2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 struct memblock memblock __initdata_memblock
;
25 int memblock_debug __initdata_memblock
;
26 int memblock_can_resize __initdata_memblock
;
27 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
28 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type
*type
)
33 if (type
== &memblock
.memory
)
35 else if (type
== &memblock
.reserved
)
42 * Address comparison utilities
45 static phys_addr_t __init_memblock
memblock_align_down(phys_addr_t addr
, phys_addr_t size
)
47 return addr
& ~(size
- 1);
50 static phys_addr_t __init_memblock
memblock_align_up(phys_addr_t addr
, phys_addr_t size
)
52 return (addr
+ (size
- 1)) & ~(size
- 1);
55 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
56 phys_addr_t base2
, phys_addr_t size2
)
58 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
61 static long __init_memblock
memblock_addrs_adjacent(phys_addr_t base1
, phys_addr_t size1
,
62 phys_addr_t base2
, phys_addr_t size2
)
64 if (base2
== base1
+ size1
)
66 else if (base1
== base2
+ size2
)
72 static long __init_memblock
memblock_regions_adjacent(struct memblock_type
*type
,
73 unsigned long r1
, unsigned long r2
)
75 phys_addr_t base1
= type
->regions
[r1
].base
;
76 phys_addr_t size1
= type
->regions
[r1
].size
;
77 phys_addr_t base2
= type
->regions
[r2
].base
;
78 phys_addr_t size2
= type
->regions
[r2
].size
;
80 return memblock_addrs_adjacent(base1
, size1
, base2
, size2
);
83 long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
87 for (i
= 0; i
< type
->cnt
; i
++) {
88 phys_addr_t rgnbase
= type
->regions
[i
].base
;
89 phys_addr_t rgnsize
= type
->regions
[i
].size
;
90 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
94 return (i
< type
->cnt
) ? i
: -1;
98 * Find, allocate, deallocate or reserve unreserved regions. All allocations
102 static phys_addr_t __init_memblock
memblock_find_region(phys_addr_t start
, phys_addr_t end
,
103 phys_addr_t size
, phys_addr_t align
)
105 phys_addr_t base
, res_base
;
108 /* In case, huge size is requested */
110 return MEMBLOCK_ERROR
;
112 base
= memblock_align_down((end
- size
), align
);
114 /* Prevent allocations returning 0 as it's also used to
115 * indicate an allocation failure
120 while (start
<= base
) {
121 j
= memblock_overlaps_region(&memblock
.reserved
, base
, size
);
124 res_base
= memblock
.reserved
.regions
[j
].base
;
127 base
= memblock_align_down(res_base
- size
, align
);
130 return MEMBLOCK_ERROR
;
133 static phys_addr_t __init_memblock
memblock_find_base(phys_addr_t size
,
134 phys_addr_t align
, phys_addr_t start
, phys_addr_t end
)
140 /* Pump up max_addr */
141 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
142 end
= memblock
.current_limit
;
144 /* We do a top-down search, this tends to limit memory
145 * fragmentation by keeping early boot allocs near the
148 for (i
= memblock
.memory
.cnt
- 1; i
>= 0; i
--) {
149 phys_addr_t memblockbase
= memblock
.memory
.regions
[i
].base
;
150 phys_addr_t memblocksize
= memblock
.memory
.regions
[i
].size
;
151 phys_addr_t bottom
, top
, found
;
153 if (memblocksize
< size
)
155 if ((memblockbase
+ memblocksize
) <= start
)
157 bottom
= max(memblockbase
, start
);
158 top
= min(memblockbase
+ memblocksize
, end
);
161 found
= memblock_find_region(bottom
, top
, size
, align
);
162 if (found
!= MEMBLOCK_ERROR
)
165 return MEMBLOCK_ERROR
;
169 * Find a free area with specified alignment in a specific range.
171 u64 __init_memblock
memblock_find_in_range(u64 start
, u64 end
, u64 size
, u64 align
)
173 return memblock_find_base(size
, align
, start
, end
);
177 * Free memblock.reserved.regions
179 int __init_memblock
memblock_free_reserved_regions(void)
181 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
184 return memblock_free(__pa(memblock
.reserved
.regions
),
185 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
189 * Reserve memblock.reserved.regions
191 int __init_memblock
memblock_reserve_reserved_regions(void)
193 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
196 return memblock_reserve(__pa(memblock
.reserved
.regions
),
197 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
200 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
204 for (i
= r
; i
< type
->cnt
- 1; i
++) {
205 type
->regions
[i
].base
= type
->regions
[i
+ 1].base
;
206 type
->regions
[i
].size
= type
->regions
[i
+ 1].size
;
211 /* Assumption: base addr of region 1 < base addr of region 2 */
212 static void __init_memblock
memblock_coalesce_regions(struct memblock_type
*type
,
213 unsigned long r1
, unsigned long r2
)
215 type
->regions
[r1
].size
+= type
->regions
[r2
].size
;
216 memblock_remove_region(type
, r2
);
219 /* Defined below but needed now */
220 static long memblock_add_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
);
222 static int __init_memblock
memblock_double_array(struct memblock_type
*type
)
224 struct memblock_region
*new_array
, *old_array
;
225 phys_addr_t old_size
, new_size
, addr
;
226 int use_slab
= slab_is_available();
228 /* We don't allow resizing until we know about the reserved regions
229 * of memory that aren't suitable for allocation
231 if (!memblock_can_resize
)
234 /* Calculate new doubled size */
235 old_size
= type
->max
* sizeof(struct memblock_region
);
236 new_size
= old_size
<< 1;
238 /* Try to find some space for it.
240 * WARNING: We assume that either slab_is_available() and we use it or
241 * we use MEMBLOCK for allocations. That means that this is unsafe to use
242 * when bootmem is currently active (unless bootmem itself is implemented
243 * on top of MEMBLOCK which isn't the case yet)
245 * This should however not be an issue for now, as we currently only
246 * call into MEMBLOCK while it's still active, or much later when slab is
247 * active for memory hotplug operations
250 new_array
= kmalloc(new_size
, GFP_KERNEL
);
251 addr
= new_array
== NULL
? MEMBLOCK_ERROR
: __pa(new_array
);
253 addr
= memblock_find_base(new_size
, sizeof(phys_addr_t
), 0, MEMBLOCK_ALLOC_ACCESSIBLE
);
254 if (addr
== MEMBLOCK_ERROR
) {
255 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
256 memblock_type_name(type
), type
->max
, type
->max
* 2);
259 new_array
= __va(addr
);
261 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
262 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
264 /* Found space, we now need to move the array over before
265 * we add the reserved region since it may be our reserved
266 * array itself that is full.
268 memcpy(new_array
, type
->regions
, old_size
);
269 memset(new_array
+ type
->max
, 0, old_size
);
270 old_array
= type
->regions
;
271 type
->regions
= new_array
;
274 /* If we use SLAB that's it, we are done */
278 /* Add the new reserved region now. Should not fail ! */
279 BUG_ON(memblock_add_region(&memblock
.reserved
, addr
, new_size
) < 0);
281 /* If the array wasn't our static init one, then free it. We only do
282 * that before SLAB is available as later on, we don't know whether
283 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
286 if (old_array
!= memblock_memory_init_regions
&&
287 old_array
!= memblock_reserved_init_regions
)
288 memblock_free(__pa(old_array
), old_size
);
293 extern int __init_memblock __weak
memblock_memory_can_coalesce(phys_addr_t addr1
, phys_addr_t size1
,
294 phys_addr_t addr2
, phys_addr_t size2
)
299 static long __init_memblock
memblock_add_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
301 unsigned long coalesced
= 0;
304 if ((type
->cnt
== 1) && (type
->regions
[0].size
== 0)) {
305 type
->regions
[0].base
= base
;
306 type
->regions
[0].size
= size
;
310 /* First try and coalesce this MEMBLOCK with another. */
311 for (i
= 0; i
< type
->cnt
; i
++) {
312 phys_addr_t rgnbase
= type
->regions
[i
].base
;
313 phys_addr_t rgnsize
= type
->regions
[i
].size
;
315 if ((rgnbase
== base
) && (rgnsize
== size
))
316 /* Already have this region, so we're done */
319 adjacent
= memblock_addrs_adjacent(base
, size
, rgnbase
, rgnsize
);
320 /* Check if arch allows coalescing */
321 if (adjacent
!= 0 && type
== &memblock
.memory
&&
322 !memblock_memory_can_coalesce(base
, size
, rgnbase
, rgnsize
))
325 type
->regions
[i
].base
-= size
;
326 type
->regions
[i
].size
+= size
;
329 } else if (adjacent
< 0) {
330 type
->regions
[i
].size
+= size
;
336 /* If we plugged a hole, we may want to also coalesce with the
339 if ((i
< type
->cnt
- 1) && memblock_regions_adjacent(type
, i
, i
+1) &&
340 ((type
!= &memblock
.memory
|| memblock_memory_can_coalesce(type
->regions
[i
].base
,
341 type
->regions
[i
].size
,
342 type
->regions
[i
+1].base
,
343 type
->regions
[i
+1].size
)))) {
344 memblock_coalesce_regions(type
, i
, i
+1);
351 /* If we are out of space, we fail. It's too late to resize the array
352 * but then this shouldn't have happened in the first place.
354 if (WARN_ON(type
->cnt
>= type
->max
))
357 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
358 for (i
= type
->cnt
- 1; i
>= 0; i
--) {
359 if (base
< type
->regions
[i
].base
) {
360 type
->regions
[i
+1].base
= type
->regions
[i
].base
;
361 type
->regions
[i
+1].size
= type
->regions
[i
].size
;
363 type
->regions
[i
+1].base
= base
;
364 type
->regions
[i
+1].size
= size
;
369 if (base
< type
->regions
[0].base
) {
370 type
->regions
[0].base
= base
;
371 type
->regions
[0].size
= size
;
375 /* The array is full ? Try to resize it. If that fails, we undo
376 * our allocation and return an error
378 if (type
->cnt
== type
->max
&& memblock_double_array(type
)) {
386 long __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
388 return memblock_add_region(&memblock
.memory
, base
, size
);
392 static long __init_memblock
__memblock_remove(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
394 phys_addr_t rgnbegin
, rgnend
;
395 phys_addr_t end
= base
+ size
;
398 rgnbegin
= rgnend
= 0; /* supress gcc warnings */
400 /* Find the region where (base, size) belongs to */
401 for (i
=0; i
< type
->cnt
; i
++) {
402 rgnbegin
= type
->regions
[i
].base
;
403 rgnend
= rgnbegin
+ type
->regions
[i
].size
;
405 if ((rgnbegin
<= base
) && (end
<= rgnend
))
409 /* Didn't find the region */
413 /* Check to see if we are removing entire region */
414 if ((rgnbegin
== base
) && (rgnend
== end
)) {
415 memblock_remove_region(type
, i
);
419 /* Check to see if region is matching at the front */
420 if (rgnbegin
== base
) {
421 type
->regions
[i
].base
= end
;
422 type
->regions
[i
].size
-= size
;
426 /* Check to see if the region is matching at the end */
428 type
->regions
[i
].size
-= size
;
433 * We need to split the entry - adjust the current one to the
434 * beginging of the hole and add the region after hole.
436 type
->regions
[i
].size
= base
- type
->regions
[i
].base
;
437 return memblock_add_region(type
, end
, rgnend
- end
);
440 long __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
442 return __memblock_remove(&memblock
.memory
, base
, size
);
445 long __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
447 return __memblock_remove(&memblock
.reserved
, base
, size
);
450 long __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
452 struct memblock_type
*_rgn
= &memblock
.reserved
;
456 return memblock_add_region(_rgn
, base
, size
);
459 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
463 /* We align the size to limit fragmentation. Without this, a lot of
464 * small allocs quickly eat up the whole reserve array on sparc
466 size
= memblock_align_up(size
, align
);
468 found
= memblock_find_base(size
, align
, 0, max_addr
);
469 if (found
!= MEMBLOCK_ERROR
&&
470 memblock_add_region(&memblock
.reserved
, found
, size
) >= 0)
476 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
480 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
483 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
484 (unsigned long long) size
, (unsigned long long) max_addr
);
489 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
491 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
496 * Additional node-local allocators. Search for node memory is bottom up
497 * and walks memblock regions within that node bottom-up as well, but allocation
498 * within an memblock region is top-down. XXX I plan to fix that at some stage
500 * WARNING: Only available after early_node_map[] has been populated,
501 * on some architectures, that is after all the calls to add_active_range()
502 * have been done to populate it.
505 phys_addr_t __weak __init
memblock_nid_range(phys_addr_t start
, phys_addr_t end
, int *nid
)
507 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
509 * This code originates from sparc which really wants use to walk by addresses
510 * and returns the nid. This is not very convenient for early_pfn_map[] users
511 * as the map isn't sorted yet, and it really wants to be walked by nid.
513 * For now, I implement the inefficient method below which walks the early
514 * map multiple times. Eventually we may want to use an ARCH config option
515 * to implement a completely different method for both case.
517 unsigned long start_pfn
, end_pfn
;
520 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
521 get_pfn_range_for_nid(i
, &start_pfn
, &end_pfn
);
522 if (start
< PFN_PHYS(start_pfn
) || start
>= PFN_PHYS(end_pfn
))
525 return min(end
, PFN_PHYS(end_pfn
));
533 static phys_addr_t __init
memblock_alloc_nid_region(struct memblock_region
*mp
,
535 phys_addr_t align
, int nid
)
537 phys_addr_t start
, end
;
540 end
= start
+ mp
->size
;
542 start
= memblock_align_up(start
, align
);
543 while (start
< end
) {
544 phys_addr_t this_end
;
547 this_end
= memblock_nid_range(start
, end
, &this_nid
);
548 if (this_nid
== nid
) {
549 phys_addr_t ret
= memblock_find_region(start
, this_end
, size
, align
);
550 if (ret
!= MEMBLOCK_ERROR
&&
551 memblock_add_region(&memblock
.reserved
, ret
, size
) >= 0)
557 return MEMBLOCK_ERROR
;
560 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
562 struct memblock_type
*mem
= &memblock
.memory
;
567 /* We align the size to limit fragmentation. Without this, a lot of
568 * small allocs quickly eat up the whole reserve array on sparc
570 size
= memblock_align_up(size
, align
);
572 /* We do a bottom-up search for a region with the right
573 * nid since that's easier considering how memblock_nid_range()
576 for (i
= 0; i
< mem
->cnt
; i
++) {
577 phys_addr_t ret
= memblock_alloc_nid_region(&mem
->regions
[i
],
579 if (ret
!= MEMBLOCK_ERROR
)
586 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
588 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
592 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ANYWHERE
);
597 * Remaining API functions
600 /* You must call memblock_analyze() before this. */
601 phys_addr_t __init
memblock_phys_mem_size(void)
603 return memblock
.memory_size
;
606 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
608 int idx
= memblock
.memory
.cnt
- 1;
610 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
613 /* You must call memblock_analyze() after this. */
614 void __init
memblock_enforce_memory_limit(phys_addr_t memory_limit
)
618 struct memblock_region
*p
;
623 /* Truncate the memblock regions to satisfy the memory limit. */
624 limit
= memory_limit
;
625 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
626 if (limit
> memblock
.memory
.regions
[i
].size
) {
627 limit
-= memblock
.memory
.regions
[i
].size
;
631 memblock
.memory
.regions
[i
].size
= limit
;
632 memblock
.memory
.cnt
= i
+ 1;
636 memory_limit
= memblock_end_of_DRAM();
638 /* And truncate any reserves above the limit also. */
639 for (i
= 0; i
< memblock
.reserved
.cnt
; i
++) {
640 p
= &memblock
.reserved
.regions
[i
];
642 if (p
->base
> memory_limit
)
644 else if ((p
->base
+ p
->size
) > memory_limit
)
645 p
->size
= memory_limit
- p
->base
;
648 memblock_remove_region(&memblock
.reserved
, i
);
654 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
656 unsigned int left
= 0, right
= type
->cnt
;
659 unsigned int mid
= (right
+ left
) / 2;
661 if (addr
< type
->regions
[mid
].base
)
663 else if (addr
>= (type
->regions
[mid
].base
+
664 type
->regions
[mid
].size
))
668 } while (left
< right
);
672 int __init
memblock_is_reserved(phys_addr_t addr
)
674 return memblock_search(&memblock
.reserved
, addr
) != -1;
677 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
679 return memblock_search(&memblock
.memory
, addr
) != -1;
682 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
684 int idx
= memblock_search(&memblock
.memory
, base
);
688 return memblock
.memory
.regions
[idx
].base
<= base
&&
689 (memblock
.memory
.regions
[idx
].base
+
690 memblock
.memory
.regions
[idx
].size
) >= (base
+ size
);
693 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
695 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
699 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
701 memblock
.current_limit
= limit
;
704 static void __init_memblock
memblock_dump(struct memblock_type
*region
, char *name
)
706 unsigned long long base
, size
;
709 pr_info(" %s.cnt = 0x%lx\n", name
, region
->cnt
);
711 for (i
= 0; i
< region
->cnt
; i
++) {
712 base
= region
->regions
[i
].base
;
713 size
= region
->regions
[i
].size
;
715 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
716 name
, i
, base
, base
+ size
- 1, size
);
720 void __init_memblock
memblock_dump_all(void)
725 pr_info("MEMBLOCK configuration:\n");
726 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock
.memory_size
);
728 memblock_dump(&memblock
.memory
, "memory");
729 memblock_dump(&memblock
.reserved
, "reserved");
732 void __init
memblock_analyze(void)
736 /* Check marker in the unused last array entry */
737 WARN_ON(memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
].base
738 != (phys_addr_t
)RED_INACTIVE
);
739 WARN_ON(memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
].base
740 != (phys_addr_t
)RED_INACTIVE
);
742 memblock
.memory_size
= 0;
744 for (i
= 0; i
< memblock
.memory
.cnt
; i
++)
745 memblock
.memory_size
+= memblock
.memory
.regions
[i
].size
;
747 /* We allow resizing from there */
748 memblock_can_resize
= 1;
751 void __init
memblock_init(void)
753 static int init_done __initdata
= 0;
759 /* Hookup the initial arrays */
760 memblock
.memory
.regions
= memblock_memory_init_regions
;
761 memblock
.memory
.max
= INIT_MEMBLOCK_REGIONS
;
762 memblock
.reserved
.regions
= memblock_reserved_init_regions
;
763 memblock
.reserved
.max
= INIT_MEMBLOCK_REGIONS
;
765 /* Write a marker in the unused last array entry */
766 memblock
.memory
.regions
[INIT_MEMBLOCK_REGIONS
].base
= (phys_addr_t
)RED_INACTIVE
;
767 memblock
.reserved
.regions
[INIT_MEMBLOCK_REGIONS
].base
= (phys_addr_t
)RED_INACTIVE
;
769 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
770 * This simplifies the memblock_add() code below...
772 memblock
.memory
.regions
[0].base
= 0;
773 memblock
.memory
.regions
[0].size
= 0;
774 memblock
.memory
.cnt
= 1;
777 memblock
.reserved
.regions
[0].base
= 0;
778 memblock
.reserved
.regions
[0].size
= 0;
779 memblock
.reserved
.cnt
= 1;
781 memblock
.current_limit
= MEMBLOCK_ALLOC_ANYWHERE
;
784 static int __init
early_memblock(char *p
)
786 if (p
&& strstr(p
, "debug"))
790 early_param("memblock", early_memblock
);
792 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
794 static int memblock_debug_show(struct seq_file
*m
, void *private)
796 struct memblock_type
*type
= m
->private;
797 struct memblock_region
*reg
;
800 for (i
= 0; i
< type
->cnt
; i
++) {
801 reg
= &type
->regions
[i
];
802 seq_printf(m
, "%4d: ", i
);
803 if (sizeof(phys_addr_t
) == 4)
804 seq_printf(m
, "0x%08lx..0x%08lx\n",
805 (unsigned long)reg
->base
,
806 (unsigned long)(reg
->base
+ reg
->size
- 1));
808 seq_printf(m
, "0x%016llx..0x%016llx\n",
809 (unsigned long long)reg
->base
,
810 (unsigned long long)(reg
->base
+ reg
->size
- 1));
816 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
818 return single_open(file
, memblock_debug_show
, inode
->i_private
);
821 static const struct file_operations memblock_debug_fops
= {
822 .open
= memblock_debug_open
,
825 .release
= single_release
,
828 static int __init
memblock_init_debugfs(void)
830 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
833 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
834 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
838 __initcall(memblock_init_debugfs
);
840 #endif /* CONFIG_DEBUG_FS */