2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
21 #include "ieee80211_i.h"
29 u8
ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
30 struct tid_ampdu_rx
*tid_agg_rx
,
31 struct sk_buff
*skb
, u16 mpdu_seq_num
,
34 * monitor mode reception
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
39 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
43 skb_pull(skb
, rtap_len
);
45 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
46 if (likely(skb
->len
> FCS_LEN
))
47 skb_trim(skb
, skb
->len
- FCS_LEN
);
59 static inline int should_drop_frame(struct ieee80211_rx_status
*status
,
64 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
66 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
68 if (unlikely(skb
->len
< 16 + present_fcs_len
+ radiotap_len
))
70 if (ieee80211_is_ctl(hdr
->frame_control
) &&
71 !ieee80211_is_pspoll(hdr
->frame_control
) &&
72 !ieee80211_is_back_req(hdr
->frame_control
))
78 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
79 struct ieee80211_rx_status
*status
)
83 /* always present fields */
84 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
86 if (status
->flag
& RX_FLAG_TSFT
)
88 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DB
||
89 local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
91 if (local
->hw
.flags
& IEEE80211_HW_NOISE_DBM
)
94 if (len
& 1) /* padding for RX_FLAGS if necessary */
97 /* make sure radiotap starts at a naturally aligned address */
99 len
= roundup(len
, 8);
105 * ieee80211_add_rx_radiotap_header - add radiotap header
107 * add a radiotap header containing all the fields which the hardware provided.
110 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
112 struct ieee80211_rx_status
*status
,
113 struct ieee80211_rate
*rate
,
116 struct ieee80211_radiotap_header
*rthdr
;
119 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
120 memset(rthdr
, 0, rtap_len
);
122 /* radiotap header, set always present flags */
124 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
125 (1 << IEEE80211_RADIOTAP_RATE
) |
126 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
127 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
128 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
129 rthdr
->it_len
= cpu_to_le16(rtap_len
);
131 pos
= (unsigned char *)(rthdr
+1);
133 /* the order of the following fields is important */
135 /* IEEE80211_RADIOTAP_TSFT */
136 if (status
->flag
& RX_FLAG_TSFT
) {
137 *(__le64
*)pos
= cpu_to_le64(status
->mactime
);
139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
143 /* IEEE80211_RADIOTAP_FLAGS */
144 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
145 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
148 /* IEEE80211_RADIOTAP_RATE */
149 *pos
= rate
->bitrate
/ 5;
152 /* IEEE80211_RADIOTAP_CHANNEL */
153 *(__le16
*)pos
= cpu_to_le16(status
->freq
);
155 if (status
->band
== IEEE80211_BAND_5GHZ
)
156 *(__le16
*)pos
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
157 IEEE80211_CHAN_5GHZ
);
159 *(__le16
*)pos
= cpu_to_le16(IEEE80211_CHAN_DYN
|
160 IEEE80211_CHAN_2GHZ
);
163 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
164 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
165 *pos
= status
->signal
;
167 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
171 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
172 if (local
->hw
.flags
& IEEE80211_HW_NOISE_DBM
) {
173 *pos
= status
->noise
;
175 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
);
179 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181 /* IEEE80211_RADIOTAP_ANTENNA */
182 *pos
= status
->antenna
;
185 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
186 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DB
) {
187 *pos
= status
->signal
;
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL
);
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos
- (unsigned char *)rthdr
) & 1)
199 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
200 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
201 *(__le16
*)pos
|= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS
);
206 * This function copies a received frame to all monitor interfaces and
207 * returns a cleaned-up SKB that no longer includes the FCS nor the
208 * radiotap header the driver might have added.
210 static struct sk_buff
*
211 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
212 struct ieee80211_rx_status
*status
,
213 struct ieee80211_rate
*rate
)
215 struct ieee80211_sub_if_data
*sdata
;
216 int needed_headroom
= 0;
217 struct sk_buff
*skb
, *skb2
;
218 struct net_device
*prev_dev
= NULL
;
219 int present_fcs_len
= 0;
223 * First, we may need to make a copy of the skb because
224 * (1) we need to modify it for radiotap (if not present), and
225 * (2) the other RX handlers will modify the skb we got.
227 * We don't need to, of course, if we aren't going to return
228 * the SKB because it has a bad FCS/PLCP checksum.
230 if (status
->flag
& RX_FLAG_RADIOTAP
)
231 rtap_len
= ieee80211_get_radiotap_len(origskb
->data
);
233 /* room for the radiotap header based on driver features */
234 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
236 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
237 present_fcs_len
= FCS_LEN
;
239 if (!local
->monitors
) {
240 if (should_drop_frame(status
, origskb
, present_fcs_len
,
242 dev_kfree_skb(origskb
);
246 return remove_monitor_info(local
, origskb
, rtap_len
);
249 if (should_drop_frame(status
, origskb
, present_fcs_len
, rtap_len
)) {
250 /* only need to expand headroom if necessary */
255 * This shouldn't trigger often because most devices have an
256 * RX header they pull before we get here, and that should
257 * be big enough for our radiotap information. We should
258 * probably export the length to drivers so that we can have
259 * them allocate enough headroom to start with.
261 if (skb_headroom(skb
) < needed_headroom
&&
262 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
268 * Need to make a copy and possibly remove radiotap header
269 * and FCS from the original.
271 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
273 origskb
= remove_monitor_info(local
, origskb
, rtap_len
);
279 /* if necessary, prepend radiotap information */
280 if (!(status
->flag
& RX_FLAG_RADIOTAP
))
281 ieee80211_add_rx_radiotap_header(local
, skb
, status
, rate
,
284 skb_reset_mac_header(skb
);
285 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
286 skb
->pkt_type
= PACKET_OTHERHOST
;
287 skb
->protocol
= htons(ETH_P_802_2
);
289 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
290 if (!netif_running(sdata
->dev
))
293 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_MNTR
)
296 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
300 skb2
= skb_clone(skb
, GFP_ATOMIC
);
302 skb2
->dev
= prev_dev
;
307 prev_dev
= sdata
->dev
;
308 sdata
->dev
->stats
.rx_packets
++;
309 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
322 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
324 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
327 /* does the frame have a qos control field? */
328 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
329 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
330 /* frame has qos control */
331 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
332 if (*qc
& IEEE80211_QOS_CONTROL_A_MSDU_PRESENT
)
333 rx
->flags
|= IEEE80211_RX_AMSDU
;
335 rx
->flags
&= ~IEEE80211_RX_AMSDU
;
338 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
340 * Sequence numbers for management frames, QoS data
341 * frames with a broadcast/multicast address in the
342 * Address 1 field, and all non-QoS data frames sent
343 * by QoS STAs are assigned using an additional single
344 * modulo-4096 counter, [...]
346 * We also use that counter for non-QoS STAs.
348 tid
= NUM_RX_DATA_QUEUES
- 1;
352 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
353 * For now, set skb->priority to 0 for other cases. */
354 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
357 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data
*rx
)
359 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
360 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
363 if (!ieee80211_is_data_present(hdr
->frame_control
))
367 * Drivers are required to align the payload data in a way that
368 * guarantees that the contained IP header is aligned to a four-
369 * byte boundary. In the case of regular frames, this simply means
370 * aligning the payload to a four-byte boundary (because either
371 * the IP header is directly contained, or IV/RFC1042 headers that
372 * have a length divisible by four are in front of it.
374 * With A-MSDU frames, however, the payload data address must
375 * yield two modulo four because there are 14-byte 802.3 headers
376 * within the A-MSDU frames that push the IP header further back
377 * to a multiple of four again. Thankfully, the specs were sane
378 * enough this time around to require padding each A-MSDU subframe
379 * to a length that is a multiple of four.
381 * Padding like atheros hardware adds which is inbetween the 802.11
382 * header and the payload is not supported, the driver is required
383 * to move the 802.11 header further back in that case.
385 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
386 if (rx
->flags
& IEEE80211_RX_AMSDU
)
388 WARN_ON_ONCE(((unsigned long)(rx
->skb
->data
+ hdrlen
)) & 3);
395 static ieee80211_rx_result debug_noinline
396 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
398 struct ieee80211_local
*local
= rx
->local
;
399 struct sk_buff
*skb
= rx
->skb
;
401 if (unlikely(local
->sta_hw_scanning
))
402 return ieee80211_sta_rx_scan(rx
->dev
, skb
, rx
->status
);
404 if (unlikely(local
->sta_sw_scanning
)) {
405 /* drop all the other packets during a software scan anyway */
406 if (ieee80211_sta_rx_scan(rx
->dev
, skb
, rx
->status
)
412 if (unlikely(rx
->flags
& IEEE80211_RX_IN_SCAN
)) {
413 /* scanning finished during invoking of handlers */
414 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
415 return RX_DROP_UNUSABLE
;
421 static ieee80211_rx_result
422 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
424 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
425 unsigned int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
427 if (ieee80211_is_data(hdr
->frame_control
)) {
428 if (!ieee80211_has_a4(hdr
->frame_control
))
429 return RX_DROP_MONITOR
;
430 if (memcmp(hdr
->addr4
, rx
->dev
->dev_addr
, ETH_ALEN
) == 0)
431 return RX_DROP_MONITOR
;
434 /* If there is not an established peer link and this is not a peer link
435 * establisment frame, beacon or probe, drop the frame.
438 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != PLINK_ESTAB
) {
439 struct ieee80211_mgmt
*mgmt
;
441 if (!ieee80211_is_mgmt(hdr
->frame_control
))
442 return RX_DROP_MONITOR
;
444 if (ieee80211_is_action(hdr
->frame_control
)) {
445 mgmt
= (struct ieee80211_mgmt
*)hdr
;
446 if (mgmt
->u
.action
.category
!= PLINK_CATEGORY
)
447 return RX_DROP_MONITOR
;
451 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
452 ieee80211_is_probe_resp(hdr
->frame_control
) ||
453 ieee80211_is_beacon(hdr
->frame_control
))
456 return RX_DROP_MONITOR
;
460 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
462 if (ieee80211_is_data(hdr
->frame_control
) &&
463 is_multicast_ether_addr(hdr
->addr1
) &&
464 mesh_rmc_check(hdr
->addr4
, msh_h_get(hdr
, hdrlen
), rx
->dev
))
465 return RX_DROP_MONITOR
;
472 static ieee80211_rx_result debug_noinline
473 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
475 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
477 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
478 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
479 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
480 rx
->sta
->last_seq_ctrl
[rx
->queue
] ==
482 if (rx
->flags
& IEEE80211_RX_RA_MATCH
) {
483 rx
->local
->dot11FrameDuplicateCount
++;
484 rx
->sta
->num_duplicates
++;
486 return RX_DROP_MONITOR
;
488 rx
->sta
->last_seq_ctrl
[rx
->queue
] = hdr
->seq_ctrl
;
491 if (unlikely(rx
->skb
->len
< 16)) {
492 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
493 return RX_DROP_MONITOR
;
496 /* Drop disallowed frame classes based on STA auth/assoc state;
497 * IEEE 802.11, Chap 5.5.
499 * 80211.o does filtering only based on association state, i.e., it
500 * drops Class 3 frames from not associated stations. hostapd sends
501 * deauth/disassoc frames when needed. In addition, hostapd is
502 * responsible for filtering on both auth and assoc states.
505 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
506 return ieee80211_rx_mesh_check(rx
);
508 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
509 ieee80211_is_pspoll(hdr
->frame_control
)) &&
510 rx
->sdata
->vif
.type
!= IEEE80211_IF_TYPE_IBSS
&&
511 (!rx
->sta
|| !test_sta_flags(rx
->sta
, WLAN_STA_ASSOC
)))) {
512 if ((!ieee80211_has_fromds(hdr
->frame_control
) &&
513 !ieee80211_has_tods(hdr
->frame_control
) &&
514 ieee80211_is_data(hdr
->frame_control
)) ||
515 !(rx
->flags
& IEEE80211_RX_RA_MATCH
)) {
516 /* Drop IBSS frames and frames for other hosts
518 return RX_DROP_MONITOR
;
521 return RX_DROP_MONITOR
;
528 static ieee80211_rx_result debug_noinline
529 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
531 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
534 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
535 struct ieee80211_key
*stakey
= NULL
;
540 * There are three types of keys:
542 * - PTK (pairwise keys)
543 * - STK (station-to-station pairwise keys)
545 * When selecting a key, we have to distinguish between multicast
546 * (including broadcast) and unicast frames, the latter can only
547 * use PTKs and STKs while the former always use GTKs. Unless, of
548 * course, actual WEP keys ("pre-RSNA") are used, then unicast
549 * frames can also use key indizes like GTKs. Hence, if we don't
550 * have a PTK/STK we check the key index for a WEP key.
552 * Note that in a regular BSS, multicast frames are sent by the
553 * AP only, associated stations unicast the frame to the AP first
554 * which then multicasts it on their behalf.
556 * There is also a slight problem in IBSS mode: GTKs are negotiated
557 * with each station, that is something we don't currently handle.
558 * The spec seems to expect that one negotiates the same key with
559 * every station but there's no such requirement; VLANs could be
563 if (!ieee80211_has_protected(hdr
->frame_control
))
567 * No point in finding a key and decrypting if the frame is neither
568 * addressed to us nor a multicast frame.
570 if (!(rx
->flags
& IEEE80211_RX_RA_MATCH
))
574 stakey
= rcu_dereference(rx
->sta
->key
);
576 if (!is_multicast_ether_addr(hdr
->addr1
) && stakey
) {
580 * The device doesn't give us the IV so we won't be
581 * able to look up the key. That's ok though, we
582 * don't need to decrypt the frame, we just won't
583 * be able to keep statistics accurate.
584 * Except for key threshold notifications, should
585 * we somehow allow the driver to tell us which key
586 * the hardware used if this flag is set?
588 if ((rx
->status
->flag
& RX_FLAG_DECRYPTED
) &&
589 (rx
->status
->flag
& RX_FLAG_IV_STRIPPED
))
592 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
594 if (rx
->skb
->len
< 8 + hdrlen
)
595 return RX_DROP_UNUSABLE
; /* TODO: count this? */
598 * no need to call ieee80211_wep_get_keyidx,
599 * it verifies a bunch of things we've done already
601 keyidx
= rx
->skb
->data
[hdrlen
+ 3] >> 6;
603 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
606 * RSNA-protected unicast frames should always be sent with
607 * pairwise or station-to-station keys, but for WEP we allow
608 * using a key index as well.
610 if (rx
->key
&& rx
->key
->conf
.alg
!= ALG_WEP
&&
611 !is_multicast_ether_addr(hdr
->addr1
))
616 rx
->key
->tx_rx_count
++;
617 /* TODO: add threshold stuff again */
619 return RX_DROP_MONITOR
;
622 /* Check for weak IVs if possible */
623 if (rx
->sta
&& rx
->key
->conf
.alg
== ALG_WEP
&&
624 ieee80211_is_data(hdr
->frame_control
) &&
625 (!(rx
->status
->flag
& RX_FLAG_IV_STRIPPED
) ||
626 !(rx
->status
->flag
& RX_FLAG_DECRYPTED
)) &&
627 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
628 rx
->sta
->wep_weak_iv_count
++;
630 switch (rx
->key
->conf
.alg
) {
632 result
= ieee80211_crypto_wep_decrypt(rx
);
635 result
= ieee80211_crypto_tkip_decrypt(rx
);
638 result
= ieee80211_crypto_ccmp_decrypt(rx
);
642 /* either the frame has been decrypted or will be dropped */
643 rx
->status
->flag
|= RX_FLAG_DECRYPTED
;
648 static void ap_sta_ps_start(struct net_device
*dev
, struct sta_info
*sta
)
650 struct ieee80211_sub_if_data
*sdata
;
651 DECLARE_MAC_BUF(mac
);
655 atomic_inc(&sdata
->bss
->num_sta_ps
);
656 set_and_clear_sta_flags(sta
, WLAN_STA_PS
, WLAN_STA_PSPOLL
);
657 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
658 printk(KERN_DEBUG
"%s: STA %s aid %d enters power save mode\n",
659 dev
->name
, print_mac(mac
, sta
->addr
), sta
->aid
);
660 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
663 static int ap_sta_ps_end(struct net_device
*dev
, struct sta_info
*sta
)
665 struct ieee80211_local
*local
= wdev_priv(dev
->ieee80211_ptr
);
668 struct ieee80211_sub_if_data
*sdata
;
669 struct ieee80211_tx_info
*info
;
670 DECLARE_MAC_BUF(mac
);
674 atomic_dec(&sdata
->bss
->num_sta_ps
);
676 clear_sta_flags(sta
, WLAN_STA_PS
| WLAN_STA_PSPOLL
);
678 if (!skb_queue_empty(&sta
->ps_tx_buf
))
679 sta_info_clear_tim_bit(sta
);
681 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
682 printk(KERN_DEBUG
"%s: STA %s aid %d exits power save mode\n",
683 dev
->name
, print_mac(mac
, sta
->addr
), sta
->aid
);
684 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
686 /* Send all buffered frames to the station */
687 while ((skb
= skb_dequeue(&sta
->tx_filtered
)) != NULL
) {
688 info
= IEEE80211_SKB_CB(skb
);
690 info
->flags
|= IEEE80211_TX_CTL_REQUEUE
;
693 while ((skb
= skb_dequeue(&sta
->ps_tx_buf
)) != NULL
) {
694 info
= IEEE80211_SKB_CB(skb
);
695 local
->total_ps_buffered
--;
697 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
698 printk(KERN_DEBUG
"%s: STA %s aid %d send PS frame "
699 "since STA not sleeping anymore\n", dev
->name
,
700 print_mac(mac
, sta
->addr
), sta
->aid
);
701 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
702 info
->flags
|= IEEE80211_TX_CTL_REQUEUE
;
709 static ieee80211_rx_result debug_noinline
710 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
712 struct sta_info
*sta
= rx
->sta
;
713 struct net_device
*dev
= rx
->dev
;
714 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
719 /* Update last_rx only for IBSS packets which are for the current
720 * BSSID to avoid keeping the current IBSS network alive in cases where
721 * other STAs are using different BSSID. */
722 if (rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_IBSS
) {
723 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
724 IEEE80211_IF_TYPE_IBSS
);
725 if (compare_ether_addr(bssid
, rx
->sdata
->u
.sta
.bssid
) == 0)
726 sta
->last_rx
= jiffies
;
728 if (!is_multicast_ether_addr(hdr
->addr1
) ||
729 rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_STA
) {
730 /* Update last_rx only for unicast frames in order to prevent
731 * the Probe Request frames (the only broadcast frames from a
732 * STA in infrastructure mode) from keeping a connection alive.
733 * Mesh beacons will update last_rx when if they are found to
734 * match the current local configuration when processed.
736 sta
->last_rx
= jiffies
;
739 if (!(rx
->flags
& IEEE80211_RX_RA_MATCH
))
743 sta
->rx_bytes
+= rx
->skb
->len
;
744 sta
->last_signal
= rx
->status
->signal
;
745 sta
->last_qual
= rx
->status
->qual
;
746 sta
->last_noise
= rx
->status
->noise
;
748 if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
749 (rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_AP
||
750 rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_VLAN
)) {
751 /* Change STA power saving mode only in the end of a frame
752 * exchange sequence */
753 if (test_sta_flags(sta
, WLAN_STA_PS
) &&
754 !ieee80211_has_pm(hdr
->frame_control
))
755 rx
->sent_ps_buffered
+= ap_sta_ps_end(dev
, sta
);
756 else if (!test_sta_flags(sta
, WLAN_STA_PS
) &&
757 ieee80211_has_pm(hdr
->frame_control
))
758 ap_sta_ps_start(dev
, sta
);
761 /* Drop data::nullfunc frames silently, since they are used only to
762 * control station power saving mode. */
763 if (ieee80211_is_nullfunc(hdr
->frame_control
)) {
764 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
765 /* Update counter and free packet here to avoid counting this
766 * as a dropped packed. */
768 dev_kfree_skb(rx
->skb
);
773 } /* ieee80211_rx_h_sta_process */
775 static inline struct ieee80211_fragment_entry
*
776 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
777 unsigned int frag
, unsigned int seq
, int rx_queue
,
778 struct sk_buff
**skb
)
780 struct ieee80211_fragment_entry
*entry
;
783 idx
= sdata
->fragment_next
;
784 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
785 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
786 sdata
->fragment_next
= 0;
788 if (!skb_queue_empty(&entry
->skb_list
)) {
789 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
790 struct ieee80211_hdr
*hdr
=
791 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
792 DECLARE_MAC_BUF(mac
);
793 DECLARE_MAC_BUF(mac2
);
794 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
795 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
796 "addr1=%s addr2=%s\n",
797 sdata
->dev
->name
, idx
,
798 jiffies
- entry
->first_frag_time
, entry
->seq
,
799 entry
->last_frag
, print_mac(mac
, hdr
->addr1
),
800 print_mac(mac2
, hdr
->addr2
));
802 __skb_queue_purge(&entry
->skb_list
);
805 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
807 entry
->first_frag_time
= jiffies
;
809 entry
->rx_queue
= rx_queue
;
810 entry
->last_frag
= frag
;
812 entry
->extra_len
= 0;
817 static inline struct ieee80211_fragment_entry
*
818 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
819 u16 fc
, unsigned int frag
, unsigned int seq
,
820 int rx_queue
, struct ieee80211_hdr
*hdr
)
822 struct ieee80211_fragment_entry
*entry
;
825 idx
= sdata
->fragment_next
;
826 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
827 struct ieee80211_hdr
*f_hdr
;
832 idx
= IEEE80211_FRAGMENT_MAX
- 1;
834 entry
= &sdata
->fragments
[idx
];
835 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
836 entry
->rx_queue
!= rx_queue
||
837 entry
->last_frag
+ 1 != frag
)
840 f_hdr
= (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
841 f_fc
= le16_to_cpu(f_hdr
->frame_control
);
843 if ((fc
& IEEE80211_FCTL_FTYPE
) != (f_fc
& IEEE80211_FCTL_FTYPE
) ||
844 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
845 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
848 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
849 __skb_queue_purge(&entry
->skb_list
);
858 static ieee80211_rx_result debug_noinline
859 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
861 struct ieee80211_hdr
*hdr
;
863 unsigned int frag
, seq
;
864 struct ieee80211_fragment_entry
*entry
;
866 DECLARE_MAC_BUF(mac
);
868 hdr
= (struct ieee80211_hdr
*) rx
->skb
->data
;
869 sc
= le16_to_cpu(hdr
->seq_ctrl
);
870 frag
= sc
& IEEE80211_SCTL_FRAG
;
872 if (likely((!(rx
->fc
& IEEE80211_FCTL_MOREFRAGS
) && frag
== 0) ||
873 (rx
->skb
)->len
< 24 ||
874 is_multicast_ether_addr(hdr
->addr1
))) {
878 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
880 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
883 /* This is the first fragment of a new frame. */
884 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
885 rx
->queue
, &(rx
->skb
));
886 if (rx
->key
&& rx
->key
->conf
.alg
== ALG_CCMP
&&
887 (rx
->fc
& IEEE80211_FCTL_PROTECTED
)) {
888 /* Store CCMP PN so that we can verify that the next
889 * fragment has a sequential PN value. */
891 memcpy(entry
->last_pn
,
892 rx
->key
->u
.ccmp
.rx_pn
[rx
->queue
],
898 /* This is a fragment for a frame that should already be pending in
899 * fragment cache. Add this fragment to the end of the pending entry.
901 entry
= ieee80211_reassemble_find(rx
->sdata
, rx
->fc
, frag
, seq
,
904 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
905 return RX_DROP_MONITOR
;
908 /* Verify that MPDUs within one MSDU have sequential PN values.
909 * (IEEE 802.11i, 8.3.3.4.5) */
912 u8 pn
[CCMP_PN_LEN
], *rpn
;
913 if (!rx
->key
|| rx
->key
->conf
.alg
!= ALG_CCMP
)
914 return RX_DROP_UNUSABLE
;
915 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
916 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
921 rpn
= rx
->key
->u
.ccmp
.rx_pn
[rx
->queue
];
922 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
923 return RX_DROP_UNUSABLE
;
924 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
927 skb_pull(rx
->skb
, ieee80211_get_hdrlen(rx
->fc
));
928 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
929 entry
->last_frag
= frag
;
930 entry
->extra_len
+= rx
->skb
->len
;
931 if (rx
->fc
& IEEE80211_FCTL_MOREFRAGS
) {
936 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
937 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
938 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
939 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
941 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
942 __skb_queue_purge(&entry
->skb_list
);
943 return RX_DROP_UNUSABLE
;
946 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
947 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
951 /* Complete frame has been reassembled - process it now */
952 rx
->flags
|= IEEE80211_RX_FRAGMENTED
;
956 rx
->sta
->rx_packets
++;
957 if (is_multicast_ether_addr(hdr
->addr1
))
958 rx
->local
->dot11MulticastReceivedFrameCount
++;
960 ieee80211_led_rx(rx
->local
);
964 static ieee80211_rx_result debug_noinline
965 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data
*rx
)
967 struct ieee80211_sub_if_data
*sdata
= IEEE80211_DEV_TO_SUB_IF(rx
->dev
);
970 DECLARE_MAC_BUF(mac
);
972 if (likely(!rx
->sta
||
973 (rx
->fc
& IEEE80211_FCTL_FTYPE
) != IEEE80211_FTYPE_CTL
||
974 (rx
->fc
& IEEE80211_FCTL_STYPE
) != IEEE80211_STYPE_PSPOLL
||
975 !(rx
->flags
& IEEE80211_RX_RA_MATCH
)))
978 if ((sdata
->vif
.type
!= IEEE80211_IF_TYPE_AP
) &&
979 (sdata
->vif
.type
!= IEEE80211_IF_TYPE_VLAN
))
980 return RX_DROP_UNUSABLE
;
982 skb
= skb_dequeue(&rx
->sta
->tx_filtered
);
984 skb
= skb_dequeue(&rx
->sta
->ps_tx_buf
);
986 rx
->local
->total_ps_buffered
--;
988 no_pending_pkts
= skb_queue_empty(&rx
->sta
->tx_filtered
) &&
989 skb_queue_empty(&rx
->sta
->ps_tx_buf
);
992 struct ieee80211_hdr
*hdr
=
993 (struct ieee80211_hdr
*) skb
->data
;
996 * Tell TX path to send one frame even though the STA may
997 * still remain is PS mode after this frame exchange.
999 set_sta_flags(rx
->sta
, WLAN_STA_PSPOLL
);
1001 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1002 printk(KERN_DEBUG
"STA %s aid %d: PS Poll (entries after %d)\n",
1003 print_mac(mac
, rx
->sta
->addr
), rx
->sta
->aid
,
1004 skb_queue_len(&rx
->sta
->ps_tx_buf
));
1005 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1007 /* Use MoreData flag to indicate whether there are more
1008 * buffered frames for this STA */
1009 if (no_pending_pkts
)
1010 hdr
->frame_control
&= cpu_to_le16(~IEEE80211_FCTL_MOREDATA
);
1012 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_MOREDATA
);
1014 dev_queue_xmit(skb
);
1016 if (no_pending_pkts
)
1017 sta_info_clear_tim_bit(rx
->sta
);
1018 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1019 } else if (!rx
->sent_ps_buffered
) {
1021 * FIXME: This can be the result of a race condition between
1022 * us expiring a frame and the station polling for it.
1023 * Should we send it a null-func frame indicating we
1024 * have nothing buffered for it?
1026 printk(KERN_DEBUG
"%s: STA %s sent PS Poll even "
1027 "though there are no buffered frames for it\n",
1028 rx
->dev
->name
, print_mac(mac
, rx
->sta
->addr
));
1029 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1032 /* Free PS Poll skb here instead of returning RX_DROP that would
1033 * count as an dropped frame. */
1034 dev_kfree_skb(rx
->skb
);
1039 static ieee80211_rx_result debug_noinline
1040 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data
*rx
)
1042 u8
*data
= rx
->skb
->data
;
1043 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)data
;
1045 if (!ieee80211_is_data_qos(hdr
->frame_control
))
1048 /* remove the qos control field, update frame type and meta-data */
1049 memmove(data
+ IEEE80211_QOS_CTL_LEN
, data
,
1050 ieee80211_hdrlen(hdr
->frame_control
) - IEEE80211_QOS_CTL_LEN
);
1051 hdr
= (struct ieee80211_hdr
*)skb_pull(rx
->skb
, IEEE80211_QOS_CTL_LEN
);
1052 /* change frame type to non QOS */
1053 rx
->fc
&= ~IEEE80211_STYPE_QOS_DATA
;
1054 hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
1060 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1062 if (unlikely(!rx
->sta
||
1063 !test_sta_flags(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1070 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
)
1073 * Pass through unencrypted frames if the hardware has
1074 * decrypted them already.
1076 if (rx
->status
->flag
& RX_FLAG_DECRYPTED
)
1079 /* Drop unencrypted frames if key is set. */
1080 if (unlikely(!(rx
->fc
& IEEE80211_FCTL_PROTECTED
) &&
1081 (rx
->fc
& IEEE80211_FCTL_FTYPE
) == IEEE80211_FTYPE_DATA
&&
1082 (rx
->fc
& IEEE80211_FCTL_STYPE
) != IEEE80211_STYPE_NULLFUNC
&&
1083 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1090 ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
)
1092 struct net_device
*dev
= rx
->dev
;
1093 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) rx
->skb
->data
;
1094 u16 fc
, hdrlen
, ethertype
;
1097 u8 src
[ETH_ALEN
] __aligned(2);
1098 struct sk_buff
*skb
= rx
->skb
;
1099 struct ieee80211_sub_if_data
*sdata
= IEEE80211_DEV_TO_SUB_IF(dev
);
1100 DECLARE_MAC_BUF(mac
);
1101 DECLARE_MAC_BUF(mac2
);
1102 DECLARE_MAC_BUF(mac3
);
1103 DECLARE_MAC_BUF(mac4
);
1107 if (unlikely(!WLAN_FC_DATA_PRESENT(fc
)))
1110 hdrlen
= ieee80211_get_hdrlen(fc
);
1112 if (ieee80211_vif_is_mesh(&sdata
->vif
))
1113 hdrlen
+= ieee80211_get_mesh_hdrlen(
1114 (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
));
1116 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1118 * IEEE 802.11 address fields:
1119 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1120 * 0 0 DA SA BSSID n/a
1121 * 0 1 DA BSSID SA n/a
1122 * 1 0 BSSID SA DA n/a
1126 switch (fc
& (IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
)) {
1127 case IEEE80211_FCTL_TODS
:
1129 memcpy(dst
, hdr
->addr3
, ETH_ALEN
);
1130 memcpy(src
, hdr
->addr2
, ETH_ALEN
);
1132 if (unlikely(sdata
->vif
.type
!= IEEE80211_IF_TYPE_AP
&&
1133 sdata
->vif
.type
!= IEEE80211_IF_TYPE_VLAN
))
1136 case (IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
):
1138 memcpy(dst
, hdr
->addr3
, ETH_ALEN
);
1139 memcpy(src
, hdr
->addr4
, ETH_ALEN
);
1141 if (unlikely(sdata
->vif
.type
!= IEEE80211_IF_TYPE_WDS
&&
1142 sdata
->vif
.type
!= IEEE80211_IF_TYPE_MESH_POINT
))
1145 case IEEE80211_FCTL_FROMDS
:
1147 memcpy(dst
, hdr
->addr1
, ETH_ALEN
);
1148 memcpy(src
, hdr
->addr3
, ETH_ALEN
);
1150 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_STA
||
1151 (is_multicast_ether_addr(dst
) &&
1152 !compare_ether_addr(src
, dev
->dev_addr
)))
1157 memcpy(dst
, hdr
->addr1
, ETH_ALEN
);
1158 memcpy(src
, hdr
->addr2
, ETH_ALEN
);
1160 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_IBSS
)
1165 if (unlikely(skb
->len
- hdrlen
< 8))
1168 payload
= skb
->data
+ hdrlen
;
1169 ethertype
= (payload
[6] << 8) | payload
[7];
1171 if (likely((compare_ether_addr(payload
, rfc1042_header
) == 0 &&
1172 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
1173 compare_ether_addr(payload
, bridge_tunnel_header
) == 0)) {
1174 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1175 * replace EtherType */
1176 skb_pull(skb
, hdrlen
+ 6);
1177 memcpy(skb_push(skb
, ETH_ALEN
), src
, ETH_ALEN
);
1178 memcpy(skb_push(skb
, ETH_ALEN
), dst
, ETH_ALEN
);
1180 struct ethhdr
*ehdr
;
1183 skb_pull(skb
, hdrlen
);
1184 len
= htons(skb
->len
);
1185 ehdr
= (struct ethhdr
*) skb_push(skb
, sizeof(struct ethhdr
));
1186 memcpy(ehdr
->h_dest
, dst
, ETH_ALEN
);
1187 memcpy(ehdr
->h_source
, src
, ETH_ALEN
);
1188 ehdr
->h_proto
= len
;
1194 * requires that rx->skb is a frame with ethernet header
1196 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
)
1198 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1199 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1200 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1203 * Allow EAPOL frames to us/the PAE group address regardless
1204 * of whether the frame was encrypted or not.
1206 if (ehdr
->h_proto
== htons(ETH_P_PAE
) &&
1207 (compare_ether_addr(ehdr
->h_dest
, rx
->dev
->dev_addr
) == 0 ||
1208 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1211 if (ieee80211_802_1x_port_control(rx
) ||
1212 ieee80211_drop_unencrypted(rx
))
1219 * requires that rx->skb is a frame with ethernet header
1222 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1224 struct net_device
*dev
= rx
->dev
;
1225 struct ieee80211_local
*local
= rx
->local
;
1226 struct sk_buff
*skb
, *xmit_skb
;
1227 struct ieee80211_sub_if_data
*sdata
= IEEE80211_DEV_TO_SUB_IF(dev
);
1228 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1229 struct sta_info
*dsta
;
1234 if (local
->bridge_packets
&& (sdata
->vif
.type
== IEEE80211_IF_TYPE_AP
||
1235 sdata
->vif
.type
== IEEE80211_IF_TYPE_VLAN
) &&
1236 (rx
->flags
& IEEE80211_RX_RA_MATCH
)) {
1237 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1239 * send multicast frames both to higher layers in
1240 * local net stack and back to the wireless medium
1242 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1243 if (!xmit_skb
&& net_ratelimit())
1244 printk(KERN_DEBUG
"%s: failed to clone "
1245 "multicast frame\n", dev
->name
);
1247 dsta
= sta_info_get(local
, skb
->data
);
1248 if (dsta
&& dsta
->sdata
->dev
== dev
) {
1250 * The destination station is associated to
1251 * this AP (in this VLAN), so send the frame
1252 * directly to it and do not pass it to local
1262 /* deliver to local stack */
1263 skb
->protocol
= eth_type_trans(skb
, dev
);
1264 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1269 /* send to wireless media */
1270 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1271 skb_reset_network_header(xmit_skb
);
1272 skb_reset_mac_header(xmit_skb
);
1273 dev_queue_xmit(xmit_skb
);
1277 static ieee80211_rx_result debug_noinline
1278 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1280 struct net_device
*dev
= rx
->dev
;
1281 struct ieee80211_local
*local
= rx
->local
;
1284 struct sk_buff
*skb
= rx
->skb
, *frame
= NULL
;
1285 const struct ethhdr
*eth
;
1289 DECLARE_MAC_BUF(mac
);
1292 if (unlikely((fc
& IEEE80211_FCTL_FTYPE
) != IEEE80211_FTYPE_DATA
))
1295 if (unlikely(!WLAN_FC_DATA_PRESENT(fc
)))
1296 return RX_DROP_MONITOR
;
1298 if (!(rx
->flags
& IEEE80211_RX_AMSDU
))
1301 err
= ieee80211_data_to_8023(rx
);
1303 return RX_DROP_UNUSABLE
;
1307 dev
->stats
.rx_packets
++;
1308 dev
->stats
.rx_bytes
+= skb
->len
;
1310 /* skip the wrapping header */
1311 eth
= (struct ethhdr
*) skb_pull(skb
, sizeof(struct ethhdr
));
1313 return RX_DROP_UNUSABLE
;
1315 while (skb
!= frame
) {
1317 __be16 len
= eth
->h_proto
;
1318 unsigned int subframe_len
= sizeof(struct ethhdr
) + ntohs(len
);
1320 remaining
= skb
->len
;
1321 memcpy(dst
, eth
->h_dest
, ETH_ALEN
);
1322 memcpy(src
, eth
->h_source
, ETH_ALEN
);
1324 padding
= ((4 - subframe_len
) & 0x3);
1325 /* the last MSDU has no padding */
1326 if (subframe_len
> remaining
)
1327 return RX_DROP_UNUSABLE
;
1329 skb_pull(skb
, sizeof(struct ethhdr
));
1330 /* if last subframe reuse skb */
1331 if (remaining
<= subframe_len
+ padding
)
1334 frame
= dev_alloc_skb(local
->hw
.extra_tx_headroom
+
1338 return RX_DROP_UNUSABLE
;
1340 skb_reserve(frame
, local
->hw
.extra_tx_headroom
+
1341 sizeof(struct ethhdr
));
1342 memcpy(skb_put(frame
, ntohs(len
)), skb
->data
,
1345 eth
= (struct ethhdr
*) skb_pull(skb
, ntohs(len
) +
1348 dev_kfree_skb(frame
);
1349 return RX_DROP_UNUSABLE
;
1353 skb_reset_network_header(frame
);
1355 frame
->priority
= skb
->priority
;
1358 payload
= frame
->data
;
1359 ethertype
= (payload
[6] << 8) | payload
[7];
1361 if (likely((compare_ether_addr(payload
, rfc1042_header
) == 0 &&
1362 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
1363 compare_ether_addr(payload
,
1364 bridge_tunnel_header
) == 0)) {
1365 /* remove RFC1042 or Bridge-Tunnel
1366 * encapsulation and replace EtherType */
1368 memcpy(skb_push(frame
, ETH_ALEN
), src
, ETH_ALEN
);
1369 memcpy(skb_push(frame
, ETH_ALEN
), dst
, ETH_ALEN
);
1371 memcpy(skb_push(frame
, sizeof(__be16
)),
1372 &len
, sizeof(__be16
));
1373 memcpy(skb_push(frame
, ETH_ALEN
), src
, ETH_ALEN
);
1374 memcpy(skb_push(frame
, ETH_ALEN
), dst
, ETH_ALEN
);
1377 if (!ieee80211_frame_allowed(rx
)) {
1378 if (skb
== frame
) /* last frame */
1379 return RX_DROP_UNUSABLE
;
1380 dev_kfree_skb(frame
);
1384 ieee80211_deliver_skb(rx
);
1390 static ieee80211_rx_result debug_noinline
1391 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
1393 struct ieee80211_hdr
*hdr
;
1394 struct ieee80211s_hdr
*mesh_hdr
;
1395 unsigned int hdrlen
;
1396 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
1398 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1399 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1400 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
1402 if (!ieee80211_is_data(hdr
->frame_control
))
1407 return RX_DROP_MONITOR
;
1409 if (compare_ether_addr(rx
->dev
->dev_addr
, hdr
->addr3
) == 0)
1414 if (rx
->flags
& IEEE80211_RX_RA_MATCH
) {
1416 IEEE80211_IFSTA_MESH_CTR_INC(&rx
->sdata
->u
.sta
,
1417 dropped_frames_ttl
);
1419 struct ieee80211_hdr
*fwd_hdr
;
1420 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
1422 if (!fwd_skb
&& net_ratelimit())
1423 printk(KERN_DEBUG
"%s: failed to clone mesh frame\n",
1426 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
1428 * Save TA to addr1 to send TA a path error if a
1429 * suitable next hop is not found
1431 memcpy(fwd_hdr
->addr1
, fwd_hdr
->addr2
, ETH_ALEN
);
1432 memcpy(fwd_hdr
->addr2
, rx
->dev
->dev_addr
, ETH_ALEN
);
1433 fwd_skb
->dev
= rx
->local
->mdev
;
1434 fwd_skb
->iif
= rx
->dev
->ifindex
;
1435 dev_queue_xmit(fwd_skb
);
1439 if (is_multicast_ether_addr(hdr
->addr3
) ||
1440 rx
->dev
->flags
& IFF_PROMISC
)
1443 return RX_DROP_MONITOR
;
1447 static ieee80211_rx_result debug_noinline
1448 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
1450 struct net_device
*dev
= rx
->dev
;
1455 if (unlikely((fc
& IEEE80211_FCTL_FTYPE
) != IEEE80211_FTYPE_DATA
))
1458 if (unlikely(!WLAN_FC_DATA_PRESENT(fc
)))
1459 return RX_DROP_MONITOR
;
1461 err
= ieee80211_data_to_8023(rx
);
1463 return RX_DROP_UNUSABLE
;
1465 if (!ieee80211_frame_allowed(rx
))
1466 return RX_DROP_MONITOR
;
1470 dev
->stats
.rx_packets
++;
1471 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1473 ieee80211_deliver_skb(rx
);
1478 static ieee80211_rx_result debug_noinline
1479 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
)
1481 struct ieee80211_local
*local
= rx
->local
;
1482 struct ieee80211_hw
*hw
= &local
->hw
;
1483 struct sk_buff
*skb
= rx
->skb
;
1484 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
1485 struct tid_ampdu_rx
*tid_agg_rx
;
1489 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
1492 if (ieee80211_is_back_req(bar
->frame_control
)) {
1495 tid
= le16_to_cpu(bar
->control
) >> 12;
1496 if (rx
->sta
->ampdu_mlme
.tid_state_rx
[tid
]
1497 != HT_AGG_STATE_OPERATIONAL
)
1499 tid_agg_rx
= rx
->sta
->ampdu_mlme
.tid_rx
[tid
];
1501 start_seq_num
= le16_to_cpu(bar
->start_seq_num
) >> 4;
1503 /* reset session timer */
1504 if (tid_agg_rx
->timeout
) {
1505 unsigned long expires
=
1506 jiffies
+ (tid_agg_rx
->timeout
/ 1000) * HZ
;
1507 mod_timer(&tid_agg_rx
->session_timer
, expires
);
1510 /* manage reordering buffer according to requested */
1511 /* sequence number */
1513 ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, NULL
,
1516 return RX_DROP_UNUSABLE
;
1522 static ieee80211_rx_result debug_noinline
1523 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
1525 struct ieee80211_sub_if_data
*sdata
;
1527 if (!(rx
->flags
& IEEE80211_RX_RA_MATCH
))
1528 return RX_DROP_MONITOR
;
1530 sdata
= IEEE80211_DEV_TO_SUB_IF(rx
->dev
);
1531 if ((sdata
->vif
.type
== IEEE80211_IF_TYPE_STA
||
1532 sdata
->vif
.type
== IEEE80211_IF_TYPE_IBSS
||
1533 sdata
->vif
.type
== IEEE80211_IF_TYPE_MESH_POINT
) &&
1534 !(sdata
->flags
& IEEE80211_SDATA_USERSPACE_MLME
))
1535 ieee80211_sta_rx_mgmt(rx
->dev
, rx
->skb
, rx
->status
);
1537 return RX_DROP_MONITOR
;
1542 static void ieee80211_rx_michael_mic_report(struct net_device
*dev
,
1543 struct ieee80211_hdr
*hdr
,
1544 struct ieee80211_rx_data
*rx
)
1547 unsigned int hdrlen
;
1548 DECLARE_MAC_BUF(mac
);
1549 DECLARE_MAC_BUF(mac2
);
1551 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1552 if (rx
->skb
->len
>= hdrlen
+ 4)
1553 keyidx
= rx
->skb
->data
[hdrlen
+ 3] >> 6;
1559 * Some hardware seem to generate incorrect Michael MIC
1560 * reports; ignore them to avoid triggering countermeasures.
1565 if (!ieee80211_has_protected(hdr
->frame_control
))
1568 if (rx
->sdata
->vif
.type
== IEEE80211_IF_TYPE_AP
&& keyidx
) {
1570 * APs with pairwise keys should never receive Michael MIC
1571 * errors for non-zero keyidx because these are reserved for
1572 * group keys and only the AP is sending real multicast
1573 * frames in the BSS.
1578 if (!ieee80211_is_data(hdr
->frame_control
) &&
1579 !ieee80211_is_auth(hdr
->frame_control
))
1582 mac80211_ev_michael_mic_failure(rx
->dev
, keyidx
, hdr
);
1584 dev_kfree_skb(rx
->skb
);
1588 /* TODO: use IEEE80211_RX_FRAGMENTED */
1589 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
)
1591 struct ieee80211_sub_if_data
*sdata
;
1592 struct ieee80211_local
*local
= rx
->local
;
1593 struct ieee80211_rtap_hdr
{
1594 struct ieee80211_radiotap_header hdr
;
1599 } __attribute__ ((packed
)) *rthdr
;
1600 struct sk_buff
*skb
= rx
->skb
, *skb2
;
1601 struct net_device
*prev_dev
= NULL
;
1602 struct ieee80211_rx_status
*status
= rx
->status
;
1604 if (rx
->flags
& IEEE80211_RX_CMNTR_REPORTED
)
1607 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
1608 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
1611 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
1612 memset(rthdr
, 0, sizeof(*rthdr
));
1613 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
1614 rthdr
->hdr
.it_present
=
1615 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
1616 (1 << IEEE80211_RADIOTAP_RATE
) |
1617 (1 << IEEE80211_RADIOTAP_CHANNEL
));
1619 rthdr
->rate
= rx
->rate
->bitrate
/ 5;
1620 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
1622 if (status
->band
== IEEE80211_BAND_5GHZ
)
1623 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
1624 IEEE80211_CHAN_5GHZ
);
1626 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
1627 IEEE80211_CHAN_2GHZ
);
1629 skb_set_mac_header(skb
, 0);
1630 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1631 skb
->pkt_type
= PACKET_OTHERHOST
;
1632 skb
->protocol
= htons(ETH_P_802_2
);
1634 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
1635 if (!netif_running(sdata
->dev
))
1638 if (sdata
->vif
.type
!= IEEE80211_IF_TYPE_MNTR
||
1639 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
1643 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1645 skb2
->dev
= prev_dev
;
1650 prev_dev
= sdata
->dev
;
1651 sdata
->dev
->stats
.rx_packets
++;
1652 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
1656 skb
->dev
= prev_dev
;
1662 rx
->flags
|= IEEE80211_RX_CMNTR_REPORTED
;
1670 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data
*sdata
,
1671 struct ieee80211_rx_data
*rx
,
1672 struct sk_buff
*skb
)
1674 ieee80211_rx_result res
= RX_DROP_MONITOR
;
1678 rx
->dev
= sdata
->dev
;
1680 #define CALL_RXH(rxh) \
1683 if (res != RX_CONTINUE) \
1687 CALL_RXH(ieee80211_rx_h_passive_scan
)
1688 CALL_RXH(ieee80211_rx_h_check
)
1689 CALL_RXH(ieee80211_rx_h_decrypt
)
1690 CALL_RXH(ieee80211_rx_h_sta_process
)
1691 CALL_RXH(ieee80211_rx_h_defragment
)
1692 CALL_RXH(ieee80211_rx_h_ps_poll
)
1693 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
1694 /* must be after MMIC verify so header is counted in MPDU mic */
1695 CALL_RXH(ieee80211_rx_h_remove_qos_control
)
1696 CALL_RXH(ieee80211_rx_h_amsdu
)
1697 if (ieee80211_vif_is_mesh(&sdata
->vif
))
1698 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
1699 CALL_RXH(ieee80211_rx_h_data
)
1700 CALL_RXH(ieee80211_rx_h_ctrl
)
1701 CALL_RXH(ieee80211_rx_h_mgmt
)
1707 case RX_DROP_MONITOR
:
1708 I802_DEBUG_INC(sdata
->local
->rx_handlers_drop
);
1710 rx
->sta
->rx_dropped
++;
1713 ieee80211_rx_cooked_monitor(rx
);
1715 case RX_DROP_UNUSABLE
:
1716 I802_DEBUG_INC(sdata
->local
->rx_handlers_drop
);
1718 rx
->sta
->rx_dropped
++;
1719 dev_kfree_skb(rx
->skb
);
1722 I802_DEBUG_INC(sdata
->local
->rx_handlers_queued
);
1727 /* main receive path */
1729 static int prepare_for_handlers(struct ieee80211_sub_if_data
*sdata
,
1730 u8
*bssid
, struct ieee80211_rx_data
*rx
,
1731 struct ieee80211_hdr
*hdr
)
1733 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
1735 switch (sdata
->vif
.type
) {
1736 case IEEE80211_IF_TYPE_STA
:
1739 if (!ieee80211_bssid_match(bssid
, sdata
->u
.sta
.bssid
)) {
1740 if (!(rx
->flags
& IEEE80211_RX_IN_SCAN
))
1742 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1743 } else if (!multicast
&&
1744 compare_ether_addr(sdata
->dev
->dev_addr
,
1746 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
1748 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1751 case IEEE80211_IF_TYPE_IBSS
:
1754 if (ieee80211_is_beacon(hdr
->frame_control
)) {
1756 rx
->sta
= ieee80211_ibss_add_sta(sdata
->dev
,
1757 rx
->skb
, bssid
, hdr
->addr2
,
1758 BIT(rx
->status
->rate_idx
));
1761 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.sta
.bssid
)) {
1762 if (!(rx
->flags
& IEEE80211_RX_IN_SCAN
))
1764 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1765 } else if (!multicast
&&
1766 compare_ether_addr(sdata
->dev
->dev_addr
,
1768 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
1770 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1771 } else if (!rx
->sta
)
1772 rx
->sta
= ieee80211_ibss_add_sta(sdata
->dev
, rx
->skb
,
1774 BIT(rx
->status
->rate_idx
));
1776 case IEEE80211_IF_TYPE_MESH_POINT
:
1778 compare_ether_addr(sdata
->dev
->dev_addr
,
1780 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
1783 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1786 case IEEE80211_IF_TYPE_VLAN
:
1787 case IEEE80211_IF_TYPE_AP
:
1789 if (compare_ether_addr(sdata
->dev
->dev_addr
,
1792 } else if (!ieee80211_bssid_match(bssid
,
1793 sdata
->dev
->dev_addr
)) {
1794 if (!(rx
->flags
& IEEE80211_RX_IN_SCAN
))
1796 rx
->flags
&= ~IEEE80211_RX_RA_MATCH
;
1799 case IEEE80211_IF_TYPE_WDS
:
1800 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
1802 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
1805 case IEEE80211_IF_TYPE_MNTR
:
1806 /* take everything */
1808 case IEEE80211_IF_TYPE_INVALID
:
1809 /* should never get here */
1818 * This is the actual Rx frames handler. as it blongs to Rx path it must
1819 * be called with rcu_read_lock protection.
1821 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
1822 struct sk_buff
*skb
,
1823 struct ieee80211_rx_status
*status
,
1824 struct ieee80211_rate
*rate
)
1826 struct ieee80211_local
*local
= hw_to_local(hw
);
1827 struct ieee80211_sub_if_data
*sdata
;
1828 struct ieee80211_hdr
*hdr
;
1829 struct ieee80211_rx_data rx
;
1832 struct ieee80211_sub_if_data
*prev
= NULL
;
1833 struct sk_buff
*skb_new
;
1836 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1837 memset(&rx
, 0, sizeof(rx
));
1843 rx
.fc
= le16_to_cpu(hdr
->frame_control
);
1844 type
= rx
.fc
& IEEE80211_FCTL_FTYPE
;
1846 if (type
== IEEE80211_FTYPE_DATA
|| type
== IEEE80211_FTYPE_MGMT
)
1847 local
->dot11ReceivedFragmentCount
++;
1849 rx
.sta
= sta_info_get(local
, hdr
->addr2
);
1851 rx
.sdata
= rx
.sta
->sdata
;
1852 rx
.dev
= rx
.sta
->sdata
->dev
;
1855 if ((status
->flag
& RX_FLAG_MMIC_ERROR
)) {
1856 ieee80211_rx_michael_mic_report(local
->mdev
, hdr
, &rx
);
1860 if (unlikely(local
->sta_sw_scanning
|| local
->sta_hw_scanning
))
1861 rx
.flags
|= IEEE80211_RX_IN_SCAN
;
1863 ieee80211_parse_qos(&rx
);
1864 ieee80211_verify_ip_alignment(&rx
);
1868 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
1869 if (!netif_running(sdata
->dev
))
1872 if (sdata
->vif
.type
== IEEE80211_IF_TYPE_MNTR
)
1875 bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
1876 rx
.flags
|= IEEE80211_RX_RA_MATCH
;
1877 prepares
= prepare_for_handlers(sdata
, bssid
, &rx
, hdr
);
1883 * frame is destined for this interface, but if it's not
1884 * also for the previous one we handle that after the
1885 * loop to avoid copying the SKB once too much
1894 * frame was destined for the previous interface
1895 * so invoke RX handlers for it
1898 skb_new
= skb_copy(skb
, GFP_ATOMIC
);
1900 if (net_ratelimit())
1901 printk(KERN_DEBUG
"%s: failed to copy "
1902 "multicast frame for %s\n",
1903 wiphy_name(local
->hw
.wiphy
),
1907 rx
.fc
= le16_to_cpu(hdr
->frame_control
);
1908 ieee80211_invoke_rx_handlers(prev
, &rx
, skb_new
);
1912 rx
.fc
= le16_to_cpu(hdr
->frame_control
);
1913 ieee80211_invoke_rx_handlers(prev
, &rx
, skb
);
1918 #define SEQ_MODULO 0x1000
1919 #define SEQ_MASK 0xfff
1921 static inline int seq_less(u16 sq1
, u16 sq2
)
1923 return (((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1));
1926 static inline u16
seq_inc(u16 sq
)
1928 return ((sq
+ 1) & SEQ_MASK
);
1931 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
1933 return ((sq1
- sq2
) & SEQ_MASK
);
1938 * As it function blongs to Rx path it must be called with
1939 * the proper rcu_read_lock protection for its flow.
1941 u8
ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
1942 struct tid_ampdu_rx
*tid_agg_rx
,
1943 struct sk_buff
*skb
, u16 mpdu_seq_num
,
1946 struct ieee80211_local
*local
= hw_to_local(hw
);
1947 struct ieee80211_rx_status status
;
1948 u16 head_seq_num
, buf_size
;
1950 struct ieee80211_supported_band
*sband
;
1951 struct ieee80211_rate
*rate
;
1953 buf_size
= tid_agg_rx
->buf_size
;
1954 head_seq_num
= tid_agg_rx
->head_seq_num
;
1956 /* frame with out of date sequence number */
1957 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
1962 /* if frame sequence number exceeds our buffering window size or
1963 * block Ack Request arrived - release stored frames */
1964 if ((!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) || (bar_req
)) {
1965 /* new head to the ordering buffer */
1967 head_seq_num
= mpdu_seq_num
;
1970 seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
1971 /* release stored frames up to new head to stack */
1972 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
1973 index
= seq_sub(tid_agg_rx
->head_seq_num
,
1975 % tid_agg_rx
->buf_size
;
1977 if (tid_agg_rx
->reorder_buf
[index
]) {
1978 /* release the reordered frames to stack */
1980 tid_agg_rx
->reorder_buf
[index
]->cb
,
1982 sband
= local
->hw
.wiphy
->bands
[status
.band
];
1983 rate
= &sband
->bitrates
[status
.rate_idx
];
1984 __ieee80211_rx_handle_packet(hw
,
1985 tid_agg_rx
->reorder_buf
[index
],
1987 tid_agg_rx
->stored_mpdu_num
--;
1988 tid_agg_rx
->reorder_buf
[index
] = NULL
;
1990 tid_agg_rx
->head_seq_num
=
1991 seq_inc(tid_agg_rx
->head_seq_num
);
1997 /* now the new frame is always in the range of the reordering */
1999 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
)
2000 % tid_agg_rx
->buf_size
;
2001 /* check if we already stored this frame */
2002 if (tid_agg_rx
->reorder_buf
[index
]) {
2007 /* if arrived mpdu is in the right order and nothing else stored */
2008 /* release it immediately */
2009 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
2010 tid_agg_rx
->stored_mpdu_num
== 0) {
2011 tid_agg_rx
->head_seq_num
=
2012 seq_inc(tid_agg_rx
->head_seq_num
);
2016 /* put the frame in the reordering buffer */
2017 tid_agg_rx
->reorder_buf
[index
] = skb
;
2018 tid_agg_rx
->stored_mpdu_num
++;
2019 /* release the buffer until next missing frame */
2020 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
)
2021 % tid_agg_rx
->buf_size
;
2022 while (tid_agg_rx
->reorder_buf
[index
]) {
2023 /* release the reordered frame back to stack */
2024 memcpy(&status
, tid_agg_rx
->reorder_buf
[index
]->cb
,
2026 sband
= local
->hw
.wiphy
->bands
[status
.band
];
2027 rate
= &sband
->bitrates
[status
.rate_idx
];
2028 __ieee80211_rx_handle_packet(hw
, tid_agg_rx
->reorder_buf
[index
],
2030 tid_agg_rx
->stored_mpdu_num
--;
2031 tid_agg_rx
->reorder_buf
[index
] = NULL
;
2032 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
2033 index
= seq_sub(tid_agg_rx
->head_seq_num
,
2034 tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
2039 static u8
ieee80211_rx_reorder_ampdu(struct ieee80211_local
*local
,
2040 struct sk_buff
*skb
)
2042 struct ieee80211_hw
*hw
= &local
->hw
;
2043 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2044 struct sta_info
*sta
;
2045 struct tid_ampdu_rx
*tid_agg_rx
;
2051 sta
= sta_info_get(local
, hdr
->addr2
);
2055 /* filter the QoS data rx stream according to
2056 * STA/TID and check if this STA/TID is on aggregation */
2057 if (!ieee80211_is_data_qos(hdr
->frame_control
))
2060 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
2062 if (sta
->ampdu_mlme
.tid_state_rx
[tid
] != HT_AGG_STATE_OPERATIONAL
)
2065 tid_agg_rx
= sta
->ampdu_mlme
.tid_rx
[tid
];
2067 /* qos null data frames are excluded */
2068 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
2071 /* new un-ordered ampdu frame - process it */
2073 /* reset session timer */
2074 if (tid_agg_rx
->timeout
) {
2075 unsigned long expires
=
2076 jiffies
+ (tid_agg_rx
->timeout
/ 1000) * HZ
;
2077 mod_timer(&tid_agg_rx
->session_timer
, expires
);
2080 /* if this mpdu is fragmented - terminate rx aggregation session */
2081 sc
= le16_to_cpu(hdr
->seq_ctrl
);
2082 if (sc
& IEEE80211_SCTL_FRAG
) {
2083 ieee80211_sta_stop_rx_ba_session(sta
->sdata
->dev
, sta
->addr
,
2084 tid
, 0, WLAN_REASON_QSTA_REQUIRE_SETUP
);
2089 /* according to mpdu sequence number deal with reordering buffer */
2090 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
2091 ret
= ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
,
2098 * This is the receive path handler. It is called by a low level driver when an
2099 * 802.11 MPDU is received from the hardware.
2101 void __ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2102 struct ieee80211_rx_status
*status
)
2104 struct ieee80211_local
*local
= hw_to_local(hw
);
2105 struct ieee80211_rate
*rate
= NULL
;
2106 struct ieee80211_supported_band
*sband
;
2108 if (status
->band
< 0 ||
2109 status
->band
>= IEEE80211_NUM_BANDS
) {
2114 sband
= local
->hw
.wiphy
->bands
[status
->band
];
2117 status
->rate_idx
< 0 ||
2118 status
->rate_idx
>= sband
->n_bitrates
) {
2123 rate
= &sband
->bitrates
[status
->rate_idx
];
2126 * key references and virtual interfaces are protected using RCU
2127 * and this requires that we are in a read-side RCU section during
2128 * receive processing
2133 * Frames with failed FCS/PLCP checksum are not returned,
2134 * all other frames are returned without radiotap header
2135 * if it was previously present.
2136 * Also, frames with less than 16 bytes are dropped.
2138 skb
= ieee80211_rx_monitor(local
, skb
, status
, rate
);
2144 if (!ieee80211_rx_reorder_ampdu(local
, skb
))
2145 __ieee80211_rx_handle_packet(hw
, skb
, status
, rate
);
2149 EXPORT_SYMBOL(__ieee80211_rx
);
2151 /* This is a version of the rx handler that can be called from hard irq
2152 * context. Post the skb on the queue and schedule the tasklet */
2153 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2154 struct ieee80211_rx_status
*status
)
2156 struct ieee80211_local
*local
= hw_to_local(hw
);
2158 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
2160 skb
->dev
= local
->mdev
;
2161 /* copy status into skb->cb for use by tasklet */
2162 memcpy(skb
->cb
, status
, sizeof(*status
));
2163 skb
->pkt_type
= IEEE80211_RX_MSG
;
2164 skb_queue_tail(&local
->skb_queue
, skb
);
2165 tasklet_schedule(&local
->tasklet
);
2167 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);