1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index
{
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS
,
93 enum mem_cgroup_events_index
{
94 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS
,
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
107 enum mem_cgroup_events_target
{
108 MEM_CGROUP_TARGET_THRESH
,
109 MEM_CGROUP_TARGET_SOFTLIMIT
,
110 MEM_CGROUP_TARGET_NUMAINFO
,
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET (1024)
117 struct mem_cgroup_stat_cpu
{
118 long count
[MEM_CGROUP_STAT_NSTATS
];
119 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
120 unsigned long targets
[MEM_CGROUP_NTARGETS
];
124 * per-zone information in memory controller.
126 struct mem_cgroup_per_zone
{
128 * spin_lock to protect the per cgroup LRU
130 struct list_head lists
[NR_LRU_LISTS
];
131 unsigned long count
[NR_LRU_LISTS
];
133 struct zone_reclaim_stat reclaim_stat
;
134 struct rb_node tree_node
; /* RB tree node */
135 unsigned long long usage_in_excess
;/* Set to the value by which */
136 /* the soft limit is exceeded*/
138 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
139 /* use container_of */
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144 struct mem_cgroup_per_node
{
145 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
148 struct mem_cgroup_lru_info
{
149 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
157 struct mem_cgroup_tree_per_zone
{
158 struct rb_root rb_root
;
162 struct mem_cgroup_tree_per_node
{
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
166 struct mem_cgroup_tree
{
167 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
172 struct mem_cgroup_threshold
{
173 struct eventfd_ctx
*eventfd
;
178 struct mem_cgroup_threshold_ary
{
179 /* An array index points to threshold just below usage. */
180 int current_threshold
;
181 /* Size of entries[] */
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries
[0];
187 struct mem_cgroup_thresholds
{
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary
*primary
;
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
195 struct mem_cgroup_threshold_ary
*spare
;
199 struct mem_cgroup_eventfd_list
{
200 struct list_head list
;
201 struct eventfd_ctx
*eventfd
;
204 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
205 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
208 * The memory controller data structure. The memory controller controls both
209 * page cache and RSS per cgroup. We would eventually like to provide
210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211 * to help the administrator determine what knobs to tune.
213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 * we hit the water mark. May be even add a low water mark, such that
215 * no reclaim occurs from a cgroup at it's low water mark, this is
216 * a feature that will be implemented much later in the future.
219 struct cgroup_subsys_state css
;
221 * the counter to account for memory usage
223 struct res_counter res
;
225 * the counter to account for mem+swap usage.
227 struct res_counter memsw
;
229 * Per cgroup active and inactive list, similar to the
230 * per zone LRU lists.
232 struct mem_cgroup_lru_info info
;
234 * While reclaiming in a hierarchy, we cache the last child we
237 int last_scanned_child
;
238 int last_scanned_node
;
240 nodemask_t scan_nodes
;
241 atomic_t numainfo_events
;
242 atomic_t numainfo_updating
;
245 * Should the accounting and control be hierarchical, per subtree?
255 /* OOM-Killer disable */
256 int oom_kill_disable
;
258 /* set when res.limit == memsw.limit */
259 bool memsw_is_minimum
;
261 /* protect arrays of thresholds */
262 struct mutex thresholds_lock
;
264 /* thresholds for memory usage. RCU-protected */
265 struct mem_cgroup_thresholds thresholds
;
267 /* thresholds for mem+swap usage. RCU-protected */
268 struct mem_cgroup_thresholds memsw_thresholds
;
270 /* For oom notifier event fd */
271 struct list_head oom_notify
;
274 * Should we move charges of a task when a task is moved into this
275 * mem_cgroup ? And what type of charges should we move ?
277 unsigned long move_charge_at_immigrate
;
281 struct mem_cgroup_stat_cpu
*stat
;
283 * used when a cpu is offlined or other synchronizations
284 * See mem_cgroup_read_stat().
286 struct mem_cgroup_stat_cpu nocpu_base
;
287 spinlock_t pcp_counter_lock
;
290 /* Stuffs for move charges at task migration. */
292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293 * left-shifted bitmap of these types.
296 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
297 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct
{
303 spinlock_t lock
; /* for from, to */
304 struct mem_cgroup
*from
;
305 struct mem_cgroup
*to
;
306 unsigned long precharge
;
307 unsigned long moved_charge
;
308 unsigned long moved_swap
;
309 struct task_struct
*moving_task
; /* a task moving charges */
310 wait_queue_head_t waitq
; /* a waitq for other context */
312 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
313 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
316 static bool move_anon(void)
318 return test_bit(MOVE_CHARGE_TYPE_ANON
,
319 &mc
.to
->move_charge_at_immigrate
);
322 static bool move_file(void)
324 return test_bit(MOVE_CHARGE_TYPE_FILE
,
325 &mc
.to
->move_charge_at_immigrate
);
329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330 * limit reclaim to prevent infinite loops, if they ever occur.
332 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
333 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
336 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
337 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
338 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
339 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
340 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
341 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
345 /* for encoding cft->private value on file */
348 #define _OOM_TYPE (2)
349 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val) ((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL (0)
356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365 static void mem_cgroup_get(struct mem_cgroup
*mem
);
366 static void mem_cgroup_put(struct mem_cgroup
*mem
);
367 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
368 static void drain_all_stock_async(struct mem_cgroup
*mem
);
370 static struct mem_cgroup_per_zone
*
371 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
373 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
376 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
381 static struct mem_cgroup_per_zone
*
382 page_cgroup_zoneinfo(struct mem_cgroup
*mem
, struct page
*page
)
384 int nid
= page_to_nid(page
);
385 int zid
= page_zonenum(page
);
387 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
390 static struct mem_cgroup_tree_per_zone
*
391 soft_limit_tree_node_zone(int nid
, int zid
)
393 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
396 static struct mem_cgroup_tree_per_zone
*
397 soft_limit_tree_from_page(struct page
*page
)
399 int nid
= page_to_nid(page
);
400 int zid
= page_zonenum(page
);
402 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
406 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
407 struct mem_cgroup_per_zone
*mz
,
408 struct mem_cgroup_tree_per_zone
*mctz
,
409 unsigned long long new_usage_in_excess
)
411 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
412 struct rb_node
*parent
= NULL
;
413 struct mem_cgroup_per_zone
*mz_node
;
418 mz
->usage_in_excess
= new_usage_in_excess
;
419 if (!mz
->usage_in_excess
)
423 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
425 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
428 * We can't avoid mem cgroups that are over their soft
429 * limit by the same amount
431 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
434 rb_link_node(&mz
->tree_node
, parent
, p
);
435 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
440 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
441 struct mem_cgroup_per_zone
*mz
,
442 struct mem_cgroup_tree_per_zone
*mctz
)
446 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
451 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
452 struct mem_cgroup_per_zone
*mz
,
453 struct mem_cgroup_tree_per_zone
*mctz
)
455 spin_lock(&mctz
->lock
);
456 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
457 spin_unlock(&mctz
->lock
);
461 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
463 unsigned long long excess
;
464 struct mem_cgroup_per_zone
*mz
;
465 struct mem_cgroup_tree_per_zone
*mctz
;
466 int nid
= page_to_nid(page
);
467 int zid
= page_zonenum(page
);
468 mctz
= soft_limit_tree_from_page(page
);
471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched.
474 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
475 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
476 excess
= res_counter_soft_limit_excess(&mem
->res
);
478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit.
481 if (excess
|| mz
->on_tree
) {
482 spin_lock(&mctz
->lock
);
483 /* if on-tree, remove it */
485 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
490 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
491 spin_unlock(&mctz
->lock
);
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
499 struct mem_cgroup_per_zone
*mz
;
500 struct mem_cgroup_tree_per_zone
*mctz
;
502 for_each_node_state(node
, N_POSSIBLE
) {
503 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
504 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
505 mctz
= soft_limit_tree_node_zone(node
, zone
);
506 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
511 static struct mem_cgroup_per_zone
*
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
514 struct rb_node
*rightmost
= NULL
;
515 struct mem_cgroup_per_zone
*mz
;
519 rightmost
= rb_last(&mctz
->rb_root
);
521 goto done
; /* Nothing to reclaim from */
523 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
525 * Remove the node now but someone else can add it back,
526 * we will to add it back at the end of reclaim to its correct
527 * position in the tree.
529 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
530 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
531 !css_tryget(&mz
->mem
->css
))
537 static struct mem_cgroup_per_zone
*
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
540 struct mem_cgroup_per_zone
*mz
;
542 spin_lock(&mctz
->lock
);
543 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
544 spin_unlock(&mctz
->lock
);
549 * Implementation Note: reading percpu statistics for memcg.
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronizion of counter in memcg's counter.
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threashold and synchonization as vmstat[] should be
567 static long mem_cgroup_read_stat(struct mem_cgroup
*mem
,
568 enum mem_cgroup_stat_index idx
)
574 for_each_online_cpu(cpu
)
575 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
576 #ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&mem
->pcp_counter_lock
);
578 val
+= mem
->nocpu_base
.count
[idx
];
579 spin_unlock(&mem
->pcp_counter_lock
);
585 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
588 int val
= (charge
) ? 1 : -1;
589 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
592 void mem_cgroup_pgfault(struct mem_cgroup
*mem
, int val
)
594 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
597 void mem_cgroup_pgmajfault(struct mem_cgroup
*mem
, int val
)
599 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*mem
,
603 enum mem_cgroup_events_index idx
)
605 unsigned long val
= 0;
608 for_each_online_cpu(cpu
)
609 val
+= per_cpu(mem
->stat
->events
[idx
], cpu
);
610 #ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&mem
->pcp_counter_lock
);
612 val
+= mem
->nocpu_base
.events
[idx
];
613 spin_unlock(&mem
->pcp_counter_lock
);
618 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
619 bool file
, int nr_pages
)
624 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
626 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
628 /* pagein of a big page is an event. So, ignore page size */
630 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
632 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
633 nr_pages
= -nr_pages
; /* for event */
636 __this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
642 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*mem
, int nid
, int zid
,
643 unsigned int lru_mask
)
645 struct mem_cgroup_per_zone
*mz
;
647 unsigned long ret
= 0;
649 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
652 if (BIT(l
) & lru_mask
)
653 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
659 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*mem
,
660 int nid
, unsigned int lru_mask
)
665 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
666 total
+= mem_cgroup_zone_nr_lru_pages(mem
, nid
, zid
, lru_mask
);
671 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*mem
,
672 unsigned int lru_mask
)
677 for_each_node_state(nid
, N_HIGH_MEMORY
)
678 total
+= mem_cgroup_node_nr_lru_pages(mem
, nid
, lru_mask
);
682 static bool __memcg_event_check(struct mem_cgroup
*mem
, int target
)
684 unsigned long val
, next
;
686 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
687 next
= this_cpu_read(mem
->stat
->targets
[target
]);
688 /* from time_after() in jiffies.h */
689 return ((long)next
- (long)val
< 0);
692 static void __mem_cgroup_target_update(struct mem_cgroup
*mem
, int target
)
694 unsigned long val
, next
;
696 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
699 case MEM_CGROUP_TARGET_THRESH
:
700 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
702 case MEM_CGROUP_TARGET_SOFTLIMIT
:
703 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
705 case MEM_CGROUP_TARGET_NUMAINFO
:
706 next
= val
+ NUMAINFO_EVENTS_TARGET
;
712 this_cpu_write(mem
->stat
->targets
[target
], next
);
716 * Check events in order.
719 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
721 /* threshold event is triggered in finer grain than soft limit */
722 if (unlikely(__memcg_event_check(mem
, MEM_CGROUP_TARGET_THRESH
))) {
723 mem_cgroup_threshold(mem
);
724 __mem_cgroup_target_update(mem
, MEM_CGROUP_TARGET_THRESH
);
725 if (unlikely(__memcg_event_check(mem
,
726 MEM_CGROUP_TARGET_SOFTLIMIT
))) {
727 mem_cgroup_update_tree(mem
, page
);
728 __mem_cgroup_target_update(mem
,
729 MEM_CGROUP_TARGET_SOFTLIMIT
);
732 if (unlikely(__memcg_event_check(mem
,
733 MEM_CGROUP_TARGET_NUMAINFO
))) {
734 atomic_inc(&mem
->numainfo_events
);
735 __mem_cgroup_target_update(mem
,
736 MEM_CGROUP_TARGET_NUMAINFO
);
742 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
744 return container_of(cgroup_subsys_state(cont
,
745 mem_cgroup_subsys_id
), struct mem_cgroup
,
749 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
752 * mm_update_next_owner() may clear mm->owner to NULL
753 * if it races with swapoff, page migration, etc.
754 * So this can be called with p == NULL.
759 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
760 struct mem_cgroup
, css
);
763 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
765 struct mem_cgroup
*mem
= NULL
;
770 * Because we have no locks, mm->owner's may be being moved to other
771 * cgroup. We use css_tryget() here even if this looks
772 * pessimistic (rather than adding locks here).
776 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
779 } while (!css_tryget(&mem
->css
));
784 /* The caller has to guarantee "mem" exists before calling this */
785 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
787 struct cgroup_subsys_state
*css
;
790 if (!mem
) /* ROOT cgroup has the smallest ID */
791 return root_mem_cgroup
; /*css_put/get against root is ignored*/
792 if (!mem
->use_hierarchy
) {
793 if (css_tryget(&mem
->css
))
799 * searching a memory cgroup which has the smallest ID under given
800 * ROOT cgroup. (ID >= 1)
802 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
803 if (css
&& css_tryget(css
))
804 mem
= container_of(css
, struct mem_cgroup
, css
);
811 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
812 struct mem_cgroup
*root
,
815 int nextid
= css_id(&iter
->css
) + 1;
818 struct cgroup_subsys_state
*css
;
820 hierarchy_used
= iter
->use_hierarchy
;
823 /* If no ROOT, walk all, ignore hierarchy */
824 if (!cond
|| (root
&& !hierarchy_used
))
828 root
= root_mem_cgroup
;
834 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
836 if (css
&& css_tryget(css
))
837 iter
= container_of(css
, struct mem_cgroup
, css
);
839 /* If css is NULL, no more cgroups will be found */
841 } while (css
&& !iter
);
846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847 * be careful that "break" loop is not allowed. We have reference count.
848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
850 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
851 for (iter = mem_cgroup_start_loop(root);\
853 iter = mem_cgroup_get_next(iter, root, cond))
855 #define for_each_mem_cgroup_tree(iter, root) \
856 for_each_mem_cgroup_tree_cond(iter, root, true)
858 #define for_each_mem_cgroup_all(iter) \
859 for_each_mem_cgroup_tree_cond(iter, NULL, true)
862 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
864 return (mem
== root_mem_cgroup
);
867 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
869 struct mem_cgroup
*mem
;
875 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
881 mem_cgroup_pgmajfault(mem
, 1);
884 mem_cgroup_pgfault(mem
, 1);
892 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
895 * Following LRU functions are allowed to be used without PCG_LOCK.
896 * Operations are called by routine of global LRU independently from memcg.
897 * What we have to take care of here is validness of pc->mem_cgroup.
899 * Changes to pc->mem_cgroup happens when
902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903 * It is added to LRU before charge.
904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905 * When moving account, the page is not on LRU. It's isolated.
908 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
910 struct page_cgroup
*pc
;
911 struct mem_cgroup_per_zone
*mz
;
913 if (mem_cgroup_disabled())
915 pc
= lookup_page_cgroup(page
);
916 /* can happen while we handle swapcache. */
917 if (!TestClearPageCgroupAcctLRU(pc
))
919 VM_BUG_ON(!pc
->mem_cgroup
);
921 * We don't check PCG_USED bit. It's cleared when the "page" is finally
922 * removed from global LRU.
924 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
925 /* huge page split is done under lru_lock. so, we have no races. */
926 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
927 if (mem_cgroup_is_root(pc
->mem_cgroup
))
929 VM_BUG_ON(list_empty(&pc
->lru
));
930 list_del_init(&pc
->lru
);
933 void mem_cgroup_del_lru(struct page
*page
)
935 mem_cgroup_del_lru_list(page
, page_lru(page
));
939 * Writeback is about to end against a page which has been marked for immediate
940 * reclaim. If it still appears to be reclaimable, move it to the tail of the
943 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
945 struct mem_cgroup_per_zone
*mz
;
946 struct page_cgroup
*pc
;
947 enum lru_list lru
= page_lru(page
);
949 if (mem_cgroup_disabled())
952 pc
= lookup_page_cgroup(page
);
953 /* unused or root page is not rotated. */
954 if (!PageCgroupUsed(pc
))
956 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
958 if (mem_cgroup_is_root(pc
->mem_cgroup
))
960 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
961 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
964 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
966 struct mem_cgroup_per_zone
*mz
;
967 struct page_cgroup
*pc
;
969 if (mem_cgroup_disabled())
972 pc
= lookup_page_cgroup(page
);
973 /* unused or root page is not rotated. */
974 if (!PageCgroupUsed(pc
))
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
978 if (mem_cgroup_is_root(pc
->mem_cgroup
))
980 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
981 list_move(&pc
->lru
, &mz
->lists
[lru
]);
984 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
986 struct page_cgroup
*pc
;
987 struct mem_cgroup_per_zone
*mz
;
989 if (mem_cgroup_disabled())
991 pc
= lookup_page_cgroup(page
);
992 VM_BUG_ON(PageCgroupAcctLRU(pc
));
993 if (!PageCgroupUsed(pc
))
995 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
997 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
998 /* huge page split is done under lru_lock. so, we have no races. */
999 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1000 SetPageCgroupAcctLRU(pc
);
1001 if (mem_cgroup_is_root(pc
->mem_cgroup
))
1003 list_add(&pc
->lru
, &mz
->lists
[lru
]);
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
1012 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
1014 unsigned long flags
;
1015 struct zone
*zone
= page_zone(page
);
1016 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1019 * Doing this check without taking ->lru_lock seems wrong but this
1020 * is safe. Because if page_cgroup's USED bit is unset, the page
1021 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022 * set, the commit after this will fail, anyway.
1023 * This all charge/uncharge is done under some mutual execustion.
1024 * So, we don't need to taking care of changes in USED bit.
1026 if (likely(!PageLRU(page
)))
1029 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1031 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032 * is guarded by lock_page() because the page is SwapCache.
1034 if (!PageCgroupUsed(pc
))
1035 mem_cgroup_del_lru_list(page
, page_lru(page
));
1036 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1039 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1041 unsigned long flags
;
1042 struct zone
*zone
= page_zone(page
);
1043 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1045 /* taking care of that the page is added to LRU while we commit it */
1046 if (likely(!PageLRU(page
)))
1048 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1049 /* link when the page is linked to LRU but page_cgroup isn't */
1050 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1051 mem_cgroup_add_lru_list(page
, page_lru(page
));
1052 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1056 void mem_cgroup_move_lists(struct page
*page
,
1057 enum lru_list from
, enum lru_list to
)
1059 if (mem_cgroup_disabled())
1061 mem_cgroup_del_lru_list(page
, from
);
1062 mem_cgroup_add_lru_list(page
, to
);
1066 * Checks whether given mem is same or in the root_mem's
1069 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_mem
,
1070 struct mem_cgroup
*mem
)
1072 if (root_mem
!= mem
) {
1073 return (root_mem
->use_hierarchy
&&
1074 css_is_ancestor(&mem
->css
, &root_mem
->css
));
1080 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
1083 struct mem_cgroup
*curr
= NULL
;
1084 struct task_struct
*p
;
1086 p
= find_lock_task_mm(task
);
1089 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1094 * We should check use_hierarchy of "mem" not "curr". Because checking
1095 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097 * hierarchy(even if use_hierarchy is disabled in "mem").
1099 ret
= mem_cgroup_same_or_subtree(mem
, curr
);
1100 css_put(&curr
->css
);
1104 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
1106 unsigned long active
;
1107 unsigned long inactive
;
1109 unsigned long inactive_ratio
;
1111 inactive
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
1112 active
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
1114 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1116 inactive_ratio
= int_sqrt(10 * gb
);
1120 if (present_pages
) {
1121 present_pages
[0] = inactive
;
1122 present_pages
[1] = active
;
1125 return inactive_ratio
;
1128 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
1130 unsigned long active
;
1131 unsigned long inactive
;
1132 unsigned long present_pages
[2];
1133 unsigned long inactive_ratio
;
1135 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1137 inactive
= present_pages
[0];
1138 active
= present_pages
[1];
1140 if (inactive
* inactive_ratio
< active
)
1146 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1148 unsigned long active
;
1149 unsigned long inactive
;
1151 inactive
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
1152 active
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
1154 return (active
> inactive
);
1157 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1160 int nid
= zone_to_nid(zone
);
1161 int zid
= zone_idx(zone
);
1162 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1164 return &mz
->reclaim_stat
;
1167 struct zone_reclaim_stat
*
1168 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1170 struct page_cgroup
*pc
;
1171 struct mem_cgroup_per_zone
*mz
;
1173 if (mem_cgroup_disabled())
1176 pc
= lookup_page_cgroup(page
);
1177 if (!PageCgroupUsed(pc
))
1179 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1181 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1182 return &mz
->reclaim_stat
;
1185 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1186 struct list_head
*dst
,
1187 unsigned long *scanned
, int order
,
1188 int mode
, struct zone
*z
,
1189 struct mem_cgroup
*mem_cont
,
1190 int active
, int file
)
1192 unsigned long nr_taken
= 0;
1196 struct list_head
*src
;
1197 struct page_cgroup
*pc
, *tmp
;
1198 int nid
= zone_to_nid(z
);
1199 int zid
= zone_idx(z
);
1200 struct mem_cgroup_per_zone
*mz
;
1201 int lru
= LRU_FILE
* file
+ active
;
1205 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1206 src
= &mz
->lists
[lru
];
1209 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1210 if (scan
>= nr_to_scan
)
1213 if (unlikely(!PageCgroupUsed(pc
)))
1216 page
= lookup_cgroup_page(pc
);
1218 if (unlikely(!PageLRU(page
)))
1222 ret
= __isolate_lru_page(page
, mode
, file
);
1225 list_move(&page
->lru
, dst
);
1226 mem_cgroup_del_lru(page
);
1227 nr_taken
+= hpage_nr_pages(page
);
1230 /* we don't affect global LRU but rotate in our LRU */
1231 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1240 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1246 #define mem_cgroup_from_res_counter(counter, member) \
1247 container_of(counter, struct mem_cgroup, member)
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1253 * Returns the maximum amount of memory @mem can be charged with, in
1256 static unsigned long mem_cgroup_margin(struct mem_cgroup
*mem
)
1258 unsigned long long margin
;
1260 margin
= res_counter_margin(&mem
->res
);
1261 if (do_swap_account
)
1262 margin
= min(margin
, res_counter_margin(&mem
->memsw
));
1263 return margin
>> PAGE_SHIFT
;
1266 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1268 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1271 if (cgrp
->parent
== NULL
)
1272 return vm_swappiness
;
1274 return memcg
->swappiness
;
1277 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1282 spin_lock(&mem
->pcp_counter_lock
);
1283 for_each_online_cpu(cpu
)
1284 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1285 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1286 spin_unlock(&mem
->pcp_counter_lock
);
1292 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1299 spin_lock(&mem
->pcp_counter_lock
);
1300 for_each_online_cpu(cpu
)
1301 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1302 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1303 spin_unlock(&mem
->pcp_counter_lock
);
1307 * 2 routines for checking "mem" is under move_account() or not.
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 * for avoiding race in accounting. If true,
1311 * pc->mem_cgroup may be overwritten.
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 * under hierarchy of moving cgroups. This is for
1315 * waiting at hith-memory prressure caused by "move".
1318 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1320 VM_BUG_ON(!rcu_read_lock_held());
1321 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1324 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1326 struct mem_cgroup
*from
;
1327 struct mem_cgroup
*to
;
1330 * Unlike task_move routines, we access mc.to, mc.from not under
1331 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1333 spin_lock(&mc
.lock
);
1339 ret
= mem_cgroup_same_or_subtree(mem
, from
)
1340 || mem_cgroup_same_or_subtree(mem
, to
);
1342 spin_unlock(&mc
.lock
);
1346 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1348 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1349 if (mem_cgroup_under_move(mem
)) {
1351 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1352 /* moving charge context might have finished. */
1355 finish_wait(&mc
.waitq
, &wait
);
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1370 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1372 struct cgroup
*task_cgrp
;
1373 struct cgroup
*mem_cgrp
;
1375 * Need a buffer in BSS, can't rely on allocations. The code relies
1376 * on the assumption that OOM is serialized for memory controller.
1377 * If this assumption is broken, revisit this code.
1379 static char memcg_name
[PATH_MAX
];
1388 mem_cgrp
= memcg
->css
.cgroup
;
1389 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1391 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1394 * Unfortunately, we are unable to convert to a useful name
1395 * But we'll still print out the usage information
1402 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1405 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1413 * Continues from above, so we don't need an KERN_ level
1415 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1418 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1420 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1421 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1422 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1424 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1425 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1426 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1433 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1436 struct mem_cgroup
*iter
;
1438 for_each_mem_cgroup_tree(iter
, mem
)
1444 * Return the memory (and swap, if configured) limit for a memcg.
1446 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1451 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1452 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1454 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1456 * If memsw is finite and limits the amount of swap space available
1457 * to this memcg, return that limit.
1459 return min(limit
, memsw
);
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1467 static struct mem_cgroup
*
1468 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1470 struct mem_cgroup
*ret
= NULL
;
1471 struct cgroup_subsys_state
*css
;
1474 if (!root_mem
->use_hierarchy
) {
1475 css_get(&root_mem
->css
);
1481 nextid
= root_mem
->last_scanned_child
+ 1;
1482 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1484 if (css
&& css_tryget(css
))
1485 ret
= container_of(css
, struct mem_cgroup
, css
);
1488 /* Updates scanning parameter */
1490 /* this means start scan from ID:1 */
1491 root_mem
->last_scanned_child
= 0;
1493 root_mem
->last_scanned_child
= found
;
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1509 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*mem
,
1510 int nid
, bool noswap
)
1512 if (mem_cgroup_node_nr_lru_pages(mem
, nid
, LRU_ALL_FILE
))
1514 if (noswap
|| !total_swap_pages
)
1516 if (mem_cgroup_node_nr_lru_pages(mem
, nid
, LRU_ALL_ANON
))
1521 #if MAX_NUMNODES > 1
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1529 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*mem
)
1533 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534 * pagein/pageout changes since the last update.
1536 if (!atomic_read(&mem
->numainfo_events
))
1538 if (atomic_inc_return(&mem
->numainfo_updating
) > 1)
1541 /* make a nodemask where this memcg uses memory from */
1542 mem
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1544 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1546 if (!test_mem_cgroup_node_reclaimable(mem
, nid
, false))
1547 node_clear(nid
, mem
->scan_nodes
);
1550 atomic_set(&mem
->numainfo_events
, 0);
1551 atomic_set(&mem
->numainfo_updating
, 0);
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1564 * Now, we use round-robin. Better algorithm is welcomed.
1566 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1570 mem_cgroup_may_update_nodemask(mem
);
1571 node
= mem
->last_scanned_node
;
1573 node
= next_node(node
, mem
->scan_nodes
);
1574 if (node
== MAX_NUMNODES
)
1575 node
= first_node(mem
->scan_nodes
);
1577 * We call this when we hit limit, not when pages are added to LRU.
1578 * No LRU may hold pages because all pages are UNEVICTABLE or
1579 * memcg is too small and all pages are not on LRU. In that case,
1580 * we use curret node.
1582 if (unlikely(node
== MAX_NUMNODES
))
1583 node
= numa_node_id();
1585 mem
->last_scanned_node
= node
;
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1595 bool mem_cgroup_reclaimable(struct mem_cgroup
*mem
, bool noswap
)
1600 * quick check...making use of scan_node.
1601 * We can skip unused nodes.
1603 if (!nodes_empty(mem
->scan_nodes
)) {
1604 for (nid
= first_node(mem
->scan_nodes
);
1606 nid
= next_node(nid
, mem
->scan_nodes
)) {
1608 if (test_mem_cgroup_node_reclaimable(mem
, nid
, noswap
))
1613 * Check rest of nodes.
1615 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1616 if (node_isset(nid
, mem
->scan_nodes
))
1618 if (test_mem_cgroup_node_reclaimable(mem
, nid
, noswap
))
1625 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1630 bool mem_cgroup_reclaimable(struct mem_cgroup
*mem
, bool noswap
)
1632 return test_mem_cgroup_node_reclaimable(mem
, 0, noswap
);
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1641 * root_mem is the original ancestor that we've been reclaim from.
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1651 unsigned long reclaim_options
,
1652 unsigned long *total_scanned
)
1654 struct mem_cgroup
*victim
;
1657 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1658 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1659 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1660 unsigned long excess
;
1661 unsigned long nr_scanned
;
1663 excess
= res_counter_soft_limit_excess(&root_mem
->res
) >> PAGE_SHIFT
;
1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 if (!check_soft
&& !shrink
&& root_mem
->memsw_is_minimum
)
1670 victim
= mem_cgroup_select_victim(root_mem
);
1671 if (victim
== root_mem
) {
1674 * We are not draining per cpu cached charges during
1675 * soft limit reclaim because global reclaim doesn't
1676 * care about charges. It tries to free some memory and
1677 * charges will not give any.
1679 if (!check_soft
&& loop
>= 1)
1680 drain_all_stock_async(root_mem
);
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1687 if (!check_soft
|| !total
) {
1688 css_put(&victim
->css
);
1692 * We want to do more targeted reclaim.
1693 * excess >> 2 is not to excessive so as to
1694 * reclaim too much, nor too less that we keep
1695 * coming back to reclaim from this cgroup
1697 if (total
>= (excess
>> 2) ||
1698 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1699 css_put(&victim
->css
);
1704 if (!mem_cgroup_reclaimable(victim
, noswap
)) {
1705 /* this cgroup's local usage == 0 */
1706 css_put(&victim
->css
);
1709 /* we use swappiness of local cgroup */
1711 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1712 noswap
, zone
, &nr_scanned
);
1713 *total_scanned
+= nr_scanned
;
1715 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1717 css_put(&victim
->css
);
1719 * At shrinking usage, we can't check we should stop here or
1720 * reclaim more. It's depends on callers. last_scanned_child
1721 * will work enough for keeping fairness under tree.
1727 if (!res_counter_soft_limit_excess(&root_mem
->res
))
1729 } else if (mem_cgroup_margin(root_mem
))
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1740 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1742 struct mem_cgroup
*iter
, *failed
= NULL
;
1745 for_each_mem_cgroup_tree_cond(iter
, mem
, cond
) {
1746 if (iter
->oom_lock
) {
1748 * this subtree of our hierarchy is already locked
1749 * so we cannot give a lock.
1754 iter
->oom_lock
= true;
1761 * OK, we failed to lock the whole subtree so we have to clean up
1762 * what we set up to the failing subtree
1765 for_each_mem_cgroup_tree_cond(iter
, mem
, cond
) {
1766 if (iter
== failed
) {
1770 iter
->oom_lock
= false;
1776 * Has to be called with memcg_oom_lock
1778 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1780 struct mem_cgroup
*iter
;
1782 for_each_mem_cgroup_tree(iter
, mem
)
1783 iter
->oom_lock
= false;
1787 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*mem
)
1789 struct mem_cgroup
*iter
;
1791 for_each_mem_cgroup_tree(iter
, mem
)
1792 atomic_inc(&iter
->under_oom
);
1795 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*mem
)
1797 struct mem_cgroup
*iter
;
1800 * When a new child is created while the hierarchy is under oom,
1801 * mem_cgroup_oom_lock() may not be called. We have to use
1802 * atomic_add_unless() here.
1804 for_each_mem_cgroup_tree(iter
, mem
)
1805 atomic_add_unless(&iter
->under_oom
, -1, 0);
1808 static DEFINE_SPINLOCK(memcg_oom_lock
);
1809 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1811 struct oom_wait_info
{
1812 struct mem_cgroup
*mem
;
1816 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1817 unsigned mode
, int sync
, void *arg
)
1819 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
,
1821 struct oom_wait_info
*oom_wait_info
;
1823 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1824 oom_wait_mem
= oom_wait_info
->mem
;
1827 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 * Then we can use css_is_ancestor without taking care of RCU.
1830 if (!mem_cgroup_same_or_subtree(oom_wait_mem
, wake_mem
)
1831 && !mem_cgroup_same_or_subtree(wake_mem
, oom_wait_mem
))
1833 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1836 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1838 /* for filtering, pass "mem" as argument. */
1839 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1842 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1844 if (mem
&& atomic_read(&mem
->under_oom
))
1845 memcg_wakeup_oom(mem
);
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1851 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1853 struct oom_wait_info owait
;
1854 bool locked
, need_to_kill
;
1857 owait
.wait
.flags
= 0;
1858 owait
.wait
.func
= memcg_oom_wake_function
;
1859 owait
.wait
.private = current
;
1860 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1861 need_to_kill
= true;
1862 mem_cgroup_mark_under_oom(mem
);
1864 /* At first, try to OOM lock hierarchy under mem.*/
1865 spin_lock(&memcg_oom_lock
);
1866 locked
= mem_cgroup_oom_lock(mem
);
1868 * Even if signal_pending(), we can't quit charge() loop without
1869 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870 * under OOM is always welcomed, use TASK_KILLABLE here.
1872 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1873 if (!locked
|| mem
->oom_kill_disable
)
1874 need_to_kill
= false;
1876 mem_cgroup_oom_notify(mem
);
1877 spin_unlock(&memcg_oom_lock
);
1880 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1881 mem_cgroup_out_of_memory(mem
, mask
);
1884 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1886 spin_lock(&memcg_oom_lock
);
1888 mem_cgroup_oom_unlock(mem
);
1889 memcg_wakeup_oom(mem
);
1890 spin_unlock(&memcg_oom_lock
);
1892 mem_cgroup_unmark_under_oom(mem
);
1894 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1896 /* Give chance to dying process */
1897 schedule_timeout(1);
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1905 * Notes: Race condition
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1925 void mem_cgroup_update_page_stat(struct page
*page
,
1926 enum mem_cgroup_page_stat_item idx
, int val
)
1928 struct mem_cgroup
*mem
;
1929 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1930 bool need_unlock
= false;
1931 unsigned long uninitialized_var(flags
);
1937 mem
= pc
->mem_cgroup
;
1938 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1940 /* pc->mem_cgroup is unstable ? */
1941 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1942 /* take a lock against to access pc->mem_cgroup */
1943 move_lock_page_cgroup(pc
, &flags
);
1945 mem
= pc
->mem_cgroup
;
1946 if (!mem
|| !PageCgroupUsed(pc
))
1951 case MEMCG_NR_FILE_MAPPED
:
1953 SetPageCgroupFileMapped(pc
);
1954 else if (!page_mapped(page
))
1955 ClearPageCgroupFileMapped(pc
);
1956 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1962 this_cpu_add(mem
->stat
->count
[idx
], val
);
1965 if (unlikely(need_unlock
))
1966 move_unlock_page_cgroup(pc
, &flags
);
1970 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1976 #define CHARGE_BATCH 32U
1977 struct memcg_stock_pcp
{
1978 struct mem_cgroup
*cached
; /* this never be root cgroup */
1979 unsigned int nr_pages
;
1980 struct work_struct work
;
1981 unsigned long flags
;
1982 #define FLUSHING_CACHED_CHARGE (0)
1984 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1985 static DEFINE_MUTEX(percpu_charge_mutex
);
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1993 static bool consume_stock(struct mem_cgroup
*mem
)
1995 struct memcg_stock_pcp
*stock
;
1998 stock
= &get_cpu_var(memcg_stock
);
1999 if (mem
== stock
->cached
&& stock
->nr_pages
)
2001 else /* need to call res_counter_charge */
2003 put_cpu_var(memcg_stock
);
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2010 static void drain_stock(struct memcg_stock_pcp
*stock
)
2012 struct mem_cgroup
*old
= stock
->cached
;
2014 if (stock
->nr_pages
) {
2015 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2017 res_counter_uncharge(&old
->res
, bytes
);
2018 if (do_swap_account
)
2019 res_counter_uncharge(&old
->memsw
, bytes
);
2020 stock
->nr_pages
= 0;
2022 stock
->cached
= NULL
;
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2029 static void drain_local_stock(struct work_struct
*dummy
)
2031 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2033 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2040 static void refill_stock(struct mem_cgroup
*mem
, unsigned int nr_pages
)
2042 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2044 if (stock
->cached
!= mem
) { /* reset if necessary */
2046 stock
->cached
= mem
;
2048 stock
->nr_pages
+= nr_pages
;
2049 put_cpu_var(memcg_stock
);
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2057 static void drain_all_stock(struct mem_cgroup
*root_mem
, bool sync
)
2061 /* Notify other cpus that system-wide "drain" is running */
2064 for_each_online_cpu(cpu
) {
2065 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2066 struct mem_cgroup
*mem
;
2068 mem
= stock
->cached
;
2069 if (!mem
|| !stock
->nr_pages
)
2071 if (!mem_cgroup_same_or_subtree(root_mem
, mem
))
2073 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2075 drain_local_stock(&stock
->work
);
2077 schedule_work_on(cpu
, &stock
->work
);
2085 for_each_online_cpu(cpu
) {
2086 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2087 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2088 flush_work(&stock
->work
);
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2100 static void drain_all_stock_async(struct mem_cgroup
*root_mem
)
2103 * If someone calls draining, avoid adding more kworker runs.
2105 if (!mutex_trylock(&percpu_charge_mutex
))
2107 drain_all_stock(root_mem
, false);
2108 mutex_unlock(&percpu_charge_mutex
);
2111 /* This is a synchronous drain interface. */
2112 static void drain_all_stock_sync(struct mem_cgroup
*root_mem
)
2114 /* called when force_empty is called */
2115 mutex_lock(&percpu_charge_mutex
);
2116 drain_all_stock(root_mem
, true);
2117 mutex_unlock(&percpu_charge_mutex
);
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2124 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
2128 spin_lock(&mem
->pcp_counter_lock
);
2129 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2130 long x
= per_cpu(mem
->stat
->count
[i
], cpu
);
2132 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
2133 mem
->nocpu_base
.count
[i
] += x
;
2135 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2136 unsigned long x
= per_cpu(mem
->stat
->events
[i
], cpu
);
2138 per_cpu(mem
->stat
->events
[i
], cpu
) = 0;
2139 mem
->nocpu_base
.events
[i
] += x
;
2141 /* need to clear ON_MOVE value, works as a kind of lock. */
2142 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2143 spin_unlock(&mem
->pcp_counter_lock
);
2146 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
2148 int idx
= MEM_CGROUP_ON_MOVE
;
2150 spin_lock(&mem
->pcp_counter_lock
);
2151 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
2152 spin_unlock(&mem
->pcp_counter_lock
);
2155 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2156 unsigned long action
,
2159 int cpu
= (unsigned long)hcpu
;
2160 struct memcg_stock_pcp
*stock
;
2161 struct mem_cgroup
*iter
;
2163 if ((action
== CPU_ONLINE
)) {
2164 for_each_mem_cgroup_all(iter
)
2165 synchronize_mem_cgroup_on_move(iter
, cpu
);
2169 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2172 for_each_mem_cgroup_all(iter
)
2173 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2175 stock
= &per_cpu(memcg_stock
, cpu
);
2181 /* See __mem_cgroup_try_charge() for details */
2183 CHARGE_OK
, /* success */
2184 CHARGE_RETRY
, /* need to retry but retry is not bad */
2185 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2186 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2187 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2190 static int mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
2191 unsigned int nr_pages
, bool oom_check
)
2193 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2194 struct mem_cgroup
*mem_over_limit
;
2195 struct res_counter
*fail_res
;
2196 unsigned long flags
= 0;
2199 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
2202 if (!do_swap_account
)
2204 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
2208 res_counter_uncharge(&mem
->res
, csize
);
2209 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2210 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2212 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2214 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2217 * Never reclaim on behalf of optional batching, retry with a
2218 * single page instead.
2220 if (nr_pages
== CHARGE_BATCH
)
2221 return CHARGE_RETRY
;
2223 if (!(gfp_mask
& __GFP_WAIT
))
2224 return CHARGE_WOULDBLOCK
;
2226 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2227 gfp_mask
, flags
, NULL
);
2228 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2229 return CHARGE_RETRY
;
2231 * Even though the limit is exceeded at this point, reclaim
2232 * may have been able to free some pages. Retry the charge
2233 * before killing the task.
2235 * Only for regular pages, though: huge pages are rather
2236 * unlikely to succeed so close to the limit, and we fall back
2237 * to regular pages anyway in case of failure.
2239 if (nr_pages
== 1 && ret
)
2240 return CHARGE_RETRY
;
2243 * At task move, charge accounts can be doubly counted. So, it's
2244 * better to wait until the end of task_move if something is going on.
2246 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2247 return CHARGE_RETRY
;
2249 /* If we don't need to call oom-killer at el, return immediately */
2251 return CHARGE_NOMEM
;
2253 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2254 return CHARGE_OOM_DIE
;
2256 return CHARGE_RETRY
;
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2263 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2265 unsigned int nr_pages
,
2266 struct mem_cgroup
**memcg
,
2269 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2270 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2271 struct mem_cgroup
*mem
= NULL
;
2275 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276 * in system level. So, allow to go ahead dying process in addition to
2279 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2280 || fatal_signal_pending(current
)))
2284 * We always charge the cgroup the mm_struct belongs to.
2285 * The mm_struct's mem_cgroup changes on task migration if the
2286 * thread group leader migrates. It's possible that mm is not
2287 * set, if so charge the init_mm (happens for pagecache usage).
2292 if (*memcg
) { /* css should be a valid one */
2294 VM_BUG_ON(css_is_removed(&mem
->css
));
2295 if (mem_cgroup_is_root(mem
))
2297 if (nr_pages
== 1 && consume_stock(mem
))
2301 struct task_struct
*p
;
2304 p
= rcu_dereference(mm
->owner
);
2306 * Because we don't have task_lock(), "p" can exit.
2307 * In that case, "mem" can point to root or p can be NULL with
2308 * race with swapoff. Then, we have small risk of mis-accouning.
2309 * But such kind of mis-account by race always happens because
2310 * we don't have cgroup_mutex(). It's overkill and we allo that
2312 * (*) swapoff at el will charge against mm-struct not against
2313 * task-struct. So, mm->owner can be NULL.
2315 mem
= mem_cgroup_from_task(p
);
2316 if (!mem
|| mem_cgroup_is_root(mem
)) {
2320 if (nr_pages
== 1 && consume_stock(mem
)) {
2322 * It seems dagerous to access memcg without css_get().
2323 * But considering how consume_stok works, it's not
2324 * necessary. If consume_stock success, some charges
2325 * from this memcg are cached on this cpu. So, we
2326 * don't need to call css_get()/css_tryget() before
2327 * calling consume_stock().
2332 /* after here, we may be blocked. we need to get refcnt */
2333 if (!css_tryget(&mem
->css
)) {
2343 /* If killed, bypass charge */
2344 if (fatal_signal_pending(current
)) {
2350 if (oom
&& !nr_oom_retries
) {
2352 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2355 ret
= mem_cgroup_do_charge(mem
, gfp_mask
, batch
, oom_check
);
2359 case CHARGE_RETRY
: /* not in OOM situation but retry */
2364 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2367 case CHARGE_NOMEM
: /* OOM routine works */
2372 /* If oom, we never return -ENOMEM */
2375 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2379 } while (ret
!= CHARGE_OK
);
2381 if (batch
> nr_pages
)
2382 refill_stock(mem
, batch
- nr_pages
);
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2400 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2401 unsigned int nr_pages
)
2403 if (!mem_cgroup_is_root(mem
)) {
2404 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2406 res_counter_uncharge(&mem
->res
, bytes
);
2407 if (do_swap_account
)
2408 res_counter_uncharge(&mem
->memsw
, bytes
);
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2418 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2420 struct cgroup_subsys_state
*css
;
2422 /* ID 0 is unused ID */
2425 css
= css_lookup(&mem_cgroup_subsys
, id
);
2428 return container_of(css
, struct mem_cgroup
, css
);
2431 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2433 struct mem_cgroup
*mem
= NULL
;
2434 struct page_cgroup
*pc
;
2438 VM_BUG_ON(!PageLocked(page
));
2440 pc
= lookup_page_cgroup(page
);
2441 lock_page_cgroup(pc
);
2442 if (PageCgroupUsed(pc
)) {
2443 mem
= pc
->mem_cgroup
;
2444 if (mem
&& !css_tryget(&mem
->css
))
2446 } else if (PageSwapCache(page
)) {
2447 ent
.val
= page_private(page
);
2448 id
= lookup_swap_cgroup(ent
);
2450 mem
= mem_cgroup_lookup(id
);
2451 if (mem
&& !css_tryget(&mem
->css
))
2455 unlock_page_cgroup(pc
);
2459 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2461 unsigned int nr_pages
,
2462 struct page_cgroup
*pc
,
2463 enum charge_type ctype
)
2465 lock_page_cgroup(pc
);
2466 if (unlikely(PageCgroupUsed(pc
))) {
2467 unlock_page_cgroup(pc
);
2468 __mem_cgroup_cancel_charge(mem
, nr_pages
);
2472 * we don't need page_cgroup_lock about tail pages, becase they are not
2473 * accessed by any other context at this point.
2475 pc
->mem_cgroup
= mem
;
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2487 SetPageCgroupCache(pc
);
2488 SetPageCgroupUsed(pc
);
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2491 ClearPageCgroupCache(pc
);
2492 SetPageCgroupUsed(pc
);
2498 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2499 unlock_page_cgroup(pc
);
2501 * "charge_statistics" updated event counter. Then, check it.
2502 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503 * if they exceeds softlimit.
2505 memcg_check_events(mem
, page
);
2508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2510 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2516 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2518 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2519 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2520 unsigned long flags
;
2522 if (mem_cgroup_disabled())
2525 * We have no races with charge/uncharge but will have races with
2526 * page state accounting.
2528 move_lock_page_cgroup(head_pc
, &flags
);
2530 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2531 smp_wmb(); /* see __commit_charge() */
2532 if (PageCgroupAcctLRU(head_pc
)) {
2534 struct mem_cgroup_per_zone
*mz
;
2537 * LRU flags cannot be copied because we need to add tail
2538 *.page to LRU by generic call and our hook will be called.
2539 * We hold lru_lock, then, reduce counter directly.
2541 lru
= page_lru(head
);
2542 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2543 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2545 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2546 move_unlock_page_cgroup(head_pc
, &flags
);
2551 * mem_cgroup_move_account - move account of the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc: page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to: mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2568 static int mem_cgroup_move_account(struct page
*page
,
2569 unsigned int nr_pages
,
2570 struct page_cgroup
*pc
,
2571 struct mem_cgroup
*from
,
2572 struct mem_cgroup
*to
,
2575 unsigned long flags
;
2578 VM_BUG_ON(from
== to
);
2579 VM_BUG_ON(PageLRU(page
));
2581 * The page is isolated from LRU. So, collapse function
2582 * will not handle this page. But page splitting can happen.
2583 * Do this check under compound_page_lock(). The caller should
2587 if (nr_pages
> 1 && !PageTransHuge(page
))
2590 lock_page_cgroup(pc
);
2593 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2596 move_lock_page_cgroup(pc
, &flags
);
2598 if (PageCgroupFileMapped(pc
)) {
2599 /* Update mapped_file data for mem_cgroup */
2601 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2602 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2605 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2607 /* This is not "cancel", but cancel_charge does all we need. */
2608 __mem_cgroup_cancel_charge(from
, nr_pages
);
2610 /* caller should have done css_get */
2611 pc
->mem_cgroup
= to
;
2612 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2614 * We charges against "to" which may not have any tasks. Then, "to"
2615 * can be under rmdir(). But in current implementation, caller of
2616 * this function is just force_empty() and move charge, so it's
2617 * guaranteed that "to" is never removed. So, we don't check rmdir
2620 move_unlock_page_cgroup(pc
, &flags
);
2623 unlock_page_cgroup(pc
);
2627 memcg_check_events(to
, page
);
2628 memcg_check_events(from
, page
);
2634 * move charges to its parent.
2637 static int mem_cgroup_move_parent(struct page
*page
,
2638 struct page_cgroup
*pc
,
2639 struct mem_cgroup
*child
,
2642 struct cgroup
*cg
= child
->css
.cgroup
;
2643 struct cgroup
*pcg
= cg
->parent
;
2644 struct mem_cgroup
*parent
;
2645 unsigned int nr_pages
;
2646 unsigned long uninitialized_var(flags
);
2654 if (!get_page_unless_zero(page
))
2656 if (isolate_lru_page(page
))
2659 nr_pages
= hpage_nr_pages(page
);
2661 parent
= mem_cgroup_from_cont(pcg
);
2662 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2667 flags
= compound_lock_irqsave(page
);
2669 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2671 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2674 compound_unlock_irqrestore(page
, flags
);
2676 putback_lru_page(page
);
2684 * Charge the memory controller for page usage.
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2689 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2690 gfp_t gfp_mask
, enum charge_type ctype
)
2692 struct mem_cgroup
*mem
= NULL
;
2693 unsigned int nr_pages
= 1;
2694 struct page_cgroup
*pc
;
2698 if (PageTransHuge(page
)) {
2699 nr_pages
<<= compound_order(page
);
2700 VM_BUG_ON(!PageTransHuge(page
));
2702 * Never OOM-kill a process for a huge page. The
2703 * fault handler will fall back to regular pages.
2708 pc
= lookup_page_cgroup(page
);
2709 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2711 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &mem
, oom
);
2715 __mem_cgroup_commit_charge(mem
, page
, nr_pages
, pc
, ctype
);
2719 int mem_cgroup_newpage_charge(struct page
*page
,
2720 struct mm_struct
*mm
, gfp_t gfp_mask
)
2722 if (mem_cgroup_disabled())
2725 * If already mapped, we don't have to account.
2726 * If page cache, page->mapping has address_space.
2727 * But page->mapping may have out-of-use anon_vma pointer,
2728 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2731 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2735 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2736 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2740 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2741 enum charge_type ctype
);
2744 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*mem
,
2745 enum charge_type ctype
)
2747 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2749 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750 * is already on LRU. It means the page may on some other page_cgroup's
2751 * LRU. Take care of it.
2753 mem_cgroup_lru_del_before_commit(page
);
2754 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
2755 mem_cgroup_lru_add_after_commit(page
);
2759 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2762 struct mem_cgroup
*mem
= NULL
;
2765 if (mem_cgroup_disabled())
2767 if (PageCompound(page
))
2773 if (page_is_file_cache(page
)) {
2774 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &mem
, true);
2779 * FUSE reuses pages without going through the final
2780 * put that would remove them from the LRU list, make
2781 * sure that they get relinked properly.
2783 __mem_cgroup_commit_charge_lrucare(page
, mem
,
2784 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2788 if (PageSwapCache(page
)) {
2789 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2791 __mem_cgroup_commit_charge_swapin(page
, mem
,
2792 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2794 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2795 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2806 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2808 gfp_t mask
, struct mem_cgroup
**ptr
)
2810 struct mem_cgroup
*mem
;
2815 if (mem_cgroup_disabled())
2818 if (!do_swap_account
)
2821 * A racing thread's fault, or swapoff, may have already updated
2822 * the pte, and even removed page from swap cache: in those cases
2823 * do_swap_page()'s pte_same() test will fail; but there's also a
2824 * KSM case which does need to charge the page.
2826 if (!PageSwapCache(page
))
2828 mem
= try_get_mem_cgroup_from_page(page
);
2832 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2838 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2842 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2843 enum charge_type ctype
)
2845 if (mem_cgroup_disabled())
2849 cgroup_exclude_rmdir(&ptr
->css
);
2851 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2853 * Now swap is on-memory. This means this page may be
2854 * counted both as mem and swap....double count.
2855 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857 * may call delete_from_swap_cache() before reach here.
2859 if (do_swap_account
&& PageSwapCache(page
)) {
2860 swp_entry_t ent
= {.val
= page_private(page
)};
2862 struct mem_cgroup
*memcg
;
2864 id
= swap_cgroup_record(ent
, 0);
2866 memcg
= mem_cgroup_lookup(id
);
2869 * This recorded memcg can be obsolete one. So, avoid
2870 * calling css_tryget
2872 if (!mem_cgroup_is_root(memcg
))
2873 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2874 mem_cgroup_swap_statistics(memcg
, false);
2875 mem_cgroup_put(memcg
);
2880 * At swapin, we may charge account against cgroup which has no tasks.
2881 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882 * In that case, we need to call pre_destroy() again. check it here.
2884 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2887 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2889 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2890 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2893 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2895 if (mem_cgroup_disabled())
2899 __mem_cgroup_cancel_charge(mem
, 1);
2902 static void mem_cgroup_do_uncharge(struct mem_cgroup
*mem
,
2903 unsigned int nr_pages
,
2904 const enum charge_type ctype
)
2906 struct memcg_batch_info
*batch
= NULL
;
2907 bool uncharge_memsw
= true;
2909 /* If swapout, usage of swap doesn't decrease */
2910 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2911 uncharge_memsw
= false;
2913 batch
= ¤t
->memcg_batch
;
2915 * In usual, we do css_get() when we remember memcg pointer.
2916 * But in this case, we keep res->usage until end of a series of
2917 * uncharges. Then, it's ok to ignore memcg's refcnt.
2922 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923 * In those cases, all pages freed continuously can be expected to be in
2924 * the same cgroup and we have chance to coalesce uncharges.
2925 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926 * because we want to do uncharge as soon as possible.
2929 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2930 goto direct_uncharge
;
2933 goto direct_uncharge
;
2936 * In typical case, batch->memcg == mem. This means we can
2937 * merge a series of uncharges to an uncharge of res_counter.
2938 * If not, we uncharge res_counter ony by one.
2940 if (batch
->memcg
!= mem
)
2941 goto direct_uncharge
;
2942 /* remember freed charge and uncharge it later */
2945 batch
->memsw_nr_pages
++;
2948 res_counter_uncharge(&mem
->res
, nr_pages
* PAGE_SIZE
);
2950 res_counter_uncharge(&mem
->memsw
, nr_pages
* PAGE_SIZE
);
2951 if (unlikely(batch
->memcg
!= mem
))
2952 memcg_oom_recover(mem
);
2957 * uncharge if !page_mapped(page)
2959 static struct mem_cgroup
*
2960 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2962 struct mem_cgroup
*mem
= NULL
;
2963 unsigned int nr_pages
= 1;
2964 struct page_cgroup
*pc
;
2966 if (mem_cgroup_disabled())
2969 if (PageSwapCache(page
))
2972 if (PageTransHuge(page
)) {
2973 nr_pages
<<= compound_order(page
);
2974 VM_BUG_ON(!PageTransHuge(page
));
2977 * Check if our page_cgroup is valid
2979 pc
= lookup_page_cgroup(page
);
2980 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2983 lock_page_cgroup(pc
);
2985 mem
= pc
->mem_cgroup
;
2987 if (!PageCgroupUsed(pc
))
2991 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2992 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2993 /* See mem_cgroup_prepare_migration() */
2994 if (page_mapped(page
) || PageCgroupMigration(pc
))
2997 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2998 if (!PageAnon(page
)) { /* Shared memory */
2999 if (page
->mapping
&& !page_is_file_cache(page
))
3001 } else if (page_mapped(page
)) /* Anon */
3008 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -nr_pages
);
3010 ClearPageCgroupUsed(pc
);
3012 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013 * freed from LRU. This is safe because uncharged page is expected not
3014 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015 * special functions.
3018 unlock_page_cgroup(pc
);
3020 * even after unlock, we have mem->res.usage here and this memcg
3021 * will never be freed.
3023 memcg_check_events(mem
, page
);
3024 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3025 mem_cgroup_swap_statistics(mem
, true);
3026 mem_cgroup_get(mem
);
3028 if (!mem_cgroup_is_root(mem
))
3029 mem_cgroup_do_uncharge(mem
, nr_pages
, ctype
);
3034 unlock_page_cgroup(pc
);
3038 void mem_cgroup_uncharge_page(struct page
*page
)
3041 if (page_mapped(page
))
3043 if (page
->mapping
&& !PageAnon(page
))
3045 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3048 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3050 VM_BUG_ON(page_mapped(page
));
3051 VM_BUG_ON(page
->mapping
);
3052 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3063 void mem_cgroup_uncharge_start(void)
3065 current
->memcg_batch
.do_batch
++;
3066 /* We can do nest. */
3067 if (current
->memcg_batch
.do_batch
== 1) {
3068 current
->memcg_batch
.memcg
= NULL
;
3069 current
->memcg_batch
.nr_pages
= 0;
3070 current
->memcg_batch
.memsw_nr_pages
= 0;
3074 void mem_cgroup_uncharge_end(void)
3076 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3078 if (!batch
->do_batch
)
3082 if (batch
->do_batch
) /* If stacked, do nothing. */
3088 * This "batch->memcg" is valid without any css_get/put etc...
3089 * bacause we hide charges behind us.
3091 if (batch
->nr_pages
)
3092 res_counter_uncharge(&batch
->memcg
->res
,
3093 batch
->nr_pages
* PAGE_SIZE
);
3094 if (batch
->memsw_nr_pages
)
3095 res_counter_uncharge(&batch
->memcg
->memsw
,
3096 batch
->memsw_nr_pages
* PAGE_SIZE
);
3097 memcg_oom_recover(batch
->memcg
);
3098 /* forget this pointer (for sanity check) */
3099 batch
->memcg
= NULL
;
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
3108 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3110 struct mem_cgroup
*memcg
;
3111 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3113 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3114 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3116 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3119 * record memcg information, if swapout && memcg != NULL,
3120 * mem_cgroup_get() was called in uncharge().
3122 if (do_swap_account
&& swapout
&& memcg
)
3123 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3132 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3134 struct mem_cgroup
*memcg
;
3137 if (!do_swap_account
)
3140 id
= swap_cgroup_record(ent
, 0);
3142 memcg
= mem_cgroup_lookup(id
);
3145 * We uncharge this because swap is freed.
3146 * This memcg can be obsolete one. We avoid calling css_tryget
3148 if (!mem_cgroup_is_root(memcg
))
3149 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3150 mem_cgroup_swap_statistics(memcg
, false);
3151 mem_cgroup_put(memcg
);
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from: mem_cgroup which the entry is moved from
3160 * @to: mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3166 * Returns 0 on success, -EINVAL on failure.
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3171 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3172 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3174 unsigned short old_id
, new_id
;
3176 old_id
= css_id(&from
->css
);
3177 new_id
= css_id(&to
->css
);
3179 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3180 mem_cgroup_swap_statistics(from
, false);
3181 mem_cgroup_swap_statistics(to
, true);
3183 * This function is only called from task migration context now.
3184 * It postpones res_counter and refcount handling till the end
3185 * of task migration(mem_cgroup_clear_mc()) for performance
3186 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 * because if the process that has been moved to @to does
3188 * swap-in, the refcount of @to might be decreased to 0.
3192 if (!mem_cgroup_is_root(from
))
3193 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3194 mem_cgroup_put(from
);
3196 * we charged both to->res and to->memsw, so we should
3199 if (!mem_cgroup_is_root(to
))
3200 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3207 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3208 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3218 int mem_cgroup_prepare_migration(struct page
*page
,
3219 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3221 struct mem_cgroup
*mem
= NULL
;
3222 struct page_cgroup
*pc
;
3223 enum charge_type ctype
;
3228 VM_BUG_ON(PageTransHuge(page
));
3229 if (mem_cgroup_disabled())
3232 pc
= lookup_page_cgroup(page
);
3233 lock_page_cgroup(pc
);
3234 if (PageCgroupUsed(pc
)) {
3235 mem
= pc
->mem_cgroup
;
3238 * At migrating an anonymous page, its mapcount goes down
3239 * to 0 and uncharge() will be called. But, even if it's fully
3240 * unmapped, migration may fail and this page has to be
3241 * charged again. We set MIGRATION flag here and delay uncharge
3242 * until end_migration() is called
3244 * Corner Case Thinking
3246 * When the old page was mapped as Anon and it's unmap-and-freed
3247 * while migration was ongoing.
3248 * If unmap finds the old page, uncharge() of it will be delayed
3249 * until end_migration(). If unmap finds a new page, it's
3250 * uncharged when it make mapcount to be 1->0. If unmap code
3251 * finds swap_migration_entry, the new page will not be mapped
3252 * and end_migration() will find it(mapcount==0).
3255 * When the old page was mapped but migraion fails, the kernel
3256 * remaps it. A charge for it is kept by MIGRATION flag even
3257 * if mapcount goes down to 0. We can do remap successfully
3258 * without charging it again.
3261 * The "old" page is under lock_page() until the end of
3262 * migration, so, the old page itself will not be swapped-out.
3263 * If the new page is swapped out before end_migraton, our
3264 * hook to usual swap-out path will catch the event.
3267 SetPageCgroupMigration(pc
);
3269 unlock_page_cgroup(pc
);
3271 * If the page is not charged at this point,
3278 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3279 css_put(&mem
->css
);/* drop extra refcnt */
3280 if (ret
|| *ptr
== NULL
) {
3281 if (PageAnon(page
)) {
3282 lock_page_cgroup(pc
);
3283 ClearPageCgroupMigration(pc
);
3284 unlock_page_cgroup(pc
);
3286 * The old page may be fully unmapped while we kept it.
3288 mem_cgroup_uncharge_page(page
);
3293 * We charge new page before it's used/mapped. So, even if unlock_page()
3294 * is called before end_migration, we can catch all events on this new
3295 * page. In the case new page is migrated but not remapped, new page's
3296 * mapcount will be finally 0 and we call uncharge in end_migration().
3298 pc
= lookup_page_cgroup(newpage
);
3300 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3301 else if (page_is_file_cache(page
))
3302 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3304 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3305 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
3309 /* remove redundant charge if migration failed*/
3310 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3311 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3313 struct page
*used
, *unused
;
3314 struct page_cgroup
*pc
;
3318 /* blocks rmdir() */
3319 cgroup_exclude_rmdir(&mem
->css
);
3320 if (!migration_ok
) {
3328 * We disallowed uncharge of pages under migration because mapcount
3329 * of the page goes down to zero, temporarly.
3330 * Clear the flag and check the page should be charged.
3332 pc
= lookup_page_cgroup(oldpage
);
3333 lock_page_cgroup(pc
);
3334 ClearPageCgroupMigration(pc
);
3335 unlock_page_cgroup(pc
);
3337 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
3348 mem_cgroup_uncharge_page(used
);
3350 * At migration, we may charge account against cgroup which has no
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3355 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3358 #ifdef CONFIG_DEBUG_VM
3359 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3361 struct page_cgroup
*pc
;
3363 pc
= lookup_page_cgroup(page
);
3364 if (likely(pc
) && PageCgroupUsed(pc
))
3369 bool mem_cgroup_bad_page_check(struct page
*page
)
3371 if (mem_cgroup_disabled())
3374 return lookup_page_cgroup_used(page
) != NULL
;
3377 void mem_cgroup_print_bad_page(struct page
*page
)
3379 struct page_cgroup
*pc
;
3381 pc
= lookup_page_cgroup_used(page
);
3386 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 pc
, pc
->flags
, pc
->mem_cgroup
);
3389 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3392 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3397 printk(KERN_CONT
"(%s)\n",
3398 (ret
< 0) ? "cannot get the path" : path
);
3404 static DEFINE_MUTEX(set_limit_mutex
);
3406 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3407 unsigned long long val
)
3410 u64 memswlimit
, memlimit
;
3412 int children
= mem_cgroup_count_children(memcg
);
3413 u64 curusage
, oldusage
;
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3421 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3423 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3426 while (retry_count
) {
3427 if (signal_pending(current
)) {
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee mem->res.limit < mem->memsw.limit.
3436 mutex_lock(&set_limit_mutex
);
3437 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3438 if (memswlimit
< val
) {
3440 mutex_unlock(&set_limit_mutex
);
3444 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3448 ret
= res_counter_set_limit(&memcg
->res
, val
);
3450 if (memswlimit
== val
)
3451 memcg
->memsw_is_minimum
= true;
3453 memcg
->memsw_is_minimum
= false;
3455 mutex_unlock(&set_limit_mutex
);
3460 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3461 MEM_CGROUP_RECLAIM_SHRINK
,
3463 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3464 /* Usage is reduced ? */
3465 if (curusage
>= oldusage
)
3468 oldusage
= curusage
;
3470 if (!ret
&& enlarge
)
3471 memcg_oom_recover(memcg
);
3476 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3477 unsigned long long val
)
3480 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3481 int children
= mem_cgroup_count_children(memcg
);
3485 /* see mem_cgroup_resize_res_limit */
3486 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3487 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3488 while (retry_count
) {
3489 if (signal_pending(current
)) {
3494 * Rather than hide all in some function, I do this in
3495 * open coded manner. You see what this really does.
3496 * We have to guarantee mem->res.limit < mem->memsw.limit.
3498 mutex_lock(&set_limit_mutex
);
3499 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3500 if (memlimit
> val
) {
3502 mutex_unlock(&set_limit_mutex
);
3505 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3506 if (memswlimit
< val
)
3508 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3510 if (memlimit
== val
)
3511 memcg
->memsw_is_minimum
= true;
3513 memcg
->memsw_is_minimum
= false;
3515 mutex_unlock(&set_limit_mutex
);
3520 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3521 MEM_CGROUP_RECLAIM_NOSWAP
|
3522 MEM_CGROUP_RECLAIM_SHRINK
,
3524 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3525 /* Usage is reduced ? */
3526 if (curusage
>= oldusage
)
3529 oldusage
= curusage
;
3531 if (!ret
&& enlarge
)
3532 memcg_oom_recover(memcg
);
3536 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3538 unsigned long *total_scanned
)
3540 unsigned long nr_reclaimed
= 0;
3541 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3542 unsigned long reclaimed
;
3544 struct mem_cgroup_tree_per_zone
*mctz
;
3545 unsigned long long excess
;
3546 unsigned long nr_scanned
;
3551 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3561 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3566 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3568 MEM_CGROUP_RECLAIM_SOFT
,
3570 nr_reclaimed
+= reclaimed
;
3571 *total_scanned
+= nr_scanned
;
3572 spin_lock(&mctz
->lock
);
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3582 * Loop until we find yet another one.
3584 * By the time we get the soft_limit lock
3585 * again, someone might have aded the
3586 * group back on the RB tree. Iterate to
3587 * make sure we get a different mem.
3588 * mem_cgroup_largest_soft_limit_node returns
3589 * NULL if no other cgroup is present on
3593 __mem_cgroup_largest_soft_limit_node(mctz
);
3595 css_put(&next_mz
->mem
->css
);
3596 else /* next_mz == NULL or other memcg */
3600 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3601 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3603 * One school of thought says that we should not add
3604 * back the node to the tree if reclaim returns 0.
3605 * But our reclaim could return 0, simply because due
3606 * to priority we are exposing a smaller subset of
3607 * memory to reclaim from. Consider this as a longer
3610 /* If excess == 0, no tree ops */
3611 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3612 spin_unlock(&mctz
->lock
);
3613 css_put(&mz
->mem
->css
);
3616 * Could not reclaim anything and there are no more
3617 * mem cgroups to try or we seem to be looping without
3618 * reclaiming anything.
3620 if (!nr_reclaimed
&&
3622 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3624 } while (!nr_reclaimed
);
3626 css_put(&next_mz
->mem
->css
);
3627 return nr_reclaimed
;
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3634 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3635 int node
, int zid
, enum lru_list lru
)
3638 struct mem_cgroup_per_zone
*mz
;
3639 struct page_cgroup
*pc
, *busy
;
3640 unsigned long flags
, loop
;
3641 struct list_head
*list
;
3644 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3645 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3646 list
= &mz
->lists
[lru
];
3648 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3649 /* give some margin against EBUSY etc...*/
3656 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3657 if (list_empty(list
)) {
3658 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3661 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3663 list_move(&pc
->lru
, list
);
3665 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3668 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3670 page
= lookup_cgroup_page(pc
);
3672 ret
= mem_cgroup_move_parent(page
, pc
, mem
, GFP_KERNEL
);
3676 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3677 /* found lock contention or "pc" is obsolete. */
3684 if (!ret
&& !list_empty(list
))
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3693 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3696 int node
, zid
, shrink
;
3697 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3698 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3703 /* should free all ? */
3709 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3712 if (signal_pending(current
))
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
3716 drain_all_stock_sync(mem
);
3718 mem_cgroup_start_move(mem
);
3719 for_each_node_state(node
, N_HIGH_MEMORY
) {
3720 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3723 ret
= mem_cgroup_force_empty_list(mem
,
3732 mem_cgroup_end_move(mem
);
3733 memcg_oom_recover(mem
);
3734 /* it seems parent cgroup doesn't have enough mem */
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (mem
->res
.usage
> 0 || ret
);
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
3752 /* try to free all pages in this cgroup */
3754 while (nr_retries
&& mem
->res
.usage
> 0) {
3757 if (signal_pending(current
)) {
3761 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3765 /* maybe some writeback is necessary */
3766 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3771 /* try move_account...there may be some *locked* pages. */
3775 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3781 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3783 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3786 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3790 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3791 struct cgroup
*parent
= cont
->parent
;
3792 struct mem_cgroup
*parent_mem
= NULL
;
3795 parent_mem
= mem_cgroup_from_cont(parent
);
3799 * If parent's use_hierarchy is set, we can't make any modifications
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3806 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3807 (val
== 1 || val
== 0)) {
3808 if (list_empty(&cont
->children
))
3809 mem
->use_hierarchy
= val
;
3820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*mem
,
3821 enum mem_cgroup_stat_index idx
)
3823 struct mem_cgroup
*iter
;
3826 /* Per-cpu values can be negative, use a signed accumulator */
3827 for_each_mem_cgroup_tree(iter
, mem
)
3828 val
+= mem_cgroup_read_stat(iter
, idx
);
3830 if (val
< 0) /* race ? */
3835 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3839 if (!mem_cgroup_is_root(mem
)) {
3841 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3843 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3846 val
= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3847 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_RSS
);
3850 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3852 return val
<< PAGE_SHIFT
;
3855 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3857 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3861 type
= MEMFILE_TYPE(cft
->private);
3862 name
= MEMFILE_ATTR(cft
->private);
3865 if (name
== RES_USAGE
)
3866 val
= mem_cgroup_usage(mem
, false);
3868 val
= res_counter_read_u64(&mem
->res
, name
);
3871 if (name
== RES_USAGE
)
3872 val
= mem_cgroup_usage(mem
, true);
3874 val
= res_counter_read_u64(&mem
->memsw
, name
);
3883 * The user of this function is...
3886 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3889 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3891 unsigned long long val
;
3894 type
= MEMFILE_TYPE(cft
->private);
3895 name
= MEMFILE_ATTR(cft
->private);
3898 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3902 /* This function does all necessary parse...reuse it */
3903 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3907 ret
= mem_cgroup_resize_limit(memcg
, val
);
3909 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3911 case RES_SOFT_LIMIT
:
3912 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3916 * For memsw, soft limits are hard to implement in terms
3917 * of semantics, for now, we support soft limits for
3918 * control without swap
3921 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3926 ret
= -EINVAL
; /* should be BUG() ? */
3932 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3933 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3935 struct cgroup
*cgroup
;
3936 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3938 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3939 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3940 cgroup
= memcg
->css
.cgroup
;
3941 if (!memcg
->use_hierarchy
)
3944 while (cgroup
->parent
) {
3945 cgroup
= cgroup
->parent
;
3946 memcg
= mem_cgroup_from_cont(cgroup
);
3947 if (!memcg
->use_hierarchy
)
3949 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3950 min_limit
= min(min_limit
, tmp
);
3951 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3952 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3955 *mem_limit
= min_limit
;
3956 *memsw_limit
= min_memsw_limit
;
3960 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3962 struct mem_cgroup
*mem
;
3965 mem
= mem_cgroup_from_cont(cont
);
3966 type
= MEMFILE_TYPE(event
);
3967 name
= MEMFILE_ATTR(event
);
3971 res_counter_reset_max(&mem
->res
);
3973 res_counter_reset_max(&mem
->memsw
);
3977 res_counter_reset_failcnt(&mem
->res
);
3979 res_counter_reset_failcnt(&mem
->memsw
);
3986 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3989 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3993 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3994 struct cftype
*cft
, u64 val
)
3996 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3998 if (val
>= (1 << NR_MOVE_TYPE
))
4001 * We check this value several times in both in can_attach() and
4002 * attach(), so we need cgroup lock to prevent this value from being
4006 mem
->move_charge_at_immigrate
= val
;
4012 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4013 struct cftype
*cft
, u64 val
)
4020 /* For read statistics */
4038 struct mcs_total_stat
{
4039 s64 stat
[NR_MCS_STAT
];
4045 } memcg_stat_strings
[NR_MCS_STAT
] = {
4046 {"cache", "total_cache"},
4047 {"rss", "total_rss"},
4048 {"mapped_file", "total_mapped_file"},
4049 {"pgpgin", "total_pgpgin"},
4050 {"pgpgout", "total_pgpgout"},
4051 {"swap", "total_swap"},
4052 {"pgfault", "total_pgfault"},
4053 {"pgmajfault", "total_pgmajfault"},
4054 {"inactive_anon", "total_inactive_anon"},
4055 {"active_anon", "total_active_anon"},
4056 {"inactive_file", "total_inactive_file"},
4057 {"active_file", "total_active_file"},
4058 {"unevictable", "total_unevictable"}
4063 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4068 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
4069 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4070 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
4071 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4072 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
4073 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4074 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGIN
);
4075 s
->stat
[MCS_PGPGIN
] += val
;
4076 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGOUT
);
4077 s
->stat
[MCS_PGPGOUT
] += val
;
4078 if (do_swap_account
) {
4079 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
4080 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4082 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGFAULT
);
4083 s
->stat
[MCS_PGFAULT
] += val
;
4084 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4085 s
->stat
[MCS_PGMAJFAULT
] += val
;
4088 val
= mem_cgroup_nr_lru_pages(mem
, BIT(LRU_INACTIVE_ANON
));
4089 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4090 val
= mem_cgroup_nr_lru_pages(mem
, BIT(LRU_ACTIVE_ANON
));
4091 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4092 val
= mem_cgroup_nr_lru_pages(mem
, BIT(LRU_INACTIVE_FILE
));
4093 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4094 val
= mem_cgroup_nr_lru_pages(mem
, BIT(LRU_ACTIVE_FILE
));
4095 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4096 val
= mem_cgroup_nr_lru_pages(mem
, BIT(LRU_UNEVICTABLE
));
4097 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4101 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4103 struct mem_cgroup
*iter
;
4105 for_each_mem_cgroup_tree(iter
, mem
)
4106 mem_cgroup_get_local_stat(iter
, s
);
4110 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4113 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4114 unsigned long node_nr
;
4115 struct cgroup
*cont
= m
->private;
4116 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4118 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4119 seq_printf(m
, "total=%lu", total_nr
);
4120 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4121 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4122 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4126 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4127 seq_printf(m
, "file=%lu", file_nr
);
4128 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4129 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4131 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4135 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4136 seq_printf(m
, "anon=%lu", anon_nr
);
4137 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4138 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4140 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4144 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4145 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4146 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4147 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4148 BIT(LRU_UNEVICTABLE
));
4149 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4154 #endif /* CONFIG_NUMA */
4156 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4157 struct cgroup_map_cb
*cb
)
4159 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4160 struct mcs_total_stat mystat
;
4163 memset(&mystat
, 0, sizeof(mystat
));
4164 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4167 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4168 if (i
== MCS_SWAP
&& !do_swap_account
)
4170 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4173 /* Hierarchical information */
4175 unsigned long long limit
, memsw_limit
;
4176 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4177 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4178 if (do_swap_account
)
4179 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4182 memset(&mystat
, 0, sizeof(mystat
));
4183 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4184 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4185 if (i
== MCS_SWAP
&& !do_swap_account
)
4187 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4190 #ifdef CONFIG_DEBUG_VM
4191 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
4195 struct mem_cgroup_per_zone
*mz
;
4196 unsigned long recent_rotated
[2] = {0, 0};
4197 unsigned long recent_scanned
[2] = {0, 0};
4199 for_each_online_node(nid
)
4200 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4201 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4203 recent_rotated
[0] +=
4204 mz
->reclaim_stat
.recent_rotated
[0];
4205 recent_rotated
[1] +=
4206 mz
->reclaim_stat
.recent_rotated
[1];
4207 recent_scanned
[0] +=
4208 mz
->reclaim_stat
.recent_scanned
[0];
4209 recent_scanned
[1] +=
4210 mz
->reclaim_stat
.recent_scanned
[1];
4212 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4213 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4214 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4215 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4222 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4224 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4226 return mem_cgroup_swappiness(memcg
);
4229 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4232 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4233 struct mem_cgroup
*parent
;
4238 if (cgrp
->parent
== NULL
)
4241 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4245 /* If under hierarchy, only empty-root can set this value */
4246 if ((parent
->use_hierarchy
) ||
4247 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4252 memcg
->swappiness
= val
;
4259 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4261 struct mem_cgroup_threshold_ary
*t
;
4267 t
= rcu_dereference(memcg
->thresholds
.primary
);
4269 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4274 usage
= mem_cgroup_usage(memcg
, swap
);
4277 * current_threshold points to threshold just below usage.
4278 * If it's not true, a threshold was crossed after last
4279 * call of __mem_cgroup_threshold().
4281 i
= t
->current_threshold
;
4284 * Iterate backward over array of thresholds starting from
4285 * current_threshold and check if a threshold is crossed.
4286 * If none of thresholds below usage is crossed, we read
4287 * only one element of the array here.
4289 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4290 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4292 /* i = current_threshold + 1 */
4296 * Iterate forward over array of thresholds starting from
4297 * current_threshold+1 and check if a threshold is crossed.
4298 * If none of thresholds above usage is crossed, we read
4299 * only one element of the array here.
4301 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4302 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4304 /* Update current_threshold */
4305 t
->current_threshold
= i
- 1;
4310 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4313 __mem_cgroup_threshold(memcg
, false);
4314 if (do_swap_account
)
4315 __mem_cgroup_threshold(memcg
, true);
4317 memcg
= parent_mem_cgroup(memcg
);
4321 static int compare_thresholds(const void *a
, const void *b
)
4323 const struct mem_cgroup_threshold
*_a
= a
;
4324 const struct mem_cgroup_threshold
*_b
= b
;
4326 return _a
->threshold
- _b
->threshold
;
4329 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
4331 struct mem_cgroup_eventfd_list
*ev
;
4333 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
4334 eventfd_signal(ev
->eventfd
, 1);
4338 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
4340 struct mem_cgroup
*iter
;
4342 for_each_mem_cgroup_tree(iter
, mem
)
4343 mem_cgroup_oom_notify_cb(iter
);
4346 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4347 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4349 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4350 struct mem_cgroup_thresholds
*thresholds
;
4351 struct mem_cgroup_threshold_ary
*new;
4352 int type
= MEMFILE_TYPE(cft
->private);
4353 u64 threshold
, usage
;
4356 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4360 mutex_lock(&memcg
->thresholds_lock
);
4363 thresholds
= &memcg
->thresholds
;
4364 else if (type
== _MEMSWAP
)
4365 thresholds
= &memcg
->memsw_thresholds
;
4369 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4371 /* Check if a threshold crossed before adding a new one */
4372 if (thresholds
->primary
)
4373 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4375 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4377 /* Allocate memory for new array of thresholds */
4378 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4386 /* Copy thresholds (if any) to new array */
4387 if (thresholds
->primary
) {
4388 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4389 sizeof(struct mem_cgroup_threshold
));
4392 /* Add new threshold */
4393 new->entries
[size
- 1].eventfd
= eventfd
;
4394 new->entries
[size
- 1].threshold
= threshold
;
4396 /* Sort thresholds. Registering of new threshold isn't time-critical */
4397 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4398 compare_thresholds
, NULL
);
4400 /* Find current threshold */
4401 new->current_threshold
= -1;
4402 for (i
= 0; i
< size
; i
++) {
4403 if (new->entries
[i
].threshold
< usage
) {
4405 * new->current_threshold will not be used until
4406 * rcu_assign_pointer(), so it's safe to increment
4409 ++new->current_threshold
;
4413 /* Free old spare buffer and save old primary buffer as spare */
4414 kfree(thresholds
->spare
);
4415 thresholds
->spare
= thresholds
->primary
;
4417 rcu_assign_pointer(thresholds
->primary
, new);
4419 /* To be sure that nobody uses thresholds */
4423 mutex_unlock(&memcg
->thresholds_lock
);
4428 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4429 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4431 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4432 struct mem_cgroup_thresholds
*thresholds
;
4433 struct mem_cgroup_threshold_ary
*new;
4434 int type
= MEMFILE_TYPE(cft
->private);
4438 mutex_lock(&memcg
->thresholds_lock
);
4440 thresholds
= &memcg
->thresholds
;
4441 else if (type
== _MEMSWAP
)
4442 thresholds
= &memcg
->memsw_thresholds
;
4447 * Something went wrong if we trying to unregister a threshold
4448 * if we don't have thresholds
4450 BUG_ON(!thresholds
);
4452 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4454 /* Check if a threshold crossed before removing */
4455 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4457 /* Calculate new number of threshold */
4459 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4460 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4464 new = thresholds
->spare
;
4466 /* Set thresholds array to NULL if we don't have thresholds */
4475 /* Copy thresholds and find current threshold */
4476 new->current_threshold
= -1;
4477 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4478 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4481 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4482 if (new->entries
[j
].threshold
< usage
) {
4484 * new->current_threshold will not be used
4485 * until rcu_assign_pointer(), so it's safe to increment
4488 ++new->current_threshold
;
4494 /* Swap primary and spare array */
4495 thresholds
->spare
= thresholds
->primary
;
4496 rcu_assign_pointer(thresholds
->primary
, new);
4498 /* To be sure that nobody uses thresholds */
4501 mutex_unlock(&memcg
->thresholds_lock
);
4504 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4505 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4507 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4508 struct mem_cgroup_eventfd_list
*event
;
4509 int type
= MEMFILE_TYPE(cft
->private);
4511 BUG_ON(type
!= _OOM_TYPE
);
4512 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4516 spin_lock(&memcg_oom_lock
);
4518 event
->eventfd
= eventfd
;
4519 list_add(&event
->list
, &memcg
->oom_notify
);
4521 /* already in OOM ? */
4522 if (atomic_read(&memcg
->under_oom
))
4523 eventfd_signal(eventfd
, 1);
4524 spin_unlock(&memcg_oom_lock
);
4529 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4530 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4532 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4533 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4534 int type
= MEMFILE_TYPE(cft
->private);
4536 BUG_ON(type
!= _OOM_TYPE
);
4538 spin_lock(&memcg_oom_lock
);
4540 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4541 if (ev
->eventfd
== eventfd
) {
4542 list_del(&ev
->list
);
4547 spin_unlock(&memcg_oom_lock
);
4550 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4551 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4553 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4555 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4557 if (atomic_read(&mem
->under_oom
))
4558 cb
->fill(cb
, "under_oom", 1);
4560 cb
->fill(cb
, "under_oom", 0);
4564 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4565 struct cftype
*cft
, u64 val
)
4567 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4568 struct mem_cgroup
*parent
;
4570 /* cannot set to root cgroup and only 0 and 1 are allowed */
4571 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4574 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4577 /* oom-kill-disable is a flag for subhierarchy. */
4578 if ((parent
->use_hierarchy
) ||
4579 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4583 mem
->oom_kill_disable
= val
;
4585 memcg_oom_recover(mem
);
4591 static const struct file_operations mem_control_numa_stat_file_operations
= {
4593 .llseek
= seq_lseek
,
4594 .release
= single_release
,
4597 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4599 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4601 file
->f_op
= &mem_control_numa_stat_file_operations
;
4602 return single_open(file
, mem_control_numa_stat_show
, cont
);
4604 #endif /* CONFIG_NUMA */
4606 static struct cftype mem_cgroup_files
[] = {
4608 .name
= "usage_in_bytes",
4609 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4610 .read_u64
= mem_cgroup_read
,
4611 .register_event
= mem_cgroup_usage_register_event
,
4612 .unregister_event
= mem_cgroup_usage_unregister_event
,
4615 .name
= "max_usage_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4617 .trigger
= mem_cgroup_reset
,
4618 .read_u64
= mem_cgroup_read
,
4621 .name
= "limit_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4623 .write_string
= mem_cgroup_write
,
4624 .read_u64
= mem_cgroup_read
,
4627 .name
= "soft_limit_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4629 .write_string
= mem_cgroup_write
,
4630 .read_u64
= mem_cgroup_read
,
4634 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4635 .trigger
= mem_cgroup_reset
,
4636 .read_u64
= mem_cgroup_read
,
4640 .read_map
= mem_control_stat_show
,
4643 .name
= "force_empty",
4644 .trigger
= mem_cgroup_force_empty_write
,
4647 .name
= "use_hierarchy",
4648 .write_u64
= mem_cgroup_hierarchy_write
,
4649 .read_u64
= mem_cgroup_hierarchy_read
,
4652 .name
= "swappiness",
4653 .read_u64
= mem_cgroup_swappiness_read
,
4654 .write_u64
= mem_cgroup_swappiness_write
,
4657 .name
= "move_charge_at_immigrate",
4658 .read_u64
= mem_cgroup_move_charge_read
,
4659 .write_u64
= mem_cgroup_move_charge_write
,
4662 .name
= "oom_control",
4663 .read_map
= mem_cgroup_oom_control_read
,
4664 .write_u64
= mem_cgroup_oom_control_write
,
4665 .register_event
= mem_cgroup_oom_register_event
,
4666 .unregister_event
= mem_cgroup_oom_unregister_event
,
4667 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4671 .name
= "numa_stat",
4672 .open
= mem_control_numa_stat_open
,
4678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679 static struct cftype memsw_cgroup_files
[] = {
4681 .name
= "memsw.usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4683 .read_u64
= mem_cgroup_read
,
4684 .register_event
= mem_cgroup_usage_register_event
,
4685 .unregister_event
= mem_cgroup_usage_unregister_event
,
4688 .name
= "memsw.max_usage_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4690 .trigger
= mem_cgroup_reset
,
4691 .read_u64
= mem_cgroup_read
,
4694 .name
= "memsw.limit_in_bytes",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4696 .write_string
= mem_cgroup_write
,
4697 .read_u64
= mem_cgroup_read
,
4700 .name
= "memsw.failcnt",
4701 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4702 .trigger
= mem_cgroup_reset
,
4703 .read_u64
= mem_cgroup_read
,
4707 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4709 if (!do_swap_account
)
4711 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4712 ARRAY_SIZE(memsw_cgroup_files
));
4715 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4721 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4723 struct mem_cgroup_per_node
*pn
;
4724 struct mem_cgroup_per_zone
*mz
;
4726 int zone
, tmp
= node
;
4728 * This routine is called against possible nodes.
4729 * But it's BUG to call kmalloc() against offline node.
4731 * TODO: this routine can waste much memory for nodes which will
4732 * never be onlined. It's better to use memory hotplug callback
4735 if (!node_state(node
, N_NORMAL_MEMORY
))
4737 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4741 mem
->info
.nodeinfo
[node
] = pn
;
4742 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4743 mz
= &pn
->zoneinfo
[zone
];
4745 INIT_LIST_HEAD(&mz
->lists
[l
]);
4746 mz
->usage_in_excess
= 0;
4747 mz
->on_tree
= false;
4753 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4755 kfree(mem
->info
.nodeinfo
[node
]);
4758 static struct mem_cgroup
*mem_cgroup_alloc(void)
4760 struct mem_cgroup
*mem
;
4761 int size
= sizeof(struct mem_cgroup
);
4763 /* Can be very big if MAX_NUMNODES is very big */
4764 if (size
< PAGE_SIZE
)
4765 mem
= kzalloc(size
, GFP_KERNEL
);
4767 mem
= vzalloc(size
);
4772 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4775 spin_lock_init(&mem
->pcp_counter_lock
);
4779 if (size
< PAGE_SIZE
)
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4797 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4801 mem_cgroup_remove_from_trees(mem
);
4802 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4804 for_each_node_state(node
, N_POSSIBLE
)
4805 free_mem_cgroup_per_zone_info(mem
, node
);
4807 free_percpu(mem
->stat
);
4808 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4814 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4816 atomic_inc(&mem
->refcnt
);
4819 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4821 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4822 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4823 __mem_cgroup_free(mem
);
4825 mem_cgroup_put(parent
);
4829 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4831 __mem_cgroup_put(mem
, 1);
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4837 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4839 if (!mem
->res
.parent
)
4841 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4844 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845 static void __init
enable_swap_cgroup(void)
4847 if (!mem_cgroup_disabled() && really_do_swap_account
)
4848 do_swap_account
= 1;
4851 static void __init
enable_swap_cgroup(void)
4856 static int mem_cgroup_soft_limit_tree_init(void)
4858 struct mem_cgroup_tree_per_node
*rtpn
;
4859 struct mem_cgroup_tree_per_zone
*rtpz
;
4860 int tmp
, node
, zone
;
4862 for_each_node_state(node
, N_POSSIBLE
) {
4864 if (!node_state(node
, N_NORMAL_MEMORY
))
4866 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4870 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4872 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4873 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4874 rtpz
->rb_root
= RB_ROOT
;
4875 spin_lock_init(&rtpz
->lock
);
4881 static struct cgroup_subsys_state
* __ref
4882 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4884 struct mem_cgroup
*mem
, *parent
;
4885 long error
= -ENOMEM
;
4888 mem
= mem_cgroup_alloc();
4890 return ERR_PTR(error
);
4892 for_each_node_state(node
, N_POSSIBLE
)
4893 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4897 if (cont
->parent
== NULL
) {
4899 enable_swap_cgroup();
4901 root_mem_cgroup
= mem
;
4902 if (mem_cgroup_soft_limit_tree_init())
4904 for_each_possible_cpu(cpu
) {
4905 struct memcg_stock_pcp
*stock
=
4906 &per_cpu(memcg_stock
, cpu
);
4907 INIT_WORK(&stock
->work
, drain_local_stock
);
4909 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4911 parent
= mem_cgroup_from_cont(cont
->parent
);
4912 mem
->use_hierarchy
= parent
->use_hierarchy
;
4913 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4916 if (parent
&& parent
->use_hierarchy
) {
4917 res_counter_init(&mem
->res
, &parent
->res
);
4918 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4920 * We increment refcnt of the parent to ensure that we can
4921 * safely access it on res_counter_charge/uncharge.
4922 * This refcnt will be decremented when freeing this
4923 * mem_cgroup(see mem_cgroup_put).
4925 mem_cgroup_get(parent
);
4927 res_counter_init(&mem
->res
, NULL
);
4928 res_counter_init(&mem
->memsw
, NULL
);
4930 mem
->last_scanned_child
= 0;
4931 mem
->last_scanned_node
= MAX_NUMNODES
;
4932 INIT_LIST_HEAD(&mem
->oom_notify
);
4935 mem
->swappiness
= mem_cgroup_swappiness(parent
);
4936 atomic_set(&mem
->refcnt
, 1);
4937 mem
->move_charge_at_immigrate
= 0;
4938 mutex_init(&mem
->thresholds_lock
);
4941 __mem_cgroup_free(mem
);
4942 root_mem_cgroup
= NULL
;
4943 return ERR_PTR(error
);
4946 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4947 struct cgroup
*cont
)
4949 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4951 return mem_cgroup_force_empty(mem
, false);
4954 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4955 struct cgroup
*cont
)
4957 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4959 mem_cgroup_put(mem
);
4962 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4963 struct cgroup
*cont
)
4967 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4968 ARRAY_SIZE(mem_cgroup_files
));
4971 ret
= register_memsw_files(cont
, ss
);
4976 /* Handlers for move charge at task migration. */
4977 #define PRECHARGE_COUNT_AT_ONCE 256
4978 static int mem_cgroup_do_precharge(unsigned long count
)
4981 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4982 struct mem_cgroup
*mem
= mc
.to
;
4984 if (mem_cgroup_is_root(mem
)) {
4985 mc
.precharge
+= count
;
4986 /* we don't need css_get for root */
4989 /* try to charge at once */
4991 struct res_counter
*dummy
;
4993 * "mem" cannot be under rmdir() because we've already checked
4994 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 * are still under the same cgroup_mutex. So we can postpone
4998 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
5000 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
5001 PAGE_SIZE
* count
, &dummy
)) {
5002 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
5005 mc
.precharge
+= count
;
5009 /* fall back to one by one charge */
5011 if (signal_pending(current
)) {
5015 if (!batch_count
--) {
5016 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5019 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, 1, &mem
, false);
5021 /* mem_cgroup_clear_mc() will do uncharge later */
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5036 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 * move charge. if @target is not NULL, the page is stored in target->page
5039 * with extra refcnt got(Callers should handle it).
5040 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 * target for charge migration. if @target is not NULL, the entry is stored
5044 * Called with pte lock held.
5051 enum mc_target_type
{
5052 MC_TARGET_NONE
, /* not used */
5057 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5058 unsigned long addr
, pte_t ptent
)
5060 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5062 if (!page
|| !page_mapped(page
))
5064 if (PageAnon(page
)) {
5065 /* we don't move shared anon */
5066 if (!move_anon() || page_mapcount(page
) > 2)
5068 } else if (!move_file())
5069 /* we ignore mapcount for file pages */
5071 if (!get_page_unless_zero(page
))
5077 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5078 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5081 struct page
*page
= NULL
;
5082 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5084 if (!move_anon() || non_swap_entry(ent
))
5086 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5087 if (usage_count
> 1) { /* we don't move shared anon */
5092 if (do_swap_account
)
5093 entry
->val
= ent
.val
;
5098 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5099 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5101 struct page
*page
= NULL
;
5102 struct inode
*inode
;
5103 struct address_space
*mapping
;
5106 if (!vma
->vm_file
) /* anonymous vma */
5111 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5112 mapping
= vma
->vm_file
->f_mapping
;
5113 if (pte_none(ptent
))
5114 pgoff
= linear_page_index(vma
, addr
);
5115 else /* pte_file(ptent) is true */
5116 pgoff
= pte_to_pgoff(ptent
);
5118 /* page is moved even if it's not RSS of this task(page-faulted). */
5119 page
= find_get_page(mapping
, pgoff
);
5122 /* shmem/tmpfs may report page out on swap: account for that too. */
5123 if (radix_tree_exceptional_entry(page
)) {
5124 swp_entry_t swap
= radix_to_swp_entry(page
);
5125 if (do_swap_account
)
5127 page
= find_get_page(&swapper_space
, swap
.val
);
5133 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5134 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5136 struct page
*page
= NULL
;
5137 struct page_cgroup
*pc
;
5139 swp_entry_t ent
= { .val
= 0 };
5141 if (pte_present(ptent
))
5142 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5143 else if (is_swap_pte(ptent
))
5144 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5145 else if (pte_none(ptent
) || pte_file(ptent
))
5146 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5148 if (!page
&& !ent
.val
)
5151 pc
= lookup_page_cgroup(page
);
5153 * Do only loose check w/o page_cgroup lock.
5154 * mem_cgroup_move_account() checks the pc is valid or not under
5157 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5158 ret
= MC_TARGET_PAGE
;
5160 target
->page
= page
;
5162 if (!ret
|| !target
)
5165 /* There is a swap entry and a page doesn't exist or isn't charged */
5166 if (ent
.val
&& !ret
&&
5167 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5168 ret
= MC_TARGET_SWAP
;
5175 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5176 unsigned long addr
, unsigned long end
,
5177 struct mm_walk
*walk
)
5179 struct vm_area_struct
*vma
= walk
->private;
5183 split_huge_page_pmd(walk
->mm
, pmd
);
5185 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5186 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5187 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5188 mc
.precharge
++; /* increment precharge temporarily */
5189 pte_unmap_unlock(pte
- 1, ptl
);
5195 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5197 unsigned long precharge
;
5198 struct vm_area_struct
*vma
;
5200 down_read(&mm
->mmap_sem
);
5201 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5202 struct mm_walk mem_cgroup_count_precharge_walk
= {
5203 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5207 if (is_vm_hugetlb_page(vma
))
5209 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5210 &mem_cgroup_count_precharge_walk
);
5212 up_read(&mm
->mmap_sem
);
5214 precharge
= mc
.precharge
;
5220 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5222 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5224 VM_BUG_ON(mc
.moving_task
);
5225 mc
.moving_task
= current
;
5226 return mem_cgroup_do_precharge(precharge
);
5229 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230 static void __mem_cgroup_clear_mc(void)
5232 struct mem_cgroup
*from
= mc
.from
;
5233 struct mem_cgroup
*to
= mc
.to
;
5235 /* we must uncharge all the leftover precharges from mc.to */
5237 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5241 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242 * we must uncharge here.
5244 if (mc
.moved_charge
) {
5245 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5246 mc
.moved_charge
= 0;
5248 /* we must fixup refcnts and charges */
5249 if (mc
.moved_swap
) {
5250 /* uncharge swap account from the old cgroup */
5251 if (!mem_cgroup_is_root(mc
.from
))
5252 res_counter_uncharge(&mc
.from
->memsw
,
5253 PAGE_SIZE
* mc
.moved_swap
);
5254 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5256 if (!mem_cgroup_is_root(mc
.to
)) {
5258 * we charged both to->res and to->memsw, so we should
5261 res_counter_uncharge(&mc
.to
->res
,
5262 PAGE_SIZE
* mc
.moved_swap
);
5264 /* we've already done mem_cgroup_get(mc.to) */
5267 memcg_oom_recover(from
);
5268 memcg_oom_recover(to
);
5269 wake_up_all(&mc
.waitq
);
5272 static void mem_cgroup_clear_mc(void)
5274 struct mem_cgroup
*from
= mc
.from
;
5277 * we must clear moving_task before waking up waiters at the end of
5280 mc
.moving_task
= NULL
;
5281 __mem_cgroup_clear_mc();
5282 spin_lock(&mc
.lock
);
5285 spin_unlock(&mc
.lock
);
5286 mem_cgroup_end_move(from
);
5289 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5290 struct cgroup
*cgroup
,
5291 struct task_struct
*p
)
5294 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
5296 if (mem
->move_charge_at_immigrate
) {
5297 struct mm_struct
*mm
;
5298 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5300 VM_BUG_ON(from
== mem
);
5302 mm
= get_task_mm(p
);
5305 /* We move charges only when we move a owner of the mm */
5306 if (mm
->owner
== p
) {
5309 VM_BUG_ON(mc
.precharge
);
5310 VM_BUG_ON(mc
.moved_charge
);
5311 VM_BUG_ON(mc
.moved_swap
);
5312 mem_cgroup_start_move(from
);
5313 spin_lock(&mc
.lock
);
5316 spin_unlock(&mc
.lock
);
5317 /* We set mc.moving_task later */
5319 ret
= mem_cgroup_precharge_mc(mm
);
5321 mem_cgroup_clear_mc();
5328 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5329 struct cgroup
*cgroup
,
5330 struct task_struct
*p
)
5332 mem_cgroup_clear_mc();
5335 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5336 unsigned long addr
, unsigned long end
,
5337 struct mm_walk
*walk
)
5340 struct vm_area_struct
*vma
= walk
->private;
5344 split_huge_page_pmd(walk
->mm
, pmd
);
5346 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5347 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5348 pte_t ptent
= *(pte
++);
5349 union mc_target target
;
5352 struct page_cgroup
*pc
;
5358 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5360 case MC_TARGET_PAGE
:
5362 if (isolate_lru_page(page
))
5364 pc
= lookup_page_cgroup(page
);
5365 if (!mem_cgroup_move_account(page
, 1, pc
,
5366 mc
.from
, mc
.to
, false)) {
5368 /* we uncharge from mc.from later. */
5371 putback_lru_page(page
);
5372 put
: /* is_target_pte_for_mc() gets the page */
5375 case MC_TARGET_SWAP
:
5377 if (!mem_cgroup_move_swap_account(ent
,
5378 mc
.from
, mc
.to
, false)) {
5380 /* we fixup refcnts and charges later. */
5388 pte_unmap_unlock(pte
- 1, ptl
);
5393 * We have consumed all precharges we got in can_attach().
5394 * We try charge one by one, but don't do any additional
5395 * charges to mc.to if we have failed in charge once in attach()
5398 ret
= mem_cgroup_do_precharge(1);
5406 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5408 struct vm_area_struct
*vma
;
5410 lru_add_drain_all();
5412 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5414 * Someone who are holding the mmap_sem might be waiting in
5415 * waitq. So we cancel all extra charges, wake up all waiters,
5416 * and retry. Because we cancel precharges, we might not be able
5417 * to move enough charges, but moving charge is a best-effort
5418 * feature anyway, so it wouldn't be a big problem.
5420 __mem_cgroup_clear_mc();
5424 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5426 struct mm_walk mem_cgroup_move_charge_walk
= {
5427 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5431 if (is_vm_hugetlb_page(vma
))
5433 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5434 &mem_cgroup_move_charge_walk
);
5437 * means we have consumed all precharges and failed in
5438 * doing additional charge. Just abandon here.
5442 up_read(&mm
->mmap_sem
);
5445 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5446 struct cgroup
*cont
,
5447 struct cgroup
*old_cont
,
5448 struct task_struct
*p
)
5450 struct mm_struct
*mm
= get_task_mm(p
);
5454 mem_cgroup_move_charge(mm
);
5459 mem_cgroup_clear_mc();
5461 #else /* !CONFIG_MMU */
5462 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5463 struct cgroup
*cgroup
,
5464 struct task_struct
*p
)
5468 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5469 struct cgroup
*cgroup
,
5470 struct task_struct
*p
)
5473 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5474 struct cgroup
*cont
,
5475 struct cgroup
*old_cont
,
5476 struct task_struct
*p
)
5481 struct cgroup_subsys mem_cgroup_subsys
= {
5483 .subsys_id
= mem_cgroup_subsys_id
,
5484 .create
= mem_cgroup_create
,
5485 .pre_destroy
= mem_cgroup_pre_destroy
,
5486 .destroy
= mem_cgroup_destroy
,
5487 .populate
= mem_cgroup_populate
,
5488 .can_attach
= mem_cgroup_can_attach
,
5489 .cancel_attach
= mem_cgroup_cancel_attach
,
5490 .attach
= mem_cgroup_move_task
,
5495 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496 static int __init
enable_swap_account(char *s
)
5498 /* consider enabled if no parameter or 1 is given */
5499 if (!strcmp(s
, "1"))
5500 really_do_swap_account
= 1;
5501 else if (!strcmp(s
, "0"))
5502 really_do_swap_account
= 0;
5505 __setup("swapaccount=", enable_swap_account
);