;
3683 queue_fail:
3684 if (cic)
3685 put_io_context(cic->ioc);
3687 cfq_schedule_dispatch(cfqd);
3688 spin_unlock_irqrestore(q->queue_lock, flags);
3689 cfq_log(cfqd, "set_request fail");
3690 return 1;
3693 static void cfq_kick_queue(struct work_struct *work)
3695 struct cfq_data *cfqd =
3696 container_of(work, struct cfq_data, unplug_work);
3697 struct request_queue *q = cfqd->queue;
3699 spin_lock_irq(q->queue_lock);
3700 __blk_run_queue(cfqd->queue);
3701 spin_unlock_irq(q->queue_lock);
3705 * Timer running if the active_queue is currently idling inside its time slice
3707 static void cfq_idle_slice_timer(unsigned long data)
3709 struct cfq_data *cfqd = (struct cfq_data *) data;
3710 struct cfq_queue *cfqq;
3711 unsigned long flags;
3712 int timed_out = 1;
3714 cfq_log(cfqd, "idle timer fired");
3716 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3718 cfqq = cfqd->active_queue;
3719 if (cfqq) {
3720 timed_out = 0;
3723 * We saw a request before the queue expired, let it through
3725 if (cfq_cfqq_must_dispatch(cfqq))
3726 goto out_kick;
3729 * expired
3731 if (cfq_slice_used(cfqq))
3732 goto expire;
3735 * only expire and reinvoke request handler, if there are
3736 * other queues with pending requests
3738 if (!cfqd->busy_queues)
3739 goto out_cont;
3742 * not expired and it has a request pending, let it dispatch
3744 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3745 goto out_kick;
3748 * Queue depth flag is reset only when the idle didn't succeed
3750 cfq_clear_cfqq_deep(cfqq);
3752 expire:
3753 cfq_slice_expired(cfqd, timed_out);
3754 out_kick:
3755 cfq_schedule_dispatch(cfqd);
3756 out_cont:
3757 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3760 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3762 del_timer_sync(&cfqd->idle_slice_timer);
3763 cancel_work_sync(&cfqd->unplug_work);
3766 static void cfq_put_async_queues(struct cfq_data *cfqd)
3768 int i;
3770 for (i = 0; i < IOPRIO_BE_NR; i++) {
3771 if (cfqd->async_cfqq[0][i])
3772 cfq_put_queue(cfqd->async_cfqq[0][i]);
3773 if (cfqd->async_cfqq[1][i])
3774 cfq_put_queue(cfqd->async_cfqq[1][i]);
3777 if (cfqd->async_idle_cfqq)
3778 cfq_put_queue(cfqd->async_idle_cfqq);
3781 static void cfq_cfqd_free(struct rcu_head *head)
3783 kfree(container_of(head, struct cfq_data, rcu));
3786 static void cfq_exit_queue(struct elevator_queue *e)
3788 struct cfq_data *cfqd = e->elevator_data;
3789 struct request_queue *q = cfqd->queue;
3791 cfq_shutdown_timer_wq(cfqd);
3793 spin_lock_irq(q->queue_lock);
3795 if (cfqd->active_queue)
3796 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3798 while (!list_empty(&cfqd->cic_list)) {
3799 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3800 struct cfq_io_context,
3801 queue_list);
3803 __cfq_exit_single_io_context(cfqd, cic);
3806 cfq_put_async_queues(cfqd);
3807 cfq_release_cfq_groups(cfqd);
3808 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3810 spin_unlock_irq(q->queue_lock);
3812 cfq_shutdown_timer_wq(cfqd);
3814 spin_lock(&cic_index_lock);
3815 ida_remove(&cic_index_ida, cfqd->cic_index);
3816 spin_unlock(&cic_index_lock);
3818 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3819 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3822 static int cfq_alloc_cic_index(void)
3824 int index, error;
3826 do {
3827 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3828 return -ENOMEM;
3830 spin_lock(&cic_index_lock);
3831 error = ida_get_new(&cic_index_ida, &index);
3832 spin_unlock(&cic_index_lock);
3833 if (error && error != -EAGAIN)
3834 return error;
3835 } while (error);
3837 return index;
3840 static void *cfq_init_queue(struct request_queue *q)
3842 struct cfq_data *cfqd;
3843 int i, j;
3844 struct cfq_group *cfqg;
3845 struct cfq_rb_root *st;
3847 i = cfq_alloc_cic_index();
3848 if (i < 0)
3849 return NULL;
3851 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3852 if (!cfqd)
3853 return NULL;
3855 cfqd->cic_index = i;
3857 /* Init root service tree */
3858 cfqd->grp_service_tree = CFQ_RB_ROOT;
3860 /* Init root group */
3861 cfqg = &cfqd->root_group;
3862 for_each_cfqg_st(cfqg, i, j, st)
3863 *st = CFQ_RB_ROOT;
3864 RB_CLEAR_NODE(&cfqg->rb_node);
3866 /* Give preference to root group over other groups */
3867 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3869 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3871 * Take a reference to root group which we never drop. This is just
3872 * to make sure that cfq_put_cfqg() does not try to kfree root group
3874 atomic_set(&cfqg->ref, 1);
3875 rcu_read_lock();
3876 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3877 (void *)cfqd, 0);
3878 rcu_read_unlock();
3879 #endif
3881 * Not strictly needed (since RB_ROOT just clears the node and we
3882 * zeroed cfqd on alloc), but better be safe in case someone decides
3883 * to add magic to the rb code
3885 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3886 cfqd->prio_trees[i] = RB_ROOT;
3889 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3890 * Grab a permanent reference to it, so that the normal code flow
3891 * will not attempt to free it.
3893 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3894 atomic_inc(&cfqd->oom_cfqq.ref);
3895 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3897 INIT_LIST_HEAD(&cfqd->cic_list);
3899 cfqd->queue = q;
3901 init_timer(&cfqd->idle_slice_timer);
3902 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3903 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3905 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3907 cfqd->cfq_quantum = cfq_quantum;
3908 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3909 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3910 cfqd->cfq_back_max = cfq_back_max;
3911 cfqd->cfq_back_penalty = cfq_back_penalty;
3912 cfqd->cfq_slice[0] = cfq_slice_async;
3913 cfqd->cfq_slice[1] = cfq_slice_sync;
3914 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3915 cfqd->cfq_slice_idle = cfq_slice_idle;
3916 cfqd->cfq_group_idle = cfq_group_idle;
3917 cfqd->cfq_latency = 1;
3918 cfqd->cfq_group_isolation = 0;
3919 cfqd->hw_tag = -1;
3921 * we optimistically start assuming sync ops weren't delayed in last
3922 * second, in order to have larger depth for async operations.
3924 cfqd->last_delayed_sync = jiffies - HZ;
3925 return cfqd;
3928 static void cfq_slab_kill(void)
3931 * Caller already ensured that pending RCU callbacks are completed,
3932 * so we should have no busy allocations at this point.
3934 if (cfq_pool)
3935 kmem_cache_destroy(cfq_pool);
3936 if (cfq_ioc_pool)
3937 kmem_cache_destroy(cfq_ioc_pool);
3940 static int __init cfq_slab_setup(void)
3942 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3943 if (!cfq_pool)
3944 goto fail;
3946 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3947 if (!cfq_ioc_pool)
3948 goto fail;
3950 return 0;
3951 fail:
3952 cfq_slab_kill();
3953 return -ENOMEM;
3957 * sysfs parts below -->
3959 static ssize_t
3960 cfq_var_show(unsigned int var, char *page)
3962 return sprintf(page, "%d\n", var);
3965 static ssize_t
3966 cfq_var_store(unsigned int *var, const char *page, size_t count)
3968 char *p = (char *) page;
3970 *var = simple_strtoul(p, &p, 10);
3971 return count;
3974 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3975 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3977 struct cfq_data *cfqd = e->elevator_data; \
3978 unsigned int __data = __VAR; \
3979 if (__CONV) \
3980 __data = jiffies_to_msecs(__data); \
3981 return cfq_var_show(__data, (page)); \
3983 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3984 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3985 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3986 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3987 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3988 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3989 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3990 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3991 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3992 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3993 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3994 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3995 #undef SHOW_FUNCTION
3997 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3998 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4000 struct cfq_data *cfqd = e->elevator_data; \
4001 unsigned int __data; \
4002 int ret = cfq_var_store(&__data, (page), count); \
4003 if (__data < (MIN)) \
4004 __data = (MIN); \
4005 else if (__data > (MAX)) \
4006 __data = (MAX); \
4007 if (__CONV) \
4008 *(__PTR) = msecs_to_jiffies(__data); \
4009 else \
4010 *(__PTR) = __data; \
4011 return ret; \
4013 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4014 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4015 UINT_MAX, 1);
4016 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4017 UINT_MAX, 1);
4018 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4019 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4020 UINT_MAX, 0);
4021 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4022 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4023 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4024 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4025 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4026 UINT_MAX, 0);
4027 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4028 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4029 #undef STORE_FUNCTION
4031 #define CFQ_ATTR(name) \
4032 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4034 static struct elv_fs_entry cfq_attrs[] = {
4035 CFQ_ATTR(quantum),
4036 CFQ_ATTR(fifo_expire_sync),
4037 CFQ_ATTR(fifo_expire_async),
4038 CFQ_ATTR(back_seek_max),
4039 CFQ_ATTR(back_seek_penalty),
4040 CFQ_ATTR(slice_sync),
4041 CFQ_ATTR(slice_async),
4042 CFQ_ATTR(slice_async_rq),
4043 CFQ_ATTR(slice_idle),
4044 CFQ_ATTR(group_idle),
4045 CFQ_ATTR(low_latency),
4046 CFQ_ATTR(group_isolation),
4047 __ATTR_NULL
4050 static struct elevator_type iosched_cfq = {
4051 .ops = {
4052 .elevator_merge_fn = cfq_merge,
4053 .elevator_merged_fn = cfq_merged_request,
4054 .elevator_merge_req_fn = cfq_merged_requests,
4055 .elevator_allow_merge_fn = cfq_allow_merge,
4056 .elevator_bio_merged_fn = cfq_bio_merged,
4057 .elevator_dispatch_fn = cfq_dispatch_requests,
4058 .elevator_add_req_fn = cfq_insert_request,
4059 .elevator_activate_req_fn = cfq_activate_request,
4060 .elevator_deactivate_req_fn = cfq_deactivate_request,
4061 .elevator_queue_empty_fn = cfq_queue_empty,
4062 .elevator_completed_req_fn = cfq_completed_request,
4063 .elevator_former_req_fn = elv_rb_former_request,
4064 .elevator_latter_req_fn = elv_rb_latter_request,
4065 .elevator_set_req_fn = cfq_set_request,
4066 .elevator_put_req_fn = cfq_put_request,
4067 .elevator_may_queue_fn = cfq_may_queue,
4068 .elevator_init_fn = cfq_init_queue,
4069 .elevator_exit_fn = cfq_exit_queue,
4070 .trim = cfq_free_io_context,
4072 .elevator_attrs = cfq_attrs,
4073 .elevator_name = "cfq",
4074 .elevator_owner = THIS_MODULE,
4077 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4078 static struct blkio_policy_type blkio_policy_cfq = {
4079 .ops = {
4080 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4081 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4084 #else
4085 static struct blkio_policy_type blkio_policy_cfq;
4086 #endif
4088 static int __init cfq_init(void)
4091 * could be 0 on HZ < 1000 setups
4093 if (!cfq_slice_async)
4094 cfq_slice_async = 1;
4095 if (!cfq_slice_idle)
4096 cfq_slice_idle = 1;
4098 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4099 if (!cfq_group_idle)
4100 cfq_group_idle = 1;
4101 #else
4102 cfq_group_idle = 0;
4103 #endif
4104 if (cfq_slab_setup())
4105 return -ENOMEM;
4107 elv_register(&iosched_cfq);
4108 blkio_policy_register(&blkio_policy_cfq);
4110 return 0;
4113 static void __exit cfq_exit(void)
4115 DECLARE_COMPLETION_ONSTACK(all_gone);
4116 blkio_policy_unregister(&blkio_policy_cfq);
4117 elv_unregister(&iosched_cfq);
4118 ioc_gone = &all_gone;
4119 /* ioc_gone's update must be visible before reading ioc_count */
4120 smp_wmb();
4123 * this also protects us from entering cfq_slab_kill() with
4124 * pending RCU callbacks
4126 if (elv_ioc_count_read(cfq_ioc_count))
4127 wait_for_completion(&all_gone);
4128 ida_destroy(&cic_index_ida);
4129 cfq_slab_kill();
4132 module_init(cfq_init);
4133 module_exit(cfq_exit);
4135 MODULE_AUTHOR("Jens Axboe");
4136 MODULE_LICENSE("GPL");
4137 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");