[S390] s390: disable change bit override
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / write.c
blob53ff70e2399335a408a38c6f779282c1663a2f30
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34 #define MIN_POOL_WRITE (32)
35 #define MIN_POOL_COMMIT (4)
38 * Local function declarations
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
60 return p;
63 void nfs_commit_free(struct nfs_write_data *p)
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 if (pagecount <= ARRAY_SIZE(p->page_array))
80 p->pagevec = p->page_array;
81 else {
82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 if (!p->pagevec) {
84 mempool_free(p, nfs_wdata_mempool);
85 p = NULL;
89 return p;
92 void nfs_writedata_free(struct nfs_write_data *p)
94 if (p && (p->pagevec != &p->page_array[0]))
95 kfree(p->pagevec);
96 mempool_free(p, nfs_wdata_mempool);
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 struct nfs_page *req = NULL;
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
121 return req;
124 static struct nfs_page *nfs_page_find_request(struct page *page)
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
177 static int wb_priority(struct writeback_control *wbc)
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI;
183 return 0;
187 * NFS congestion control
190 int nfs_congestion_kb;
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
196 static int nfs_set_page_writeback(struct page *page)
198 int ret = test_set_page_writeback(page);
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
204 if (atomic_long_inc_return(&nfss->writeback) >
205 NFS_CONGESTION_ON_THRESH) {
206 set_bdi_congested(&nfss->backing_dev_info,
207 BLK_RW_ASYNC);
210 return ret;
213 static void nfs_end_page_writeback(struct page *page)
215 struct inode *inode = page->mapping->host;
216 struct nfs_server *nfss = NFS_SERVER(inode);
218 end_page_writeback(page);
219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
225 struct inode *inode = page->mapping->host;
226 struct nfs_page *req;
227 int ret;
229 spin_lock(&inode->i_lock);
230 for (;;) {
231 req = nfs_page_find_request_locked(page);
232 if (req == NULL)
233 break;
234 if (nfs_set_page_tag_locked(req))
235 break;
236 /* Note: If we hold the page lock, as is the case in nfs_writepage,
237 * then the call to nfs_set_page_tag_locked() will always
238 * succeed provided that someone hasn't already marked the
239 * request as dirty (in which case we don't care).
241 spin_unlock(&inode->i_lock);
242 ret = nfs_wait_on_request(req);
243 nfs_release_request(req);
244 if (ret != 0)
245 return ERR_PTR(ret);
246 spin_lock(&inode->i_lock);
248 spin_unlock(&inode->i_lock);
249 return req;
253 * Find an associated nfs write request, and prepare to flush it out
254 * May return an error if the user signalled nfs_wait_on_request().
256 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
257 struct page *page)
259 struct nfs_page *req;
260 int ret = 0;
262 req = nfs_find_and_lock_request(page);
263 if (!req)
264 goto out;
265 ret = PTR_ERR(req);
266 if (IS_ERR(req))
267 goto out;
269 ret = nfs_set_page_writeback(page);
270 BUG_ON(ret != 0);
271 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
273 if (!nfs_pageio_add_request(pgio, req)) {
274 nfs_redirty_request(req);
275 ret = pgio->pg_error;
277 out:
278 return ret;
281 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
283 struct inode *inode = page->mapping->host;
285 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
286 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
288 nfs_pageio_cond_complete(pgio, page->index);
289 return nfs_page_async_flush(pgio, page);
293 * Write an mmapped page to the server.
295 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
297 struct nfs_pageio_descriptor pgio;
298 int err;
300 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
301 err = nfs_do_writepage(page, wbc, &pgio);
302 nfs_pageio_complete(&pgio);
303 if (err < 0)
304 return err;
305 if (pgio.pg_error < 0)
306 return pgio.pg_error;
307 return 0;
310 int nfs_writepage(struct page *page, struct writeback_control *wbc)
312 int ret;
314 ret = nfs_writepage_locked(page, wbc);
315 unlock_page(page);
316 return ret;
319 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
321 int ret;
323 ret = nfs_do_writepage(page, wbc, data);
324 unlock_page(page);
325 return ret;
328 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
330 struct inode *inode = mapping->host;
331 unsigned long *bitlock = &NFS_I(inode)->flags;
332 struct nfs_pageio_descriptor pgio;
333 int err;
335 /* Stop dirtying of new pages while we sync */
336 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
337 nfs_wait_bit_killable, TASK_KILLABLE);
338 if (err)
339 goto out_err;
341 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
343 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
344 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
345 nfs_pageio_complete(&pgio);
347 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
348 smp_mb__after_clear_bit();
349 wake_up_bit(bitlock, NFS_INO_FLUSHING);
351 if (err < 0)
352 goto out_err;
353 err = pgio.pg_error;
354 if (err < 0)
355 goto out_err;
356 return 0;
357 out_err:
358 return err;
362 * Insert a write request into an inode
364 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
366 struct nfs_inode *nfsi = NFS_I(inode);
367 int error;
369 error = radix_tree_preload(GFP_NOFS);
370 if (error != 0)
371 goto out;
373 /* Lock the request! */
374 nfs_lock_request_dontget(req);
376 spin_lock(&inode->i_lock);
377 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
378 BUG_ON(error);
379 if (!nfsi->npages) {
380 igrab(inode);
381 if (nfs_have_delegation(inode, FMODE_WRITE))
382 nfsi->change_attr++;
384 SetPagePrivate(req->wb_page);
385 set_page_private(req->wb_page, (unsigned long)req);
386 nfsi->npages++;
387 kref_get(&req->wb_kref);
388 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
389 NFS_PAGE_TAG_LOCKED);
390 spin_unlock(&inode->i_lock);
391 radix_tree_preload_end();
392 out:
393 return error;
397 * Remove a write request from an inode
399 static void nfs_inode_remove_request(struct nfs_page *req)
401 struct inode *inode = req->wb_context->path.dentry->d_inode;
402 struct nfs_inode *nfsi = NFS_I(inode);
404 BUG_ON (!NFS_WBACK_BUSY(req));
406 spin_lock(&inode->i_lock);
407 set_page_private(req->wb_page, 0);
408 ClearPagePrivate(req->wb_page);
409 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
410 nfsi->npages--;
411 if (!nfsi->npages) {
412 spin_unlock(&inode->i_lock);
413 iput(inode);
414 } else
415 spin_unlock(&inode->i_lock);
416 nfs_clear_request(req);
417 nfs_release_request(req);
420 static void
421 nfs_mark_request_dirty(struct nfs_page *req)
423 __set_page_dirty_nobuffers(req->wb_page);
426 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
428 * Add a request to the inode's commit list.
430 static void
431 nfs_mark_request_commit(struct nfs_page *req)
433 struct inode *inode = req->wb_context->path.dentry->d_inode;
434 struct nfs_inode *nfsi = NFS_I(inode);
436 spin_lock(&inode->i_lock);
437 set_bit(PG_CLEAN, &(req)->wb_flags);
438 radix_tree_tag_set(&nfsi->nfs_page_tree,
439 req->wb_index,
440 NFS_PAGE_TAG_COMMIT);
441 nfsi->ncommit++;
442 spin_unlock(&inode->i_lock);
443 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
444 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
445 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
448 static int
449 nfs_clear_request_commit(struct nfs_page *req)
451 struct page *page = req->wb_page;
453 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
454 dec_zone_page_state(page, NR_UNSTABLE_NFS);
455 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
456 return 1;
458 return 0;
461 static inline
462 int nfs_write_need_commit(struct nfs_write_data *data)
464 return data->verf.committed != NFS_FILE_SYNC;
467 static inline
468 int nfs_reschedule_unstable_write(struct nfs_page *req)
470 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
471 nfs_mark_request_commit(req);
472 return 1;
474 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
475 nfs_mark_request_dirty(req);
476 return 1;
478 return 0;
480 #else
481 static inline void
482 nfs_mark_request_commit(struct nfs_page *req)
486 static inline int
487 nfs_clear_request_commit(struct nfs_page *req)
489 return 0;
492 static inline
493 int nfs_write_need_commit(struct nfs_write_data *data)
495 return 0;
498 static inline
499 int nfs_reschedule_unstable_write(struct nfs_page *req)
501 return 0;
503 #endif
505 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
506 static int
507 nfs_need_commit(struct nfs_inode *nfsi)
509 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
513 * nfs_scan_commit - Scan an inode for commit requests
514 * @inode: NFS inode to scan
515 * @dst: destination list
516 * @idx_start: lower bound of page->index to scan.
517 * @npages: idx_start + npages sets the upper bound to scan.
519 * Moves requests from the inode's 'commit' request list.
520 * The requests are *not* checked to ensure that they form a contiguous set.
522 static int
523 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
525 struct nfs_inode *nfsi = NFS_I(inode);
526 int ret;
528 if (!nfs_need_commit(nfsi))
529 return 0;
531 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
532 if (ret > 0)
533 nfsi->ncommit -= ret;
534 if (nfs_need_commit(NFS_I(inode)))
535 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
536 return ret;
538 #else
539 static inline int nfs_need_commit(struct nfs_inode *nfsi)
541 return 0;
544 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
546 return 0;
548 #endif
551 * Search for an existing write request, and attempt to update
552 * it to reflect a new dirty region on a given page.
554 * If the attempt fails, then the existing request is flushed out
555 * to disk.
557 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
558 struct page *page,
559 unsigned int offset,
560 unsigned int bytes)
562 struct nfs_page *req;
563 unsigned int rqend;
564 unsigned int end;
565 int error;
567 if (!PagePrivate(page))
568 return NULL;
570 end = offset + bytes;
571 spin_lock(&inode->i_lock);
573 for (;;) {
574 req = nfs_page_find_request_locked(page);
575 if (req == NULL)
576 goto out_unlock;
578 rqend = req->wb_offset + req->wb_bytes;
580 * Tell the caller to flush out the request if
581 * the offsets are non-contiguous.
582 * Note: nfs_flush_incompatible() will already
583 * have flushed out requests having wrong owners.
585 if (offset > rqend
586 || end < req->wb_offset)
587 goto out_flushme;
589 if (nfs_set_page_tag_locked(req))
590 break;
592 /* The request is locked, so wait and then retry */
593 spin_unlock(&inode->i_lock);
594 error = nfs_wait_on_request(req);
595 nfs_release_request(req);
596 if (error != 0)
597 goto out_err;
598 spin_lock(&inode->i_lock);
601 if (nfs_clear_request_commit(req) &&
602 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
603 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
604 NFS_I(inode)->ncommit--;
606 /* Okay, the request matches. Update the region */
607 if (offset < req->wb_offset) {
608 req->wb_offset = offset;
609 req->wb_pgbase = offset;
611 if (end > rqend)
612 req->wb_bytes = end - req->wb_offset;
613 else
614 req->wb_bytes = rqend - req->wb_offset;
615 out_unlock:
616 spin_unlock(&inode->i_lock);
617 return req;
618 out_flushme:
619 spin_unlock(&inode->i_lock);
620 nfs_release_request(req);
621 error = nfs_wb_page(inode, page);
622 out_err:
623 return ERR_PTR(error);
627 * Try to update an existing write request, or create one if there is none.
629 * Note: Should always be called with the Page Lock held to prevent races
630 * if we have to add a new request. Also assumes that the caller has
631 * already called nfs_flush_incompatible() if necessary.
633 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
634 struct page *page, unsigned int offset, unsigned int bytes)
636 struct inode *inode = page->mapping->host;
637 struct nfs_page *req;
638 int error;
640 req = nfs_try_to_update_request(inode, page, offset, bytes);
641 if (req != NULL)
642 goto out;
643 req = nfs_create_request(ctx, inode, page, offset, bytes);
644 if (IS_ERR(req))
645 goto out;
646 error = nfs_inode_add_request(inode, req);
647 if (error != 0) {
648 nfs_release_request(req);
649 req = ERR_PTR(error);
651 out:
652 return req;
655 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
656 unsigned int offset, unsigned int count)
658 struct nfs_page *req;
660 req = nfs_setup_write_request(ctx, page, offset, count);
661 if (IS_ERR(req))
662 return PTR_ERR(req);
663 /* Update file length */
664 nfs_grow_file(page, offset, count);
665 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
666 nfs_clear_page_tag_locked(req);
667 return 0;
670 int nfs_flush_incompatible(struct file *file, struct page *page)
672 struct nfs_open_context *ctx = nfs_file_open_context(file);
673 struct nfs_page *req;
674 int do_flush, status;
676 * Look for a request corresponding to this page. If there
677 * is one, and it belongs to another file, we flush it out
678 * before we try to copy anything into the page. Do this
679 * due to the lack of an ACCESS-type call in NFSv2.
680 * Also do the same if we find a request from an existing
681 * dropped page.
683 do {
684 req = nfs_page_find_request(page);
685 if (req == NULL)
686 return 0;
687 do_flush = req->wb_page != page || req->wb_context != ctx;
688 nfs_release_request(req);
689 if (!do_flush)
690 return 0;
691 status = nfs_wb_page(page->mapping->host, page);
692 } while (status == 0);
693 return status;
697 * If the page cache is marked as unsafe or invalid, then we can't rely on
698 * the PageUptodate() flag. In this case, we will need to turn off
699 * write optimisations that depend on the page contents being correct.
701 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
703 return PageUptodate(page) &&
704 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
708 * Update and possibly write a cached page of an NFS file.
710 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
711 * things with a page scheduled for an RPC call (e.g. invalidate it).
713 int nfs_updatepage(struct file *file, struct page *page,
714 unsigned int offset, unsigned int count)
716 struct nfs_open_context *ctx = nfs_file_open_context(file);
717 struct inode *inode = page->mapping->host;
718 int status = 0;
720 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
722 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
723 file->f_path.dentry->d_parent->d_name.name,
724 file->f_path.dentry->d_name.name, count,
725 (long long)(page_offset(page) + offset));
727 /* If we're not using byte range locks, and we know the page
728 * is up to date, it may be more efficient to extend the write
729 * to cover the entire page in order to avoid fragmentation
730 * inefficiencies.
732 if (nfs_write_pageuptodate(page, inode) &&
733 inode->i_flock == NULL &&
734 !(file->f_flags & O_DSYNC)) {
735 count = max(count + offset, nfs_page_length(page));
736 offset = 0;
739 status = nfs_writepage_setup(ctx, page, offset, count);
740 if (status < 0)
741 nfs_set_pageerror(page);
742 else
743 __set_page_dirty_nobuffers(page);
745 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
746 status, (long long)i_size_read(inode));
747 return status;
750 static void nfs_writepage_release(struct nfs_page *req)
753 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
754 nfs_end_page_writeback(req->wb_page);
755 nfs_inode_remove_request(req);
756 } else
757 nfs_end_page_writeback(req->wb_page);
758 nfs_clear_page_tag_locked(req);
761 static int flush_task_priority(int how)
763 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
764 case FLUSH_HIGHPRI:
765 return RPC_PRIORITY_HIGH;
766 case FLUSH_LOWPRI:
767 return RPC_PRIORITY_LOW;
769 return RPC_PRIORITY_NORMAL;
773 * Set up the argument/result storage required for the RPC call.
775 static int nfs_write_rpcsetup(struct nfs_page *req,
776 struct nfs_write_data *data,
777 const struct rpc_call_ops *call_ops,
778 unsigned int count, unsigned int offset,
779 int how)
781 struct inode *inode = req->wb_context->path.dentry->d_inode;
782 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
783 int priority = flush_task_priority(how);
784 struct rpc_task *task;
785 struct rpc_message msg = {
786 .rpc_argp = &data->args,
787 .rpc_resp = &data->res,
788 .rpc_cred = req->wb_context->cred,
790 struct rpc_task_setup task_setup_data = {
791 .rpc_client = NFS_CLIENT(inode),
792 .task = &data->task,
793 .rpc_message = &msg,
794 .callback_ops = call_ops,
795 .callback_data = data,
796 .workqueue = nfsiod_workqueue,
797 .flags = flags,
798 .priority = priority,
801 /* Set up the RPC argument and reply structs
802 * NB: take care not to mess about with data->commit et al. */
804 data->req = req;
805 data->inode = inode = req->wb_context->path.dentry->d_inode;
806 data->cred = msg.rpc_cred;
808 data->args.fh = NFS_FH(inode);
809 data->args.offset = req_offset(req) + offset;
810 data->args.pgbase = req->wb_pgbase + offset;
811 data->args.pages = data->pagevec;
812 data->args.count = count;
813 data->args.context = get_nfs_open_context(req->wb_context);
814 data->args.stable = NFS_UNSTABLE;
815 if (how & FLUSH_STABLE) {
816 data->args.stable = NFS_DATA_SYNC;
817 if (!nfs_need_commit(NFS_I(inode)))
818 data->args.stable = NFS_FILE_SYNC;
821 data->res.fattr = &data->fattr;
822 data->res.count = count;
823 data->res.verf = &data->verf;
824 nfs_fattr_init(&data->fattr);
826 /* Set up the initial task struct. */
827 NFS_PROTO(inode)->write_setup(data, &msg);
829 dprintk("NFS: %5u initiated write call "
830 "(req %s/%lld, %u bytes @ offset %llu)\n",
831 data->task.tk_pid,
832 inode->i_sb->s_id,
833 (long long)NFS_FILEID(inode),
834 count,
835 (unsigned long long)data->args.offset);
837 task = rpc_run_task(&task_setup_data);
838 if (IS_ERR(task))
839 return PTR_ERR(task);
840 rpc_put_task(task);
841 return 0;
844 /* If a nfs_flush_* function fails, it should remove reqs from @head and
845 * call this on each, which will prepare them to be retried on next
846 * writeback using standard nfs.
848 static void nfs_redirty_request(struct nfs_page *req)
850 nfs_mark_request_dirty(req);
851 nfs_end_page_writeback(req->wb_page);
852 nfs_clear_page_tag_locked(req);
856 * Generate multiple small requests to write out a single
857 * contiguous dirty area on one page.
859 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
861 struct nfs_page *req = nfs_list_entry(head->next);
862 struct page *page = req->wb_page;
863 struct nfs_write_data *data;
864 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
865 unsigned int offset;
866 int requests = 0;
867 int ret = 0;
868 LIST_HEAD(list);
870 nfs_list_remove_request(req);
872 nbytes = count;
873 do {
874 size_t len = min(nbytes, wsize);
876 data = nfs_writedata_alloc(1);
877 if (!data)
878 goto out_bad;
879 list_add(&data->pages, &list);
880 requests++;
881 nbytes -= len;
882 } while (nbytes != 0);
883 atomic_set(&req->wb_complete, requests);
885 ClearPageError(page);
886 offset = 0;
887 nbytes = count;
888 do {
889 int ret2;
891 data = list_entry(list.next, struct nfs_write_data, pages);
892 list_del_init(&data->pages);
894 data->pagevec[0] = page;
896 if (nbytes < wsize)
897 wsize = nbytes;
898 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
899 wsize, offset, how);
900 if (ret == 0)
901 ret = ret2;
902 offset += wsize;
903 nbytes -= wsize;
904 } while (nbytes != 0);
906 return ret;
908 out_bad:
909 while (!list_empty(&list)) {
910 data = list_entry(list.next, struct nfs_write_data, pages);
911 list_del(&data->pages);
912 nfs_writedata_release(data);
914 nfs_redirty_request(req);
915 return -ENOMEM;
919 * Create an RPC task for the given write request and kick it.
920 * The page must have been locked by the caller.
922 * It may happen that the page we're passed is not marked dirty.
923 * This is the case if nfs_updatepage detects a conflicting request
924 * that has been written but not committed.
926 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
928 struct nfs_page *req;
929 struct page **pages;
930 struct nfs_write_data *data;
932 data = nfs_writedata_alloc(npages);
933 if (!data)
934 goto out_bad;
936 pages = data->pagevec;
937 while (!list_empty(head)) {
938 req = nfs_list_entry(head->next);
939 nfs_list_remove_request(req);
940 nfs_list_add_request(req, &data->pages);
941 ClearPageError(req->wb_page);
942 *pages++ = req->wb_page;
944 req = nfs_list_entry(data->pages.next);
946 /* Set up the argument struct */
947 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
948 out_bad:
949 while (!list_empty(head)) {
950 req = nfs_list_entry(head->next);
951 nfs_list_remove_request(req);
952 nfs_redirty_request(req);
954 return -ENOMEM;
957 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
958 struct inode *inode, int ioflags)
960 size_t wsize = NFS_SERVER(inode)->wsize;
962 if (wsize < PAGE_CACHE_SIZE)
963 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
964 else
965 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
969 * Handle a write reply that flushed part of a page.
971 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
973 struct nfs_write_data *data = calldata;
975 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
976 task->tk_pid,
977 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
978 (long long)
979 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
980 data->req->wb_bytes, (long long)req_offset(data->req));
982 nfs_writeback_done(task, data);
985 static void nfs_writeback_release_partial(void *calldata)
987 struct nfs_write_data *data = calldata;
988 struct nfs_page *req = data->req;
989 struct page *page = req->wb_page;
990 int status = data->task.tk_status;
992 if (status < 0) {
993 nfs_set_pageerror(page);
994 nfs_context_set_write_error(req->wb_context, status);
995 dprintk(", error = %d\n", status);
996 goto out;
999 if (nfs_write_need_commit(data)) {
1000 struct inode *inode = page->mapping->host;
1002 spin_lock(&inode->i_lock);
1003 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1004 /* Do nothing we need to resend the writes */
1005 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1006 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1007 dprintk(" defer commit\n");
1008 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1009 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1010 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1011 dprintk(" server reboot detected\n");
1013 spin_unlock(&inode->i_lock);
1014 } else
1015 dprintk(" OK\n");
1017 out:
1018 if (atomic_dec_and_test(&req->wb_complete))
1019 nfs_writepage_release(req);
1020 nfs_writedata_release(calldata);
1023 #if defined(CONFIG_NFS_V4_1)
1024 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1026 struct nfs_write_data *data = calldata;
1027 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1029 if (nfs4_setup_sequence(clp, &data->args.seq_args,
1030 &data->res.seq_res, 1, task))
1031 return;
1032 rpc_call_start(task);
1034 #endif /* CONFIG_NFS_V4_1 */
1036 static const struct rpc_call_ops nfs_write_partial_ops = {
1037 #if defined(CONFIG_NFS_V4_1)
1038 .rpc_call_prepare = nfs_write_prepare,
1039 #endif /* CONFIG_NFS_V4_1 */
1040 .rpc_call_done = nfs_writeback_done_partial,
1041 .rpc_release = nfs_writeback_release_partial,
1045 * Handle a write reply that flushes a whole page.
1047 * FIXME: There is an inherent race with invalidate_inode_pages and
1048 * writebacks since the page->count is kept > 1 for as long
1049 * as the page has a write request pending.
1051 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1053 struct nfs_write_data *data = calldata;
1055 nfs_writeback_done(task, data);
1058 static void nfs_writeback_release_full(void *calldata)
1060 struct nfs_write_data *data = calldata;
1061 int status = data->task.tk_status;
1063 /* Update attributes as result of writeback. */
1064 while (!list_empty(&data->pages)) {
1065 struct nfs_page *req = nfs_list_entry(data->pages.next);
1066 struct page *page = req->wb_page;
1068 nfs_list_remove_request(req);
1070 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1071 data->task.tk_pid,
1072 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1073 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1074 req->wb_bytes,
1075 (long long)req_offset(req));
1077 if (status < 0) {
1078 nfs_set_pageerror(page);
1079 nfs_context_set_write_error(req->wb_context, status);
1080 dprintk(", error = %d\n", status);
1081 goto remove_request;
1084 if (nfs_write_need_commit(data)) {
1085 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1086 nfs_mark_request_commit(req);
1087 nfs_end_page_writeback(page);
1088 dprintk(" marked for commit\n");
1089 goto next;
1091 dprintk(" OK\n");
1092 remove_request:
1093 nfs_end_page_writeback(page);
1094 nfs_inode_remove_request(req);
1095 next:
1096 nfs_clear_page_tag_locked(req);
1098 nfs_writedata_release(calldata);
1101 static const struct rpc_call_ops nfs_write_full_ops = {
1102 #if defined(CONFIG_NFS_V4_1)
1103 .rpc_call_prepare = nfs_write_prepare,
1104 #endif /* CONFIG_NFS_V4_1 */
1105 .rpc_call_done = nfs_writeback_done_full,
1106 .rpc_release = nfs_writeback_release_full,
1111 * This function is called when the WRITE call is complete.
1113 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1115 struct nfs_writeargs *argp = &data->args;
1116 struct nfs_writeres *resp = &data->res;
1117 struct nfs_server *server = NFS_SERVER(data->inode);
1118 int status;
1120 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1121 task->tk_pid, task->tk_status);
1124 * ->write_done will attempt to use post-op attributes to detect
1125 * conflicting writes by other clients. A strict interpretation
1126 * of close-to-open would allow us to continue caching even if
1127 * another writer had changed the file, but some applications
1128 * depend on tighter cache coherency when writing.
1130 status = NFS_PROTO(data->inode)->write_done(task, data);
1131 if (status != 0)
1132 return status;
1133 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1135 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1136 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1137 /* We tried a write call, but the server did not
1138 * commit data to stable storage even though we
1139 * requested it.
1140 * Note: There is a known bug in Tru64 < 5.0 in which
1141 * the server reports NFS_DATA_SYNC, but performs
1142 * NFS_FILE_SYNC. We therefore implement this checking
1143 * as a dprintk() in order to avoid filling syslog.
1145 static unsigned long complain;
1147 if (time_before(complain, jiffies)) {
1148 dprintk("NFS: faulty NFS server %s:"
1149 " (committed = %d) != (stable = %d)\n",
1150 server->nfs_client->cl_hostname,
1151 resp->verf->committed, argp->stable);
1152 complain = jiffies + 300 * HZ;
1155 #endif
1156 /* Is this a short write? */
1157 if (task->tk_status >= 0 && resp->count < argp->count) {
1158 static unsigned long complain;
1160 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1162 /* Has the server at least made some progress? */
1163 if (resp->count != 0) {
1164 /* Was this an NFSv2 write or an NFSv3 stable write? */
1165 if (resp->verf->committed != NFS_UNSTABLE) {
1166 /* Resend from where the server left off */
1167 argp->offset += resp->count;
1168 argp->pgbase += resp->count;
1169 argp->count -= resp->count;
1170 } else {
1171 /* Resend as a stable write in order to avoid
1172 * headaches in the case of a server crash.
1174 argp->stable = NFS_FILE_SYNC;
1176 nfs_restart_rpc(task, server->nfs_client);
1177 return -EAGAIN;
1179 if (time_before(complain, jiffies)) {
1180 printk(KERN_WARNING
1181 "NFS: Server wrote zero bytes, expected %u.\n",
1182 argp->count);
1183 complain = jiffies + 300 * HZ;
1185 /* Can't do anything about it except throw an error. */
1186 task->tk_status = -EIO;
1188 return 0;
1192 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1193 static void nfs_commitdata_release(void *data)
1195 struct nfs_write_data *wdata = data;
1197 put_nfs_open_context(wdata->args.context);
1198 nfs_commit_free(wdata);
1202 * Set up the argument/result storage required for the RPC call.
1204 static int nfs_commit_rpcsetup(struct list_head *head,
1205 struct nfs_write_data *data,
1206 int how)
1208 struct nfs_page *first = nfs_list_entry(head->next);
1209 struct inode *inode = first->wb_context->path.dentry->d_inode;
1210 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1211 int priority = flush_task_priority(how);
1212 struct rpc_task *task;
1213 struct rpc_message msg = {
1214 .rpc_argp = &data->args,
1215 .rpc_resp = &data->res,
1216 .rpc_cred = first->wb_context->cred,
1218 struct rpc_task_setup task_setup_data = {
1219 .task = &data->task,
1220 .rpc_client = NFS_CLIENT(inode),
1221 .rpc_message = &msg,
1222 .callback_ops = &nfs_commit_ops,
1223 .callback_data = data,
1224 .workqueue = nfsiod_workqueue,
1225 .flags = flags,
1226 .priority = priority,
1229 /* Set up the RPC argument and reply structs
1230 * NB: take care not to mess about with data->commit et al. */
1232 list_splice_init(head, &data->pages);
1234 data->inode = inode;
1235 data->cred = msg.rpc_cred;
1237 data->args.fh = NFS_FH(data->inode);
1238 /* Note: we always request a commit of the entire inode */
1239 data->args.offset = 0;
1240 data->args.count = 0;
1241 data->args.context = get_nfs_open_context(first->wb_context);
1242 data->res.count = 0;
1243 data->res.fattr = &data->fattr;
1244 data->res.verf = &data->verf;
1245 nfs_fattr_init(&data->fattr);
1247 /* Set up the initial task struct. */
1248 NFS_PROTO(inode)->commit_setup(data, &msg);
1250 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1252 task = rpc_run_task(&task_setup_data);
1253 if (IS_ERR(task))
1254 return PTR_ERR(task);
1255 rpc_put_task(task);
1256 return 0;
1260 * Commit dirty pages
1262 static int
1263 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1265 struct nfs_write_data *data;
1266 struct nfs_page *req;
1268 data = nfs_commitdata_alloc();
1270 if (!data)
1271 goto out_bad;
1273 /* Set up the argument struct */
1274 return nfs_commit_rpcsetup(head, data, how);
1275 out_bad:
1276 while (!list_empty(head)) {
1277 req = nfs_list_entry(head->next);
1278 nfs_list_remove_request(req);
1279 nfs_mark_request_commit(req);
1280 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1281 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1282 BDI_RECLAIMABLE);
1283 nfs_clear_page_tag_locked(req);
1285 return -ENOMEM;
1289 * COMMIT call returned
1291 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1293 struct nfs_write_data *data = calldata;
1295 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1296 task->tk_pid, task->tk_status);
1298 /* Call the NFS version-specific code */
1299 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1300 return;
1303 static void nfs_commit_release(void *calldata)
1305 struct nfs_write_data *data = calldata;
1306 struct nfs_page *req;
1307 int status = data->task.tk_status;
1309 while (!list_empty(&data->pages)) {
1310 req = nfs_list_entry(data->pages.next);
1311 nfs_list_remove_request(req);
1312 nfs_clear_request_commit(req);
1314 dprintk("NFS: commit (%s/%lld %d@%lld)",
1315 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1316 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1317 req->wb_bytes,
1318 (long long)req_offset(req));
1319 if (status < 0) {
1320 nfs_context_set_write_error(req->wb_context, status);
1321 nfs_inode_remove_request(req);
1322 dprintk(", error = %d\n", status);
1323 goto next;
1326 /* Okay, COMMIT succeeded, apparently. Check the verifier
1327 * returned by the server against all stored verfs. */
1328 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1329 /* We have a match */
1330 nfs_inode_remove_request(req);
1331 dprintk(" OK\n");
1332 goto next;
1334 /* We have a mismatch. Write the page again */
1335 dprintk(" mismatch\n");
1336 nfs_mark_request_dirty(req);
1337 next:
1338 nfs_clear_page_tag_locked(req);
1340 nfs_commitdata_release(calldata);
1343 static const struct rpc_call_ops nfs_commit_ops = {
1344 #if defined(CONFIG_NFS_V4_1)
1345 .rpc_call_prepare = nfs_write_prepare,
1346 #endif /* CONFIG_NFS_V4_1 */
1347 .rpc_call_done = nfs_commit_done,
1348 .rpc_release = nfs_commit_release,
1351 static int nfs_commit_inode(struct inode *inode, int how)
1353 LIST_HEAD(head);
1354 int res;
1356 spin_lock(&inode->i_lock);
1357 res = nfs_scan_commit(inode, &head, 0, 0);
1358 spin_unlock(&inode->i_lock);
1359 if (res) {
1360 int error = nfs_commit_list(inode, &head, how);
1361 if (error < 0)
1362 return error;
1364 return res;
1367 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1369 struct nfs_inode *nfsi = NFS_I(inode);
1370 int flags = FLUSH_SYNC;
1371 int ret = 0;
1373 /* Don't commit yet if this is a non-blocking flush and there are
1374 * lots of outstanding writes for this mapping.
1376 if (wbc->sync_mode == WB_SYNC_NONE &&
1377 nfsi->ncommit <= (nfsi->npages >> 1))
1378 goto out_mark_dirty;
1380 if (wbc->nonblocking || wbc->for_background)
1381 flags = 0;
1382 ret = nfs_commit_inode(inode, flags);
1383 if (ret >= 0) {
1384 if (wbc->sync_mode == WB_SYNC_NONE) {
1385 if (ret < wbc->nr_to_write)
1386 wbc->nr_to_write -= ret;
1387 else
1388 wbc->nr_to_write = 0;
1390 return 0;
1392 out_mark_dirty:
1393 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1394 return ret;
1396 #else
1397 static int nfs_commit_inode(struct inode *inode, int how)
1399 return 0;
1402 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1404 return 0;
1406 #endif
1408 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1410 return nfs_commit_unstable_pages(inode, wbc);
1414 * flush the inode to disk.
1416 int nfs_wb_all(struct inode *inode)
1418 struct writeback_control wbc = {
1419 .sync_mode = WB_SYNC_ALL,
1420 .nr_to_write = LONG_MAX,
1421 .range_start = 0,
1422 .range_end = LLONG_MAX,
1425 return sync_inode(inode, &wbc);
1428 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1430 struct nfs_page *req;
1431 int ret = 0;
1433 BUG_ON(!PageLocked(page));
1434 for (;;) {
1435 req = nfs_page_find_request(page);
1436 if (req == NULL)
1437 break;
1438 if (nfs_lock_request_dontget(req)) {
1439 nfs_inode_remove_request(req);
1441 * In case nfs_inode_remove_request has marked the
1442 * page as being dirty
1444 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1445 nfs_unlock_request(req);
1446 break;
1448 ret = nfs_wait_on_request(req);
1449 nfs_release_request(req);
1450 if (ret < 0)
1451 break;
1453 return ret;
1457 * Write back all requests on one page - we do this before reading it.
1459 int nfs_wb_page(struct inode *inode, struct page *page)
1461 loff_t range_start = page_offset(page);
1462 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1463 struct writeback_control wbc = {
1464 .sync_mode = WB_SYNC_ALL,
1465 .nr_to_write = 0,
1466 .range_start = range_start,
1467 .range_end = range_end,
1469 struct nfs_page *req;
1470 int need_commit;
1471 int ret;
1473 while(PagePrivate(page)) {
1474 if (clear_page_dirty_for_io(page)) {
1475 ret = nfs_writepage_locked(page, &wbc);
1476 if (ret < 0)
1477 goto out_error;
1479 req = nfs_find_and_lock_request(page);
1480 if (!req)
1481 break;
1482 if (IS_ERR(req)) {
1483 ret = PTR_ERR(req);
1484 goto out_error;
1486 need_commit = test_bit(PG_CLEAN, &req->wb_flags);
1487 nfs_clear_page_tag_locked(req);
1488 if (need_commit) {
1489 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1490 if (ret < 0)
1491 goto out_error;
1494 return 0;
1495 out_error:
1496 return ret;
1499 #ifdef CONFIG_MIGRATION
1500 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1501 struct page *page)
1503 struct nfs_page *req;
1504 int ret;
1506 nfs_fscache_release_page(page, GFP_KERNEL);
1508 req = nfs_find_and_lock_request(page);
1509 ret = PTR_ERR(req);
1510 if (IS_ERR(req))
1511 goto out;
1513 ret = migrate_page(mapping, newpage, page);
1514 if (!req)
1515 goto out;
1516 if (ret)
1517 goto out_unlock;
1518 page_cache_get(newpage);
1519 spin_lock(&mapping->host->i_lock);
1520 req->wb_page = newpage;
1521 SetPagePrivate(newpage);
1522 set_page_private(newpage, (unsigned long)req);
1523 ClearPagePrivate(page);
1524 set_page_private(page, 0);
1525 spin_unlock(&mapping->host->i_lock);
1526 page_cache_release(page);
1527 out_unlock:
1528 nfs_clear_page_tag_locked(req);
1529 out:
1530 return ret;
1532 #endif
1534 int __init nfs_init_writepagecache(void)
1536 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1537 sizeof(struct nfs_write_data),
1538 0, SLAB_HWCACHE_ALIGN,
1539 NULL);
1540 if (nfs_wdata_cachep == NULL)
1541 return -ENOMEM;
1543 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1544 nfs_wdata_cachep);
1545 if (nfs_wdata_mempool == NULL)
1546 return -ENOMEM;
1548 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1549 nfs_wdata_cachep);
1550 if (nfs_commit_mempool == NULL)
1551 return -ENOMEM;
1554 * NFS congestion size, scale with available memory.
1556 * 64MB: 8192k
1557 * 128MB: 11585k
1558 * 256MB: 16384k
1559 * 512MB: 23170k
1560 * 1GB: 32768k
1561 * 2GB: 46340k
1562 * 4GB: 65536k
1563 * 8GB: 92681k
1564 * 16GB: 131072k
1566 * This allows larger machines to have larger/more transfers.
1567 * Limit the default to 256M
1569 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1570 if (nfs_congestion_kb > 256*1024)
1571 nfs_congestion_kb = 256*1024;
1573 return 0;
1576 void nfs_destroy_writepagecache(void)
1578 mempool_destroy(nfs_commit_mempool);
1579 mempool_destroy(nfs_wdata_mempool);
1580 kmem_cache_destroy(nfs_wdata_cachep);