UBI: flush wl before clearing update marker
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / spi / spi.c
blobb76f2468a84a10d6afa8f6a583b1e9bb44c79bc3
1 /*
2 * spi.c - SPI init/core code
4 * Copyright (C) 2005 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/spi/spi.h>
30 /* SPI bustype and spi_master class are registered after board init code
31 * provides the SPI device tables, ensuring that both are present by the
32 * time controller driver registration causes spi_devices to "enumerate".
34 static void spidev_release(struct device *dev)
36 struct spi_device *spi = to_spi_device(dev);
38 /* spi masters may cleanup for released devices */
39 if (spi->master->cleanup)
40 spi->master->cleanup(spi);
42 spi_master_put(spi->master);
43 kfree(dev);
46 static ssize_t
47 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
49 const struct spi_device *spi = to_spi_device(dev);
51 return sprintf(buf, "%s\n", spi->modalias);
54 static struct device_attribute spi_dev_attrs[] = {
55 __ATTR_RO(modalias),
56 __ATTR_NULL,
59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
60 * and the sysfs version makes coldplug work too.
63 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
64 const struct spi_device *sdev)
66 while (id->name[0]) {
67 if (!strcmp(sdev->modalias, id->name))
68 return id;
69 id++;
71 return NULL;
74 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
76 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
78 return spi_match_id(sdrv->id_table, sdev);
80 EXPORT_SYMBOL_GPL(spi_get_device_id);
82 static int spi_match_device(struct device *dev, struct device_driver *drv)
84 const struct spi_device *spi = to_spi_device(dev);
85 const struct spi_driver *sdrv = to_spi_driver(drv);
87 if (sdrv->id_table)
88 return !!spi_match_id(sdrv->id_table, spi);
90 return strcmp(spi->modalias, drv->name) == 0;
93 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
95 const struct spi_device *spi = to_spi_device(dev);
97 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
98 return 0;
101 #ifdef CONFIG_PM
103 static int spi_suspend(struct device *dev, pm_message_t message)
105 int value = 0;
106 struct spi_driver *drv = to_spi_driver(dev->driver);
108 /* suspend will stop irqs and dma; no more i/o */
109 if (drv) {
110 if (drv->suspend)
111 value = drv->suspend(to_spi_device(dev), message);
112 else
113 dev_dbg(dev, "... can't suspend\n");
115 return value;
118 static int spi_resume(struct device *dev)
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
123 /* resume may restart the i/o queue */
124 if (drv) {
125 if (drv->resume)
126 value = drv->resume(to_spi_device(dev));
127 else
128 dev_dbg(dev, "... can't resume\n");
130 return value;
133 #else
134 #define spi_suspend NULL
135 #define spi_resume NULL
136 #endif
138 struct bus_type spi_bus_type = {
139 .name = "spi",
140 .dev_attrs = spi_dev_attrs,
141 .match = spi_match_device,
142 .uevent = spi_uevent,
143 .suspend = spi_suspend,
144 .resume = spi_resume,
146 EXPORT_SYMBOL_GPL(spi_bus_type);
149 static int spi_drv_probe(struct device *dev)
151 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
153 return sdrv->probe(to_spi_device(dev));
156 static int spi_drv_remove(struct device *dev)
158 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
160 return sdrv->remove(to_spi_device(dev));
163 static void spi_drv_shutdown(struct device *dev)
165 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
167 sdrv->shutdown(to_spi_device(dev));
171 * spi_register_driver - register a SPI driver
172 * @sdrv: the driver to register
173 * Context: can sleep
175 int spi_register_driver(struct spi_driver *sdrv)
177 sdrv->driver.bus = &spi_bus_type;
178 if (sdrv->probe)
179 sdrv->driver.probe = spi_drv_probe;
180 if (sdrv->remove)
181 sdrv->driver.remove = spi_drv_remove;
182 if (sdrv->shutdown)
183 sdrv->driver.shutdown = spi_drv_shutdown;
184 return driver_register(&sdrv->driver);
186 EXPORT_SYMBOL_GPL(spi_register_driver);
188 /*-------------------------------------------------------------------------*/
190 /* SPI devices should normally not be created by SPI device drivers; that
191 * would make them board-specific. Similarly with SPI master drivers.
192 * Device registration normally goes into like arch/.../mach.../board-YYY.c
193 * with other readonly (flashable) information about mainboard devices.
196 struct boardinfo {
197 struct list_head list;
198 unsigned n_board_info;
199 struct spi_board_info board_info[0];
202 static LIST_HEAD(board_list);
203 static DEFINE_MUTEX(board_lock);
206 * spi_alloc_device - Allocate a new SPI device
207 * @master: Controller to which device is connected
208 * Context: can sleep
210 * Allows a driver to allocate and initialize a spi_device without
211 * registering it immediately. This allows a driver to directly
212 * fill the spi_device with device parameters before calling
213 * spi_add_device() on it.
215 * Caller is responsible to call spi_add_device() on the returned
216 * spi_device structure to add it to the SPI master. If the caller
217 * needs to discard the spi_device without adding it, then it should
218 * call spi_dev_put() on it.
220 * Returns a pointer to the new device, or NULL.
222 struct spi_device *spi_alloc_device(struct spi_master *master)
224 struct spi_device *spi;
225 struct device *dev = master->dev.parent;
227 if (!spi_master_get(master))
228 return NULL;
230 spi = kzalloc(sizeof *spi, GFP_KERNEL);
231 if (!spi) {
232 dev_err(dev, "cannot alloc spi_device\n");
233 spi_master_put(master);
234 return NULL;
237 spi->master = master;
238 spi->dev.parent = dev;
239 spi->dev.bus = &spi_bus_type;
240 spi->dev.release = spidev_release;
241 device_initialize(&spi->dev);
242 return spi;
244 EXPORT_SYMBOL_GPL(spi_alloc_device);
247 * spi_add_device - Add spi_device allocated with spi_alloc_device
248 * @spi: spi_device to register
250 * Companion function to spi_alloc_device. Devices allocated with
251 * spi_alloc_device can be added onto the spi bus with this function.
253 * Returns 0 on success; negative errno on failure
255 int spi_add_device(struct spi_device *spi)
257 static DEFINE_MUTEX(spi_add_lock);
258 struct device *dev = spi->master->dev.parent;
259 int status;
261 /* Chipselects are numbered 0..max; validate. */
262 if (spi->chip_select >= spi->master->num_chipselect) {
263 dev_err(dev, "cs%d >= max %d\n",
264 spi->chip_select,
265 spi->master->num_chipselect);
266 return -EINVAL;
269 /* Set the bus ID string */
270 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
271 spi->chip_select);
274 /* We need to make sure there's no other device with this
275 * chipselect **BEFORE** we call setup(), else we'll trash
276 * its configuration. Lock against concurrent add() calls.
278 mutex_lock(&spi_add_lock);
280 if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
281 != NULL) {
282 dev_err(dev, "chipselect %d already in use\n",
283 spi->chip_select);
284 status = -EBUSY;
285 goto done;
288 /* Drivers may modify this initial i/o setup, but will
289 * normally rely on the device being setup. Devices
290 * using SPI_CS_HIGH can't coexist well otherwise...
292 status = spi_setup(spi);
293 if (status < 0) {
294 dev_err(dev, "can't %s %s, status %d\n",
295 "setup", dev_name(&spi->dev), status);
296 goto done;
299 /* Device may be bound to an active driver when this returns */
300 status = device_add(&spi->dev);
301 if (status < 0)
302 dev_err(dev, "can't %s %s, status %d\n",
303 "add", dev_name(&spi->dev), status);
304 else
305 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
307 done:
308 mutex_unlock(&spi_add_lock);
309 return status;
311 EXPORT_SYMBOL_GPL(spi_add_device);
314 * spi_new_device - instantiate one new SPI device
315 * @master: Controller to which device is connected
316 * @chip: Describes the SPI device
317 * Context: can sleep
319 * On typical mainboards, this is purely internal; and it's not needed
320 * after board init creates the hard-wired devices. Some development
321 * platforms may not be able to use spi_register_board_info though, and
322 * this is exported so that for example a USB or parport based adapter
323 * driver could add devices (which it would learn about out-of-band).
325 * Returns the new device, or NULL.
327 struct spi_device *spi_new_device(struct spi_master *master,
328 struct spi_board_info *chip)
330 struct spi_device *proxy;
331 int status;
333 /* NOTE: caller did any chip->bus_num checks necessary.
335 * Also, unless we change the return value convention to use
336 * error-or-pointer (not NULL-or-pointer), troubleshootability
337 * suggests syslogged diagnostics are best here (ugh).
340 proxy = spi_alloc_device(master);
341 if (!proxy)
342 return NULL;
344 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
346 proxy->chip_select = chip->chip_select;
347 proxy->max_speed_hz = chip->max_speed_hz;
348 proxy->mode = chip->mode;
349 proxy->irq = chip->irq;
350 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
351 proxy->dev.platform_data = (void *) chip->platform_data;
352 proxy->controller_data = chip->controller_data;
353 proxy->controller_state = NULL;
355 status = spi_add_device(proxy);
356 if (status < 0) {
357 spi_dev_put(proxy);
358 return NULL;
361 return proxy;
363 EXPORT_SYMBOL_GPL(spi_new_device);
366 * spi_register_board_info - register SPI devices for a given board
367 * @info: array of chip descriptors
368 * @n: how many descriptors are provided
369 * Context: can sleep
371 * Board-specific early init code calls this (probably during arch_initcall)
372 * with segments of the SPI device table. Any device nodes are created later,
373 * after the relevant parent SPI controller (bus_num) is defined. We keep
374 * this table of devices forever, so that reloading a controller driver will
375 * not make Linux forget about these hard-wired devices.
377 * Other code can also call this, e.g. a particular add-on board might provide
378 * SPI devices through its expansion connector, so code initializing that board
379 * would naturally declare its SPI devices.
381 * The board info passed can safely be __initdata ... but be careful of
382 * any embedded pointers (platform_data, etc), they're copied as-is.
384 int __init
385 spi_register_board_info(struct spi_board_info const *info, unsigned n)
387 struct boardinfo *bi;
389 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
390 if (!bi)
391 return -ENOMEM;
392 bi->n_board_info = n;
393 memcpy(bi->board_info, info, n * sizeof *info);
395 mutex_lock(&board_lock);
396 list_add_tail(&bi->list, &board_list);
397 mutex_unlock(&board_lock);
398 return 0;
401 /* FIXME someone should add support for a __setup("spi", ...) that
402 * creates board info from kernel command lines
405 static void scan_boardinfo(struct spi_master *master)
407 struct boardinfo *bi;
409 mutex_lock(&board_lock);
410 list_for_each_entry(bi, &board_list, list) {
411 struct spi_board_info *chip = bi->board_info;
412 unsigned n;
414 for (n = bi->n_board_info; n > 0; n--, chip++) {
415 if (chip->bus_num != master->bus_num)
416 continue;
417 /* NOTE: this relies on spi_new_device to
418 * issue diagnostics when given bogus inputs
420 (void) spi_new_device(master, chip);
423 mutex_unlock(&board_lock);
426 /*-------------------------------------------------------------------------*/
428 static void spi_master_release(struct device *dev)
430 struct spi_master *master;
432 master = container_of(dev, struct spi_master, dev);
433 kfree(master);
436 static struct class spi_master_class = {
437 .name = "spi_master",
438 .owner = THIS_MODULE,
439 .dev_release = spi_master_release,
444 * spi_alloc_master - allocate SPI master controller
445 * @dev: the controller, possibly using the platform_bus
446 * @size: how much zeroed driver-private data to allocate; the pointer to this
447 * memory is in the driver_data field of the returned device,
448 * accessible with spi_master_get_devdata().
449 * Context: can sleep
451 * This call is used only by SPI master controller drivers, which are the
452 * only ones directly touching chip registers. It's how they allocate
453 * an spi_master structure, prior to calling spi_register_master().
455 * This must be called from context that can sleep. It returns the SPI
456 * master structure on success, else NULL.
458 * The caller is responsible for assigning the bus number and initializing
459 * the master's methods before calling spi_register_master(); and (after errors
460 * adding the device) calling spi_master_put() to prevent a memory leak.
462 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
464 struct spi_master *master;
466 if (!dev)
467 return NULL;
469 master = kzalloc(size + sizeof *master, GFP_KERNEL);
470 if (!master)
471 return NULL;
473 device_initialize(&master->dev);
474 master->dev.class = &spi_master_class;
475 master->dev.parent = get_device(dev);
476 spi_master_set_devdata(master, &master[1]);
478 return master;
480 EXPORT_SYMBOL_GPL(spi_alloc_master);
483 * spi_register_master - register SPI master controller
484 * @master: initialized master, originally from spi_alloc_master()
485 * Context: can sleep
487 * SPI master controllers connect to their drivers using some non-SPI bus,
488 * such as the platform bus. The final stage of probe() in that code
489 * includes calling spi_register_master() to hook up to this SPI bus glue.
491 * SPI controllers use board specific (often SOC specific) bus numbers,
492 * and board-specific addressing for SPI devices combines those numbers
493 * with chip select numbers. Since SPI does not directly support dynamic
494 * device identification, boards need configuration tables telling which
495 * chip is at which address.
497 * This must be called from context that can sleep. It returns zero on
498 * success, else a negative error code (dropping the master's refcount).
499 * After a successful return, the caller is responsible for calling
500 * spi_unregister_master().
502 int spi_register_master(struct spi_master *master)
504 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
505 struct device *dev = master->dev.parent;
506 int status = -ENODEV;
507 int dynamic = 0;
509 if (!dev)
510 return -ENODEV;
512 /* even if it's just one always-selected device, there must
513 * be at least one chipselect
515 if (master->num_chipselect == 0)
516 return -EINVAL;
518 /* convention: dynamically assigned bus IDs count down from the max */
519 if (master->bus_num < 0) {
520 /* FIXME switch to an IDR based scheme, something like
521 * I2C now uses, so we can't run out of "dynamic" IDs
523 master->bus_num = atomic_dec_return(&dyn_bus_id);
524 dynamic = 1;
527 /* register the device, then userspace will see it.
528 * registration fails if the bus ID is in use.
530 dev_set_name(&master->dev, "spi%u", master->bus_num);
531 status = device_add(&master->dev);
532 if (status < 0)
533 goto done;
534 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
535 dynamic ? " (dynamic)" : "");
537 /* populate children from any spi device tables */
538 scan_boardinfo(master);
539 status = 0;
540 done:
541 return status;
543 EXPORT_SYMBOL_GPL(spi_register_master);
546 static int __unregister(struct device *dev, void *master_dev)
548 /* note: before about 2.6.14-rc1 this would corrupt memory: */
549 if (dev != master_dev)
550 spi_unregister_device(to_spi_device(dev));
551 return 0;
555 * spi_unregister_master - unregister SPI master controller
556 * @master: the master being unregistered
557 * Context: can sleep
559 * This call is used only by SPI master controller drivers, which are the
560 * only ones directly touching chip registers.
562 * This must be called from context that can sleep.
564 void spi_unregister_master(struct spi_master *master)
566 int dummy;
568 dummy = device_for_each_child(master->dev.parent, &master->dev,
569 __unregister);
570 device_unregister(&master->dev);
572 EXPORT_SYMBOL_GPL(spi_unregister_master);
574 static int __spi_master_match(struct device *dev, void *data)
576 struct spi_master *m;
577 u16 *bus_num = data;
579 m = container_of(dev, struct spi_master, dev);
580 return m->bus_num == *bus_num;
584 * spi_busnum_to_master - look up master associated with bus_num
585 * @bus_num: the master's bus number
586 * Context: can sleep
588 * This call may be used with devices that are registered after
589 * arch init time. It returns a refcounted pointer to the relevant
590 * spi_master (which the caller must release), or NULL if there is
591 * no such master registered.
593 struct spi_master *spi_busnum_to_master(u16 bus_num)
595 struct device *dev;
596 struct spi_master *master = NULL;
598 dev = class_find_device(&spi_master_class, NULL, &bus_num,
599 __spi_master_match);
600 if (dev)
601 master = container_of(dev, struct spi_master, dev);
602 /* reference got in class_find_device */
603 return master;
605 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
608 /*-------------------------------------------------------------------------*/
610 /* Core methods for SPI master protocol drivers. Some of the
611 * other core methods are currently defined as inline functions.
615 * spi_setup - setup SPI mode and clock rate
616 * @spi: the device whose settings are being modified
617 * Context: can sleep, and no requests are queued to the device
619 * SPI protocol drivers may need to update the transfer mode if the
620 * device doesn't work with its default. They may likewise need
621 * to update clock rates or word sizes from initial values. This function
622 * changes those settings, and must be called from a context that can sleep.
623 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
624 * effect the next time the device is selected and data is transferred to
625 * or from it. When this function returns, the spi device is deselected.
627 * Note that this call will fail if the protocol driver specifies an option
628 * that the underlying controller or its driver does not support. For
629 * example, not all hardware supports wire transfers using nine bit words,
630 * LSB-first wire encoding, or active-high chipselects.
632 int spi_setup(struct spi_device *spi)
634 unsigned bad_bits;
635 int status;
637 /* help drivers fail *cleanly* when they need options
638 * that aren't supported with their current master
640 bad_bits = spi->mode & ~spi->master->mode_bits;
641 if (bad_bits) {
642 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
643 bad_bits);
644 return -EINVAL;
647 if (!spi->bits_per_word)
648 spi->bits_per_word = 8;
650 status = spi->master->setup(spi);
652 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
653 "%u bits/w, %u Hz max --> %d\n",
654 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
655 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
656 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
657 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
658 (spi->mode & SPI_LOOP) ? "loopback, " : "",
659 spi->bits_per_word, spi->max_speed_hz,
660 status);
662 return status;
664 EXPORT_SYMBOL_GPL(spi_setup);
667 * spi_async - asynchronous SPI transfer
668 * @spi: device with which data will be exchanged
669 * @message: describes the data transfers, including completion callback
670 * Context: any (irqs may be blocked, etc)
672 * This call may be used in_irq and other contexts which can't sleep,
673 * as well as from task contexts which can sleep.
675 * The completion callback is invoked in a context which can't sleep.
676 * Before that invocation, the value of message->status is undefined.
677 * When the callback is issued, message->status holds either zero (to
678 * indicate complete success) or a negative error code. After that
679 * callback returns, the driver which issued the transfer request may
680 * deallocate the associated memory; it's no longer in use by any SPI
681 * core or controller driver code.
683 * Note that although all messages to a spi_device are handled in
684 * FIFO order, messages may go to different devices in other orders.
685 * Some device might be higher priority, or have various "hard" access
686 * time requirements, for example.
688 * On detection of any fault during the transfer, processing of
689 * the entire message is aborted, and the device is deselected.
690 * Until returning from the associated message completion callback,
691 * no other spi_message queued to that device will be processed.
692 * (This rule applies equally to all the synchronous transfer calls,
693 * which are wrappers around this core asynchronous primitive.)
695 int spi_async(struct spi_device *spi, struct spi_message *message)
697 struct spi_master *master = spi->master;
699 /* Half-duplex links include original MicroWire, and ones with
700 * only one data pin like SPI_3WIRE (switches direction) or where
701 * either MOSI or MISO is missing. They can also be caused by
702 * software limitations.
704 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
705 || (spi->mode & SPI_3WIRE)) {
706 struct spi_transfer *xfer;
707 unsigned flags = master->flags;
709 list_for_each_entry(xfer, &message->transfers, transfer_list) {
710 if (xfer->rx_buf && xfer->tx_buf)
711 return -EINVAL;
712 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
713 return -EINVAL;
714 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
715 return -EINVAL;
719 message->spi = spi;
720 message->status = -EINPROGRESS;
721 return master->transfer(spi, message);
723 EXPORT_SYMBOL_GPL(spi_async);
726 /*-------------------------------------------------------------------------*/
728 /* Utility methods for SPI master protocol drivers, layered on
729 * top of the core. Some other utility methods are defined as
730 * inline functions.
733 static void spi_complete(void *arg)
735 complete(arg);
739 * spi_sync - blocking/synchronous SPI data transfers
740 * @spi: device with which data will be exchanged
741 * @message: describes the data transfers
742 * Context: can sleep
744 * This call may only be used from a context that may sleep. The sleep
745 * is non-interruptible, and has no timeout. Low-overhead controller
746 * drivers may DMA directly into and out of the message buffers.
748 * Note that the SPI device's chip select is active during the message,
749 * and then is normally disabled between messages. Drivers for some
750 * frequently-used devices may want to minimize costs of selecting a chip,
751 * by leaving it selected in anticipation that the next message will go
752 * to the same chip. (That may increase power usage.)
754 * Also, the caller is guaranteeing that the memory associated with the
755 * message will not be freed before this call returns.
757 * It returns zero on success, else a negative error code.
759 int spi_sync(struct spi_device *spi, struct spi_message *message)
761 DECLARE_COMPLETION_ONSTACK(done);
762 int status;
764 message->complete = spi_complete;
765 message->context = &done;
766 status = spi_async(spi, message);
767 if (status == 0) {
768 wait_for_completion(&done);
769 status = message->status;
771 message->context = NULL;
772 return status;
774 EXPORT_SYMBOL_GPL(spi_sync);
776 /* portable code must never pass more than 32 bytes */
777 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
779 static u8 *buf;
782 * spi_write_then_read - SPI synchronous write followed by read
783 * @spi: device with which data will be exchanged
784 * @txbuf: data to be written (need not be dma-safe)
785 * @n_tx: size of txbuf, in bytes
786 * @rxbuf: buffer into which data will be read (need not be dma-safe)
787 * @n_rx: size of rxbuf, in bytes
788 * Context: can sleep
790 * This performs a half duplex MicroWire style transaction with the
791 * device, sending txbuf and then reading rxbuf. The return value
792 * is zero for success, else a negative errno status code.
793 * This call may only be used from a context that may sleep.
795 * Parameters to this routine are always copied using a small buffer;
796 * portable code should never use this for more than 32 bytes.
797 * Performance-sensitive or bulk transfer code should instead use
798 * spi_{async,sync}() calls with dma-safe buffers.
800 int spi_write_then_read(struct spi_device *spi,
801 const u8 *txbuf, unsigned n_tx,
802 u8 *rxbuf, unsigned n_rx)
804 static DEFINE_MUTEX(lock);
806 int status;
807 struct spi_message message;
808 struct spi_transfer x[2];
809 u8 *local_buf;
811 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
812 * (as a pure convenience thing), but we can keep heap costs
813 * out of the hot path ...
815 if ((n_tx + n_rx) > SPI_BUFSIZ)
816 return -EINVAL;
818 spi_message_init(&message);
819 memset(x, 0, sizeof x);
820 if (n_tx) {
821 x[0].len = n_tx;
822 spi_message_add_tail(&x[0], &message);
824 if (n_rx) {
825 x[1].len = n_rx;
826 spi_message_add_tail(&x[1], &message);
829 /* ... unless someone else is using the pre-allocated buffer */
830 if (!mutex_trylock(&lock)) {
831 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
832 if (!local_buf)
833 return -ENOMEM;
834 } else
835 local_buf = buf;
837 memcpy(local_buf, txbuf, n_tx);
838 x[0].tx_buf = local_buf;
839 x[1].rx_buf = local_buf + n_tx;
841 /* do the i/o */
842 status = spi_sync(spi, &message);
843 if (status == 0)
844 memcpy(rxbuf, x[1].rx_buf, n_rx);
846 if (x[0].tx_buf == buf)
847 mutex_unlock(&lock);
848 else
849 kfree(local_buf);
851 return status;
853 EXPORT_SYMBOL_GPL(spi_write_then_read);
855 /*-------------------------------------------------------------------------*/
857 static int __init spi_init(void)
859 int status;
861 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
862 if (!buf) {
863 status = -ENOMEM;
864 goto err0;
867 status = bus_register(&spi_bus_type);
868 if (status < 0)
869 goto err1;
871 status = class_register(&spi_master_class);
872 if (status < 0)
873 goto err2;
874 return 0;
876 err2:
877 bus_unregister(&spi_bus_type);
878 err1:
879 kfree(buf);
880 buf = NULL;
881 err0:
882 return status;
885 /* board_info is normally registered in arch_initcall(),
886 * but even essential drivers wait till later
888 * REVISIT only boardinfo really needs static linking. the rest (device and
889 * driver registration) _could_ be dynamically linked (modular) ... costs
890 * include needing to have boardinfo data structures be much more public.
892 postcore_initcall(spi_init);