memcg: remove direct page_cgroup-to-page pointer
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob660dfc27d971e83a910e6742eff48576afc048d7
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index {
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS,
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone {
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary *spare;
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
209 * the counter to account for memory usage
211 struct res_counter res;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock;
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
231 int last_scanned_child;
233 * Should the accounting and control be hierarchical, per subtree?
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate;
264 * percpu counter.
266 struct mem_cgroup_stat_cpu *stat;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301 static bool move_anon(void)
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
307 static bool move_file(void)
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
330 /* for encoding cft->private value on file */
331 #define _MEM (0)
332 #define _MEMSWAP (1)
333 #define _OOM_TYPE (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val) ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL (0)
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
363 return &mem->css;
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
369 int nid = page_to_nid(page);
370 int zid = page_zonenum(page);
372 return mem_cgroup_zoneinfo(mem, nid, zid);
375 static struct mem_cgroup_tree_per_zone *
376 soft_limit_tree_node_zone(int nid, int zid)
378 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
381 static struct mem_cgroup_tree_per_zone *
382 soft_limit_tree_from_page(struct page *page)
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
387 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 static void
391 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
392 struct mem_cgroup_per_zone *mz,
393 struct mem_cgroup_tree_per_zone *mctz,
394 unsigned long long new_usage_in_excess)
396 struct rb_node **p = &mctz->rb_root.rb_node;
397 struct rb_node *parent = NULL;
398 struct mem_cgroup_per_zone *mz_node;
400 if (mz->on_tree)
401 return;
403 mz->usage_in_excess = new_usage_in_excess;
404 if (!mz->usage_in_excess)
405 return;
406 while (*p) {
407 parent = *p;
408 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
409 tree_node);
410 if (mz->usage_in_excess < mz_node->usage_in_excess)
411 p = &(*p)->rb_left;
413 * We can't avoid mem cgroups that are over their soft
414 * limit by the same amount
416 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
417 p = &(*p)->rb_right;
419 rb_link_node(&mz->tree_node, parent, p);
420 rb_insert_color(&mz->tree_node, &mctz->rb_root);
421 mz->on_tree = true;
424 static void
425 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
426 struct mem_cgroup_per_zone *mz,
427 struct mem_cgroup_tree_per_zone *mctz)
429 if (!mz->on_tree)
430 return;
431 rb_erase(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = false;
435 static void
436 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
440 spin_lock(&mctz->lock);
441 __mem_cgroup_remove_exceeded(mem, mz, mctz);
442 spin_unlock(&mctz->lock);
446 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
448 unsigned long long excess;
449 struct mem_cgroup_per_zone *mz;
450 struct mem_cgroup_tree_per_zone *mctz;
451 int nid = page_to_nid(page);
452 int zid = page_zonenum(page);
453 mctz = soft_limit_tree_from_page(page);
456 * Necessary to update all ancestors when hierarchy is used.
457 * because their event counter is not touched.
459 for (; mem; mem = parent_mem_cgroup(mem)) {
460 mz = mem_cgroup_zoneinfo(mem, nid, zid);
461 excess = res_counter_soft_limit_excess(&mem->res);
463 * We have to update the tree if mz is on RB-tree or
464 * mem is over its softlimit.
466 if (excess || mz->on_tree) {
467 spin_lock(&mctz->lock);
468 /* if on-tree, remove it */
469 if (mz->on_tree)
470 __mem_cgroup_remove_exceeded(mem, mz, mctz);
472 * Insert again. mz->usage_in_excess will be updated.
473 * If excess is 0, no tree ops.
475 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
476 spin_unlock(&mctz->lock);
481 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
483 int node, zone;
484 struct mem_cgroup_per_zone *mz;
485 struct mem_cgroup_tree_per_zone *mctz;
487 for_each_node_state(node, N_POSSIBLE) {
488 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
489 mz = mem_cgroup_zoneinfo(mem, node, zone);
490 mctz = soft_limit_tree_node_zone(node, zone);
491 mem_cgroup_remove_exceeded(mem, mz, mctz);
496 static struct mem_cgroup_per_zone *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_zone *mz;
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
508 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
514 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516 !css_tryget(&mz->mem->css))
517 goto retry;
518 done:
519 return mz;
522 static struct mem_cgroup_per_zone *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 struct mem_cgroup_per_zone *mz;
527 spin_lock(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock(&mctz->lock);
530 return mz;
534 * Implementation Note: reading percpu statistics for memcg.
536 * Both of vmstat[] and percpu_counter has threshold and do periodic
537 * synchronization to implement "quick" read. There are trade-off between
538 * reading cost and precision of value. Then, we may have a chance to implement
539 * a periodic synchronizion of counter in memcg's counter.
541 * But this _read() function is used for user interface now. The user accounts
542 * memory usage by memory cgroup and he _always_ requires exact value because
543 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
544 * have to visit all online cpus and make sum. So, for now, unnecessary
545 * synchronization is not implemented. (just implemented for cpu hotplug)
547 * If there are kernel internal actions which can make use of some not-exact
548 * value, and reading all cpu value can be performance bottleneck in some
549 * common workload, threashold and synchonization as vmstat[] should be
550 * implemented.
552 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
553 enum mem_cgroup_stat_index idx)
555 int cpu;
556 s64 val = 0;
558 get_online_cpus();
559 for_each_online_cpu(cpu)
560 val += per_cpu(mem->stat->count[idx], cpu);
561 #ifdef CONFIG_HOTPLUG_CPU
562 spin_lock(&mem->pcp_counter_lock);
563 val += mem->nocpu_base.count[idx];
564 spin_unlock(&mem->pcp_counter_lock);
565 #endif
566 put_online_cpus();
567 return val;
570 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
572 s64 ret;
574 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
575 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
576 return ret;
579 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
580 bool charge)
582 int val = (charge) ? 1 : -1;
583 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
586 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
587 bool file, int nr_pages)
589 preempt_disable();
591 if (file)
592 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
593 else
594 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
596 /* pagein of a big page is an event. So, ignore page size */
597 if (nr_pages > 0)
598 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
599 else {
600 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
601 nr_pages = -nr_pages; /* for event */
604 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
606 preempt_enable();
609 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
610 enum lru_list idx)
612 int nid, zid;
613 struct mem_cgroup_per_zone *mz;
614 u64 total = 0;
616 for_each_online_node(nid)
617 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
618 mz = mem_cgroup_zoneinfo(mem, nid, zid);
619 total += MEM_CGROUP_ZSTAT(mz, idx);
621 return total;
624 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
626 s64 val;
628 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
630 return !(val & ((1 << event_mask_shift) - 1));
634 * Check events in order.
637 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
639 /* threshold event is triggered in finer grain than soft limit */
640 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
641 mem_cgroup_threshold(mem);
642 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
643 mem_cgroup_update_tree(mem, page);
647 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
649 return container_of(cgroup_subsys_state(cont,
650 mem_cgroup_subsys_id), struct mem_cgroup,
651 css);
654 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
657 * mm_update_next_owner() may clear mm->owner to NULL
658 * if it races with swapoff, page migration, etc.
659 * So this can be called with p == NULL.
661 if (unlikely(!p))
662 return NULL;
664 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
665 struct mem_cgroup, css);
668 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
670 struct mem_cgroup *mem = NULL;
672 if (!mm)
673 return NULL;
675 * Because we have no locks, mm->owner's may be being moved to other
676 * cgroup. We use css_tryget() here even if this looks
677 * pessimistic (rather than adding locks here).
679 rcu_read_lock();
680 do {
681 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
682 if (unlikely(!mem))
683 break;
684 } while (!css_tryget(&mem->css));
685 rcu_read_unlock();
686 return mem;
689 /* The caller has to guarantee "mem" exists before calling this */
690 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
692 struct cgroup_subsys_state *css;
693 int found;
695 if (!mem) /* ROOT cgroup has the smallest ID */
696 return root_mem_cgroup; /*css_put/get against root is ignored*/
697 if (!mem->use_hierarchy) {
698 if (css_tryget(&mem->css))
699 return mem;
700 return NULL;
702 rcu_read_lock();
704 * searching a memory cgroup which has the smallest ID under given
705 * ROOT cgroup. (ID >= 1)
707 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
708 if (css && css_tryget(css))
709 mem = container_of(css, struct mem_cgroup, css);
710 else
711 mem = NULL;
712 rcu_read_unlock();
713 return mem;
716 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
717 struct mem_cgroup *root,
718 bool cond)
720 int nextid = css_id(&iter->css) + 1;
721 int found;
722 int hierarchy_used;
723 struct cgroup_subsys_state *css;
725 hierarchy_used = iter->use_hierarchy;
727 css_put(&iter->css);
728 /* If no ROOT, walk all, ignore hierarchy */
729 if (!cond || (root && !hierarchy_used))
730 return NULL;
732 if (!root)
733 root = root_mem_cgroup;
735 do {
736 iter = NULL;
737 rcu_read_lock();
739 css = css_get_next(&mem_cgroup_subsys, nextid,
740 &root->css, &found);
741 if (css && css_tryget(css))
742 iter = container_of(css, struct mem_cgroup, css);
743 rcu_read_unlock();
744 /* If css is NULL, no more cgroups will be found */
745 nextid = found + 1;
746 } while (css && !iter);
748 return iter;
751 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
752 * be careful that "break" loop is not allowed. We have reference count.
753 * Instead of that modify "cond" to be false and "continue" to exit the loop.
755 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
756 for (iter = mem_cgroup_start_loop(root);\
757 iter != NULL;\
758 iter = mem_cgroup_get_next(iter, root, cond))
760 #define for_each_mem_cgroup_tree(iter, root) \
761 for_each_mem_cgroup_tree_cond(iter, root, true)
763 #define for_each_mem_cgroup_all(iter) \
764 for_each_mem_cgroup_tree_cond(iter, NULL, true)
767 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
769 return (mem == root_mem_cgroup);
773 * Following LRU functions are allowed to be used without PCG_LOCK.
774 * Operations are called by routine of global LRU independently from memcg.
775 * What we have to take care of here is validness of pc->mem_cgroup.
777 * Changes to pc->mem_cgroup happens when
778 * 1. charge
779 * 2. moving account
780 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
781 * It is added to LRU before charge.
782 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
783 * When moving account, the page is not on LRU. It's isolated.
786 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
788 struct page_cgroup *pc;
789 struct mem_cgroup_per_zone *mz;
791 if (mem_cgroup_disabled())
792 return;
793 pc = lookup_page_cgroup(page);
794 /* can happen while we handle swapcache. */
795 if (!TestClearPageCgroupAcctLRU(pc))
796 return;
797 VM_BUG_ON(!pc->mem_cgroup);
799 * We don't check PCG_USED bit. It's cleared when the "page" is finally
800 * removed from global LRU.
802 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
803 /* huge page split is done under lru_lock. so, we have no races. */
804 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
805 if (mem_cgroup_is_root(pc->mem_cgroup))
806 return;
807 VM_BUG_ON(list_empty(&pc->lru));
808 list_del_init(&pc->lru);
811 void mem_cgroup_del_lru(struct page *page)
813 mem_cgroup_del_lru_list(page, page_lru(page));
817 * Writeback is about to end against a page which has been marked for immediate
818 * reclaim. If it still appears to be reclaimable, move it to the tail of the
819 * inactive list.
821 void mem_cgroup_rotate_reclaimable_page(struct page *page)
823 struct mem_cgroup_per_zone *mz;
824 struct page_cgroup *pc;
825 enum lru_list lru = page_lru(page);
827 if (mem_cgroup_disabled())
828 return;
830 pc = lookup_page_cgroup(page);
831 /* unused or root page is not rotated. */
832 if (!PageCgroupUsed(pc))
833 return;
834 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
835 smp_rmb();
836 if (mem_cgroup_is_root(pc->mem_cgroup))
837 return;
838 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
839 list_move_tail(&pc->lru, &mz->lists[lru]);
842 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
844 struct mem_cgroup_per_zone *mz;
845 struct page_cgroup *pc;
847 if (mem_cgroup_disabled())
848 return;
850 pc = lookup_page_cgroup(page);
851 /* unused or root page is not rotated. */
852 if (!PageCgroupUsed(pc))
853 return;
854 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
855 smp_rmb();
856 if (mem_cgroup_is_root(pc->mem_cgroup))
857 return;
858 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
859 list_move(&pc->lru, &mz->lists[lru]);
862 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
864 struct page_cgroup *pc;
865 struct mem_cgroup_per_zone *mz;
867 if (mem_cgroup_disabled())
868 return;
869 pc = lookup_page_cgroup(page);
870 VM_BUG_ON(PageCgroupAcctLRU(pc));
871 if (!PageCgroupUsed(pc))
872 return;
873 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
874 smp_rmb();
875 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
876 /* huge page split is done under lru_lock. so, we have no races. */
877 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
878 SetPageCgroupAcctLRU(pc);
879 if (mem_cgroup_is_root(pc->mem_cgroup))
880 return;
881 list_add(&pc->lru, &mz->lists[lru]);
885 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
886 * lru because the page may.be reused after it's fully uncharged (because of
887 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
888 * it again. This function is only used to charge SwapCache. It's done under
889 * lock_page and expected that zone->lru_lock is never held.
891 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
893 unsigned long flags;
894 struct zone *zone = page_zone(page);
895 struct page_cgroup *pc = lookup_page_cgroup(page);
897 spin_lock_irqsave(&zone->lru_lock, flags);
899 * Forget old LRU when this page_cgroup is *not* used. This Used bit
900 * is guarded by lock_page() because the page is SwapCache.
902 if (!PageCgroupUsed(pc))
903 mem_cgroup_del_lru_list(page, page_lru(page));
904 spin_unlock_irqrestore(&zone->lru_lock, flags);
907 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
909 unsigned long flags;
910 struct zone *zone = page_zone(page);
911 struct page_cgroup *pc = lookup_page_cgroup(page);
913 spin_lock_irqsave(&zone->lru_lock, flags);
914 /* link when the page is linked to LRU but page_cgroup isn't */
915 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
916 mem_cgroup_add_lru_list(page, page_lru(page));
917 spin_unlock_irqrestore(&zone->lru_lock, flags);
921 void mem_cgroup_move_lists(struct page *page,
922 enum lru_list from, enum lru_list to)
924 if (mem_cgroup_disabled())
925 return;
926 mem_cgroup_del_lru_list(page, from);
927 mem_cgroup_add_lru_list(page, to);
930 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
932 int ret;
933 struct mem_cgroup *curr = NULL;
934 struct task_struct *p;
936 p = find_lock_task_mm(task);
937 if (!p)
938 return 0;
939 curr = try_get_mem_cgroup_from_mm(p->mm);
940 task_unlock(p);
941 if (!curr)
942 return 0;
944 * We should check use_hierarchy of "mem" not "curr". Because checking
945 * use_hierarchy of "curr" here make this function true if hierarchy is
946 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
947 * hierarchy(even if use_hierarchy is disabled in "mem").
949 if (mem->use_hierarchy)
950 ret = css_is_ancestor(&curr->css, &mem->css);
951 else
952 ret = (curr == mem);
953 css_put(&curr->css);
954 return ret;
957 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
959 unsigned long active;
960 unsigned long inactive;
961 unsigned long gb;
962 unsigned long inactive_ratio;
964 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
965 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
967 gb = (inactive + active) >> (30 - PAGE_SHIFT);
968 if (gb)
969 inactive_ratio = int_sqrt(10 * gb);
970 else
971 inactive_ratio = 1;
973 if (present_pages) {
974 present_pages[0] = inactive;
975 present_pages[1] = active;
978 return inactive_ratio;
981 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
983 unsigned long active;
984 unsigned long inactive;
985 unsigned long present_pages[2];
986 unsigned long inactive_ratio;
988 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
990 inactive = present_pages[0];
991 active = present_pages[1];
993 if (inactive * inactive_ratio < active)
994 return 1;
996 return 0;
999 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1001 unsigned long active;
1002 unsigned long inactive;
1004 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1005 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1007 return (active > inactive);
1010 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1011 struct zone *zone,
1012 enum lru_list lru)
1014 int nid = zone_to_nid(zone);
1015 int zid = zone_idx(zone);
1016 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1018 return MEM_CGROUP_ZSTAT(mz, lru);
1021 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1022 struct zone *zone)
1024 int nid = zone_to_nid(zone);
1025 int zid = zone_idx(zone);
1026 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1028 return &mz->reclaim_stat;
1031 struct zone_reclaim_stat *
1032 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1034 struct page_cgroup *pc;
1035 struct mem_cgroup_per_zone *mz;
1037 if (mem_cgroup_disabled())
1038 return NULL;
1040 pc = lookup_page_cgroup(page);
1041 if (!PageCgroupUsed(pc))
1042 return NULL;
1043 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1044 smp_rmb();
1045 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1046 if (!mz)
1047 return NULL;
1049 return &mz->reclaim_stat;
1052 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1053 struct list_head *dst,
1054 unsigned long *scanned, int order,
1055 int mode, struct zone *z,
1056 struct mem_cgroup *mem_cont,
1057 int active, int file)
1059 unsigned long nr_taken = 0;
1060 struct page *page;
1061 unsigned long scan;
1062 LIST_HEAD(pc_list);
1063 struct list_head *src;
1064 struct page_cgroup *pc, *tmp;
1065 int nid = zone_to_nid(z);
1066 int zid = zone_idx(z);
1067 struct mem_cgroup_per_zone *mz;
1068 int lru = LRU_FILE * file + active;
1069 int ret;
1071 BUG_ON(!mem_cont);
1072 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1073 src = &mz->lists[lru];
1075 scan = 0;
1076 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1077 if (scan >= nr_to_scan)
1078 break;
1080 if (unlikely(!PageCgroupUsed(pc)))
1081 continue;
1083 page = lookup_cgroup_page(pc);
1085 if (unlikely(!PageLRU(page)))
1086 continue;
1088 scan++;
1089 ret = __isolate_lru_page(page, mode, file);
1090 switch (ret) {
1091 case 0:
1092 list_move(&page->lru, dst);
1093 mem_cgroup_del_lru(page);
1094 nr_taken += hpage_nr_pages(page);
1095 break;
1096 case -EBUSY:
1097 /* we don't affect global LRU but rotate in our LRU */
1098 mem_cgroup_rotate_lru_list(page, page_lru(page));
1099 break;
1100 default:
1101 break;
1105 *scanned = scan;
1107 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1108 0, 0, 0, mode);
1110 return nr_taken;
1113 #define mem_cgroup_from_res_counter(counter, member) \
1114 container_of(counter, struct mem_cgroup, member)
1117 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1118 * @mem: the memory cgroup
1120 * Returns the maximum amount of memory @mem can be charged with, in
1121 * bytes.
1123 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1125 unsigned long long margin;
1127 margin = res_counter_margin(&mem->res);
1128 if (do_swap_account)
1129 margin = min(margin, res_counter_margin(&mem->memsw));
1130 return margin;
1133 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1135 struct cgroup *cgrp = memcg->css.cgroup;
1136 unsigned int swappiness;
1138 /* root ? */
1139 if (cgrp->parent == NULL)
1140 return vm_swappiness;
1142 spin_lock(&memcg->reclaim_param_lock);
1143 swappiness = memcg->swappiness;
1144 spin_unlock(&memcg->reclaim_param_lock);
1146 return swappiness;
1149 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1151 int cpu;
1153 get_online_cpus();
1154 spin_lock(&mem->pcp_counter_lock);
1155 for_each_online_cpu(cpu)
1156 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1157 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1158 spin_unlock(&mem->pcp_counter_lock);
1159 put_online_cpus();
1161 synchronize_rcu();
1164 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1166 int cpu;
1168 if (!mem)
1169 return;
1170 get_online_cpus();
1171 spin_lock(&mem->pcp_counter_lock);
1172 for_each_online_cpu(cpu)
1173 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1174 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1175 spin_unlock(&mem->pcp_counter_lock);
1176 put_online_cpus();
1179 * 2 routines for checking "mem" is under move_account() or not.
1181 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1182 * for avoiding race in accounting. If true,
1183 * pc->mem_cgroup may be overwritten.
1185 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1186 * under hierarchy of moving cgroups. This is for
1187 * waiting at hith-memory prressure caused by "move".
1190 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1192 VM_BUG_ON(!rcu_read_lock_held());
1193 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1196 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1198 struct mem_cgroup *from;
1199 struct mem_cgroup *to;
1200 bool ret = false;
1202 * Unlike task_move routines, we access mc.to, mc.from not under
1203 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1205 spin_lock(&mc.lock);
1206 from = mc.from;
1207 to = mc.to;
1208 if (!from)
1209 goto unlock;
1210 if (from == mem || to == mem
1211 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1212 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1213 ret = true;
1214 unlock:
1215 spin_unlock(&mc.lock);
1216 return ret;
1219 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1221 if (mc.moving_task && current != mc.moving_task) {
1222 if (mem_cgroup_under_move(mem)) {
1223 DEFINE_WAIT(wait);
1224 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1225 /* moving charge context might have finished. */
1226 if (mc.moving_task)
1227 schedule();
1228 finish_wait(&mc.waitq, &wait);
1229 return true;
1232 return false;
1236 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1237 * @memcg: The memory cgroup that went over limit
1238 * @p: Task that is going to be killed
1240 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1241 * enabled
1243 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1245 struct cgroup *task_cgrp;
1246 struct cgroup *mem_cgrp;
1248 * Need a buffer in BSS, can't rely on allocations. The code relies
1249 * on the assumption that OOM is serialized for memory controller.
1250 * If this assumption is broken, revisit this code.
1252 static char memcg_name[PATH_MAX];
1253 int ret;
1255 if (!memcg || !p)
1256 return;
1259 rcu_read_lock();
1261 mem_cgrp = memcg->css.cgroup;
1262 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1264 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1265 if (ret < 0) {
1267 * Unfortunately, we are unable to convert to a useful name
1268 * But we'll still print out the usage information
1270 rcu_read_unlock();
1271 goto done;
1273 rcu_read_unlock();
1275 printk(KERN_INFO "Task in %s killed", memcg_name);
1277 rcu_read_lock();
1278 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1279 if (ret < 0) {
1280 rcu_read_unlock();
1281 goto done;
1283 rcu_read_unlock();
1286 * Continues from above, so we don't need an KERN_ level
1288 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1289 done:
1291 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1292 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1293 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1294 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1295 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1296 "failcnt %llu\n",
1297 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1298 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1299 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1303 * This function returns the number of memcg under hierarchy tree. Returns
1304 * 1(self count) if no children.
1306 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1308 int num = 0;
1309 struct mem_cgroup *iter;
1311 for_each_mem_cgroup_tree(iter, mem)
1312 num++;
1313 return num;
1317 * Return the memory (and swap, if configured) limit for a memcg.
1319 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1321 u64 limit;
1322 u64 memsw;
1324 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1325 limit += total_swap_pages << PAGE_SHIFT;
1327 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1329 * If memsw is finite and limits the amount of swap space available
1330 * to this memcg, return that limit.
1332 return min(limit, memsw);
1336 * Visit the first child (need not be the first child as per the ordering
1337 * of the cgroup list, since we track last_scanned_child) of @mem and use
1338 * that to reclaim free pages from.
1340 static struct mem_cgroup *
1341 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1343 struct mem_cgroup *ret = NULL;
1344 struct cgroup_subsys_state *css;
1345 int nextid, found;
1347 if (!root_mem->use_hierarchy) {
1348 css_get(&root_mem->css);
1349 ret = root_mem;
1352 while (!ret) {
1353 rcu_read_lock();
1354 nextid = root_mem->last_scanned_child + 1;
1355 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1356 &found);
1357 if (css && css_tryget(css))
1358 ret = container_of(css, struct mem_cgroup, css);
1360 rcu_read_unlock();
1361 /* Updates scanning parameter */
1362 spin_lock(&root_mem->reclaim_param_lock);
1363 if (!css) {
1364 /* this means start scan from ID:1 */
1365 root_mem->last_scanned_child = 0;
1366 } else
1367 root_mem->last_scanned_child = found;
1368 spin_unlock(&root_mem->reclaim_param_lock);
1371 return ret;
1375 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1376 * we reclaimed from, so that we don't end up penalizing one child extensively
1377 * based on its position in the children list.
1379 * root_mem is the original ancestor that we've been reclaim from.
1381 * We give up and return to the caller when we visit root_mem twice.
1382 * (other groups can be removed while we're walking....)
1384 * If shrink==true, for avoiding to free too much, this returns immedieately.
1386 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1387 struct zone *zone,
1388 gfp_t gfp_mask,
1389 unsigned long reclaim_options)
1391 struct mem_cgroup *victim;
1392 int ret, total = 0;
1393 int loop = 0;
1394 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1395 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1396 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1397 unsigned long excess;
1399 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1401 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1402 if (root_mem->memsw_is_minimum)
1403 noswap = true;
1405 while (1) {
1406 victim = mem_cgroup_select_victim(root_mem);
1407 if (victim == root_mem) {
1408 loop++;
1409 if (loop >= 1)
1410 drain_all_stock_async();
1411 if (loop >= 2) {
1413 * If we have not been able to reclaim
1414 * anything, it might because there are
1415 * no reclaimable pages under this hierarchy
1417 if (!check_soft || !total) {
1418 css_put(&victim->css);
1419 break;
1422 * We want to do more targetted reclaim.
1423 * excess >> 2 is not to excessive so as to
1424 * reclaim too much, nor too less that we keep
1425 * coming back to reclaim from this cgroup
1427 if (total >= (excess >> 2) ||
1428 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1429 css_put(&victim->css);
1430 break;
1434 if (!mem_cgroup_local_usage(victim)) {
1435 /* this cgroup's local usage == 0 */
1436 css_put(&victim->css);
1437 continue;
1439 /* we use swappiness of local cgroup */
1440 if (check_soft)
1441 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1442 noswap, get_swappiness(victim), zone);
1443 else
1444 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1445 noswap, get_swappiness(victim));
1446 css_put(&victim->css);
1448 * At shrinking usage, we can't check we should stop here or
1449 * reclaim more. It's depends on callers. last_scanned_child
1450 * will work enough for keeping fairness under tree.
1452 if (shrink)
1453 return ret;
1454 total += ret;
1455 if (check_soft) {
1456 if (!res_counter_soft_limit_excess(&root_mem->res))
1457 return total;
1458 } else if (mem_cgroup_margin(root_mem))
1459 return 1 + total;
1461 return total;
1465 * Check OOM-Killer is already running under our hierarchy.
1466 * If someone is running, return false.
1468 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1470 int x, lock_count = 0;
1471 struct mem_cgroup *iter;
1473 for_each_mem_cgroup_tree(iter, mem) {
1474 x = atomic_inc_return(&iter->oom_lock);
1475 lock_count = max(x, lock_count);
1478 if (lock_count == 1)
1479 return true;
1480 return false;
1483 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1485 struct mem_cgroup *iter;
1488 * When a new child is created while the hierarchy is under oom,
1489 * mem_cgroup_oom_lock() may not be called. We have to use
1490 * atomic_add_unless() here.
1492 for_each_mem_cgroup_tree(iter, mem)
1493 atomic_add_unless(&iter->oom_lock, -1, 0);
1494 return 0;
1498 static DEFINE_MUTEX(memcg_oom_mutex);
1499 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1501 struct oom_wait_info {
1502 struct mem_cgroup *mem;
1503 wait_queue_t wait;
1506 static int memcg_oom_wake_function(wait_queue_t *wait,
1507 unsigned mode, int sync, void *arg)
1509 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1510 struct oom_wait_info *oom_wait_info;
1512 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1514 if (oom_wait_info->mem == wake_mem)
1515 goto wakeup;
1516 /* if no hierarchy, no match */
1517 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1518 return 0;
1520 * Both of oom_wait_info->mem and wake_mem are stable under us.
1521 * Then we can use css_is_ancestor without taking care of RCU.
1523 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1524 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1525 return 0;
1527 wakeup:
1528 return autoremove_wake_function(wait, mode, sync, arg);
1531 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1533 /* for filtering, pass "mem" as argument. */
1534 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1537 static void memcg_oom_recover(struct mem_cgroup *mem)
1539 if (mem && atomic_read(&mem->oom_lock))
1540 memcg_wakeup_oom(mem);
1544 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1546 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1548 struct oom_wait_info owait;
1549 bool locked, need_to_kill;
1551 owait.mem = mem;
1552 owait.wait.flags = 0;
1553 owait.wait.func = memcg_oom_wake_function;
1554 owait.wait.private = current;
1555 INIT_LIST_HEAD(&owait.wait.task_list);
1556 need_to_kill = true;
1557 /* At first, try to OOM lock hierarchy under mem.*/
1558 mutex_lock(&memcg_oom_mutex);
1559 locked = mem_cgroup_oom_lock(mem);
1561 * Even if signal_pending(), we can't quit charge() loop without
1562 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1563 * under OOM is always welcomed, use TASK_KILLABLE here.
1565 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1566 if (!locked || mem->oom_kill_disable)
1567 need_to_kill = false;
1568 if (locked)
1569 mem_cgroup_oom_notify(mem);
1570 mutex_unlock(&memcg_oom_mutex);
1572 if (need_to_kill) {
1573 finish_wait(&memcg_oom_waitq, &owait.wait);
1574 mem_cgroup_out_of_memory(mem, mask);
1575 } else {
1576 schedule();
1577 finish_wait(&memcg_oom_waitq, &owait.wait);
1579 mutex_lock(&memcg_oom_mutex);
1580 mem_cgroup_oom_unlock(mem);
1581 memcg_wakeup_oom(mem);
1582 mutex_unlock(&memcg_oom_mutex);
1584 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1585 return false;
1586 /* Give chance to dying process */
1587 schedule_timeout(1);
1588 return true;
1592 * Currently used to update mapped file statistics, but the routine can be
1593 * generalized to update other statistics as well.
1595 * Notes: Race condition
1597 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1598 * it tends to be costly. But considering some conditions, we doesn't need
1599 * to do so _always_.
1601 * Considering "charge", lock_page_cgroup() is not required because all
1602 * file-stat operations happen after a page is attached to radix-tree. There
1603 * are no race with "charge".
1605 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1606 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1607 * if there are race with "uncharge". Statistics itself is properly handled
1608 * by flags.
1610 * Considering "move", this is an only case we see a race. To make the race
1611 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1612 * possibility of race condition. If there is, we take a lock.
1615 void mem_cgroup_update_page_stat(struct page *page,
1616 enum mem_cgroup_page_stat_item idx, int val)
1618 struct mem_cgroup *mem;
1619 struct page_cgroup *pc = lookup_page_cgroup(page);
1620 bool need_unlock = false;
1621 unsigned long uninitialized_var(flags);
1623 if (unlikely(!pc))
1624 return;
1626 rcu_read_lock();
1627 mem = pc->mem_cgroup;
1628 if (unlikely(!mem || !PageCgroupUsed(pc)))
1629 goto out;
1630 /* pc->mem_cgroup is unstable ? */
1631 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1632 /* take a lock against to access pc->mem_cgroup */
1633 move_lock_page_cgroup(pc, &flags);
1634 need_unlock = true;
1635 mem = pc->mem_cgroup;
1636 if (!mem || !PageCgroupUsed(pc))
1637 goto out;
1640 switch (idx) {
1641 case MEMCG_NR_FILE_MAPPED:
1642 if (val > 0)
1643 SetPageCgroupFileMapped(pc);
1644 else if (!page_mapped(page))
1645 ClearPageCgroupFileMapped(pc);
1646 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1647 break;
1648 default:
1649 BUG();
1652 this_cpu_add(mem->stat->count[idx], val);
1654 out:
1655 if (unlikely(need_unlock))
1656 move_unlock_page_cgroup(pc, &flags);
1657 rcu_read_unlock();
1658 return;
1660 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1663 * size of first charge trial. "32" comes from vmscan.c's magic value.
1664 * TODO: maybe necessary to use big numbers in big irons.
1666 #define CHARGE_SIZE (32 * PAGE_SIZE)
1667 struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 int charge;
1670 struct work_struct work;
1672 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1673 static atomic_t memcg_drain_count;
1676 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1677 * from local stock and true is returned. If the stock is 0 or charges from a
1678 * cgroup which is not current target, returns false. This stock will be
1679 * refilled.
1681 static bool consume_stock(struct mem_cgroup *mem)
1683 struct memcg_stock_pcp *stock;
1684 bool ret = true;
1686 stock = &get_cpu_var(memcg_stock);
1687 if (mem == stock->cached && stock->charge)
1688 stock->charge -= PAGE_SIZE;
1689 else /* need to call res_counter_charge */
1690 ret = false;
1691 put_cpu_var(memcg_stock);
1692 return ret;
1696 * Returns stocks cached in percpu to res_counter and reset cached information.
1698 static void drain_stock(struct memcg_stock_pcp *stock)
1700 struct mem_cgroup *old = stock->cached;
1702 if (stock->charge) {
1703 res_counter_uncharge(&old->res, stock->charge);
1704 if (do_swap_account)
1705 res_counter_uncharge(&old->memsw, stock->charge);
1707 stock->cached = NULL;
1708 stock->charge = 0;
1712 * This must be called under preempt disabled or must be called by
1713 * a thread which is pinned to local cpu.
1715 static void drain_local_stock(struct work_struct *dummy)
1717 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1718 drain_stock(stock);
1722 * Cache charges(val) which is from res_counter, to local per_cpu area.
1723 * This will be consumed by consume_stock() function, later.
1725 static void refill_stock(struct mem_cgroup *mem, int val)
1727 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1729 if (stock->cached != mem) { /* reset if necessary */
1730 drain_stock(stock);
1731 stock->cached = mem;
1733 stock->charge += val;
1734 put_cpu_var(memcg_stock);
1738 * Tries to drain stocked charges in other cpus. This function is asynchronous
1739 * and just put a work per cpu for draining localy on each cpu. Caller can
1740 * expects some charges will be back to res_counter later but cannot wait for
1741 * it.
1743 static void drain_all_stock_async(void)
1745 int cpu;
1746 /* This function is for scheduling "drain" in asynchronous way.
1747 * The result of "drain" is not directly handled by callers. Then,
1748 * if someone is calling drain, we don't have to call drain more.
1749 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1750 * there is a race. We just do loose check here.
1752 if (atomic_read(&memcg_drain_count))
1753 return;
1754 /* Notify other cpus that system-wide "drain" is running */
1755 atomic_inc(&memcg_drain_count);
1756 get_online_cpus();
1757 for_each_online_cpu(cpu) {
1758 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1759 schedule_work_on(cpu, &stock->work);
1761 put_online_cpus();
1762 atomic_dec(&memcg_drain_count);
1763 /* We don't wait for flush_work */
1766 /* This is a synchronous drain interface. */
1767 static void drain_all_stock_sync(void)
1769 /* called when force_empty is called */
1770 atomic_inc(&memcg_drain_count);
1771 schedule_on_each_cpu(drain_local_stock);
1772 atomic_dec(&memcg_drain_count);
1776 * This function drains percpu counter value from DEAD cpu and
1777 * move it to local cpu. Note that this function can be preempted.
1779 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1781 int i;
1783 spin_lock(&mem->pcp_counter_lock);
1784 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1785 s64 x = per_cpu(mem->stat->count[i], cpu);
1787 per_cpu(mem->stat->count[i], cpu) = 0;
1788 mem->nocpu_base.count[i] += x;
1790 /* need to clear ON_MOVE value, works as a kind of lock. */
1791 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1792 spin_unlock(&mem->pcp_counter_lock);
1795 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1797 int idx = MEM_CGROUP_ON_MOVE;
1799 spin_lock(&mem->pcp_counter_lock);
1800 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1801 spin_unlock(&mem->pcp_counter_lock);
1804 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1805 unsigned long action,
1806 void *hcpu)
1808 int cpu = (unsigned long)hcpu;
1809 struct memcg_stock_pcp *stock;
1810 struct mem_cgroup *iter;
1812 if ((action == CPU_ONLINE)) {
1813 for_each_mem_cgroup_all(iter)
1814 synchronize_mem_cgroup_on_move(iter, cpu);
1815 return NOTIFY_OK;
1818 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1819 return NOTIFY_OK;
1821 for_each_mem_cgroup_all(iter)
1822 mem_cgroup_drain_pcp_counter(iter, cpu);
1824 stock = &per_cpu(memcg_stock, cpu);
1825 drain_stock(stock);
1826 return NOTIFY_OK;
1830 /* See __mem_cgroup_try_charge() for details */
1831 enum {
1832 CHARGE_OK, /* success */
1833 CHARGE_RETRY, /* need to retry but retry is not bad */
1834 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1835 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1836 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1839 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1840 int csize, bool oom_check)
1842 struct mem_cgroup *mem_over_limit;
1843 struct res_counter *fail_res;
1844 unsigned long flags = 0;
1845 int ret;
1847 ret = res_counter_charge(&mem->res, csize, &fail_res);
1849 if (likely(!ret)) {
1850 if (!do_swap_account)
1851 return CHARGE_OK;
1852 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1853 if (likely(!ret))
1854 return CHARGE_OK;
1856 res_counter_uncharge(&mem->res, csize);
1857 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1858 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1859 } else
1860 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1862 * csize can be either a huge page (HPAGE_SIZE), a batch of
1863 * regular pages (CHARGE_SIZE), or a single regular page
1864 * (PAGE_SIZE).
1866 * Never reclaim on behalf of optional batching, retry with a
1867 * single page instead.
1869 if (csize == CHARGE_SIZE)
1870 return CHARGE_RETRY;
1872 if (!(gfp_mask & __GFP_WAIT))
1873 return CHARGE_WOULDBLOCK;
1875 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1876 gfp_mask, flags);
1877 if (mem_cgroup_margin(mem_over_limit) >= csize)
1878 return CHARGE_RETRY;
1880 * Even though the limit is exceeded at this point, reclaim
1881 * may have been able to free some pages. Retry the charge
1882 * before killing the task.
1884 * Only for regular pages, though: huge pages are rather
1885 * unlikely to succeed so close to the limit, and we fall back
1886 * to regular pages anyway in case of failure.
1888 if (csize == PAGE_SIZE && ret)
1889 return CHARGE_RETRY;
1892 * At task move, charge accounts can be doubly counted. So, it's
1893 * better to wait until the end of task_move if something is going on.
1895 if (mem_cgroup_wait_acct_move(mem_over_limit))
1896 return CHARGE_RETRY;
1898 /* If we don't need to call oom-killer at el, return immediately */
1899 if (!oom_check)
1900 return CHARGE_NOMEM;
1901 /* check OOM */
1902 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1903 return CHARGE_OOM_DIE;
1905 return CHARGE_RETRY;
1909 * Unlike exported interface, "oom" parameter is added. if oom==true,
1910 * oom-killer can be invoked.
1912 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1913 gfp_t gfp_mask,
1914 struct mem_cgroup **memcg, bool oom,
1915 int page_size)
1917 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1918 struct mem_cgroup *mem = NULL;
1919 int ret;
1920 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1923 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1924 * in system level. So, allow to go ahead dying process in addition to
1925 * MEMDIE process.
1927 if (unlikely(test_thread_flag(TIF_MEMDIE)
1928 || fatal_signal_pending(current)))
1929 goto bypass;
1932 * We always charge the cgroup the mm_struct belongs to.
1933 * The mm_struct's mem_cgroup changes on task migration if the
1934 * thread group leader migrates. It's possible that mm is not
1935 * set, if so charge the init_mm (happens for pagecache usage).
1937 if (!*memcg && !mm)
1938 goto bypass;
1939 again:
1940 if (*memcg) { /* css should be a valid one */
1941 mem = *memcg;
1942 VM_BUG_ON(css_is_removed(&mem->css));
1943 if (mem_cgroup_is_root(mem))
1944 goto done;
1945 if (page_size == PAGE_SIZE && consume_stock(mem))
1946 goto done;
1947 css_get(&mem->css);
1948 } else {
1949 struct task_struct *p;
1951 rcu_read_lock();
1952 p = rcu_dereference(mm->owner);
1954 * Because we don't have task_lock(), "p" can exit.
1955 * In that case, "mem" can point to root or p can be NULL with
1956 * race with swapoff. Then, we have small risk of mis-accouning.
1957 * But such kind of mis-account by race always happens because
1958 * we don't have cgroup_mutex(). It's overkill and we allo that
1959 * small race, here.
1960 * (*) swapoff at el will charge against mm-struct not against
1961 * task-struct. So, mm->owner can be NULL.
1963 mem = mem_cgroup_from_task(p);
1964 if (!mem || mem_cgroup_is_root(mem)) {
1965 rcu_read_unlock();
1966 goto done;
1968 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1970 * It seems dagerous to access memcg without css_get().
1971 * But considering how consume_stok works, it's not
1972 * necessary. If consume_stock success, some charges
1973 * from this memcg are cached on this cpu. So, we
1974 * don't need to call css_get()/css_tryget() before
1975 * calling consume_stock().
1977 rcu_read_unlock();
1978 goto done;
1980 /* after here, we may be blocked. we need to get refcnt */
1981 if (!css_tryget(&mem->css)) {
1982 rcu_read_unlock();
1983 goto again;
1985 rcu_read_unlock();
1988 do {
1989 bool oom_check;
1991 /* If killed, bypass charge */
1992 if (fatal_signal_pending(current)) {
1993 css_put(&mem->css);
1994 goto bypass;
1997 oom_check = false;
1998 if (oom && !nr_oom_retries) {
1999 oom_check = true;
2000 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2003 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2005 switch (ret) {
2006 case CHARGE_OK:
2007 break;
2008 case CHARGE_RETRY: /* not in OOM situation but retry */
2009 csize = page_size;
2010 css_put(&mem->css);
2011 mem = NULL;
2012 goto again;
2013 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2014 css_put(&mem->css);
2015 goto nomem;
2016 case CHARGE_NOMEM: /* OOM routine works */
2017 if (!oom) {
2018 css_put(&mem->css);
2019 goto nomem;
2021 /* If oom, we never return -ENOMEM */
2022 nr_oom_retries--;
2023 break;
2024 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2025 css_put(&mem->css);
2026 goto bypass;
2028 } while (ret != CHARGE_OK);
2030 if (csize > page_size)
2031 refill_stock(mem, csize - page_size);
2032 css_put(&mem->css);
2033 done:
2034 *memcg = mem;
2035 return 0;
2036 nomem:
2037 *memcg = NULL;
2038 return -ENOMEM;
2039 bypass:
2040 *memcg = NULL;
2041 return 0;
2045 * Somemtimes we have to undo a charge we got by try_charge().
2046 * This function is for that and do uncharge, put css's refcnt.
2047 * gotten by try_charge().
2049 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2050 unsigned long count)
2052 if (!mem_cgroup_is_root(mem)) {
2053 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2054 if (do_swap_account)
2055 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2059 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2060 int page_size)
2062 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2066 * A helper function to get mem_cgroup from ID. must be called under
2067 * rcu_read_lock(). The caller must check css_is_removed() or some if
2068 * it's concern. (dropping refcnt from swap can be called against removed
2069 * memcg.)
2071 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2073 struct cgroup_subsys_state *css;
2075 /* ID 0 is unused ID */
2076 if (!id)
2077 return NULL;
2078 css = css_lookup(&mem_cgroup_subsys, id);
2079 if (!css)
2080 return NULL;
2081 return container_of(css, struct mem_cgroup, css);
2084 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2086 struct mem_cgroup *mem = NULL;
2087 struct page_cgroup *pc;
2088 unsigned short id;
2089 swp_entry_t ent;
2091 VM_BUG_ON(!PageLocked(page));
2093 pc = lookup_page_cgroup(page);
2094 lock_page_cgroup(pc);
2095 if (PageCgroupUsed(pc)) {
2096 mem = pc->mem_cgroup;
2097 if (mem && !css_tryget(&mem->css))
2098 mem = NULL;
2099 } else if (PageSwapCache(page)) {
2100 ent.val = page_private(page);
2101 id = lookup_swap_cgroup(ent);
2102 rcu_read_lock();
2103 mem = mem_cgroup_lookup(id);
2104 if (mem && !css_tryget(&mem->css))
2105 mem = NULL;
2106 rcu_read_unlock();
2108 unlock_page_cgroup(pc);
2109 return mem;
2112 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2113 struct page *page,
2114 struct page_cgroup *pc,
2115 enum charge_type ctype,
2116 int page_size)
2118 int nr_pages = page_size >> PAGE_SHIFT;
2120 lock_page_cgroup(pc);
2121 if (unlikely(PageCgroupUsed(pc))) {
2122 unlock_page_cgroup(pc);
2123 mem_cgroup_cancel_charge(mem, page_size);
2124 return;
2127 * we don't need page_cgroup_lock about tail pages, becase they are not
2128 * accessed by any other context at this point.
2130 pc->mem_cgroup = mem;
2132 * We access a page_cgroup asynchronously without lock_page_cgroup().
2133 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2134 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2135 * before USED bit, we need memory barrier here.
2136 * See mem_cgroup_add_lru_list(), etc.
2138 smp_wmb();
2139 switch (ctype) {
2140 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2141 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2142 SetPageCgroupCache(pc);
2143 SetPageCgroupUsed(pc);
2144 break;
2145 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2146 ClearPageCgroupCache(pc);
2147 SetPageCgroupUsed(pc);
2148 break;
2149 default:
2150 break;
2153 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2154 unlock_page_cgroup(pc);
2156 * "charge_statistics" updated event counter. Then, check it.
2157 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2158 * if they exceeds softlimit.
2160 memcg_check_events(mem, page);
2163 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2165 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2166 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2168 * Because tail pages are not marked as "used", set it. We're under
2169 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2171 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2173 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2174 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2175 unsigned long flags;
2177 if (mem_cgroup_disabled())
2178 return;
2180 * We have no races with charge/uncharge but will have races with
2181 * page state accounting.
2183 move_lock_page_cgroup(head_pc, &flags);
2185 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2186 smp_wmb(); /* see __commit_charge() */
2187 if (PageCgroupAcctLRU(head_pc)) {
2188 enum lru_list lru;
2189 struct mem_cgroup_per_zone *mz;
2192 * LRU flags cannot be copied because we need to add tail
2193 *.page to LRU by generic call and our hook will be called.
2194 * We hold lru_lock, then, reduce counter directly.
2196 lru = page_lru(head);
2197 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2198 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2200 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2201 move_unlock_page_cgroup(head_pc, &flags);
2203 #endif
2206 * mem_cgroup_move_account - move account of the page
2207 * @page: the page
2208 * @pc: page_cgroup of the page.
2209 * @from: mem_cgroup which the page is moved from.
2210 * @to: mem_cgroup which the page is moved to. @from != @to.
2211 * @uncharge: whether we should call uncharge and css_put against @from.
2212 * @charge_size: number of bytes to charge (regular or huge page)
2214 * The caller must confirm following.
2215 * - page is not on LRU (isolate_page() is useful.)
2216 * - compound_lock is held when charge_size > PAGE_SIZE
2218 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2219 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2220 * true, this function does "uncharge" from old cgroup, but it doesn't if
2221 * @uncharge is false, so a caller should do "uncharge".
2223 static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
2224 struct mem_cgroup *from, struct mem_cgroup *to,
2225 bool uncharge, int charge_size)
2227 int nr_pages = charge_size >> PAGE_SHIFT;
2228 unsigned long flags;
2229 int ret;
2231 VM_BUG_ON(from == to);
2232 VM_BUG_ON(PageLRU(page));
2234 * The page is isolated from LRU. So, collapse function
2235 * will not handle this page. But page splitting can happen.
2236 * Do this check under compound_page_lock(). The caller should
2237 * hold it.
2239 ret = -EBUSY;
2240 if (charge_size > PAGE_SIZE && !PageTransHuge(page))
2241 goto out;
2243 lock_page_cgroup(pc);
2245 ret = -EINVAL;
2246 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2247 goto unlock;
2249 move_lock_page_cgroup(pc, &flags);
2251 if (PageCgroupFileMapped(pc)) {
2252 /* Update mapped_file data for mem_cgroup */
2253 preempt_disable();
2254 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2255 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2256 preempt_enable();
2258 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2259 if (uncharge)
2260 /* This is not "cancel", but cancel_charge does all we need. */
2261 mem_cgroup_cancel_charge(from, charge_size);
2263 /* caller should have done css_get */
2264 pc->mem_cgroup = to;
2265 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2267 * We charges against "to" which may not have any tasks. Then, "to"
2268 * can be under rmdir(). But in current implementation, caller of
2269 * this function is just force_empty() and move charge, so it's
2270 * garanteed that "to" is never removed. So, we don't check rmdir
2271 * status here.
2273 move_unlock_page_cgroup(pc, &flags);
2274 ret = 0;
2275 unlock:
2276 unlock_page_cgroup(pc);
2278 * check events
2280 memcg_check_events(to, page);
2281 memcg_check_events(from, page);
2282 out:
2283 return ret;
2287 * move charges to its parent.
2290 static int mem_cgroup_move_parent(struct page *page,
2291 struct page_cgroup *pc,
2292 struct mem_cgroup *child,
2293 gfp_t gfp_mask)
2295 struct cgroup *cg = child->css.cgroup;
2296 struct cgroup *pcg = cg->parent;
2297 struct mem_cgroup *parent;
2298 int page_size = PAGE_SIZE;
2299 unsigned long flags;
2300 int ret;
2302 /* Is ROOT ? */
2303 if (!pcg)
2304 return -EINVAL;
2306 ret = -EBUSY;
2307 if (!get_page_unless_zero(page))
2308 goto out;
2309 if (isolate_lru_page(page))
2310 goto put;
2312 if (PageTransHuge(page))
2313 page_size = HPAGE_SIZE;
2315 parent = mem_cgroup_from_cont(pcg);
2316 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2317 &parent, false, page_size);
2318 if (ret || !parent)
2319 goto put_back;
2321 if (page_size > PAGE_SIZE)
2322 flags = compound_lock_irqsave(page);
2324 ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
2325 if (ret)
2326 mem_cgroup_cancel_charge(parent, page_size);
2328 if (page_size > PAGE_SIZE)
2329 compound_unlock_irqrestore(page, flags);
2330 put_back:
2331 putback_lru_page(page);
2332 put:
2333 put_page(page);
2334 out:
2335 return ret;
2339 * Charge the memory controller for page usage.
2340 * Return
2341 * 0 if the charge was successful
2342 * < 0 if the cgroup is over its limit
2344 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2345 gfp_t gfp_mask, enum charge_type ctype)
2347 struct mem_cgroup *mem = NULL;
2348 int page_size = PAGE_SIZE;
2349 struct page_cgroup *pc;
2350 bool oom = true;
2351 int ret;
2353 if (PageTransHuge(page)) {
2354 page_size <<= compound_order(page);
2355 VM_BUG_ON(!PageTransHuge(page));
2357 * Never OOM-kill a process for a huge page. The
2358 * fault handler will fall back to regular pages.
2360 oom = false;
2363 pc = lookup_page_cgroup(page);
2364 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2366 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2367 if (ret || !mem)
2368 return ret;
2370 __mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
2371 return 0;
2374 int mem_cgroup_newpage_charge(struct page *page,
2375 struct mm_struct *mm, gfp_t gfp_mask)
2377 if (mem_cgroup_disabled())
2378 return 0;
2380 * If already mapped, we don't have to account.
2381 * If page cache, page->mapping has address_space.
2382 * But page->mapping may have out-of-use anon_vma pointer,
2383 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2384 * is NULL.
2386 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2387 return 0;
2388 if (unlikely(!mm))
2389 mm = &init_mm;
2390 return mem_cgroup_charge_common(page, mm, gfp_mask,
2391 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2394 static void
2395 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2396 enum charge_type ctype);
2398 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2399 gfp_t gfp_mask)
2401 int ret;
2403 if (mem_cgroup_disabled())
2404 return 0;
2405 if (PageCompound(page))
2406 return 0;
2408 * Corner case handling. This is called from add_to_page_cache()
2409 * in usual. But some FS (shmem) precharges this page before calling it
2410 * and call add_to_page_cache() with GFP_NOWAIT.
2412 * For GFP_NOWAIT case, the page may be pre-charged before calling
2413 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2414 * charge twice. (It works but has to pay a bit larger cost.)
2415 * And when the page is SwapCache, it should take swap information
2416 * into account. This is under lock_page() now.
2418 if (!(gfp_mask & __GFP_WAIT)) {
2419 struct page_cgroup *pc;
2421 pc = lookup_page_cgroup(page);
2422 if (!pc)
2423 return 0;
2424 lock_page_cgroup(pc);
2425 if (PageCgroupUsed(pc)) {
2426 unlock_page_cgroup(pc);
2427 return 0;
2429 unlock_page_cgroup(pc);
2432 if (unlikely(!mm))
2433 mm = &init_mm;
2435 if (page_is_file_cache(page))
2436 return mem_cgroup_charge_common(page, mm, gfp_mask,
2437 MEM_CGROUP_CHARGE_TYPE_CACHE);
2439 /* shmem */
2440 if (PageSwapCache(page)) {
2441 struct mem_cgroup *mem;
2443 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2444 if (!ret)
2445 __mem_cgroup_commit_charge_swapin(page, mem,
2446 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2447 } else
2448 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2449 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2451 return ret;
2455 * While swap-in, try_charge -> commit or cancel, the page is locked.
2456 * And when try_charge() successfully returns, one refcnt to memcg without
2457 * struct page_cgroup is acquired. This refcnt will be consumed by
2458 * "commit()" or removed by "cancel()"
2460 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2461 struct page *page,
2462 gfp_t mask, struct mem_cgroup **ptr)
2464 struct mem_cgroup *mem;
2465 int ret;
2467 *ptr = NULL;
2469 if (mem_cgroup_disabled())
2470 return 0;
2472 if (!do_swap_account)
2473 goto charge_cur_mm;
2475 * A racing thread's fault, or swapoff, may have already updated
2476 * the pte, and even removed page from swap cache: in those cases
2477 * do_swap_page()'s pte_same() test will fail; but there's also a
2478 * KSM case which does need to charge the page.
2480 if (!PageSwapCache(page))
2481 goto charge_cur_mm;
2482 mem = try_get_mem_cgroup_from_page(page);
2483 if (!mem)
2484 goto charge_cur_mm;
2485 *ptr = mem;
2486 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2487 css_put(&mem->css);
2488 return ret;
2489 charge_cur_mm:
2490 if (unlikely(!mm))
2491 mm = &init_mm;
2492 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2495 static void
2496 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2497 enum charge_type ctype)
2499 struct page_cgroup *pc;
2501 if (mem_cgroup_disabled())
2502 return;
2503 if (!ptr)
2504 return;
2505 cgroup_exclude_rmdir(&ptr->css);
2506 pc = lookup_page_cgroup(page);
2507 mem_cgroup_lru_del_before_commit_swapcache(page);
2508 __mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
2509 mem_cgroup_lru_add_after_commit_swapcache(page);
2511 * Now swap is on-memory. This means this page may be
2512 * counted both as mem and swap....double count.
2513 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2514 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2515 * may call delete_from_swap_cache() before reach here.
2517 if (do_swap_account && PageSwapCache(page)) {
2518 swp_entry_t ent = {.val = page_private(page)};
2519 unsigned short id;
2520 struct mem_cgroup *memcg;
2522 id = swap_cgroup_record(ent, 0);
2523 rcu_read_lock();
2524 memcg = mem_cgroup_lookup(id);
2525 if (memcg) {
2527 * This recorded memcg can be obsolete one. So, avoid
2528 * calling css_tryget
2530 if (!mem_cgroup_is_root(memcg))
2531 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2532 mem_cgroup_swap_statistics(memcg, false);
2533 mem_cgroup_put(memcg);
2535 rcu_read_unlock();
2538 * At swapin, we may charge account against cgroup which has no tasks.
2539 * So, rmdir()->pre_destroy() can be called while we do this charge.
2540 * In that case, we need to call pre_destroy() again. check it here.
2542 cgroup_release_and_wakeup_rmdir(&ptr->css);
2545 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2547 __mem_cgroup_commit_charge_swapin(page, ptr,
2548 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2551 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2553 if (mem_cgroup_disabled())
2554 return;
2555 if (!mem)
2556 return;
2557 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2560 static void
2561 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2562 int page_size)
2564 struct memcg_batch_info *batch = NULL;
2565 bool uncharge_memsw = true;
2566 /* If swapout, usage of swap doesn't decrease */
2567 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2568 uncharge_memsw = false;
2570 batch = &current->memcg_batch;
2572 * In usual, we do css_get() when we remember memcg pointer.
2573 * But in this case, we keep res->usage until end of a series of
2574 * uncharges. Then, it's ok to ignore memcg's refcnt.
2576 if (!batch->memcg)
2577 batch->memcg = mem;
2579 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2580 * In those cases, all pages freed continously can be expected to be in
2581 * the same cgroup and we have chance to coalesce uncharges.
2582 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2583 * because we want to do uncharge as soon as possible.
2586 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2587 goto direct_uncharge;
2589 if (page_size != PAGE_SIZE)
2590 goto direct_uncharge;
2593 * In typical case, batch->memcg == mem. This means we can
2594 * merge a series of uncharges to an uncharge of res_counter.
2595 * If not, we uncharge res_counter ony by one.
2597 if (batch->memcg != mem)
2598 goto direct_uncharge;
2599 /* remember freed charge and uncharge it later */
2600 batch->bytes += PAGE_SIZE;
2601 if (uncharge_memsw)
2602 batch->memsw_bytes += PAGE_SIZE;
2603 return;
2604 direct_uncharge:
2605 res_counter_uncharge(&mem->res, page_size);
2606 if (uncharge_memsw)
2607 res_counter_uncharge(&mem->memsw, page_size);
2608 if (unlikely(batch->memcg != mem))
2609 memcg_oom_recover(mem);
2610 return;
2614 * uncharge if !page_mapped(page)
2616 static struct mem_cgroup *
2617 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2619 int count;
2620 struct page_cgroup *pc;
2621 struct mem_cgroup *mem = NULL;
2622 int page_size = PAGE_SIZE;
2624 if (mem_cgroup_disabled())
2625 return NULL;
2627 if (PageSwapCache(page))
2628 return NULL;
2630 if (PageTransHuge(page)) {
2631 page_size <<= compound_order(page);
2632 VM_BUG_ON(!PageTransHuge(page));
2635 count = page_size >> PAGE_SHIFT;
2637 * Check if our page_cgroup is valid
2639 pc = lookup_page_cgroup(page);
2640 if (unlikely(!pc || !PageCgroupUsed(pc)))
2641 return NULL;
2643 lock_page_cgroup(pc);
2645 mem = pc->mem_cgroup;
2647 if (!PageCgroupUsed(pc))
2648 goto unlock_out;
2650 switch (ctype) {
2651 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2652 case MEM_CGROUP_CHARGE_TYPE_DROP:
2653 /* See mem_cgroup_prepare_migration() */
2654 if (page_mapped(page) || PageCgroupMigration(pc))
2655 goto unlock_out;
2656 break;
2657 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2658 if (!PageAnon(page)) { /* Shared memory */
2659 if (page->mapping && !page_is_file_cache(page))
2660 goto unlock_out;
2661 } else if (page_mapped(page)) /* Anon */
2662 goto unlock_out;
2663 break;
2664 default:
2665 break;
2668 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2670 ClearPageCgroupUsed(pc);
2672 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2673 * freed from LRU. This is safe because uncharged page is expected not
2674 * to be reused (freed soon). Exception is SwapCache, it's handled by
2675 * special functions.
2678 unlock_page_cgroup(pc);
2680 * even after unlock, we have mem->res.usage here and this memcg
2681 * will never be freed.
2683 memcg_check_events(mem, page);
2684 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2685 mem_cgroup_swap_statistics(mem, true);
2686 mem_cgroup_get(mem);
2688 if (!mem_cgroup_is_root(mem))
2689 __do_uncharge(mem, ctype, page_size);
2691 return mem;
2693 unlock_out:
2694 unlock_page_cgroup(pc);
2695 return NULL;
2698 void mem_cgroup_uncharge_page(struct page *page)
2700 /* early check. */
2701 if (page_mapped(page))
2702 return;
2703 if (page->mapping && !PageAnon(page))
2704 return;
2705 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2708 void mem_cgroup_uncharge_cache_page(struct page *page)
2710 VM_BUG_ON(page_mapped(page));
2711 VM_BUG_ON(page->mapping);
2712 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2716 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2717 * In that cases, pages are freed continuously and we can expect pages
2718 * are in the same memcg. All these calls itself limits the number of
2719 * pages freed at once, then uncharge_start/end() is called properly.
2720 * This may be called prural(2) times in a context,
2723 void mem_cgroup_uncharge_start(void)
2725 current->memcg_batch.do_batch++;
2726 /* We can do nest. */
2727 if (current->memcg_batch.do_batch == 1) {
2728 current->memcg_batch.memcg = NULL;
2729 current->memcg_batch.bytes = 0;
2730 current->memcg_batch.memsw_bytes = 0;
2734 void mem_cgroup_uncharge_end(void)
2736 struct memcg_batch_info *batch = &current->memcg_batch;
2738 if (!batch->do_batch)
2739 return;
2741 batch->do_batch--;
2742 if (batch->do_batch) /* If stacked, do nothing. */
2743 return;
2745 if (!batch->memcg)
2746 return;
2748 * This "batch->memcg" is valid without any css_get/put etc...
2749 * bacause we hide charges behind us.
2751 if (batch->bytes)
2752 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2753 if (batch->memsw_bytes)
2754 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2755 memcg_oom_recover(batch->memcg);
2756 /* forget this pointer (for sanity check) */
2757 batch->memcg = NULL;
2760 #ifdef CONFIG_SWAP
2762 * called after __delete_from_swap_cache() and drop "page" account.
2763 * memcg information is recorded to swap_cgroup of "ent"
2765 void
2766 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2768 struct mem_cgroup *memcg;
2769 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2771 if (!swapout) /* this was a swap cache but the swap is unused ! */
2772 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2774 memcg = __mem_cgroup_uncharge_common(page, ctype);
2777 * record memcg information, if swapout && memcg != NULL,
2778 * mem_cgroup_get() was called in uncharge().
2780 if (do_swap_account && swapout && memcg)
2781 swap_cgroup_record(ent, css_id(&memcg->css));
2783 #endif
2785 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2787 * called from swap_entry_free(). remove record in swap_cgroup and
2788 * uncharge "memsw" account.
2790 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2792 struct mem_cgroup *memcg;
2793 unsigned short id;
2795 if (!do_swap_account)
2796 return;
2798 id = swap_cgroup_record(ent, 0);
2799 rcu_read_lock();
2800 memcg = mem_cgroup_lookup(id);
2801 if (memcg) {
2803 * We uncharge this because swap is freed.
2804 * This memcg can be obsolete one. We avoid calling css_tryget
2806 if (!mem_cgroup_is_root(memcg))
2807 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2808 mem_cgroup_swap_statistics(memcg, false);
2809 mem_cgroup_put(memcg);
2811 rcu_read_unlock();
2815 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2816 * @entry: swap entry to be moved
2817 * @from: mem_cgroup which the entry is moved from
2818 * @to: mem_cgroup which the entry is moved to
2819 * @need_fixup: whether we should fixup res_counters and refcounts.
2821 * It succeeds only when the swap_cgroup's record for this entry is the same
2822 * as the mem_cgroup's id of @from.
2824 * Returns 0 on success, -EINVAL on failure.
2826 * The caller must have charged to @to, IOW, called res_counter_charge() about
2827 * both res and memsw, and called css_get().
2829 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2830 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2832 unsigned short old_id, new_id;
2834 old_id = css_id(&from->css);
2835 new_id = css_id(&to->css);
2837 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2838 mem_cgroup_swap_statistics(from, false);
2839 mem_cgroup_swap_statistics(to, true);
2841 * This function is only called from task migration context now.
2842 * It postpones res_counter and refcount handling till the end
2843 * of task migration(mem_cgroup_clear_mc()) for performance
2844 * improvement. But we cannot postpone mem_cgroup_get(to)
2845 * because if the process that has been moved to @to does
2846 * swap-in, the refcount of @to might be decreased to 0.
2848 mem_cgroup_get(to);
2849 if (need_fixup) {
2850 if (!mem_cgroup_is_root(from))
2851 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2852 mem_cgroup_put(from);
2854 * we charged both to->res and to->memsw, so we should
2855 * uncharge to->res.
2857 if (!mem_cgroup_is_root(to))
2858 res_counter_uncharge(&to->res, PAGE_SIZE);
2860 return 0;
2862 return -EINVAL;
2864 #else
2865 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2866 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2868 return -EINVAL;
2870 #endif
2873 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2874 * page belongs to.
2876 int mem_cgroup_prepare_migration(struct page *page,
2877 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2879 struct page_cgroup *pc;
2880 struct mem_cgroup *mem = NULL;
2881 enum charge_type ctype;
2882 int ret = 0;
2884 *ptr = NULL;
2886 VM_BUG_ON(PageTransHuge(page));
2887 if (mem_cgroup_disabled())
2888 return 0;
2890 pc = lookup_page_cgroup(page);
2891 lock_page_cgroup(pc);
2892 if (PageCgroupUsed(pc)) {
2893 mem = pc->mem_cgroup;
2894 css_get(&mem->css);
2896 * At migrating an anonymous page, its mapcount goes down
2897 * to 0 and uncharge() will be called. But, even if it's fully
2898 * unmapped, migration may fail and this page has to be
2899 * charged again. We set MIGRATION flag here and delay uncharge
2900 * until end_migration() is called
2902 * Corner Case Thinking
2903 * A)
2904 * When the old page was mapped as Anon and it's unmap-and-freed
2905 * while migration was ongoing.
2906 * If unmap finds the old page, uncharge() of it will be delayed
2907 * until end_migration(). If unmap finds a new page, it's
2908 * uncharged when it make mapcount to be 1->0. If unmap code
2909 * finds swap_migration_entry, the new page will not be mapped
2910 * and end_migration() will find it(mapcount==0).
2912 * B)
2913 * When the old page was mapped but migraion fails, the kernel
2914 * remaps it. A charge for it is kept by MIGRATION flag even
2915 * if mapcount goes down to 0. We can do remap successfully
2916 * without charging it again.
2918 * C)
2919 * The "old" page is under lock_page() until the end of
2920 * migration, so, the old page itself will not be swapped-out.
2921 * If the new page is swapped out before end_migraton, our
2922 * hook to usual swap-out path will catch the event.
2924 if (PageAnon(page))
2925 SetPageCgroupMigration(pc);
2927 unlock_page_cgroup(pc);
2929 * If the page is not charged at this point,
2930 * we return here.
2932 if (!mem)
2933 return 0;
2935 *ptr = mem;
2936 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2937 css_put(&mem->css);/* drop extra refcnt */
2938 if (ret || *ptr == NULL) {
2939 if (PageAnon(page)) {
2940 lock_page_cgroup(pc);
2941 ClearPageCgroupMigration(pc);
2942 unlock_page_cgroup(pc);
2944 * The old page may be fully unmapped while we kept it.
2946 mem_cgroup_uncharge_page(page);
2948 return -ENOMEM;
2951 * We charge new page before it's used/mapped. So, even if unlock_page()
2952 * is called before end_migration, we can catch all events on this new
2953 * page. In the case new page is migrated but not remapped, new page's
2954 * mapcount will be finally 0 and we call uncharge in end_migration().
2956 pc = lookup_page_cgroup(newpage);
2957 if (PageAnon(page))
2958 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2959 else if (page_is_file_cache(page))
2960 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2961 else
2962 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2963 __mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
2964 return ret;
2967 /* remove redundant charge if migration failed*/
2968 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2969 struct page *oldpage, struct page *newpage, bool migration_ok)
2971 struct page *used, *unused;
2972 struct page_cgroup *pc;
2974 if (!mem)
2975 return;
2976 /* blocks rmdir() */
2977 cgroup_exclude_rmdir(&mem->css);
2978 if (!migration_ok) {
2979 used = oldpage;
2980 unused = newpage;
2981 } else {
2982 used = newpage;
2983 unused = oldpage;
2986 * We disallowed uncharge of pages under migration because mapcount
2987 * of the page goes down to zero, temporarly.
2988 * Clear the flag and check the page should be charged.
2990 pc = lookup_page_cgroup(oldpage);
2991 lock_page_cgroup(pc);
2992 ClearPageCgroupMigration(pc);
2993 unlock_page_cgroup(pc);
2995 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2998 * If a page is a file cache, radix-tree replacement is very atomic
2999 * and we can skip this check. When it was an Anon page, its mapcount
3000 * goes down to 0. But because we added MIGRATION flage, it's not
3001 * uncharged yet. There are several case but page->mapcount check
3002 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3003 * check. (see prepare_charge() also)
3005 if (PageAnon(used))
3006 mem_cgroup_uncharge_page(used);
3008 * At migration, we may charge account against cgroup which has no
3009 * tasks.
3010 * So, rmdir()->pre_destroy() can be called while we do this charge.
3011 * In that case, we need to call pre_destroy() again. check it here.
3013 cgroup_release_and_wakeup_rmdir(&mem->css);
3017 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3018 * Calling hierarchical_reclaim is not enough because we should update
3019 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3020 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3021 * not from the memcg which this page would be charged to.
3022 * try_charge_swapin does all of these works properly.
3024 int mem_cgroup_shmem_charge_fallback(struct page *page,
3025 struct mm_struct *mm,
3026 gfp_t gfp_mask)
3028 struct mem_cgroup *mem;
3029 int ret;
3031 if (mem_cgroup_disabled())
3032 return 0;
3034 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3035 if (!ret)
3036 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3038 return ret;
3041 #ifdef CONFIG_DEBUG_VM
3042 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3044 struct page_cgroup *pc;
3046 pc = lookup_page_cgroup(page);
3047 if (likely(pc) && PageCgroupUsed(pc))
3048 return pc;
3049 return NULL;
3052 bool mem_cgroup_bad_page_check(struct page *page)
3054 if (mem_cgroup_disabled())
3055 return false;
3057 return lookup_page_cgroup_used(page) != NULL;
3060 void mem_cgroup_print_bad_page(struct page *page)
3062 struct page_cgroup *pc;
3064 pc = lookup_page_cgroup_used(page);
3065 if (pc) {
3066 int ret = -1;
3067 char *path;
3069 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3070 pc, pc->flags, pc->mem_cgroup);
3072 path = kmalloc(PATH_MAX, GFP_KERNEL);
3073 if (path) {
3074 rcu_read_lock();
3075 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3076 path, PATH_MAX);
3077 rcu_read_unlock();
3080 printk(KERN_CONT "(%s)\n",
3081 (ret < 0) ? "cannot get the path" : path);
3082 kfree(path);
3085 #endif
3087 static DEFINE_MUTEX(set_limit_mutex);
3089 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3090 unsigned long long val)
3092 int retry_count;
3093 u64 memswlimit, memlimit;
3094 int ret = 0;
3095 int children = mem_cgroup_count_children(memcg);
3096 u64 curusage, oldusage;
3097 int enlarge;
3100 * For keeping hierarchical_reclaim simple, how long we should retry
3101 * is depends on callers. We set our retry-count to be function
3102 * of # of children which we should visit in this loop.
3104 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3106 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3108 enlarge = 0;
3109 while (retry_count) {
3110 if (signal_pending(current)) {
3111 ret = -EINTR;
3112 break;
3115 * Rather than hide all in some function, I do this in
3116 * open coded manner. You see what this really does.
3117 * We have to guarantee mem->res.limit < mem->memsw.limit.
3119 mutex_lock(&set_limit_mutex);
3120 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3121 if (memswlimit < val) {
3122 ret = -EINVAL;
3123 mutex_unlock(&set_limit_mutex);
3124 break;
3127 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3128 if (memlimit < val)
3129 enlarge = 1;
3131 ret = res_counter_set_limit(&memcg->res, val);
3132 if (!ret) {
3133 if (memswlimit == val)
3134 memcg->memsw_is_minimum = true;
3135 else
3136 memcg->memsw_is_minimum = false;
3138 mutex_unlock(&set_limit_mutex);
3140 if (!ret)
3141 break;
3143 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3144 MEM_CGROUP_RECLAIM_SHRINK);
3145 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3146 /* Usage is reduced ? */
3147 if (curusage >= oldusage)
3148 retry_count--;
3149 else
3150 oldusage = curusage;
3152 if (!ret && enlarge)
3153 memcg_oom_recover(memcg);
3155 return ret;
3158 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3159 unsigned long long val)
3161 int retry_count;
3162 u64 memlimit, memswlimit, oldusage, curusage;
3163 int children = mem_cgroup_count_children(memcg);
3164 int ret = -EBUSY;
3165 int enlarge = 0;
3167 /* see mem_cgroup_resize_res_limit */
3168 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3169 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3170 while (retry_count) {
3171 if (signal_pending(current)) {
3172 ret = -EINTR;
3173 break;
3176 * Rather than hide all in some function, I do this in
3177 * open coded manner. You see what this really does.
3178 * We have to guarantee mem->res.limit < mem->memsw.limit.
3180 mutex_lock(&set_limit_mutex);
3181 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3182 if (memlimit > val) {
3183 ret = -EINVAL;
3184 mutex_unlock(&set_limit_mutex);
3185 break;
3187 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3188 if (memswlimit < val)
3189 enlarge = 1;
3190 ret = res_counter_set_limit(&memcg->memsw, val);
3191 if (!ret) {
3192 if (memlimit == val)
3193 memcg->memsw_is_minimum = true;
3194 else
3195 memcg->memsw_is_minimum = false;
3197 mutex_unlock(&set_limit_mutex);
3199 if (!ret)
3200 break;
3202 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3203 MEM_CGROUP_RECLAIM_NOSWAP |
3204 MEM_CGROUP_RECLAIM_SHRINK);
3205 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3206 /* Usage is reduced ? */
3207 if (curusage >= oldusage)
3208 retry_count--;
3209 else
3210 oldusage = curusage;
3212 if (!ret && enlarge)
3213 memcg_oom_recover(memcg);
3214 return ret;
3217 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3218 gfp_t gfp_mask)
3220 unsigned long nr_reclaimed = 0;
3221 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3222 unsigned long reclaimed;
3223 int loop = 0;
3224 struct mem_cgroup_tree_per_zone *mctz;
3225 unsigned long long excess;
3227 if (order > 0)
3228 return 0;
3230 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3232 * This loop can run a while, specially if mem_cgroup's continuously
3233 * keep exceeding their soft limit and putting the system under
3234 * pressure
3236 do {
3237 if (next_mz)
3238 mz = next_mz;
3239 else
3240 mz = mem_cgroup_largest_soft_limit_node(mctz);
3241 if (!mz)
3242 break;
3244 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3245 gfp_mask,
3246 MEM_CGROUP_RECLAIM_SOFT);
3247 nr_reclaimed += reclaimed;
3248 spin_lock(&mctz->lock);
3251 * If we failed to reclaim anything from this memory cgroup
3252 * it is time to move on to the next cgroup
3254 next_mz = NULL;
3255 if (!reclaimed) {
3256 do {
3258 * Loop until we find yet another one.
3260 * By the time we get the soft_limit lock
3261 * again, someone might have aded the
3262 * group back on the RB tree. Iterate to
3263 * make sure we get a different mem.
3264 * mem_cgroup_largest_soft_limit_node returns
3265 * NULL if no other cgroup is present on
3266 * the tree
3268 next_mz =
3269 __mem_cgroup_largest_soft_limit_node(mctz);
3270 if (next_mz == mz) {
3271 css_put(&next_mz->mem->css);
3272 next_mz = NULL;
3273 } else /* next_mz == NULL or other memcg */
3274 break;
3275 } while (1);
3277 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3278 excess = res_counter_soft_limit_excess(&mz->mem->res);
3280 * One school of thought says that we should not add
3281 * back the node to the tree if reclaim returns 0.
3282 * But our reclaim could return 0, simply because due
3283 * to priority we are exposing a smaller subset of
3284 * memory to reclaim from. Consider this as a longer
3285 * term TODO.
3287 /* If excess == 0, no tree ops */
3288 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3289 spin_unlock(&mctz->lock);
3290 css_put(&mz->mem->css);
3291 loop++;
3293 * Could not reclaim anything and there are no more
3294 * mem cgroups to try or we seem to be looping without
3295 * reclaiming anything.
3297 if (!nr_reclaimed &&
3298 (next_mz == NULL ||
3299 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3300 break;
3301 } while (!nr_reclaimed);
3302 if (next_mz)
3303 css_put(&next_mz->mem->css);
3304 return nr_reclaimed;
3308 * This routine traverse page_cgroup in given list and drop them all.
3309 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3311 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3312 int node, int zid, enum lru_list lru)
3314 struct zone *zone;
3315 struct mem_cgroup_per_zone *mz;
3316 struct page_cgroup *pc, *busy;
3317 unsigned long flags, loop;
3318 struct list_head *list;
3319 int ret = 0;
3321 zone = &NODE_DATA(node)->node_zones[zid];
3322 mz = mem_cgroup_zoneinfo(mem, node, zid);
3323 list = &mz->lists[lru];
3325 loop = MEM_CGROUP_ZSTAT(mz, lru);
3326 /* give some margin against EBUSY etc...*/
3327 loop += 256;
3328 busy = NULL;
3329 while (loop--) {
3330 struct page *page;
3332 ret = 0;
3333 spin_lock_irqsave(&zone->lru_lock, flags);
3334 if (list_empty(list)) {
3335 spin_unlock_irqrestore(&zone->lru_lock, flags);
3336 break;
3338 pc = list_entry(list->prev, struct page_cgroup, lru);
3339 if (busy == pc) {
3340 list_move(&pc->lru, list);
3341 busy = NULL;
3342 spin_unlock_irqrestore(&zone->lru_lock, flags);
3343 continue;
3345 spin_unlock_irqrestore(&zone->lru_lock, flags);
3347 page = lookup_cgroup_page(pc);
3349 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3350 if (ret == -ENOMEM)
3351 break;
3353 if (ret == -EBUSY || ret == -EINVAL) {
3354 /* found lock contention or "pc" is obsolete. */
3355 busy = pc;
3356 cond_resched();
3357 } else
3358 busy = NULL;
3361 if (!ret && !list_empty(list))
3362 return -EBUSY;
3363 return ret;
3367 * make mem_cgroup's charge to be 0 if there is no task.
3368 * This enables deleting this mem_cgroup.
3370 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3372 int ret;
3373 int node, zid, shrink;
3374 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3375 struct cgroup *cgrp = mem->css.cgroup;
3377 css_get(&mem->css);
3379 shrink = 0;
3380 /* should free all ? */
3381 if (free_all)
3382 goto try_to_free;
3383 move_account:
3384 do {
3385 ret = -EBUSY;
3386 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3387 goto out;
3388 ret = -EINTR;
3389 if (signal_pending(current))
3390 goto out;
3391 /* This is for making all *used* pages to be on LRU. */
3392 lru_add_drain_all();
3393 drain_all_stock_sync();
3394 ret = 0;
3395 mem_cgroup_start_move(mem);
3396 for_each_node_state(node, N_HIGH_MEMORY) {
3397 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3398 enum lru_list l;
3399 for_each_lru(l) {
3400 ret = mem_cgroup_force_empty_list(mem,
3401 node, zid, l);
3402 if (ret)
3403 break;
3406 if (ret)
3407 break;
3409 mem_cgroup_end_move(mem);
3410 memcg_oom_recover(mem);
3411 /* it seems parent cgroup doesn't have enough mem */
3412 if (ret == -ENOMEM)
3413 goto try_to_free;
3414 cond_resched();
3415 /* "ret" should also be checked to ensure all lists are empty. */
3416 } while (mem->res.usage > 0 || ret);
3417 out:
3418 css_put(&mem->css);
3419 return ret;
3421 try_to_free:
3422 /* returns EBUSY if there is a task or if we come here twice. */
3423 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3424 ret = -EBUSY;
3425 goto out;
3427 /* we call try-to-free pages for make this cgroup empty */
3428 lru_add_drain_all();
3429 /* try to free all pages in this cgroup */
3430 shrink = 1;
3431 while (nr_retries && mem->res.usage > 0) {
3432 int progress;
3434 if (signal_pending(current)) {
3435 ret = -EINTR;
3436 goto out;
3438 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3439 false, get_swappiness(mem));
3440 if (!progress) {
3441 nr_retries--;
3442 /* maybe some writeback is necessary */
3443 congestion_wait(BLK_RW_ASYNC, HZ/10);
3447 lru_add_drain();
3448 /* try move_account...there may be some *locked* pages. */
3449 goto move_account;
3452 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3454 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3458 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3460 return mem_cgroup_from_cont(cont)->use_hierarchy;
3463 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3464 u64 val)
3466 int retval = 0;
3467 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3468 struct cgroup *parent = cont->parent;
3469 struct mem_cgroup *parent_mem = NULL;
3471 if (parent)
3472 parent_mem = mem_cgroup_from_cont(parent);
3474 cgroup_lock();
3476 * If parent's use_hierarchy is set, we can't make any modifications
3477 * in the child subtrees. If it is unset, then the change can
3478 * occur, provided the current cgroup has no children.
3480 * For the root cgroup, parent_mem is NULL, we allow value to be
3481 * set if there are no children.
3483 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3484 (val == 1 || val == 0)) {
3485 if (list_empty(&cont->children))
3486 mem->use_hierarchy = val;
3487 else
3488 retval = -EBUSY;
3489 } else
3490 retval = -EINVAL;
3491 cgroup_unlock();
3493 return retval;
3497 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3498 enum mem_cgroup_stat_index idx)
3500 struct mem_cgroup *iter;
3501 s64 val = 0;
3503 /* each per cpu's value can be minus.Then, use s64 */
3504 for_each_mem_cgroup_tree(iter, mem)
3505 val += mem_cgroup_read_stat(iter, idx);
3507 if (val < 0) /* race ? */
3508 val = 0;
3509 return val;
3512 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3514 u64 val;
3516 if (!mem_cgroup_is_root(mem)) {
3517 if (!swap)
3518 return res_counter_read_u64(&mem->res, RES_USAGE);
3519 else
3520 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3523 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3524 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3526 if (swap)
3527 val += mem_cgroup_get_recursive_idx_stat(mem,
3528 MEM_CGROUP_STAT_SWAPOUT);
3530 return val << PAGE_SHIFT;
3533 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3535 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3536 u64 val;
3537 int type, name;
3539 type = MEMFILE_TYPE(cft->private);
3540 name = MEMFILE_ATTR(cft->private);
3541 switch (type) {
3542 case _MEM:
3543 if (name == RES_USAGE)
3544 val = mem_cgroup_usage(mem, false);
3545 else
3546 val = res_counter_read_u64(&mem->res, name);
3547 break;
3548 case _MEMSWAP:
3549 if (name == RES_USAGE)
3550 val = mem_cgroup_usage(mem, true);
3551 else
3552 val = res_counter_read_u64(&mem->memsw, name);
3553 break;
3554 default:
3555 BUG();
3556 break;
3558 return val;
3561 * The user of this function is...
3562 * RES_LIMIT.
3564 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3565 const char *buffer)
3567 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3568 int type, name;
3569 unsigned long long val;
3570 int ret;
3572 type = MEMFILE_TYPE(cft->private);
3573 name = MEMFILE_ATTR(cft->private);
3574 switch (name) {
3575 case RES_LIMIT:
3576 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3577 ret = -EINVAL;
3578 break;
3580 /* This function does all necessary parse...reuse it */
3581 ret = res_counter_memparse_write_strategy(buffer, &val);
3582 if (ret)
3583 break;
3584 if (type == _MEM)
3585 ret = mem_cgroup_resize_limit(memcg, val);
3586 else
3587 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3588 break;
3589 case RES_SOFT_LIMIT:
3590 ret = res_counter_memparse_write_strategy(buffer, &val);
3591 if (ret)
3592 break;
3594 * For memsw, soft limits are hard to implement in terms
3595 * of semantics, for now, we support soft limits for
3596 * control without swap
3598 if (type == _MEM)
3599 ret = res_counter_set_soft_limit(&memcg->res, val);
3600 else
3601 ret = -EINVAL;
3602 break;
3603 default:
3604 ret = -EINVAL; /* should be BUG() ? */
3605 break;
3607 return ret;
3610 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3611 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3613 struct cgroup *cgroup;
3614 unsigned long long min_limit, min_memsw_limit, tmp;
3616 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3617 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3618 cgroup = memcg->css.cgroup;
3619 if (!memcg->use_hierarchy)
3620 goto out;
3622 while (cgroup->parent) {
3623 cgroup = cgroup->parent;
3624 memcg = mem_cgroup_from_cont(cgroup);
3625 if (!memcg->use_hierarchy)
3626 break;
3627 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3628 min_limit = min(min_limit, tmp);
3629 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3630 min_memsw_limit = min(min_memsw_limit, tmp);
3632 out:
3633 *mem_limit = min_limit;
3634 *memsw_limit = min_memsw_limit;
3635 return;
3638 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3640 struct mem_cgroup *mem;
3641 int type, name;
3643 mem = mem_cgroup_from_cont(cont);
3644 type = MEMFILE_TYPE(event);
3645 name = MEMFILE_ATTR(event);
3646 switch (name) {
3647 case RES_MAX_USAGE:
3648 if (type == _MEM)
3649 res_counter_reset_max(&mem->res);
3650 else
3651 res_counter_reset_max(&mem->memsw);
3652 break;
3653 case RES_FAILCNT:
3654 if (type == _MEM)
3655 res_counter_reset_failcnt(&mem->res);
3656 else
3657 res_counter_reset_failcnt(&mem->memsw);
3658 break;
3661 return 0;
3664 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3665 struct cftype *cft)
3667 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3670 #ifdef CONFIG_MMU
3671 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3672 struct cftype *cft, u64 val)
3674 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3676 if (val >= (1 << NR_MOVE_TYPE))
3677 return -EINVAL;
3679 * We check this value several times in both in can_attach() and
3680 * attach(), so we need cgroup lock to prevent this value from being
3681 * inconsistent.
3683 cgroup_lock();
3684 mem->move_charge_at_immigrate = val;
3685 cgroup_unlock();
3687 return 0;
3689 #else
3690 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3691 struct cftype *cft, u64 val)
3693 return -ENOSYS;
3695 #endif
3698 /* For read statistics */
3699 enum {
3700 MCS_CACHE,
3701 MCS_RSS,
3702 MCS_FILE_MAPPED,
3703 MCS_PGPGIN,
3704 MCS_PGPGOUT,
3705 MCS_SWAP,
3706 MCS_INACTIVE_ANON,
3707 MCS_ACTIVE_ANON,
3708 MCS_INACTIVE_FILE,
3709 MCS_ACTIVE_FILE,
3710 MCS_UNEVICTABLE,
3711 NR_MCS_STAT,
3714 struct mcs_total_stat {
3715 s64 stat[NR_MCS_STAT];
3718 struct {
3719 char *local_name;
3720 char *total_name;
3721 } memcg_stat_strings[NR_MCS_STAT] = {
3722 {"cache", "total_cache"},
3723 {"rss", "total_rss"},
3724 {"mapped_file", "total_mapped_file"},
3725 {"pgpgin", "total_pgpgin"},
3726 {"pgpgout", "total_pgpgout"},
3727 {"swap", "total_swap"},
3728 {"inactive_anon", "total_inactive_anon"},
3729 {"active_anon", "total_active_anon"},
3730 {"inactive_file", "total_inactive_file"},
3731 {"active_file", "total_active_file"},
3732 {"unevictable", "total_unevictable"}
3736 static void
3737 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3739 s64 val;
3741 /* per cpu stat */
3742 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3743 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3744 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3745 s->stat[MCS_RSS] += val * PAGE_SIZE;
3746 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3747 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3748 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3749 s->stat[MCS_PGPGIN] += val;
3750 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3751 s->stat[MCS_PGPGOUT] += val;
3752 if (do_swap_account) {
3753 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3754 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3757 /* per zone stat */
3758 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3759 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3760 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3761 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3762 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3763 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3764 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3765 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3766 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3767 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3770 static void
3771 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3773 struct mem_cgroup *iter;
3775 for_each_mem_cgroup_tree(iter, mem)
3776 mem_cgroup_get_local_stat(iter, s);
3779 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3780 struct cgroup_map_cb *cb)
3782 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3783 struct mcs_total_stat mystat;
3784 int i;
3786 memset(&mystat, 0, sizeof(mystat));
3787 mem_cgroup_get_local_stat(mem_cont, &mystat);
3789 for (i = 0; i < NR_MCS_STAT; i++) {
3790 if (i == MCS_SWAP && !do_swap_account)
3791 continue;
3792 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3795 /* Hierarchical information */
3797 unsigned long long limit, memsw_limit;
3798 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3799 cb->fill(cb, "hierarchical_memory_limit", limit);
3800 if (do_swap_account)
3801 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3804 memset(&mystat, 0, sizeof(mystat));
3805 mem_cgroup_get_total_stat(mem_cont, &mystat);
3806 for (i = 0; i < NR_MCS_STAT; i++) {
3807 if (i == MCS_SWAP && !do_swap_account)
3808 continue;
3809 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3812 #ifdef CONFIG_DEBUG_VM
3813 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3816 int nid, zid;
3817 struct mem_cgroup_per_zone *mz;
3818 unsigned long recent_rotated[2] = {0, 0};
3819 unsigned long recent_scanned[2] = {0, 0};
3821 for_each_online_node(nid)
3822 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3823 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3825 recent_rotated[0] +=
3826 mz->reclaim_stat.recent_rotated[0];
3827 recent_rotated[1] +=
3828 mz->reclaim_stat.recent_rotated[1];
3829 recent_scanned[0] +=
3830 mz->reclaim_stat.recent_scanned[0];
3831 recent_scanned[1] +=
3832 mz->reclaim_stat.recent_scanned[1];
3834 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3835 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3836 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3837 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3839 #endif
3841 return 0;
3844 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3846 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3848 return get_swappiness(memcg);
3851 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3852 u64 val)
3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3855 struct mem_cgroup *parent;
3857 if (val > 100)
3858 return -EINVAL;
3860 if (cgrp->parent == NULL)
3861 return -EINVAL;
3863 parent = mem_cgroup_from_cont(cgrp->parent);
3865 cgroup_lock();
3867 /* If under hierarchy, only empty-root can set this value */
3868 if ((parent->use_hierarchy) ||
3869 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3870 cgroup_unlock();
3871 return -EINVAL;
3874 spin_lock(&memcg->reclaim_param_lock);
3875 memcg->swappiness = val;
3876 spin_unlock(&memcg->reclaim_param_lock);
3878 cgroup_unlock();
3880 return 0;
3883 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3885 struct mem_cgroup_threshold_ary *t;
3886 u64 usage;
3887 int i;
3889 rcu_read_lock();
3890 if (!swap)
3891 t = rcu_dereference(memcg->thresholds.primary);
3892 else
3893 t = rcu_dereference(memcg->memsw_thresholds.primary);
3895 if (!t)
3896 goto unlock;
3898 usage = mem_cgroup_usage(memcg, swap);
3901 * current_threshold points to threshold just below usage.
3902 * If it's not true, a threshold was crossed after last
3903 * call of __mem_cgroup_threshold().
3905 i = t->current_threshold;
3908 * Iterate backward over array of thresholds starting from
3909 * current_threshold and check if a threshold is crossed.
3910 * If none of thresholds below usage is crossed, we read
3911 * only one element of the array here.
3913 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3914 eventfd_signal(t->entries[i].eventfd, 1);
3916 /* i = current_threshold + 1 */
3917 i++;
3920 * Iterate forward over array of thresholds starting from
3921 * current_threshold+1 and check if a threshold is crossed.
3922 * If none of thresholds above usage is crossed, we read
3923 * only one element of the array here.
3925 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3926 eventfd_signal(t->entries[i].eventfd, 1);
3928 /* Update current_threshold */
3929 t->current_threshold = i - 1;
3930 unlock:
3931 rcu_read_unlock();
3934 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3936 while (memcg) {
3937 __mem_cgroup_threshold(memcg, false);
3938 if (do_swap_account)
3939 __mem_cgroup_threshold(memcg, true);
3941 memcg = parent_mem_cgroup(memcg);
3945 static int compare_thresholds(const void *a, const void *b)
3947 const struct mem_cgroup_threshold *_a = a;
3948 const struct mem_cgroup_threshold *_b = b;
3950 return _a->threshold - _b->threshold;
3953 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3955 struct mem_cgroup_eventfd_list *ev;
3957 list_for_each_entry(ev, &mem->oom_notify, list)
3958 eventfd_signal(ev->eventfd, 1);
3959 return 0;
3962 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3964 struct mem_cgroup *iter;
3966 for_each_mem_cgroup_tree(iter, mem)
3967 mem_cgroup_oom_notify_cb(iter);
3970 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3971 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3973 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3974 struct mem_cgroup_thresholds *thresholds;
3975 struct mem_cgroup_threshold_ary *new;
3976 int type = MEMFILE_TYPE(cft->private);
3977 u64 threshold, usage;
3978 int i, size, ret;
3980 ret = res_counter_memparse_write_strategy(args, &threshold);
3981 if (ret)
3982 return ret;
3984 mutex_lock(&memcg->thresholds_lock);
3986 if (type == _MEM)
3987 thresholds = &memcg->thresholds;
3988 else if (type == _MEMSWAP)
3989 thresholds = &memcg->memsw_thresholds;
3990 else
3991 BUG();
3993 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3995 /* Check if a threshold crossed before adding a new one */
3996 if (thresholds->primary)
3997 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3999 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4001 /* Allocate memory for new array of thresholds */
4002 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4003 GFP_KERNEL);
4004 if (!new) {
4005 ret = -ENOMEM;
4006 goto unlock;
4008 new->size = size;
4010 /* Copy thresholds (if any) to new array */
4011 if (thresholds->primary) {
4012 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4013 sizeof(struct mem_cgroup_threshold));
4016 /* Add new threshold */
4017 new->entries[size - 1].eventfd = eventfd;
4018 new->entries[size - 1].threshold = threshold;
4020 /* Sort thresholds. Registering of new threshold isn't time-critical */
4021 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4022 compare_thresholds, NULL);
4024 /* Find current threshold */
4025 new->current_threshold = -1;
4026 for (i = 0; i < size; i++) {
4027 if (new->entries[i].threshold < usage) {
4029 * new->current_threshold will not be used until
4030 * rcu_assign_pointer(), so it's safe to increment
4031 * it here.
4033 ++new->current_threshold;
4037 /* Free old spare buffer and save old primary buffer as spare */
4038 kfree(thresholds->spare);
4039 thresholds->spare = thresholds->primary;
4041 rcu_assign_pointer(thresholds->primary, new);
4043 /* To be sure that nobody uses thresholds */
4044 synchronize_rcu();
4046 unlock:
4047 mutex_unlock(&memcg->thresholds_lock);
4049 return ret;
4052 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4053 struct cftype *cft, struct eventfd_ctx *eventfd)
4055 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4056 struct mem_cgroup_thresholds *thresholds;
4057 struct mem_cgroup_threshold_ary *new;
4058 int type = MEMFILE_TYPE(cft->private);
4059 u64 usage;
4060 int i, j, size;
4062 mutex_lock(&memcg->thresholds_lock);
4063 if (type == _MEM)
4064 thresholds = &memcg->thresholds;
4065 else if (type == _MEMSWAP)
4066 thresholds = &memcg->memsw_thresholds;
4067 else
4068 BUG();
4071 * Something went wrong if we trying to unregister a threshold
4072 * if we don't have thresholds
4074 BUG_ON(!thresholds);
4076 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4078 /* Check if a threshold crossed before removing */
4079 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4081 /* Calculate new number of threshold */
4082 size = 0;
4083 for (i = 0; i < thresholds->primary->size; i++) {
4084 if (thresholds->primary->entries[i].eventfd != eventfd)
4085 size++;
4088 new = thresholds->spare;
4090 /* Set thresholds array to NULL if we don't have thresholds */
4091 if (!size) {
4092 kfree(new);
4093 new = NULL;
4094 goto swap_buffers;
4097 new->size = size;
4099 /* Copy thresholds and find current threshold */
4100 new->current_threshold = -1;
4101 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4102 if (thresholds->primary->entries[i].eventfd == eventfd)
4103 continue;
4105 new->entries[j] = thresholds->primary->entries[i];
4106 if (new->entries[j].threshold < usage) {
4108 * new->current_threshold will not be used
4109 * until rcu_assign_pointer(), so it's safe to increment
4110 * it here.
4112 ++new->current_threshold;
4114 j++;
4117 swap_buffers:
4118 /* Swap primary and spare array */
4119 thresholds->spare = thresholds->primary;
4120 rcu_assign_pointer(thresholds->primary, new);
4122 /* To be sure that nobody uses thresholds */
4123 synchronize_rcu();
4125 mutex_unlock(&memcg->thresholds_lock);
4128 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4129 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4131 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4132 struct mem_cgroup_eventfd_list *event;
4133 int type = MEMFILE_TYPE(cft->private);
4135 BUG_ON(type != _OOM_TYPE);
4136 event = kmalloc(sizeof(*event), GFP_KERNEL);
4137 if (!event)
4138 return -ENOMEM;
4140 mutex_lock(&memcg_oom_mutex);
4142 event->eventfd = eventfd;
4143 list_add(&event->list, &memcg->oom_notify);
4145 /* already in OOM ? */
4146 if (atomic_read(&memcg->oom_lock))
4147 eventfd_signal(eventfd, 1);
4148 mutex_unlock(&memcg_oom_mutex);
4150 return 0;
4153 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4154 struct cftype *cft, struct eventfd_ctx *eventfd)
4156 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4157 struct mem_cgroup_eventfd_list *ev, *tmp;
4158 int type = MEMFILE_TYPE(cft->private);
4160 BUG_ON(type != _OOM_TYPE);
4162 mutex_lock(&memcg_oom_mutex);
4164 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4165 if (ev->eventfd == eventfd) {
4166 list_del(&ev->list);
4167 kfree(ev);
4171 mutex_unlock(&memcg_oom_mutex);
4174 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4175 struct cftype *cft, struct cgroup_map_cb *cb)
4177 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4179 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4181 if (atomic_read(&mem->oom_lock))
4182 cb->fill(cb, "under_oom", 1);
4183 else
4184 cb->fill(cb, "under_oom", 0);
4185 return 0;
4188 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4189 struct cftype *cft, u64 val)
4191 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4192 struct mem_cgroup *parent;
4194 /* cannot set to root cgroup and only 0 and 1 are allowed */
4195 if (!cgrp->parent || !((val == 0) || (val == 1)))
4196 return -EINVAL;
4198 parent = mem_cgroup_from_cont(cgrp->parent);
4200 cgroup_lock();
4201 /* oom-kill-disable is a flag for subhierarchy. */
4202 if ((parent->use_hierarchy) ||
4203 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4204 cgroup_unlock();
4205 return -EINVAL;
4207 mem->oom_kill_disable = val;
4208 if (!val)
4209 memcg_oom_recover(mem);
4210 cgroup_unlock();
4211 return 0;
4214 static struct cftype mem_cgroup_files[] = {
4216 .name = "usage_in_bytes",
4217 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4218 .read_u64 = mem_cgroup_read,
4219 .register_event = mem_cgroup_usage_register_event,
4220 .unregister_event = mem_cgroup_usage_unregister_event,
4223 .name = "max_usage_in_bytes",
4224 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4225 .trigger = mem_cgroup_reset,
4226 .read_u64 = mem_cgroup_read,
4229 .name = "limit_in_bytes",
4230 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4231 .write_string = mem_cgroup_write,
4232 .read_u64 = mem_cgroup_read,
4235 .name = "soft_limit_in_bytes",
4236 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4237 .write_string = mem_cgroup_write,
4238 .read_u64 = mem_cgroup_read,
4241 .name = "failcnt",
4242 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4243 .trigger = mem_cgroup_reset,
4244 .read_u64 = mem_cgroup_read,
4247 .name = "stat",
4248 .read_map = mem_control_stat_show,
4251 .name = "force_empty",
4252 .trigger = mem_cgroup_force_empty_write,
4255 .name = "use_hierarchy",
4256 .write_u64 = mem_cgroup_hierarchy_write,
4257 .read_u64 = mem_cgroup_hierarchy_read,
4260 .name = "swappiness",
4261 .read_u64 = mem_cgroup_swappiness_read,
4262 .write_u64 = mem_cgroup_swappiness_write,
4265 .name = "move_charge_at_immigrate",
4266 .read_u64 = mem_cgroup_move_charge_read,
4267 .write_u64 = mem_cgroup_move_charge_write,
4270 .name = "oom_control",
4271 .read_map = mem_cgroup_oom_control_read,
4272 .write_u64 = mem_cgroup_oom_control_write,
4273 .register_event = mem_cgroup_oom_register_event,
4274 .unregister_event = mem_cgroup_oom_unregister_event,
4275 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4279 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4280 static struct cftype memsw_cgroup_files[] = {
4282 .name = "memsw.usage_in_bytes",
4283 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4284 .read_u64 = mem_cgroup_read,
4285 .register_event = mem_cgroup_usage_register_event,
4286 .unregister_event = mem_cgroup_usage_unregister_event,
4289 .name = "memsw.max_usage_in_bytes",
4290 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4291 .trigger = mem_cgroup_reset,
4292 .read_u64 = mem_cgroup_read,
4295 .name = "memsw.limit_in_bytes",
4296 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4297 .write_string = mem_cgroup_write,
4298 .read_u64 = mem_cgroup_read,
4301 .name = "memsw.failcnt",
4302 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4303 .trigger = mem_cgroup_reset,
4304 .read_u64 = mem_cgroup_read,
4308 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4310 if (!do_swap_account)
4311 return 0;
4312 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4313 ARRAY_SIZE(memsw_cgroup_files));
4315 #else
4316 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4318 return 0;
4320 #endif
4322 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4324 struct mem_cgroup_per_node *pn;
4325 struct mem_cgroup_per_zone *mz;
4326 enum lru_list l;
4327 int zone, tmp = node;
4329 * This routine is called against possible nodes.
4330 * But it's BUG to call kmalloc() against offline node.
4332 * TODO: this routine can waste much memory for nodes which will
4333 * never be onlined. It's better to use memory hotplug callback
4334 * function.
4336 if (!node_state(node, N_NORMAL_MEMORY))
4337 tmp = -1;
4338 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4339 if (!pn)
4340 return 1;
4342 mem->info.nodeinfo[node] = pn;
4343 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4344 mz = &pn->zoneinfo[zone];
4345 for_each_lru(l)
4346 INIT_LIST_HEAD(&mz->lists[l]);
4347 mz->usage_in_excess = 0;
4348 mz->on_tree = false;
4349 mz->mem = mem;
4351 return 0;
4354 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4356 kfree(mem->info.nodeinfo[node]);
4359 static struct mem_cgroup *mem_cgroup_alloc(void)
4361 struct mem_cgroup *mem;
4362 int size = sizeof(struct mem_cgroup);
4364 /* Can be very big if MAX_NUMNODES is very big */
4365 if (size < PAGE_SIZE)
4366 mem = kzalloc(size, GFP_KERNEL);
4367 else
4368 mem = vzalloc(size);
4370 if (!mem)
4371 return NULL;
4373 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4374 if (!mem->stat)
4375 goto out_free;
4376 spin_lock_init(&mem->pcp_counter_lock);
4377 return mem;
4379 out_free:
4380 if (size < PAGE_SIZE)
4381 kfree(mem);
4382 else
4383 vfree(mem);
4384 return NULL;
4388 * At destroying mem_cgroup, references from swap_cgroup can remain.
4389 * (scanning all at force_empty is too costly...)
4391 * Instead of clearing all references at force_empty, we remember
4392 * the number of reference from swap_cgroup and free mem_cgroup when
4393 * it goes down to 0.
4395 * Removal of cgroup itself succeeds regardless of refs from swap.
4398 static void __mem_cgroup_free(struct mem_cgroup *mem)
4400 int node;
4402 mem_cgroup_remove_from_trees(mem);
4403 free_css_id(&mem_cgroup_subsys, &mem->css);
4405 for_each_node_state(node, N_POSSIBLE)
4406 free_mem_cgroup_per_zone_info(mem, node);
4408 free_percpu(mem->stat);
4409 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4410 kfree(mem);
4411 else
4412 vfree(mem);
4415 static void mem_cgroup_get(struct mem_cgroup *mem)
4417 atomic_inc(&mem->refcnt);
4420 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4422 if (atomic_sub_and_test(count, &mem->refcnt)) {
4423 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4424 __mem_cgroup_free(mem);
4425 if (parent)
4426 mem_cgroup_put(parent);
4430 static void mem_cgroup_put(struct mem_cgroup *mem)
4432 __mem_cgroup_put(mem, 1);
4436 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4438 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4440 if (!mem->res.parent)
4441 return NULL;
4442 return mem_cgroup_from_res_counter(mem->res.parent, res);
4445 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4446 static void __init enable_swap_cgroup(void)
4448 if (!mem_cgroup_disabled() && really_do_swap_account)
4449 do_swap_account = 1;
4451 #else
4452 static void __init enable_swap_cgroup(void)
4455 #endif
4457 static int mem_cgroup_soft_limit_tree_init(void)
4459 struct mem_cgroup_tree_per_node *rtpn;
4460 struct mem_cgroup_tree_per_zone *rtpz;
4461 int tmp, node, zone;
4463 for_each_node_state(node, N_POSSIBLE) {
4464 tmp = node;
4465 if (!node_state(node, N_NORMAL_MEMORY))
4466 tmp = -1;
4467 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4468 if (!rtpn)
4469 return 1;
4471 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4473 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4474 rtpz = &rtpn->rb_tree_per_zone[zone];
4475 rtpz->rb_root = RB_ROOT;
4476 spin_lock_init(&rtpz->lock);
4479 return 0;
4482 static struct cgroup_subsys_state * __ref
4483 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4485 struct mem_cgroup *mem, *parent;
4486 long error = -ENOMEM;
4487 int node;
4489 mem = mem_cgroup_alloc();
4490 if (!mem)
4491 return ERR_PTR(error);
4493 for_each_node_state(node, N_POSSIBLE)
4494 if (alloc_mem_cgroup_per_zone_info(mem, node))
4495 goto free_out;
4497 /* root ? */
4498 if (cont->parent == NULL) {
4499 int cpu;
4500 enable_swap_cgroup();
4501 parent = NULL;
4502 root_mem_cgroup = mem;
4503 if (mem_cgroup_soft_limit_tree_init())
4504 goto free_out;
4505 for_each_possible_cpu(cpu) {
4506 struct memcg_stock_pcp *stock =
4507 &per_cpu(memcg_stock, cpu);
4508 INIT_WORK(&stock->work, drain_local_stock);
4510 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4511 } else {
4512 parent = mem_cgroup_from_cont(cont->parent);
4513 mem->use_hierarchy = parent->use_hierarchy;
4514 mem->oom_kill_disable = parent->oom_kill_disable;
4517 if (parent && parent->use_hierarchy) {
4518 res_counter_init(&mem->res, &parent->res);
4519 res_counter_init(&mem->memsw, &parent->memsw);
4521 * We increment refcnt of the parent to ensure that we can
4522 * safely access it on res_counter_charge/uncharge.
4523 * This refcnt will be decremented when freeing this
4524 * mem_cgroup(see mem_cgroup_put).
4526 mem_cgroup_get(parent);
4527 } else {
4528 res_counter_init(&mem->res, NULL);
4529 res_counter_init(&mem->memsw, NULL);
4531 mem->last_scanned_child = 0;
4532 spin_lock_init(&mem->reclaim_param_lock);
4533 INIT_LIST_HEAD(&mem->oom_notify);
4535 if (parent)
4536 mem->swappiness = get_swappiness(parent);
4537 atomic_set(&mem->refcnt, 1);
4538 mem->move_charge_at_immigrate = 0;
4539 mutex_init(&mem->thresholds_lock);
4540 return &mem->css;
4541 free_out:
4542 __mem_cgroup_free(mem);
4543 root_mem_cgroup = NULL;
4544 return ERR_PTR(error);
4547 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4548 struct cgroup *cont)
4550 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4552 return mem_cgroup_force_empty(mem, false);
4555 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4556 struct cgroup *cont)
4558 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4560 mem_cgroup_put(mem);
4563 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4564 struct cgroup *cont)
4566 int ret;
4568 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4569 ARRAY_SIZE(mem_cgroup_files));
4571 if (!ret)
4572 ret = register_memsw_files(cont, ss);
4573 return ret;
4576 #ifdef CONFIG_MMU
4577 /* Handlers for move charge at task migration. */
4578 #define PRECHARGE_COUNT_AT_ONCE 256
4579 static int mem_cgroup_do_precharge(unsigned long count)
4581 int ret = 0;
4582 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4583 struct mem_cgroup *mem = mc.to;
4585 if (mem_cgroup_is_root(mem)) {
4586 mc.precharge += count;
4587 /* we don't need css_get for root */
4588 return ret;
4590 /* try to charge at once */
4591 if (count > 1) {
4592 struct res_counter *dummy;
4594 * "mem" cannot be under rmdir() because we've already checked
4595 * by cgroup_lock_live_cgroup() that it is not removed and we
4596 * are still under the same cgroup_mutex. So we can postpone
4597 * css_get().
4599 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4600 goto one_by_one;
4601 if (do_swap_account && res_counter_charge(&mem->memsw,
4602 PAGE_SIZE * count, &dummy)) {
4603 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4604 goto one_by_one;
4606 mc.precharge += count;
4607 return ret;
4609 one_by_one:
4610 /* fall back to one by one charge */
4611 while (count--) {
4612 if (signal_pending(current)) {
4613 ret = -EINTR;
4614 break;
4616 if (!batch_count--) {
4617 batch_count = PRECHARGE_COUNT_AT_ONCE;
4618 cond_resched();
4620 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4621 PAGE_SIZE);
4622 if (ret || !mem)
4623 /* mem_cgroup_clear_mc() will do uncharge later */
4624 return -ENOMEM;
4625 mc.precharge++;
4627 return ret;
4631 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4632 * @vma: the vma the pte to be checked belongs
4633 * @addr: the address corresponding to the pte to be checked
4634 * @ptent: the pte to be checked
4635 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4637 * Returns
4638 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4639 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4640 * move charge. if @target is not NULL, the page is stored in target->page
4641 * with extra refcnt got(Callers should handle it).
4642 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4643 * target for charge migration. if @target is not NULL, the entry is stored
4644 * in target->ent.
4646 * Called with pte lock held.
4648 union mc_target {
4649 struct page *page;
4650 swp_entry_t ent;
4653 enum mc_target_type {
4654 MC_TARGET_NONE, /* not used */
4655 MC_TARGET_PAGE,
4656 MC_TARGET_SWAP,
4659 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4660 unsigned long addr, pte_t ptent)
4662 struct page *page = vm_normal_page(vma, addr, ptent);
4664 if (!page || !page_mapped(page))
4665 return NULL;
4666 if (PageAnon(page)) {
4667 /* we don't move shared anon */
4668 if (!move_anon() || page_mapcount(page) > 2)
4669 return NULL;
4670 } else if (!move_file())
4671 /* we ignore mapcount for file pages */
4672 return NULL;
4673 if (!get_page_unless_zero(page))
4674 return NULL;
4676 return page;
4679 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4680 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4682 int usage_count;
4683 struct page *page = NULL;
4684 swp_entry_t ent = pte_to_swp_entry(ptent);
4686 if (!move_anon() || non_swap_entry(ent))
4687 return NULL;
4688 usage_count = mem_cgroup_count_swap_user(ent, &page);
4689 if (usage_count > 1) { /* we don't move shared anon */
4690 if (page)
4691 put_page(page);
4692 return NULL;
4694 if (do_swap_account)
4695 entry->val = ent.val;
4697 return page;
4700 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4701 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4703 struct page *page = NULL;
4704 struct inode *inode;
4705 struct address_space *mapping;
4706 pgoff_t pgoff;
4708 if (!vma->vm_file) /* anonymous vma */
4709 return NULL;
4710 if (!move_file())
4711 return NULL;
4713 inode = vma->vm_file->f_path.dentry->d_inode;
4714 mapping = vma->vm_file->f_mapping;
4715 if (pte_none(ptent))
4716 pgoff = linear_page_index(vma, addr);
4717 else /* pte_file(ptent) is true */
4718 pgoff = pte_to_pgoff(ptent);
4720 /* page is moved even if it's not RSS of this task(page-faulted). */
4721 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4722 page = find_get_page(mapping, pgoff);
4723 } else { /* shmem/tmpfs file. we should take account of swap too. */
4724 swp_entry_t ent;
4725 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4726 if (do_swap_account)
4727 entry->val = ent.val;
4730 return page;
4733 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4734 unsigned long addr, pte_t ptent, union mc_target *target)
4736 struct page *page = NULL;
4737 struct page_cgroup *pc;
4738 int ret = 0;
4739 swp_entry_t ent = { .val = 0 };
4741 if (pte_present(ptent))
4742 page = mc_handle_present_pte(vma, addr, ptent);
4743 else if (is_swap_pte(ptent))
4744 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4745 else if (pte_none(ptent) || pte_file(ptent))
4746 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4748 if (!page && !ent.val)
4749 return 0;
4750 if (page) {
4751 pc = lookup_page_cgroup(page);
4753 * Do only loose check w/o page_cgroup lock.
4754 * mem_cgroup_move_account() checks the pc is valid or not under
4755 * the lock.
4757 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4758 ret = MC_TARGET_PAGE;
4759 if (target)
4760 target->page = page;
4762 if (!ret || !target)
4763 put_page(page);
4765 /* There is a swap entry and a page doesn't exist or isn't charged */
4766 if (ent.val && !ret &&
4767 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4768 ret = MC_TARGET_SWAP;
4769 if (target)
4770 target->ent = ent;
4772 return ret;
4775 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4776 unsigned long addr, unsigned long end,
4777 struct mm_walk *walk)
4779 struct vm_area_struct *vma = walk->private;
4780 pte_t *pte;
4781 spinlock_t *ptl;
4783 split_huge_page_pmd(walk->mm, pmd);
4785 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4786 for (; addr != end; pte++, addr += PAGE_SIZE)
4787 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4788 mc.precharge++; /* increment precharge temporarily */
4789 pte_unmap_unlock(pte - 1, ptl);
4790 cond_resched();
4792 return 0;
4795 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4797 unsigned long precharge;
4798 struct vm_area_struct *vma;
4800 down_read(&mm->mmap_sem);
4801 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4802 struct mm_walk mem_cgroup_count_precharge_walk = {
4803 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4804 .mm = mm,
4805 .private = vma,
4807 if (is_vm_hugetlb_page(vma))
4808 continue;
4809 walk_page_range(vma->vm_start, vma->vm_end,
4810 &mem_cgroup_count_precharge_walk);
4812 up_read(&mm->mmap_sem);
4814 precharge = mc.precharge;
4815 mc.precharge = 0;
4817 return precharge;
4820 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4822 unsigned long precharge = mem_cgroup_count_precharge(mm);
4824 VM_BUG_ON(mc.moving_task);
4825 mc.moving_task = current;
4826 return mem_cgroup_do_precharge(precharge);
4829 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4830 static void __mem_cgroup_clear_mc(void)
4832 struct mem_cgroup *from = mc.from;
4833 struct mem_cgroup *to = mc.to;
4835 /* we must uncharge all the leftover precharges from mc.to */
4836 if (mc.precharge) {
4837 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4838 mc.precharge = 0;
4841 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4842 * we must uncharge here.
4844 if (mc.moved_charge) {
4845 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4846 mc.moved_charge = 0;
4848 /* we must fixup refcnts and charges */
4849 if (mc.moved_swap) {
4850 /* uncharge swap account from the old cgroup */
4851 if (!mem_cgroup_is_root(mc.from))
4852 res_counter_uncharge(&mc.from->memsw,
4853 PAGE_SIZE * mc.moved_swap);
4854 __mem_cgroup_put(mc.from, mc.moved_swap);
4856 if (!mem_cgroup_is_root(mc.to)) {
4858 * we charged both to->res and to->memsw, so we should
4859 * uncharge to->res.
4861 res_counter_uncharge(&mc.to->res,
4862 PAGE_SIZE * mc.moved_swap);
4864 /* we've already done mem_cgroup_get(mc.to) */
4865 mc.moved_swap = 0;
4867 memcg_oom_recover(from);
4868 memcg_oom_recover(to);
4869 wake_up_all(&mc.waitq);
4872 static void mem_cgroup_clear_mc(void)
4874 struct mem_cgroup *from = mc.from;
4877 * we must clear moving_task before waking up waiters at the end of
4878 * task migration.
4880 mc.moving_task = NULL;
4881 __mem_cgroup_clear_mc();
4882 spin_lock(&mc.lock);
4883 mc.from = NULL;
4884 mc.to = NULL;
4885 spin_unlock(&mc.lock);
4886 mem_cgroup_end_move(from);
4889 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4890 struct cgroup *cgroup,
4891 struct task_struct *p,
4892 bool threadgroup)
4894 int ret = 0;
4895 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4897 if (mem->move_charge_at_immigrate) {
4898 struct mm_struct *mm;
4899 struct mem_cgroup *from = mem_cgroup_from_task(p);
4901 VM_BUG_ON(from == mem);
4903 mm = get_task_mm(p);
4904 if (!mm)
4905 return 0;
4906 /* We move charges only when we move a owner of the mm */
4907 if (mm->owner == p) {
4908 VM_BUG_ON(mc.from);
4909 VM_BUG_ON(mc.to);
4910 VM_BUG_ON(mc.precharge);
4911 VM_BUG_ON(mc.moved_charge);
4912 VM_BUG_ON(mc.moved_swap);
4913 mem_cgroup_start_move(from);
4914 spin_lock(&mc.lock);
4915 mc.from = from;
4916 mc.to = mem;
4917 spin_unlock(&mc.lock);
4918 /* We set mc.moving_task later */
4920 ret = mem_cgroup_precharge_mc(mm);
4921 if (ret)
4922 mem_cgroup_clear_mc();
4924 mmput(mm);
4926 return ret;
4929 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4930 struct cgroup *cgroup,
4931 struct task_struct *p,
4932 bool threadgroup)
4934 mem_cgroup_clear_mc();
4937 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4938 unsigned long addr, unsigned long end,
4939 struct mm_walk *walk)
4941 int ret = 0;
4942 struct vm_area_struct *vma = walk->private;
4943 pte_t *pte;
4944 spinlock_t *ptl;
4946 split_huge_page_pmd(walk->mm, pmd);
4947 retry:
4948 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4949 for (; addr != end; addr += PAGE_SIZE) {
4950 pte_t ptent = *(pte++);
4951 union mc_target target;
4952 int type;
4953 struct page *page;
4954 struct page_cgroup *pc;
4955 swp_entry_t ent;
4957 if (!mc.precharge)
4958 break;
4960 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4961 switch (type) {
4962 case MC_TARGET_PAGE:
4963 page = target.page;
4964 if (isolate_lru_page(page))
4965 goto put;
4966 pc = lookup_page_cgroup(page);
4967 if (!mem_cgroup_move_account(page, pc,
4968 mc.from, mc.to, false, PAGE_SIZE)) {
4969 mc.precharge--;
4970 /* we uncharge from mc.from later. */
4971 mc.moved_charge++;
4973 putback_lru_page(page);
4974 put: /* is_target_pte_for_mc() gets the page */
4975 put_page(page);
4976 break;
4977 case MC_TARGET_SWAP:
4978 ent = target.ent;
4979 if (!mem_cgroup_move_swap_account(ent,
4980 mc.from, mc.to, false)) {
4981 mc.precharge--;
4982 /* we fixup refcnts and charges later. */
4983 mc.moved_swap++;
4985 break;
4986 default:
4987 break;
4990 pte_unmap_unlock(pte - 1, ptl);
4991 cond_resched();
4993 if (addr != end) {
4995 * We have consumed all precharges we got in can_attach().
4996 * We try charge one by one, but don't do any additional
4997 * charges to mc.to if we have failed in charge once in attach()
4998 * phase.
5000 ret = mem_cgroup_do_precharge(1);
5001 if (!ret)
5002 goto retry;
5005 return ret;
5008 static void mem_cgroup_move_charge(struct mm_struct *mm)
5010 struct vm_area_struct *vma;
5012 lru_add_drain_all();
5013 retry:
5014 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5016 * Someone who are holding the mmap_sem might be waiting in
5017 * waitq. So we cancel all extra charges, wake up all waiters,
5018 * and retry. Because we cancel precharges, we might not be able
5019 * to move enough charges, but moving charge is a best-effort
5020 * feature anyway, so it wouldn't be a big problem.
5022 __mem_cgroup_clear_mc();
5023 cond_resched();
5024 goto retry;
5026 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5027 int ret;
5028 struct mm_walk mem_cgroup_move_charge_walk = {
5029 .pmd_entry = mem_cgroup_move_charge_pte_range,
5030 .mm = mm,
5031 .private = vma,
5033 if (is_vm_hugetlb_page(vma))
5034 continue;
5035 ret = walk_page_range(vma->vm_start, vma->vm_end,
5036 &mem_cgroup_move_charge_walk);
5037 if (ret)
5039 * means we have consumed all precharges and failed in
5040 * doing additional charge. Just abandon here.
5042 break;
5044 up_read(&mm->mmap_sem);
5047 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5048 struct cgroup *cont,
5049 struct cgroup *old_cont,
5050 struct task_struct *p,
5051 bool threadgroup)
5053 struct mm_struct *mm;
5055 if (!mc.to)
5056 /* no need to move charge */
5057 return;
5059 mm = get_task_mm(p);
5060 if (mm) {
5061 mem_cgroup_move_charge(mm);
5062 mmput(mm);
5064 mem_cgroup_clear_mc();
5066 #else /* !CONFIG_MMU */
5067 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5068 struct cgroup *cgroup,
5069 struct task_struct *p,
5070 bool threadgroup)
5072 return 0;
5074 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5075 struct cgroup *cgroup,
5076 struct task_struct *p,
5077 bool threadgroup)
5080 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5081 struct cgroup *cont,
5082 struct cgroup *old_cont,
5083 struct task_struct *p,
5084 bool threadgroup)
5087 #endif
5089 struct cgroup_subsys mem_cgroup_subsys = {
5090 .name = "memory",
5091 .subsys_id = mem_cgroup_subsys_id,
5092 .create = mem_cgroup_create,
5093 .pre_destroy = mem_cgroup_pre_destroy,
5094 .destroy = mem_cgroup_destroy,
5095 .populate = mem_cgroup_populate,
5096 .can_attach = mem_cgroup_can_attach,
5097 .cancel_attach = mem_cgroup_cancel_attach,
5098 .attach = mem_cgroup_move_task,
5099 .early_init = 0,
5100 .use_id = 1,
5103 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5104 static int __init enable_swap_account(char *s)
5106 /* consider enabled if no parameter or 1 is given */
5107 if (!(*s) || !strcmp(s, "=1"))
5108 really_do_swap_account = 1;
5109 else if (!strcmp(s, "=0"))
5110 really_do_swap_account = 0;
5111 return 1;
5113 __setup("swapaccount", enable_swap_account);
5115 static int __init disable_swap_account(char *s)
5117 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5118 enable_swap_account("=0");
5119 return 1;
5121 __setup("noswapaccount", disable_swap_account);
5122 #endif