2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock
);
42 static char dbg_key_buf0
[128];
43 static char dbg_key_buf1
[128];
45 unsigned int ubifs_msg_flags
= UBIFS_MSG_FLAGS_DEFAULT
;
46 unsigned int ubifs_chk_flags
= UBIFS_CHK_FLAGS_DEFAULT
;
47 unsigned int ubifs_tst_flags
;
49 module_param_named(debug_msgs
, ubifs_msg_flags
, uint
, S_IRUGO
| S_IWUSR
);
50 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
53 MODULE_PARM_DESC(debug_msgs
, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
57 static const char *get_key_fmt(int fmt
)
60 case UBIFS_SIMPLE_KEY_FMT
:
63 return "unknown/invalid format";
67 static const char *get_key_hash(int hash
)
70 case UBIFS_KEY_HASH_R5
:
72 case UBIFS_KEY_HASH_TEST
:
75 return "unknown/invalid name hash";
79 static const char *get_key_type(int type
)
93 return "unknown/invalid key";
97 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
101 int type
= key_type(c
, key
);
103 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
106 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
111 sprintf(p
, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c
, key
),
113 get_key_type(type
), key_hash(c
, key
));
116 sprintf(p
, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c
, key
),
118 get_key_type(type
), key_block(c
, key
));
121 sprintf(p
, "(%lu, %s)",
122 (unsigned long)key_inum(c
, key
),
126 sprintf(p
, "(bad key type: %#08x, %#08x)",
127 key
->u32
[0], key
->u32
[1]);
130 sprintf(p
, "bad key format %d", c
->key_fmt
);
133 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
135 /* dbg_lock must be held */
136 sprintf_key(c
, key
, dbg_key_buf0
);
140 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
142 /* dbg_lock must be held */
143 sprintf_key(c
, key
, dbg_key_buf1
);
147 const char *dbg_ntype(int type
)
151 return "padding node";
153 return "superblock node";
155 return "master node";
157 return "reference node";
160 case UBIFS_DENT_NODE
:
161 return "direntry node";
162 case UBIFS_XENT_NODE
:
163 return "xentry node";
164 case UBIFS_DATA_NODE
:
166 case UBIFS_TRUN_NODE
:
167 return "truncate node";
169 return "indexing node";
171 return "commit start node";
172 case UBIFS_ORPH_NODE
:
173 return "orphan node";
175 return "unknown node";
179 static const char *dbg_gtype(int type
)
182 case UBIFS_NO_NODE_GROUP
:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP
:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP
:
187 return "last of node group";
193 const char *dbg_cstate(int cmt_state
)
197 return "commit resting";
198 case COMMIT_BACKGROUND
:
199 return "background commit requested";
200 case COMMIT_REQUIRED
:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND
:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED
:
205 return "commit running and required";
207 return "broken commit";
209 return "unknown commit state";
213 const char *dbg_jhead(int jhead
)
223 return "unknown journal head";
227 static void dump_ch(const struct ubifs_ch
*ch
)
229 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
230 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
231 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
232 dbg_ntype(ch
->node_type
));
233 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
234 dbg_gtype(ch
->group_type
));
235 printk(KERN_DEBUG
"\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch
->sqnum
));
237 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
240 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
242 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
244 printk(KERN_DEBUG
"Dump in-memory inode:");
245 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
246 printk(KERN_DEBUG
"\tsize %llu\n",
247 (unsigned long long)i_size_read(inode
));
248 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
249 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
250 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
251 printk(KERN_DEBUG
"\tatime %u.%u\n",
252 (unsigned int)inode
->i_atime
.tv_sec
,
253 (unsigned int)inode
->i_atime
.tv_nsec
);
254 printk(KERN_DEBUG
"\tmtime %u.%u\n",
255 (unsigned int)inode
->i_mtime
.tv_sec
,
256 (unsigned int)inode
->i_mtime
.tv_nsec
);
257 printk(KERN_DEBUG
"\tctime %u.%u\n",
258 (unsigned int)inode
->i_ctime
.tv_sec
,
259 (unsigned int)inode
->i_ctime
.tv_nsec
);
260 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
261 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
262 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
263 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
264 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
265 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
266 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
267 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
268 (unsigned long long)ui
->synced_i_size
);
269 printk(KERN_DEBUG
"\tui_size %llu\n",
270 (unsigned long long)ui
->ui_size
);
271 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
272 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
273 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
274 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
275 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
278 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
282 const struct ubifs_ch
*ch
= node
;
284 if (dbg_failure_mode
)
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
289 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
290 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
291 (void *)node
, UBIFS_CH_SZ
, 1);
295 spin_lock(&dbg_lock
);
298 switch (ch
->node_type
) {
301 const struct ubifs_pad_node
*pad
= node
;
303 printk(KERN_DEBUG
"\tpad_len %u\n",
304 le32_to_cpu(pad
->pad_len
));
309 const struct ubifs_sb_node
*sup
= node
;
310 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
312 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
313 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
314 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
315 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
316 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
317 printk(KERN_DEBUG
"\t big_lpt %u\n",
318 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
319 printk(KERN_DEBUG
"\tmin_io_size %u\n",
320 le32_to_cpu(sup
->min_io_size
));
321 printk(KERN_DEBUG
"\tleb_size %u\n",
322 le32_to_cpu(sup
->leb_size
));
323 printk(KERN_DEBUG
"\tleb_cnt %u\n",
324 le32_to_cpu(sup
->leb_cnt
));
325 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup
->max_leb_cnt
));
327 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
329 printk(KERN_DEBUG
"\tlog_lebs %u\n",
330 le32_to_cpu(sup
->log_lebs
));
331 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
332 le32_to_cpu(sup
->lpt_lebs
));
333 printk(KERN_DEBUG
"\torph_lebs %u\n",
334 le32_to_cpu(sup
->orph_lebs
));
335 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
336 le32_to_cpu(sup
->jhead_cnt
));
337 printk(KERN_DEBUG
"\tfanout %u\n",
338 le32_to_cpu(sup
->fanout
));
339 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
340 le32_to_cpu(sup
->lsave_cnt
));
341 printk(KERN_DEBUG
"\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup
->default_compr
));
343 printk(KERN_DEBUG
"\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup
->rp_size
));
345 printk(KERN_DEBUG
"\trp_uid %u\n",
346 le32_to_cpu(sup
->rp_uid
));
347 printk(KERN_DEBUG
"\trp_gid %u\n",
348 le32_to_cpu(sup
->rp_gid
));
349 printk(KERN_DEBUG
"\tfmt_version %u\n",
350 le32_to_cpu(sup
->fmt_version
));
351 printk(KERN_DEBUG
"\ttime_gran %u\n",
352 le32_to_cpu(sup
->time_gran
));
353 printk(KERN_DEBUG
"\tUUID %02X%02X%02X%02X-%02X%02X"
354 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
355 sup
->uuid
[0], sup
->uuid
[1], sup
->uuid
[2], sup
->uuid
[3],
356 sup
->uuid
[4], sup
->uuid
[5], sup
->uuid
[6], sup
->uuid
[7],
357 sup
->uuid
[8], sup
->uuid
[9], sup
->uuid
[10], sup
->uuid
[11],
358 sup
->uuid
[12], sup
->uuid
[13], sup
->uuid
[14],
364 const struct ubifs_mst_node
*mst
= node
;
366 printk(KERN_DEBUG
"\thighest_inum %llu\n",
367 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
368 printk(KERN_DEBUG
"\tcommit number %llu\n",
369 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
370 printk(KERN_DEBUG
"\tflags %#x\n",
371 le32_to_cpu(mst
->flags
));
372 printk(KERN_DEBUG
"\tlog_lnum %u\n",
373 le32_to_cpu(mst
->log_lnum
));
374 printk(KERN_DEBUG
"\troot_lnum %u\n",
375 le32_to_cpu(mst
->root_lnum
));
376 printk(KERN_DEBUG
"\troot_offs %u\n",
377 le32_to_cpu(mst
->root_offs
));
378 printk(KERN_DEBUG
"\troot_len %u\n",
379 le32_to_cpu(mst
->root_len
));
380 printk(KERN_DEBUG
"\tgc_lnum %u\n",
381 le32_to_cpu(mst
->gc_lnum
));
382 printk(KERN_DEBUG
"\tihead_lnum %u\n",
383 le32_to_cpu(mst
->ihead_lnum
));
384 printk(KERN_DEBUG
"\tihead_offs %u\n",
385 le32_to_cpu(mst
->ihead_offs
));
386 printk(KERN_DEBUG
"\tindex_size %llu\n",
387 (unsigned long long)le64_to_cpu(mst
->index_size
));
388 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
389 le32_to_cpu(mst
->lpt_lnum
));
390 printk(KERN_DEBUG
"\tlpt_offs %u\n",
391 le32_to_cpu(mst
->lpt_offs
));
392 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
393 le32_to_cpu(mst
->nhead_lnum
));
394 printk(KERN_DEBUG
"\tnhead_offs %u\n",
395 le32_to_cpu(mst
->nhead_offs
));
396 printk(KERN_DEBUG
"\tltab_lnum %u\n",
397 le32_to_cpu(mst
->ltab_lnum
));
398 printk(KERN_DEBUG
"\tltab_offs %u\n",
399 le32_to_cpu(mst
->ltab_offs
));
400 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
401 le32_to_cpu(mst
->lsave_lnum
));
402 printk(KERN_DEBUG
"\tlsave_offs %u\n",
403 le32_to_cpu(mst
->lsave_offs
));
404 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
405 le32_to_cpu(mst
->lscan_lnum
));
406 printk(KERN_DEBUG
"\tleb_cnt %u\n",
407 le32_to_cpu(mst
->leb_cnt
));
408 printk(KERN_DEBUG
"\tempty_lebs %u\n",
409 le32_to_cpu(mst
->empty_lebs
));
410 printk(KERN_DEBUG
"\tidx_lebs %u\n",
411 le32_to_cpu(mst
->idx_lebs
));
412 printk(KERN_DEBUG
"\ttotal_free %llu\n",
413 (unsigned long long)le64_to_cpu(mst
->total_free
));
414 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
415 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
416 printk(KERN_DEBUG
"\ttotal_used %llu\n",
417 (unsigned long long)le64_to_cpu(mst
->total_used
));
418 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
419 (unsigned long long)le64_to_cpu(mst
->total_dead
));
420 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
421 (unsigned long long)le64_to_cpu(mst
->total_dark
));
426 const struct ubifs_ref_node
*ref
= node
;
428 printk(KERN_DEBUG
"\tlnum %u\n",
429 le32_to_cpu(ref
->lnum
));
430 printk(KERN_DEBUG
"\toffs %u\n",
431 le32_to_cpu(ref
->offs
));
432 printk(KERN_DEBUG
"\tjhead %u\n",
433 le32_to_cpu(ref
->jhead
));
438 const struct ubifs_ino_node
*ino
= node
;
440 key_read(c
, &ino
->key
, &key
);
441 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
442 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
443 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
444 printk(KERN_DEBUG
"\tsize %llu\n",
445 (unsigned long long)le64_to_cpu(ino
->size
));
446 printk(KERN_DEBUG
"\tnlink %u\n",
447 le32_to_cpu(ino
->nlink
));
448 printk(KERN_DEBUG
"\tatime %lld.%u\n",
449 (long long)le64_to_cpu(ino
->atime_sec
),
450 le32_to_cpu(ino
->atime_nsec
));
451 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
452 (long long)le64_to_cpu(ino
->mtime_sec
),
453 le32_to_cpu(ino
->mtime_nsec
));
454 printk(KERN_DEBUG
"\tctime %lld.%u\n",
455 (long long)le64_to_cpu(ino
->ctime_sec
),
456 le32_to_cpu(ino
->ctime_nsec
));
457 printk(KERN_DEBUG
"\tuid %u\n",
458 le32_to_cpu(ino
->uid
));
459 printk(KERN_DEBUG
"\tgid %u\n",
460 le32_to_cpu(ino
->gid
));
461 printk(KERN_DEBUG
"\tmode %u\n",
462 le32_to_cpu(ino
->mode
));
463 printk(KERN_DEBUG
"\tflags %#x\n",
464 le32_to_cpu(ino
->flags
));
465 printk(KERN_DEBUG
"\txattr_cnt %u\n",
466 le32_to_cpu(ino
->xattr_cnt
));
467 printk(KERN_DEBUG
"\txattr_size %u\n",
468 le32_to_cpu(ino
->xattr_size
));
469 printk(KERN_DEBUG
"\txattr_names %u\n",
470 le32_to_cpu(ino
->xattr_names
));
471 printk(KERN_DEBUG
"\tcompr_type %#x\n",
472 (int)le16_to_cpu(ino
->compr_type
));
473 printk(KERN_DEBUG
"\tdata len %u\n",
474 le32_to_cpu(ino
->data_len
));
477 case UBIFS_DENT_NODE
:
478 case UBIFS_XENT_NODE
:
480 const struct ubifs_dent_node
*dent
= node
;
481 int nlen
= le16_to_cpu(dent
->nlen
);
483 key_read(c
, &dent
->key
, &key
);
484 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
485 printk(KERN_DEBUG
"\tinum %llu\n",
486 (unsigned long long)le64_to_cpu(dent
->inum
));
487 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
488 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
489 printk(KERN_DEBUG
"\tname ");
491 if (nlen
> UBIFS_MAX_NLEN
)
492 printk(KERN_DEBUG
"(bad name length, not printing, "
493 "bad or corrupted node)");
495 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
496 printk(KERN_CONT
"%c", dent
->name
[i
]);
498 printk(KERN_CONT
"\n");
502 case UBIFS_DATA_NODE
:
504 const struct ubifs_data_node
*dn
= node
;
505 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
507 key_read(c
, &dn
->key
, &key
);
508 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
509 printk(KERN_DEBUG
"\tsize %u\n",
510 le32_to_cpu(dn
->size
));
511 printk(KERN_DEBUG
"\tcompr_typ %d\n",
512 (int)le16_to_cpu(dn
->compr_type
));
513 printk(KERN_DEBUG
"\tdata size %d\n",
515 printk(KERN_DEBUG
"\tdata:\n");
516 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
517 (void *)&dn
->data
, dlen
, 0);
520 case UBIFS_TRUN_NODE
:
522 const struct ubifs_trun_node
*trun
= node
;
524 printk(KERN_DEBUG
"\tinum %u\n",
525 le32_to_cpu(trun
->inum
));
526 printk(KERN_DEBUG
"\told_size %llu\n",
527 (unsigned long long)le64_to_cpu(trun
->old_size
));
528 printk(KERN_DEBUG
"\tnew_size %llu\n",
529 (unsigned long long)le64_to_cpu(trun
->new_size
));
534 const struct ubifs_idx_node
*idx
= node
;
536 n
= le16_to_cpu(idx
->child_cnt
);
537 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
538 printk(KERN_DEBUG
"\tlevel %d\n",
539 (int)le16_to_cpu(idx
->level
));
540 printk(KERN_DEBUG
"\tBranches:\n");
542 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
543 const struct ubifs_branch
*br
;
545 br
= ubifs_idx_branch(c
, idx
, i
);
546 key_read(c
, &br
->key
, &key
);
547 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
548 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
549 le32_to_cpu(br
->len
), DBGKEY(&key
));
555 case UBIFS_ORPH_NODE
:
557 const struct ubifs_orph_node
*orph
= node
;
559 printk(KERN_DEBUG
"\tcommit number %llu\n",
561 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
562 printk(KERN_DEBUG
"\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
564 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
565 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
566 for (i
= 0; i
< n
; i
++)
567 printk(KERN_DEBUG
"\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
572 printk(KERN_DEBUG
"node type %d was not recognized\n",
575 spin_unlock(&dbg_lock
);
578 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
580 spin_lock(&dbg_lock
);
581 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
582 req
->new_ino
, req
->dirtied_ino
);
583 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
584 req
->new_ino_d
, req
->dirtied_ino_d
);
585 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
586 req
->new_page
, req
->dirtied_page
);
587 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
588 req
->new_dent
, req
->mod_dent
);
589 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
590 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
591 req
->data_growth
, req
->dd_growth
);
592 spin_unlock(&dbg_lock
);
595 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
597 spin_lock(&dbg_lock
);
598 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
599 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
600 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
601 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
603 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
604 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
606 spin_unlock(&dbg_lock
);
609 void dbg_dump_budg(struct ubifs_info
*c
)
613 struct ubifs_bud
*bud
;
614 struct ubifs_gced_idx_leb
*idx_gc
;
615 long long available
, outstanding
, free
;
617 ubifs_assert(spin_is_locked(&c
->space_lock
));
618 spin_lock(&dbg_lock
);
619 printk(KERN_DEBUG
"(pid %d) Budgeting info: budg_data_growth %lld, "
620 "budg_dd_growth %lld, budg_idx_growth %lld\n", current
->pid
,
621 c
->budg_data_growth
, c
->budg_dd_growth
, c
->budg_idx_growth
);
622 printk(KERN_DEBUG
"\tdata budget sum %lld, total budget sum %lld, "
623 "freeable_cnt %d\n", c
->budg_data_growth
+ c
->budg_dd_growth
,
624 c
->budg_data_growth
+ c
->budg_dd_growth
+ c
->budg_idx_growth
,
626 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %lld, "
627 "calc_idx_sz %lld, idx_gc_cnt %d\n", c
->min_idx_lebs
,
628 c
->old_idx_sz
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
629 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
630 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
631 atomic_long_read(&c
->dirty_zn_cnt
),
632 atomic_long_read(&c
->clean_zn_cnt
));
633 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
634 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
635 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
636 c
->gc_lnum
, c
->ihead_lnum
);
637 /* If we are in R/O mode, journal heads do not exist */
639 for (i
= 0; i
< c
->jhead_cnt
; i
++)
640 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
641 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
642 c
->jheads
[i
].wbuf
.lnum
);
643 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
644 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
645 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
647 list_for_each_entry(bud
, &c
->old_buds
, list
)
648 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
649 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
650 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
651 idx_gc
->lnum
, idx_gc
->unmap
);
652 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
654 /* Print budgeting predictions */
655 available
= ubifs_calc_available(c
, c
->min_idx_lebs
);
656 outstanding
= c
->budg_data_growth
+ c
->budg_dd_growth
;
657 free
= ubifs_get_free_space_nolock(c
);
658 printk(KERN_DEBUG
"Budgeting predictions:\n");
659 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
660 available
, outstanding
, free
);
661 spin_unlock(&dbg_lock
);
664 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
666 int i
, spc
, dark
= 0, dead
= 0;
668 struct ubifs_bud
*bud
;
670 spc
= lp
->free
+ lp
->dirty
;
671 if (spc
< c
->dead_wm
)
674 dark
= ubifs_calc_dark(c
, spc
);
676 if (lp
->flags
& LPROPS_INDEX
)
677 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
679 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
681 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
682 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
683 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
684 c
->leb_size
- spc
, spc
, dark
, dead
,
685 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
687 if (lp
->flags
& LPROPS_TAKEN
) {
688 if (lp
->flags
& LPROPS_INDEX
)
689 printk(KERN_CONT
"index, taken");
691 printk(KERN_CONT
"taken");
695 if (lp
->flags
& LPROPS_INDEX
) {
696 switch (lp
->flags
& LPROPS_CAT_MASK
) {
697 case LPROPS_DIRTY_IDX
:
700 case LPROPS_FRDI_IDX
:
701 s
= "freeable index";
707 switch (lp
->flags
& LPROPS_CAT_MASK
) {
709 s
= "not categorized";
720 case LPROPS_FREEABLE
:
728 printk(KERN_CONT
"%s", s
);
731 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
732 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
733 if (bud
->lnum
== lp
->lnum
) {
735 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
736 if (lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
737 printk(KERN_CONT
", jhead %s",
743 printk(KERN_CONT
", bud of jhead %s",
744 dbg_jhead(bud
->jhead
));
747 if (lp
->lnum
== c
->gc_lnum
)
748 printk(KERN_CONT
", GC LEB");
749 printk(KERN_CONT
")\n");
752 void dbg_dump_lprops(struct ubifs_info
*c
)
755 struct ubifs_lprops lp
;
756 struct ubifs_lp_stats lst
;
758 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
760 ubifs_get_lp_stats(c
, &lst
);
761 dbg_dump_lstats(&lst
);
763 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
764 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
766 ubifs_err("cannot read lprops for LEB %d", lnum
);
768 dbg_dump_lprop(c
, &lp
);
770 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
774 void dbg_dump_lpt_info(struct ubifs_info
*c
)
778 spin_lock(&dbg_lock
);
779 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
780 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
781 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
782 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
783 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
784 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
785 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
786 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
787 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
788 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
789 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
790 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
791 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
792 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
793 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
794 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
795 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
796 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
797 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
798 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
799 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
800 c
->nhead_lnum
, c
->nhead_offs
);
801 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
802 c
->ltab_lnum
, c
->ltab_offs
);
804 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
805 c
->lsave_lnum
, c
->lsave_offs
);
806 for (i
= 0; i
< c
->lpt_lebs
; i
++)
807 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
808 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
809 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
810 spin_unlock(&dbg_lock
);
813 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
815 struct ubifs_scan_leb
*sleb
;
816 struct ubifs_scan_node
*snod
;
818 if (dbg_failure_mode
)
821 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
823 sleb
= ubifs_scan(c
, lnum
, 0, c
->dbg
->buf
, 0);
825 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
829 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
830 sleb
->nodes_cnt
, sleb
->endpt
);
832 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
834 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
835 snod
->offs
, snod
->len
);
836 dbg_dump_node(c
, snod
->node
);
839 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
841 ubifs_scan_destroy(sleb
);
845 void dbg_dump_znode(const struct ubifs_info
*c
,
846 const struct ubifs_znode
*znode
)
849 const struct ubifs_zbranch
*zbr
;
851 spin_lock(&dbg_lock
);
853 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
857 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
858 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
859 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
860 znode
->child_cnt
, znode
->flags
);
862 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
863 spin_unlock(&dbg_lock
);
867 printk(KERN_DEBUG
"zbranches:\n");
868 for (n
= 0; n
< znode
->child_cnt
; n
++) {
869 zbr
= &znode
->zbranch
[n
];
870 if (znode
->level
> 0)
871 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
872 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
876 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
877 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
881 spin_unlock(&dbg_lock
);
884 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
888 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
889 current
->pid
, cat
, heap
->cnt
);
890 for (i
= 0; i
< heap
->cnt
; i
++) {
891 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
893 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
894 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
895 lprops
->free
, lprops
->dirty
, lprops
->flags
);
897 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
900 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
901 struct ubifs_nnode
*parent
, int iip
)
905 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
906 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
907 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
908 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
909 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
910 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
911 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
913 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
914 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
918 void dbg_dump_tnc(struct ubifs_info
*c
)
920 struct ubifs_znode
*znode
;
923 printk(KERN_DEBUG
"\n");
924 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
925 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
926 level
= znode
->level
;
927 printk(KERN_DEBUG
"== Level %d ==\n", level
);
929 if (level
!= znode
->level
) {
930 level
= znode
->level
;
931 printk(KERN_DEBUG
"== Level %d ==\n", level
);
933 dbg_dump_znode(c
, znode
);
934 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
936 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
939 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
942 dbg_dump_znode(c
, znode
);
947 * dbg_dump_index - dump the on-flash index.
948 * @c: UBIFS file-system description object
950 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
951 * which dumps only in-memory znodes and does not read znodes which from flash.
953 void dbg_dump_index(struct ubifs_info
*c
)
955 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
959 * dbg_save_space_info - save information about flash space.
960 * @c: UBIFS file-system description object
962 * This function saves information about UBIFS free space, dirty space, etc, in
963 * order to check it later.
965 void dbg_save_space_info(struct ubifs_info
*c
)
967 struct ubifs_debug_info
*d
= c
->dbg
;
970 spin_lock(&c
->space_lock
);
971 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
974 * We use a dirty hack here and zero out @c->freeable_cnt, because it
975 * affects the free space calculations, and UBIFS might not know about
976 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
977 * only when we read their lprops, and we do this only lazily, upon the
978 * need. So at any given point of time @c->freeable_cnt might be not
981 * Just one example about the issue we hit when we did not zero
983 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
984 * amount of free space in @d->saved_free
985 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
986 * information from flash, where we cache LEBs from various
987 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
988 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
989 * -> 'ubifs_get_pnode()' -> 'update_cats()'
990 * -> 'ubifs_add_to_cat()').
991 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
993 * 4. We calculate the amount of free space when the re-mount is
994 * finished in 'dbg_check_space_info()' and it does not match
997 freeable_cnt
= c
->freeable_cnt
;
999 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1000 c
->freeable_cnt
= freeable_cnt
;
1001 spin_unlock(&c
->space_lock
);
1005 * dbg_check_space_info - check flash space information.
1006 * @c: UBIFS file-system description object
1008 * This function compares current flash space information with the information
1009 * which was saved when the 'dbg_save_space_info()' function was called.
1010 * Returns zero if the information has not changed, and %-EINVAL it it has
1013 int dbg_check_space_info(struct ubifs_info
*c
)
1015 struct ubifs_debug_info
*d
= c
->dbg
;
1016 struct ubifs_lp_stats lst
;
1020 spin_lock(&c
->space_lock
);
1021 freeable_cnt
= c
->freeable_cnt
;
1022 c
->freeable_cnt
= 0;
1023 free
= ubifs_get_free_space_nolock(c
);
1024 c
->freeable_cnt
= freeable_cnt
;
1025 spin_unlock(&c
->space_lock
);
1027 if (free
!= d
->saved_free
) {
1028 ubifs_err("free space changed from %lld to %lld",
1029 d
->saved_free
, free
);
1036 ubifs_msg("saved lprops statistics dump");
1037 dbg_dump_lstats(&d
->saved_lst
);
1038 ubifs_get_lp_stats(c
, &lst
);
1040 ubifs_msg("current lprops statistics dump");
1041 dbg_dump_lstats(&lst
);
1043 spin_lock(&c
->space_lock
);
1045 spin_unlock(&c
->space_lock
);
1051 * dbg_check_synced_i_size - check synchronized inode size.
1052 * @inode: inode to check
1054 * If inode is clean, synchronized inode size has to be equivalent to current
1055 * inode size. This function has to be called only for locked inodes (@i_mutex
1056 * has to be locked). Returns %0 if synchronized inode size if correct, and
1059 int dbg_check_synced_i_size(struct inode
*inode
)
1062 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1064 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1066 if (!S_ISREG(inode
->i_mode
))
1069 mutex_lock(&ui
->ui_mutex
);
1070 spin_lock(&ui
->ui_lock
);
1071 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1072 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1073 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1074 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1075 inode
->i_mode
, i_size_read(inode
));
1079 spin_unlock(&ui
->ui_lock
);
1080 mutex_unlock(&ui
->ui_mutex
);
1085 * dbg_check_dir - check directory inode size and link count.
1086 * @c: UBIFS file-system description object
1087 * @dir: the directory to calculate size for
1088 * @size: the result is returned here
1090 * This function makes sure that directory size and link count are correct.
1091 * Returns zero in case of success and a negative error code in case of
1094 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1095 * calling this function.
1097 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
1099 unsigned int nlink
= 2;
1100 union ubifs_key key
;
1101 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1102 struct qstr nm
= { .name
= NULL
};
1103 loff_t size
= UBIFS_INO_NODE_SZ
;
1105 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1108 if (!S_ISDIR(dir
->i_mode
))
1111 lowest_dent_key(c
, &key
, dir
->i_ino
);
1115 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1117 err
= PTR_ERR(dent
);
1123 nm
.name
= dent
->name
;
1124 nm
.len
= le16_to_cpu(dent
->nlen
);
1125 size
+= CALC_DENT_SIZE(nm
.len
);
1126 if (dent
->type
== UBIFS_ITYPE_DIR
)
1130 key_read(c
, &dent
->key
, &key
);
1134 if (i_size_read(dir
) != size
) {
1135 ubifs_err("directory inode %lu has size %llu, "
1136 "but calculated size is %llu", dir
->i_ino
,
1137 (unsigned long long)i_size_read(dir
),
1138 (unsigned long long)size
);
1142 if (dir
->i_nlink
!= nlink
) {
1143 ubifs_err("directory inode %lu has nlink %u, but calculated "
1144 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1153 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1154 * @c: UBIFS file-system description object
1155 * @zbr1: first zbranch
1156 * @zbr2: following zbranch
1158 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1159 * names of the direntries/xentries which are referred by the keys. This
1160 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1161 * sure the name of direntry/xentry referred by @zbr1 is less than
1162 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1163 * and a negative error code in case of failure.
1165 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1166 struct ubifs_zbranch
*zbr2
)
1168 int err
, nlen1
, nlen2
, cmp
;
1169 struct ubifs_dent_node
*dent1
, *dent2
;
1170 union ubifs_key key
;
1172 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1173 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1176 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1182 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1185 err
= ubifs_validate_entry(c
, dent1
);
1189 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1192 err
= ubifs_validate_entry(c
, dent2
);
1196 /* Make sure node keys are the same as in zbranch */
1198 key_read(c
, &dent1
->key
, &key
);
1199 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1200 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1201 zbr1
->offs
, DBGKEY(&key
));
1202 dbg_err("but it should have key %s according to tnc",
1203 DBGKEY(&zbr1
->key
));
1204 dbg_dump_node(c
, dent1
);
1208 key_read(c
, &dent2
->key
, &key
);
1209 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1210 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1211 zbr1
->offs
, DBGKEY(&key
));
1212 dbg_err("but it should have key %s according to tnc",
1213 DBGKEY(&zbr2
->key
));
1214 dbg_dump_node(c
, dent2
);
1218 nlen1
= le16_to_cpu(dent1
->nlen
);
1219 nlen2
= le16_to_cpu(dent2
->nlen
);
1221 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1222 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1226 if (cmp
== 0 && nlen1
== nlen2
)
1227 dbg_err("2 xent/dent nodes with the same name");
1229 dbg_err("bad order of colliding key %s",
1232 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1233 dbg_dump_node(c
, dent1
);
1234 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1235 dbg_dump_node(c
, dent2
);
1244 * dbg_check_znode - check if znode is all right.
1245 * @c: UBIFS file-system description object
1246 * @zbr: zbranch which points to this znode
1248 * This function makes sure that znode referred to by @zbr is all right.
1249 * Returns zero if it is, and %-EINVAL if it is not.
1251 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1253 struct ubifs_znode
*znode
= zbr
->znode
;
1254 struct ubifs_znode
*zp
= znode
->parent
;
1257 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1261 if (znode
->level
< 0) {
1265 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1271 /* Only dirty zbranch may have no on-flash nodes */
1272 if (!ubifs_zn_dirty(znode
)) {
1277 if (ubifs_zn_dirty(znode
)) {
1279 * If znode is dirty, its parent has to be dirty as well. The
1280 * order of the operation is important, so we have to have
1284 if (zp
&& !ubifs_zn_dirty(zp
)) {
1286 * The dirty flag is atomic and is cleared outside the
1287 * TNC mutex, so znode's dirty flag may now have
1288 * been cleared. The child is always cleared before the
1289 * parent, so we just need to check again.
1292 if (ubifs_zn_dirty(znode
)) {
1300 const union ubifs_key
*min
, *max
;
1302 if (znode
->level
!= zp
->level
- 1) {
1307 /* Make sure the 'parent' pointer in our znode is correct */
1308 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1310 /* This zbranch does not exist in the parent */
1315 if (znode
->iip
>= zp
->child_cnt
) {
1320 if (znode
->iip
!= n
) {
1321 /* This may happen only in case of collisions */
1322 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1323 &zp
->zbranch
[znode
->iip
].key
)) {
1331 * Make sure that the first key in our znode is greater than or
1332 * equal to the key in the pointing zbranch.
1335 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1341 if (n
+ 1 < zp
->child_cnt
) {
1342 max
= &zp
->zbranch
[n
+ 1].key
;
1345 * Make sure the last key in our znode is less or
1346 * equivalent than the key in the zbranch which goes
1347 * after our pointing zbranch.
1349 cmp
= keys_cmp(c
, max
,
1350 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1357 /* This may only be root znode */
1358 if (zbr
!= &c
->zroot
) {
1365 * Make sure that next key is greater or equivalent then the previous
1368 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1369 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1370 &znode
->zbranch
[n
].key
);
1376 /* This can only be keys with colliding hash */
1377 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1382 if (znode
->level
!= 0 || c
->replaying
)
1386 * Colliding keys should follow binary order of
1387 * corresponding xentry/dentry names.
1389 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1390 &znode
->zbranch
[n
]);
1400 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1401 if (!znode
->zbranch
[n
].znode
&&
1402 (znode
->zbranch
[n
].lnum
== 0 ||
1403 znode
->zbranch
[n
].len
== 0)) {
1408 if (znode
->zbranch
[n
].lnum
!= 0 &&
1409 znode
->zbranch
[n
].len
== 0) {
1414 if (znode
->zbranch
[n
].lnum
== 0 &&
1415 znode
->zbranch
[n
].len
!= 0) {
1420 if (znode
->zbranch
[n
].lnum
== 0 &&
1421 znode
->zbranch
[n
].offs
!= 0) {
1426 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1427 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1436 ubifs_err("failed, error %d", err
);
1437 ubifs_msg("dump of the znode");
1438 dbg_dump_znode(c
, znode
);
1440 ubifs_msg("dump of the parent znode");
1441 dbg_dump_znode(c
, zp
);
1448 * dbg_check_tnc - check TNC tree.
1449 * @c: UBIFS file-system description object
1450 * @extra: do extra checks that are possible at start commit
1452 * This function traverses whole TNC tree and checks every znode. Returns zero
1453 * if everything is all right and %-EINVAL if something is wrong with TNC.
1455 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1457 struct ubifs_znode
*znode
;
1458 long clean_cnt
= 0, dirty_cnt
= 0;
1461 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1464 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1465 if (!c
->zroot
.znode
)
1468 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1470 struct ubifs_znode
*prev
;
1471 struct ubifs_zbranch
*zbr
;
1476 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1478 err
= dbg_check_znode(c
, zbr
);
1483 if (ubifs_zn_dirty(znode
))
1490 znode
= ubifs_tnc_postorder_next(znode
);
1495 * If the last key of this znode is equivalent to the first key
1496 * of the next znode (collision), then check order of the keys.
1498 last
= prev
->child_cnt
- 1;
1499 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1500 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1501 &znode
->zbranch
[0].key
)) {
1502 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1503 &znode
->zbranch
[0]);
1507 ubifs_msg("first znode");
1508 dbg_dump_znode(c
, prev
);
1509 ubifs_msg("second znode");
1510 dbg_dump_znode(c
, znode
);
1517 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1518 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1519 atomic_long_read(&c
->clean_zn_cnt
),
1523 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1524 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1525 atomic_long_read(&c
->dirty_zn_cnt
),
1535 * dbg_walk_index - walk the on-flash index.
1536 * @c: UBIFS file-system description object
1537 * @leaf_cb: called for each leaf node
1538 * @znode_cb: called for each indexing node
1539 * @priv: private data which is passed to callbacks
1541 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1542 * node and @znode_cb for each indexing node. Returns zero in case of success
1543 * and a negative error code in case of failure.
1545 * It would be better if this function removed every znode it pulled to into
1546 * the TNC, so that the behavior more closely matched the non-debugging
1549 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1550 dbg_znode_callback znode_cb
, void *priv
)
1553 struct ubifs_zbranch
*zbr
;
1554 struct ubifs_znode
*znode
, *child
;
1556 mutex_lock(&c
->tnc_mutex
);
1557 /* If the root indexing node is not in TNC - pull it */
1558 if (!c
->zroot
.znode
) {
1559 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1560 if (IS_ERR(c
->zroot
.znode
)) {
1561 err
= PTR_ERR(c
->zroot
.znode
);
1562 c
->zroot
.znode
= NULL
;
1568 * We are going to traverse the indexing tree in the postorder manner.
1569 * Go down and find the leftmost indexing node where we are going to
1572 znode
= c
->zroot
.znode
;
1573 while (znode
->level
> 0) {
1574 zbr
= &znode
->zbranch
[0];
1577 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1578 if (IS_ERR(child
)) {
1579 err
= PTR_ERR(child
);
1588 /* Iterate over all indexing nodes */
1595 err
= znode_cb(c
, znode
, priv
);
1597 ubifs_err("znode checking function returned "
1599 dbg_dump_znode(c
, znode
);
1603 if (leaf_cb
&& znode
->level
== 0) {
1604 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1605 zbr
= &znode
->zbranch
[idx
];
1606 err
= leaf_cb(c
, zbr
, priv
);
1608 ubifs_err("leaf checking function "
1609 "returned error %d, for leaf "
1611 err
, zbr
->lnum
, zbr
->offs
);
1620 idx
= znode
->iip
+ 1;
1621 znode
= znode
->parent
;
1622 if (idx
< znode
->child_cnt
) {
1623 /* Switch to the next index in the parent */
1624 zbr
= &znode
->zbranch
[idx
];
1627 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1628 if (IS_ERR(child
)) {
1629 err
= PTR_ERR(child
);
1637 * This is the last child, switch to the parent and
1642 /* Go to the lowest leftmost znode in the new sub-tree */
1643 while (znode
->level
> 0) {
1644 zbr
= &znode
->zbranch
[0];
1647 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1648 if (IS_ERR(child
)) {
1649 err
= PTR_ERR(child
);
1658 mutex_unlock(&c
->tnc_mutex
);
1663 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1666 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1667 dbg_dump_znode(c
, znode
);
1669 mutex_unlock(&c
->tnc_mutex
);
1674 * add_size - add znode size to partially calculated index size.
1675 * @c: UBIFS file-system description object
1676 * @znode: znode to add size for
1677 * @priv: partially calculated index size
1679 * This is a helper function for 'dbg_check_idx_size()' which is called for
1680 * every indexing node and adds its size to the 'long long' variable pointed to
1683 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1685 long long *idx_size
= priv
;
1688 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1689 add
= ALIGN(add
, 8);
1695 * dbg_check_idx_size - check index size.
1696 * @c: UBIFS file-system description object
1697 * @idx_size: size to check
1699 * This function walks the UBIFS index, calculates its size and checks that the
1700 * size is equivalent to @idx_size. Returns zero in case of success and a
1701 * negative error code in case of failure.
1703 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1708 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1711 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1713 ubifs_err("error %d while walking the index", err
);
1717 if (calc
!= idx_size
) {
1718 ubifs_err("index size check failed: calculated size is %lld, "
1719 "should be %lld", calc
, idx_size
);
1728 * struct fsck_inode - information about an inode used when checking the file-system.
1729 * @rb: link in the RB-tree of inodes
1730 * @inum: inode number
1731 * @mode: inode type, permissions, etc
1732 * @nlink: inode link count
1733 * @xattr_cnt: count of extended attributes
1734 * @references: how many directory/xattr entries refer this inode (calculated
1735 * while walking the index)
1736 * @calc_cnt: for directory inode count of child directories
1737 * @size: inode size (read from on-flash inode)
1738 * @xattr_sz: summary size of all extended attributes (read from on-flash
1740 * @calc_sz: for directories calculated directory size
1741 * @calc_xcnt: count of extended attributes
1742 * @calc_xsz: calculated summary size of all extended attributes
1743 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1744 * inode (read from on-flash inode)
1745 * @calc_xnms: calculated sum of lengths of all extended attribute names
1752 unsigned int xattr_cnt
;
1756 unsigned int xattr_sz
;
1758 long long calc_xcnt
;
1760 unsigned int xattr_nms
;
1761 long long calc_xnms
;
1765 * struct fsck_data - private FS checking information.
1766 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1769 struct rb_root inodes
;
1773 * add_inode - add inode information to RB-tree of inodes.
1774 * @c: UBIFS file-system description object
1775 * @fsckd: FS checking information
1776 * @ino: raw UBIFS inode to add
1778 * This is a helper function for 'check_leaf()' which adds information about
1779 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1780 * case of success and a negative error code in case of failure.
1782 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1783 struct fsck_data
*fsckd
,
1784 struct ubifs_ino_node
*ino
)
1786 struct rb_node
**p
, *parent
= NULL
;
1787 struct fsck_inode
*fscki
;
1788 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1790 p
= &fsckd
->inodes
.rb_node
;
1793 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1794 if (inum
< fscki
->inum
)
1796 else if (inum
> fscki
->inum
)
1797 p
= &(*p
)->rb_right
;
1802 if (inum
> c
->highest_inum
) {
1803 ubifs_err("too high inode number, max. is %lu",
1804 (unsigned long)c
->highest_inum
);
1805 return ERR_PTR(-EINVAL
);
1808 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1810 return ERR_PTR(-ENOMEM
);
1813 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1814 fscki
->size
= le64_to_cpu(ino
->size
);
1815 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1816 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1817 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1818 fscki
->mode
= le32_to_cpu(ino
->mode
);
1819 if (S_ISDIR(fscki
->mode
)) {
1820 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1821 fscki
->calc_cnt
= 2;
1823 rb_link_node(&fscki
->rb
, parent
, p
);
1824 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1829 * search_inode - search inode in the RB-tree of inodes.
1830 * @fsckd: FS checking information
1831 * @inum: inode number to search
1833 * This is a helper function for 'check_leaf()' which searches inode @inum in
1834 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1835 * the inode was not found.
1837 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1840 struct fsck_inode
*fscki
;
1842 p
= fsckd
->inodes
.rb_node
;
1844 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1845 if (inum
< fscki
->inum
)
1847 else if (inum
> fscki
->inum
)
1856 * read_add_inode - read inode node and add it to RB-tree of inodes.
1857 * @c: UBIFS file-system description object
1858 * @fsckd: FS checking information
1859 * @inum: inode number to read
1861 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1862 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1863 * information pointer in case of success and a negative error code in case of
1866 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1867 struct fsck_data
*fsckd
, ino_t inum
)
1870 union ubifs_key key
;
1871 struct ubifs_znode
*znode
;
1872 struct ubifs_zbranch
*zbr
;
1873 struct ubifs_ino_node
*ino
;
1874 struct fsck_inode
*fscki
;
1876 fscki
= search_inode(fsckd
, inum
);
1880 ino_key_init(c
, &key
, inum
);
1881 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1883 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1884 return ERR_PTR(-ENOENT
);
1885 } else if (err
< 0) {
1886 ubifs_err("error %d while looking up inode %lu",
1887 err
, (unsigned long)inum
);
1888 return ERR_PTR(err
);
1891 zbr
= &znode
->zbranch
[n
];
1892 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1893 ubifs_err("bad node %lu node length %d",
1894 (unsigned long)inum
, zbr
->len
);
1895 return ERR_PTR(-EINVAL
);
1898 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1900 return ERR_PTR(-ENOMEM
);
1902 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1904 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1905 zbr
->lnum
, zbr
->offs
, err
);
1907 return ERR_PTR(err
);
1910 fscki
= add_inode(c
, fsckd
, ino
);
1912 if (IS_ERR(fscki
)) {
1913 ubifs_err("error %ld while adding inode %lu node",
1914 PTR_ERR(fscki
), (unsigned long)inum
);
1922 * check_leaf - check leaf node.
1923 * @c: UBIFS file-system description object
1924 * @zbr: zbranch of the leaf node to check
1925 * @priv: FS checking information
1927 * This is a helper function for 'dbg_check_filesystem()' which is called for
1928 * every single leaf node while walking the indexing tree. It checks that the
1929 * leaf node referred from the indexing tree exists, has correct CRC, and does
1930 * some other basic validation. This function is also responsible for building
1931 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1932 * calculates reference count, size, etc for each inode in order to later
1933 * compare them to the information stored inside the inodes and detect possible
1934 * inconsistencies. Returns zero in case of success and a negative error code
1935 * in case of failure.
1937 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1942 struct ubifs_ch
*ch
;
1943 int err
, type
= key_type(c
, &zbr
->key
);
1944 struct fsck_inode
*fscki
;
1946 if (zbr
->len
< UBIFS_CH_SZ
) {
1947 ubifs_err("bad leaf length %d (LEB %d:%d)",
1948 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1952 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1956 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1958 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1959 zbr
->lnum
, zbr
->offs
, err
);
1963 /* If this is an inode node, add it to RB-tree of inodes */
1964 if (type
== UBIFS_INO_KEY
) {
1965 fscki
= add_inode(c
, priv
, node
);
1966 if (IS_ERR(fscki
)) {
1967 err
= PTR_ERR(fscki
);
1968 ubifs_err("error %d while adding inode node", err
);
1974 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
1975 type
!= UBIFS_DATA_KEY
) {
1976 ubifs_err("unexpected node type %d at LEB %d:%d",
1977 type
, zbr
->lnum
, zbr
->offs
);
1983 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
1984 ubifs_err("too high sequence number, max. is %llu",
1990 if (type
== UBIFS_DATA_KEY
) {
1992 struct ubifs_data_node
*dn
= node
;
1995 * Search the inode node this data node belongs to and insert
1996 * it to the RB-tree of inodes.
1998 inum
= key_inum_flash(c
, &dn
->key
);
1999 fscki
= read_add_inode(c
, priv
, inum
);
2000 if (IS_ERR(fscki
)) {
2001 err
= PTR_ERR(fscki
);
2002 ubifs_err("error %d while processing data node and "
2003 "trying to find inode node %lu",
2004 err
, (unsigned long)inum
);
2008 /* Make sure the data node is within inode size */
2009 blk_offs
= key_block_flash(c
, &dn
->key
);
2010 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2011 blk_offs
+= le32_to_cpu(dn
->size
);
2012 if (blk_offs
> fscki
->size
) {
2013 ubifs_err("data node at LEB %d:%d is not within inode "
2014 "size %lld", zbr
->lnum
, zbr
->offs
,
2021 struct ubifs_dent_node
*dent
= node
;
2022 struct fsck_inode
*fscki1
;
2024 err
= ubifs_validate_entry(c
, dent
);
2029 * Search the inode node this entry refers to and the parent
2030 * inode node and insert them to the RB-tree of inodes.
2032 inum
= le64_to_cpu(dent
->inum
);
2033 fscki
= read_add_inode(c
, priv
, inum
);
2034 if (IS_ERR(fscki
)) {
2035 err
= PTR_ERR(fscki
);
2036 ubifs_err("error %d while processing entry node and "
2037 "trying to find inode node %lu",
2038 err
, (unsigned long)inum
);
2042 /* Count how many direntries or xentries refers this inode */
2043 fscki
->references
+= 1;
2045 inum
= key_inum_flash(c
, &dent
->key
);
2046 fscki1
= read_add_inode(c
, priv
, inum
);
2047 if (IS_ERR(fscki1
)) {
2048 err
= PTR_ERR(fscki
);
2049 ubifs_err("error %d while processing entry node and "
2050 "trying to find parent inode node %lu",
2051 err
, (unsigned long)inum
);
2055 nlen
= le16_to_cpu(dent
->nlen
);
2056 if (type
== UBIFS_XENT_KEY
) {
2057 fscki1
->calc_xcnt
+= 1;
2058 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2059 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2060 fscki1
->calc_xnms
+= nlen
;
2062 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2063 if (dent
->type
== UBIFS_ITYPE_DIR
)
2064 fscki1
->calc_cnt
+= 1;
2073 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2074 dbg_dump_node(c
, node
);
2081 * free_inodes - free RB-tree of inodes.
2082 * @fsckd: FS checking information
2084 static void free_inodes(struct fsck_data
*fsckd
)
2086 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2087 struct fsck_inode
*fscki
;
2091 this = this->rb_left
;
2092 else if (this->rb_right
)
2093 this = this->rb_right
;
2095 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2096 this = rb_parent(this);
2098 if (this->rb_left
== &fscki
->rb
)
2099 this->rb_left
= NULL
;
2101 this->rb_right
= NULL
;
2109 * check_inodes - checks all inodes.
2110 * @c: UBIFS file-system description object
2111 * @fsckd: FS checking information
2113 * This is a helper function for 'dbg_check_filesystem()' which walks the
2114 * RB-tree of inodes after the index scan has been finished, and checks that
2115 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2116 * %-EINVAL if not, and a negative error code in case of failure.
2118 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2121 union ubifs_key key
;
2122 struct ubifs_znode
*znode
;
2123 struct ubifs_zbranch
*zbr
;
2124 struct ubifs_ino_node
*ino
;
2125 struct fsck_inode
*fscki
;
2126 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2129 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2130 this = rb_next(this);
2132 if (S_ISDIR(fscki
->mode
)) {
2134 * Directories have to have exactly one reference (they
2135 * cannot have hardlinks), although root inode is an
2138 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2139 fscki
->references
!= 1) {
2140 ubifs_err("directory inode %lu has %d "
2141 "direntries which refer it, but "
2143 (unsigned long)fscki
->inum
,
2147 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2148 fscki
->references
!= 0) {
2149 ubifs_err("root inode %lu has non-zero (%d) "
2150 "direntries which refer it",
2151 (unsigned long)fscki
->inum
,
2155 if (fscki
->calc_sz
!= fscki
->size
) {
2156 ubifs_err("directory inode %lu size is %lld, "
2157 "but calculated size is %lld",
2158 (unsigned long)fscki
->inum
,
2159 fscki
->size
, fscki
->calc_sz
);
2162 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2163 ubifs_err("directory inode %lu nlink is %d, "
2164 "but calculated nlink is %d",
2165 (unsigned long)fscki
->inum
,
2166 fscki
->nlink
, fscki
->calc_cnt
);
2170 if (fscki
->references
!= fscki
->nlink
) {
2171 ubifs_err("inode %lu nlink is %d, but "
2172 "calculated nlink is %d",
2173 (unsigned long)fscki
->inum
,
2174 fscki
->nlink
, fscki
->references
);
2178 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2179 ubifs_err("inode %lu has xattr size %u, but "
2180 "calculated size is %lld",
2181 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2185 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2186 ubifs_err("inode %lu has %u xattrs, but "
2187 "calculated count is %lld",
2188 (unsigned long)fscki
->inum
,
2189 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2192 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2193 ubifs_err("inode %lu has xattr names' size %u, but "
2194 "calculated names' size is %lld",
2195 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2204 /* Read the bad inode and dump it */
2205 ino_key_init(c
, &key
, fscki
->inum
);
2206 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2208 ubifs_err("inode %lu not found in index",
2209 (unsigned long)fscki
->inum
);
2211 } else if (err
< 0) {
2212 ubifs_err("error %d while looking up inode %lu",
2213 err
, (unsigned long)fscki
->inum
);
2217 zbr
= &znode
->zbranch
[n
];
2218 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2222 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2224 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2225 zbr
->lnum
, zbr
->offs
, err
);
2230 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2231 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2232 dbg_dump_node(c
, ino
);
2238 * dbg_check_filesystem - check the file-system.
2239 * @c: UBIFS file-system description object
2241 * This function checks the file system, namely:
2242 * o makes sure that all leaf nodes exist and their CRCs are correct;
2243 * o makes sure inode nlink, size, xattr size/count are correct (for all
2246 * The function reads whole indexing tree and all nodes, so it is pretty
2247 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2248 * not, and a negative error code in case of failure.
2250 int dbg_check_filesystem(struct ubifs_info
*c
)
2253 struct fsck_data fsckd
;
2255 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2258 fsckd
.inodes
= RB_ROOT
;
2259 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2263 err
= check_inodes(c
, &fsckd
);
2267 free_inodes(&fsckd
);
2271 ubifs_err("file-system check failed with error %d", err
);
2273 free_inodes(&fsckd
);
2277 static int invocation_cnt
;
2279 int dbg_force_in_the_gaps(void)
2281 if (!dbg_force_in_the_gaps_enabled
)
2283 /* Force in-the-gaps every 8th commit */
2284 return !((invocation_cnt
++) & 0x7);
2287 /* Failure mode for recovery testing */
2289 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2291 struct failure_mode_info
{
2292 struct list_head list
;
2293 struct ubifs_info
*c
;
2296 static LIST_HEAD(fmi_list
);
2297 static DEFINE_SPINLOCK(fmi_lock
);
2299 static unsigned int next
;
2301 static int simple_rand(void)
2304 next
= current
->pid
;
2305 next
= next
* 1103515245 + 12345;
2306 return (next
>> 16) & 32767;
2309 static void failure_mode_init(struct ubifs_info
*c
)
2311 struct failure_mode_info
*fmi
;
2313 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2315 ubifs_err("Failed to register failure mode - no memory");
2319 spin_lock(&fmi_lock
);
2320 list_add_tail(&fmi
->list
, &fmi_list
);
2321 spin_unlock(&fmi_lock
);
2324 static void failure_mode_exit(struct ubifs_info
*c
)
2326 struct failure_mode_info
*fmi
, *tmp
;
2328 spin_lock(&fmi_lock
);
2329 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2331 list_del(&fmi
->list
);
2334 spin_unlock(&fmi_lock
);
2337 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2339 struct failure_mode_info
*fmi
;
2341 spin_lock(&fmi_lock
);
2342 list_for_each_entry(fmi
, &fmi_list
, list
)
2343 if (fmi
->c
->ubi
== desc
) {
2344 struct ubifs_info
*c
= fmi
->c
;
2346 spin_unlock(&fmi_lock
);
2349 spin_unlock(&fmi_lock
);
2353 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2355 struct ubifs_info
*c
= dbg_find_info(desc
);
2357 if (c
&& dbg_failure_mode
)
2358 return c
->dbg
->failure_mode
;
2362 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2364 struct ubifs_info
*c
= dbg_find_info(desc
);
2365 struct ubifs_debug_info
*d
;
2367 if (!c
|| !dbg_failure_mode
)
2370 if (d
->failure_mode
)
2373 /* First call - decide delay to failure */
2375 unsigned int delay
= 1 << (simple_rand() >> 11);
2379 d
->fail_timeout
= jiffies
+
2380 msecs_to_jiffies(delay
);
2381 dbg_rcvry("failing after %ums", delay
);
2384 d
->fail_cnt_max
= delay
;
2385 dbg_rcvry("failing after %u calls", delay
);
2390 /* Determine if failure delay has expired */
2391 if (d
->fail_delay
== 1) {
2392 if (time_before(jiffies
, d
->fail_timeout
))
2394 } else if (d
->fail_delay
== 2)
2395 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2397 if (lnum
== UBIFS_SB_LNUM
) {
2401 } else if (chance(19, 20))
2403 dbg_rcvry("failing in super block LEB %d", lnum
);
2404 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2407 dbg_rcvry("failing in master LEB %d", lnum
);
2408 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2410 if (chance(99, 100))
2412 } else if (chance(399, 400))
2414 dbg_rcvry("failing in log LEB %d", lnum
);
2415 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2419 } else if (chance(19, 20))
2421 dbg_rcvry("failing in LPT LEB %d", lnum
);
2422 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2426 } else if (chance(9, 10))
2428 dbg_rcvry("failing in orphan LEB %d", lnum
);
2429 } else if (lnum
== c
->ihead_lnum
) {
2430 if (chance(99, 100))
2432 dbg_rcvry("failing in index head LEB %d", lnum
);
2433 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2436 dbg_rcvry("failing in GC head LEB %d", lnum
);
2437 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2438 !ubifs_search_bud(c
, lnum
)) {
2441 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2442 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2443 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2444 if (chance(999, 1000))
2446 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2448 if (chance(9999, 10000))
2450 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2452 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2453 d
->failure_mode
= 1;
2458 static void cut_data(const void *buf
, int len
)
2461 unsigned char *p
= (void *)buf
;
2463 flen
= (len
* (long long)simple_rand()) >> 15;
2464 for (i
= flen
; i
< len
; i
++)
2468 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2471 if (in_failure_mode(desc
))
2473 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2476 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2477 int offset
, int len
, int dtype
)
2481 if (in_failure_mode(desc
))
2483 failing
= do_fail(desc
, lnum
, 1);
2486 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2494 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2499 if (do_fail(desc
, lnum
, 1))
2501 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2504 if (do_fail(desc
, lnum
, 1))
2509 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2513 if (do_fail(desc
, lnum
, 0))
2515 err
= ubi_leb_erase(desc
, lnum
);
2518 if (do_fail(desc
, lnum
, 0))
2523 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2527 if (do_fail(desc
, lnum
, 0))
2529 err
= ubi_leb_unmap(desc
, lnum
);
2532 if (do_fail(desc
, lnum
, 0))
2537 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2539 if (in_failure_mode(desc
))
2541 return ubi_is_mapped(desc
, lnum
);
2544 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2548 if (do_fail(desc
, lnum
, 0))
2550 err
= ubi_leb_map(desc
, lnum
, dtype
);
2553 if (do_fail(desc
, lnum
, 0))
2559 * ubifs_debugging_init - initialize UBIFS debugging.
2560 * @c: UBIFS file-system description object
2562 * This function initializes debugging-related data for the file system.
2563 * Returns zero in case of success and a negative error code in case of
2566 int ubifs_debugging_init(struct ubifs_info
*c
)
2568 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2572 c
->dbg
->buf
= vmalloc(c
->leb_size
);
2576 failure_mode_init(c
);
2585 * ubifs_debugging_exit - free debugging data.
2586 * @c: UBIFS file-system description object
2588 void ubifs_debugging_exit(struct ubifs_info
*c
)
2590 failure_mode_exit(c
);
2596 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2597 * contain the stuff specific to particular file-system mounts.
2599 static struct dentry
*dfs_rootdir
;
2602 * dbg_debugfs_init - initialize debugfs file-system.
2604 * UBIFS uses debugfs file-system to expose various debugging knobs to
2605 * user-space. This function creates "ubifs" directory in the debugfs
2606 * file-system. Returns zero in case of success and a negative error code in
2609 int dbg_debugfs_init(void)
2611 dfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2612 if (IS_ERR(dfs_rootdir
)) {
2613 int err
= PTR_ERR(dfs_rootdir
);
2614 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2623 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2625 void dbg_debugfs_exit(void)
2627 debugfs_remove(dfs_rootdir
);
2630 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2632 file
->private_data
= inode
->i_private
;
2636 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2637 size_t count
, loff_t
*ppos
)
2639 struct ubifs_info
*c
= file
->private_data
;
2640 struct ubifs_debug_info
*d
= c
->dbg
;
2642 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
)
2644 else if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2645 spin_lock(&c
->space_lock
);
2647 spin_unlock(&c
->space_lock
);
2648 } else if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2649 mutex_lock(&c
->tnc_mutex
);
2651 mutex_unlock(&c
->tnc_mutex
);
2659 static const struct file_operations dfs_fops
= {
2660 .open
= open_debugfs_file
,
2661 .write
= write_debugfs_file
,
2662 .owner
= THIS_MODULE
,
2666 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2667 * @c: UBIFS file-system description object
2669 * This function creates all debugfs files for this instance of UBIFS. Returns
2670 * zero in case of success and a negative error code in case of failure.
2672 * Note, the only reason we have not merged this function with the
2673 * 'ubifs_debugging_init()' function is because it is better to initialize
2674 * debugfs interfaces at the very end of the mount process, and remove them at
2675 * the very beginning of the mount process.
2677 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2681 struct dentry
*dent
;
2682 struct ubifs_debug_info
*d
= c
->dbg
;
2684 sprintf(d
->dfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2685 d
->dfs_dir
= debugfs_create_dir(d
->dfs_dir_name
, dfs_rootdir
);
2686 if (IS_ERR(d
->dfs_dir
)) {
2687 err
= PTR_ERR(d
->dfs_dir
);
2688 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2689 d
->dfs_dir_name
, err
);
2693 fname
= "dump_lprops";
2694 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2697 d
->dfs_dump_lprops
= dent
;
2699 fname
= "dump_budg";
2700 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2703 d
->dfs_dump_budg
= dent
;
2706 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2709 d
->dfs_dump_tnc
= dent
;
2714 err
= PTR_ERR(dent
);
2715 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2717 debugfs_remove_recursive(d
->dfs_dir
);
2723 * dbg_debugfs_exit_fs - remove all debugfs files.
2724 * @c: UBIFS file-system description object
2726 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2728 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2731 #endif /* CONFIG_UBIFS_FS_DEBUG */