NFSv4: Map NFS4ERR_SHARE_DENIED into an EACCES error instead of EIO
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mempolicy.c
blob3dac2d168e47e7f501c42b478fae7a8807a4d2e4
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/module.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
97 #include "internal.h"
99 /* Internal flags */
100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103 static struct kmem_cache *policy_cache;
104 static struct kmem_cache *sn_cache;
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
111 * run-time system-wide default policy => local allocation
113 struct mempolicy default_policy = {
114 .refcnt = ATOMIC_INIT(1), /* never free it */
115 .mode = MPOL_PREFERRED,
116 .flags = MPOL_F_LOCAL,
119 static const struct mempolicy_operations {
120 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 * If read-side task has no lock to protect task->mempolicy, write-side
123 * task will rebind the task->mempolicy by two step. The first step is
124 * setting all the newly nodes, and the second step is cleaning all the
125 * disallowed nodes. In this way, we can avoid finding no node to alloc
126 * page.
127 * If we have a lock to protect task->mempolicy in read-side, we do
128 * rebind directly.
130 * step:
131 * MPOL_REBIND_ONCE - do rebind work at once
132 * MPOL_REBIND_STEP1 - set all the newly nodes
133 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
136 enum mpol_rebind_step step);
137 } mpol_ops[MPOL_MAX];
139 /* Check that the nodemask contains at least one populated zone */
140 static int is_valid_nodemask(const nodemask_t *nodemask)
142 int nd, k;
144 for_each_node_mask(nd, *nodemask) {
145 struct zone *z;
147 for (k = 0; k <= policy_zone; k++) {
148 z = &NODE_DATA(nd)->node_zones[k];
149 if (z->present_pages > 0)
150 return 1;
154 return 0;
157 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 return pol->flags & MPOL_MODE_FLAGS;
162 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
163 const nodemask_t *rel)
165 nodemask_t tmp;
166 nodes_fold(tmp, *orig, nodes_weight(*rel));
167 nodes_onto(*ret, tmp, *rel);
170 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 if (nodes_empty(*nodes))
173 return -EINVAL;
174 pol->v.nodes = *nodes;
175 return 0;
178 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 if (!nodes)
181 pol->flags |= MPOL_F_LOCAL; /* local allocation */
182 else if (nodes_empty(*nodes))
183 return -EINVAL; /* no allowed nodes */
184 else
185 pol->v.preferred_node = first_node(*nodes);
186 return 0;
189 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 if (!is_valid_nodemask(nodes))
192 return -EINVAL;
193 pol->v.nodes = *nodes;
194 return 0;
198 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
199 * any, for the new policy. mpol_new() has already validated the nodes
200 * parameter with respect to the policy mode and flags. But, we need to
201 * handle an empty nodemask with MPOL_PREFERRED here.
203 * Must be called holding task's alloc_lock to protect task's mems_allowed
204 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 static int mpol_set_nodemask(struct mempolicy *pol,
207 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 int ret;
211 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 if (pol == NULL)
213 return 0;
214 /* Check N_HIGH_MEMORY */
215 nodes_and(nsc->mask1,
216 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 VM_BUG_ON(!nodes);
219 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
220 nodes = NULL; /* explicit local allocation */
221 else {
222 if (pol->flags & MPOL_F_RELATIVE_NODES)
223 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
224 else
225 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 if (mpol_store_user_nodemask(pol))
228 pol->w.user_nodemask = *nodes;
229 else
230 pol->w.cpuset_mems_allowed =
231 cpuset_current_mems_allowed;
234 if (nodes)
235 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
236 else
237 ret = mpol_ops[pol->mode].create(pol, NULL);
238 return ret;
242 * This function just creates a new policy, does some check and simple
243 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
246 nodemask_t *nodes)
248 struct mempolicy *policy;
250 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
251 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 if (mode == MPOL_DEFAULT) {
254 if (nodes && !nodes_empty(*nodes))
255 return ERR_PTR(-EINVAL);
256 return NULL; /* simply delete any existing policy */
258 VM_BUG_ON(!nodes);
261 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
262 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
263 * All other modes require a valid pointer to a non-empty nodemask.
265 if (mode == MPOL_PREFERRED) {
266 if (nodes_empty(*nodes)) {
267 if (((flags & MPOL_F_STATIC_NODES) ||
268 (flags & MPOL_F_RELATIVE_NODES)))
269 return ERR_PTR(-EINVAL);
271 } else if (nodes_empty(*nodes))
272 return ERR_PTR(-EINVAL);
273 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
274 if (!policy)
275 return ERR_PTR(-ENOMEM);
276 atomic_set(&policy->refcnt, 1);
277 policy->mode = mode;
278 policy->flags = flags;
280 return policy;
283 /* Slow path of a mpol destructor. */
284 void __mpol_put(struct mempolicy *p)
286 if (!atomic_dec_and_test(&p->refcnt))
287 return;
288 kmem_cache_free(policy_cache, p);
291 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
292 enum mpol_rebind_step step)
297 * step:
298 * MPOL_REBIND_ONCE - do rebind work at once
299 * MPOL_REBIND_STEP1 - set all the newly nodes
300 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
305 nodemask_t tmp;
307 if (pol->flags & MPOL_F_STATIC_NODES)
308 nodes_and(tmp, pol->w.user_nodemask, *nodes);
309 else if (pol->flags & MPOL_F_RELATIVE_NODES)
310 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
311 else {
313 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
314 * result
316 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
317 nodes_remap(tmp, pol->v.nodes,
318 pol->w.cpuset_mems_allowed, *nodes);
319 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
320 } else if (step == MPOL_REBIND_STEP2) {
321 tmp = pol->w.cpuset_mems_allowed;
322 pol->w.cpuset_mems_allowed = *nodes;
323 } else
324 BUG();
327 if (nodes_empty(tmp))
328 tmp = *nodes;
330 if (step == MPOL_REBIND_STEP1)
331 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
332 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
333 pol->v.nodes = tmp;
334 else
335 BUG();
337 if (!node_isset(current->il_next, tmp)) {
338 current->il_next = next_node(current->il_next, tmp);
339 if (current->il_next >= MAX_NUMNODES)
340 current->il_next = first_node(tmp);
341 if (current->il_next >= MAX_NUMNODES)
342 current->il_next = numa_node_id();
346 static void mpol_rebind_preferred(struct mempolicy *pol,
347 const nodemask_t *nodes,
348 enum mpol_rebind_step step)
350 nodemask_t tmp;
352 if (pol->flags & MPOL_F_STATIC_NODES) {
353 int node = first_node(pol->w.user_nodemask);
355 if (node_isset(node, *nodes)) {
356 pol->v.preferred_node = node;
357 pol->flags &= ~MPOL_F_LOCAL;
358 } else
359 pol->flags |= MPOL_F_LOCAL;
360 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
361 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
362 pol->v.preferred_node = first_node(tmp);
363 } else if (!(pol->flags & MPOL_F_LOCAL)) {
364 pol->v.preferred_node = node_remap(pol->v.preferred_node,
365 pol->w.cpuset_mems_allowed,
366 *nodes);
367 pol->w.cpuset_mems_allowed = *nodes;
372 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 * If read-side task has no lock to protect task->mempolicy, write-side
375 * task will rebind the task->mempolicy by two step. The first step is
376 * setting all the newly nodes, and the second step is cleaning all the
377 * disallowed nodes. In this way, we can avoid finding no node to alloc
378 * page.
379 * If we have a lock to protect task->mempolicy in read-side, we do
380 * rebind directly.
382 * step:
383 * MPOL_REBIND_ONCE - do rebind work at once
384 * MPOL_REBIND_STEP1 - set all the newly nodes
385 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
388 enum mpol_rebind_step step)
390 if (!pol)
391 return;
392 if (!mpol_store_user_nodemask(pol) && step == 0 &&
393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 return;
396 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
397 return;
399 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
400 BUG();
402 if (step == MPOL_REBIND_STEP1)
403 pol->flags |= MPOL_F_REBINDING;
404 else if (step == MPOL_REBIND_STEP2)
405 pol->flags &= ~MPOL_F_REBINDING;
406 else if (step >= MPOL_REBIND_NSTEP)
407 BUG();
409 mpol_ops[pol->mode].rebind(pol, newmask, step);
413 * Wrapper for mpol_rebind_policy() that just requires task
414 * pointer, and updates task mempolicy.
416 * Called with task's alloc_lock held.
419 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
420 enum mpol_rebind_step step)
422 mpol_rebind_policy(tsk->mempolicy, new, step);
426 * Rebind each vma in mm to new nodemask.
428 * Call holding a reference to mm. Takes mm->mmap_sem during call.
431 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 struct vm_area_struct *vma;
435 down_write(&mm->mmap_sem);
436 for (vma = mm->mmap; vma; vma = vma->vm_next)
437 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
438 up_write(&mm->mmap_sem);
441 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
442 [MPOL_DEFAULT] = {
443 .rebind = mpol_rebind_default,
445 [MPOL_INTERLEAVE] = {
446 .create = mpol_new_interleave,
447 .rebind = mpol_rebind_nodemask,
449 [MPOL_PREFERRED] = {
450 .create = mpol_new_preferred,
451 .rebind = mpol_rebind_preferred,
453 [MPOL_BIND] = {
454 .create = mpol_new_bind,
455 .rebind = mpol_rebind_nodemask,
459 static void migrate_page_add(struct page *page, struct list_head *pagelist,
460 unsigned long flags);
462 /* Scan through pages checking if pages follow certain conditions. */
463 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
464 unsigned long addr, unsigned long end,
465 const nodemask_t *nodes, unsigned long flags,
466 void *private)
468 pte_t *orig_pte;
469 pte_t *pte;
470 spinlock_t *ptl;
472 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
473 do {
474 struct page *page;
475 int nid;
477 if (!pte_present(*pte))
478 continue;
479 page = vm_normal_page(vma, addr, *pte);
480 if (!page)
481 continue;
483 * vm_normal_page() filters out zero pages, but there might
484 * still be PageReserved pages to skip, perhaps in a VDSO.
485 * And we cannot move PageKsm pages sensibly or safely yet.
487 if (PageReserved(page) || PageKsm(page))
488 continue;
489 nid = page_to_nid(page);
490 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
491 continue;
493 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
494 migrate_page_add(page, private, flags);
495 else
496 break;
497 } while (pte++, addr += PAGE_SIZE, addr != end);
498 pte_unmap_unlock(orig_pte, ptl);
499 return addr != end;
502 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
503 unsigned long addr, unsigned long end,
504 const nodemask_t *nodes, unsigned long flags,
505 void *private)
507 pmd_t *pmd;
508 unsigned long next;
510 pmd = pmd_offset(pud, addr);
511 do {
512 next = pmd_addr_end(addr, end);
513 split_huge_page_pmd(vma->vm_mm, pmd);
514 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
515 continue;
516 if (check_pte_range(vma, pmd, addr, next, nodes,
517 flags, private))
518 return -EIO;
519 } while (pmd++, addr = next, addr != end);
520 return 0;
523 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
524 unsigned long addr, unsigned long end,
525 const nodemask_t *nodes, unsigned long flags,
526 void *private)
528 pud_t *pud;
529 unsigned long next;
531 pud = pud_offset(pgd, addr);
532 do {
533 next = pud_addr_end(addr, end);
534 if (pud_none_or_clear_bad(pud))
535 continue;
536 if (check_pmd_range(vma, pud, addr, next, nodes,
537 flags, private))
538 return -EIO;
539 } while (pud++, addr = next, addr != end);
540 return 0;
543 static inline int check_pgd_range(struct vm_area_struct *vma,
544 unsigned long addr, unsigned long end,
545 const nodemask_t *nodes, unsigned long flags,
546 void *private)
548 pgd_t *pgd;
549 unsigned long next;
551 pgd = pgd_offset(vma->vm_mm, addr);
552 do {
553 next = pgd_addr_end(addr, end);
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
556 if (check_pud_range(vma, pgd, addr, next, nodes,
557 flags, private))
558 return -EIO;
559 } while (pgd++, addr = next, addr != end);
560 return 0;
564 * Check if all pages in a range are on a set of nodes.
565 * If pagelist != NULL then isolate pages from the LRU and
566 * put them on the pagelist.
568 static struct vm_area_struct *
569 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
570 const nodemask_t *nodes, unsigned long flags, void *private)
572 int err;
573 struct vm_area_struct *first, *vma, *prev;
576 first = find_vma(mm, start);
577 if (!first)
578 return ERR_PTR(-EFAULT);
579 prev = NULL;
580 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
581 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
582 if (!vma->vm_next && vma->vm_end < end)
583 return ERR_PTR(-EFAULT);
584 if (prev && prev->vm_end < vma->vm_start)
585 return ERR_PTR(-EFAULT);
587 if (!is_vm_hugetlb_page(vma) &&
588 ((flags & MPOL_MF_STRICT) ||
589 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
590 vma_migratable(vma)))) {
591 unsigned long endvma = vma->vm_end;
593 if (endvma > end)
594 endvma = end;
595 if (vma->vm_start > start)
596 start = vma->vm_start;
597 err = check_pgd_range(vma, start, endvma, nodes,
598 flags, private);
599 if (err) {
600 first = ERR_PTR(err);
601 break;
604 prev = vma;
606 return first;
609 /* Step 2: apply policy to a range and do splits. */
610 static int mbind_range(struct mm_struct *mm, unsigned long start,
611 unsigned long end, struct mempolicy *new_pol)
613 struct vm_area_struct *next;
614 struct vm_area_struct *prev;
615 struct vm_area_struct *vma;
616 int err = 0;
617 pgoff_t pgoff;
618 unsigned long vmstart;
619 unsigned long vmend;
621 vma = find_vma_prev(mm, start, &prev);
622 if (!vma || vma->vm_start > start)
623 return -EFAULT;
625 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
626 next = vma->vm_next;
627 vmstart = max(start, vma->vm_start);
628 vmend = min(end, vma->vm_end);
630 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
631 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
632 vma->anon_vma, vma->vm_file, pgoff, new_pol);
633 if (prev) {
634 vma = prev;
635 next = vma->vm_next;
636 continue;
638 if (vma->vm_start != vmstart) {
639 err = split_vma(vma->vm_mm, vma, vmstart, 1);
640 if (err)
641 goto out;
643 if (vma->vm_end != vmend) {
644 err = split_vma(vma->vm_mm, vma, vmend, 0);
645 if (err)
646 goto out;
650 * Apply policy to a single VMA. The reference counting of
651 * policy for vma_policy linkages has already been handled by
652 * vma_merge and split_vma as necessary. If this is a shared
653 * policy then ->set_policy will increment the reference count
654 * for an sp node.
656 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
657 vma->vm_start, vma->vm_end, vma->vm_pgoff,
658 vma->vm_ops, vma->vm_file,
659 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
660 if (vma->vm_ops && vma->vm_ops->set_policy) {
661 err = vma->vm_ops->set_policy(vma, new_pol);
662 if (err)
663 goto out;
667 out:
668 return err;
672 * Update task->flags PF_MEMPOLICY bit: set iff non-default
673 * mempolicy. Allows more rapid checking of this (combined perhaps
674 * with other PF_* flag bits) on memory allocation hot code paths.
676 * If called from outside this file, the task 'p' should -only- be
677 * a newly forked child not yet visible on the task list, because
678 * manipulating the task flags of a visible task is not safe.
680 * The above limitation is why this routine has the funny name
681 * mpol_fix_fork_child_flag().
683 * It is also safe to call this with a task pointer of current,
684 * which the static wrapper mpol_set_task_struct_flag() does,
685 * for use within this file.
688 void mpol_fix_fork_child_flag(struct task_struct *p)
690 if (p->mempolicy)
691 p->flags |= PF_MEMPOLICY;
692 else
693 p->flags &= ~PF_MEMPOLICY;
696 static void mpol_set_task_struct_flag(void)
698 mpol_fix_fork_child_flag(current);
701 /* Set the process memory policy */
702 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
703 nodemask_t *nodes)
705 struct mempolicy *new, *old;
706 struct mm_struct *mm = current->mm;
707 NODEMASK_SCRATCH(scratch);
708 int ret;
710 if (!scratch)
711 return -ENOMEM;
713 new = mpol_new(mode, flags, nodes);
714 if (IS_ERR(new)) {
715 ret = PTR_ERR(new);
716 goto out;
719 * prevent changing our mempolicy while show_numa_maps()
720 * is using it.
721 * Note: do_set_mempolicy() can be called at init time
722 * with no 'mm'.
724 if (mm)
725 down_write(&mm->mmap_sem);
726 task_lock(current);
727 ret = mpol_set_nodemask(new, nodes, scratch);
728 if (ret) {
729 task_unlock(current);
730 if (mm)
731 up_write(&mm->mmap_sem);
732 mpol_put(new);
733 goto out;
735 old = current->mempolicy;
736 current->mempolicy = new;
737 mpol_set_task_struct_flag();
738 if (new && new->mode == MPOL_INTERLEAVE &&
739 nodes_weight(new->v.nodes))
740 current->il_next = first_node(new->v.nodes);
741 task_unlock(current);
742 if (mm)
743 up_write(&mm->mmap_sem);
745 mpol_put(old);
746 ret = 0;
747 out:
748 NODEMASK_SCRATCH_FREE(scratch);
749 return ret;
753 * Return nodemask for policy for get_mempolicy() query
755 * Called with task's alloc_lock held
757 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
759 nodes_clear(*nodes);
760 if (p == &default_policy)
761 return;
763 switch (p->mode) {
764 case MPOL_BIND:
765 /* Fall through */
766 case MPOL_INTERLEAVE:
767 *nodes = p->v.nodes;
768 break;
769 case MPOL_PREFERRED:
770 if (!(p->flags & MPOL_F_LOCAL))
771 node_set(p->v.preferred_node, *nodes);
772 /* else return empty node mask for local allocation */
773 break;
774 default:
775 BUG();
779 static int lookup_node(struct mm_struct *mm, unsigned long addr)
781 struct page *p;
782 int err;
784 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
785 if (err >= 0) {
786 err = page_to_nid(p);
787 put_page(p);
789 return err;
792 /* Retrieve NUMA policy */
793 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
794 unsigned long addr, unsigned long flags)
796 int err;
797 struct mm_struct *mm = current->mm;
798 struct vm_area_struct *vma = NULL;
799 struct mempolicy *pol = current->mempolicy;
801 if (flags &
802 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
803 return -EINVAL;
805 if (flags & MPOL_F_MEMS_ALLOWED) {
806 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
807 return -EINVAL;
808 *policy = 0; /* just so it's initialized */
809 task_lock(current);
810 *nmask = cpuset_current_mems_allowed;
811 task_unlock(current);
812 return 0;
815 if (flags & MPOL_F_ADDR) {
817 * Do NOT fall back to task policy if the
818 * vma/shared policy at addr is NULL. We
819 * want to return MPOL_DEFAULT in this case.
821 down_read(&mm->mmap_sem);
822 vma = find_vma_intersection(mm, addr, addr+1);
823 if (!vma) {
824 up_read(&mm->mmap_sem);
825 return -EFAULT;
827 if (vma->vm_ops && vma->vm_ops->get_policy)
828 pol = vma->vm_ops->get_policy(vma, addr);
829 else
830 pol = vma->vm_policy;
831 } else if (addr)
832 return -EINVAL;
834 if (!pol)
835 pol = &default_policy; /* indicates default behavior */
837 if (flags & MPOL_F_NODE) {
838 if (flags & MPOL_F_ADDR) {
839 err = lookup_node(mm, addr);
840 if (err < 0)
841 goto out;
842 *policy = err;
843 } else if (pol == current->mempolicy &&
844 pol->mode == MPOL_INTERLEAVE) {
845 *policy = current->il_next;
846 } else {
847 err = -EINVAL;
848 goto out;
850 } else {
851 *policy = pol == &default_policy ? MPOL_DEFAULT :
852 pol->mode;
854 * Internal mempolicy flags must be masked off before exposing
855 * the policy to userspace.
857 *policy |= (pol->flags & MPOL_MODE_FLAGS);
860 if (vma) {
861 up_read(&current->mm->mmap_sem);
862 vma = NULL;
865 err = 0;
866 if (nmask) {
867 if (mpol_store_user_nodemask(pol)) {
868 *nmask = pol->w.user_nodemask;
869 } else {
870 task_lock(current);
871 get_policy_nodemask(pol, nmask);
872 task_unlock(current);
876 out:
877 mpol_cond_put(pol);
878 if (vma)
879 up_read(&current->mm->mmap_sem);
880 return err;
883 #ifdef CONFIG_MIGRATION
885 * page migration
887 static void migrate_page_add(struct page *page, struct list_head *pagelist,
888 unsigned long flags)
891 * Avoid migrating a page that is shared with others.
893 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
894 if (!isolate_lru_page(page)) {
895 list_add_tail(&page->lru, pagelist);
896 inc_zone_page_state(page, NR_ISOLATED_ANON +
897 page_is_file_cache(page));
902 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
904 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
908 * Migrate pages from one node to a target node.
909 * Returns error or the number of pages not migrated.
911 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
912 int flags)
914 nodemask_t nmask;
915 LIST_HEAD(pagelist);
916 int err = 0;
917 struct vm_area_struct *vma;
919 nodes_clear(nmask);
920 node_set(source, nmask);
922 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
923 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
924 if (IS_ERR(vma))
925 return PTR_ERR(vma);
927 if (!list_empty(&pagelist)) {
928 err = migrate_pages(&pagelist, new_node_page, dest,
929 false, true);
930 if (err)
931 putback_lru_pages(&pagelist);
934 return err;
938 * Move pages between the two nodesets so as to preserve the physical
939 * layout as much as possible.
941 * Returns the number of page that could not be moved.
943 int do_migrate_pages(struct mm_struct *mm,
944 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
946 int busy = 0;
947 int err;
948 nodemask_t tmp;
950 err = migrate_prep();
951 if (err)
952 return err;
954 down_read(&mm->mmap_sem);
956 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
957 if (err)
958 goto out;
961 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
962 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
963 * bit in 'tmp', and return that <source, dest> pair for migration.
964 * The pair of nodemasks 'to' and 'from' define the map.
966 * If no pair of bits is found that way, fallback to picking some
967 * pair of 'source' and 'dest' bits that are not the same. If the
968 * 'source' and 'dest' bits are the same, this represents a node
969 * that will be migrating to itself, so no pages need move.
971 * If no bits are left in 'tmp', or if all remaining bits left
972 * in 'tmp' correspond to the same bit in 'to', return false
973 * (nothing left to migrate).
975 * This lets us pick a pair of nodes to migrate between, such that
976 * if possible the dest node is not already occupied by some other
977 * source node, minimizing the risk of overloading the memory on a
978 * node that would happen if we migrated incoming memory to a node
979 * before migrating outgoing memory source that same node.
981 * A single scan of tmp is sufficient. As we go, we remember the
982 * most recent <s, d> pair that moved (s != d). If we find a pair
983 * that not only moved, but what's better, moved to an empty slot
984 * (d is not set in tmp), then we break out then, with that pair.
985 * Otherwise when we finish scanning from_tmp, we at least have the
986 * most recent <s, d> pair that moved. If we get all the way through
987 * the scan of tmp without finding any node that moved, much less
988 * moved to an empty node, then there is nothing left worth migrating.
991 tmp = *from_nodes;
992 while (!nodes_empty(tmp)) {
993 int s,d;
994 int source = -1;
995 int dest = 0;
997 for_each_node_mask(s, tmp) {
998 d = node_remap(s, *from_nodes, *to_nodes);
999 if (s == d)
1000 continue;
1002 source = s; /* Node moved. Memorize */
1003 dest = d;
1005 /* dest not in remaining from nodes? */
1006 if (!node_isset(dest, tmp))
1007 break;
1009 if (source == -1)
1010 break;
1012 node_clear(source, tmp);
1013 err = migrate_to_node(mm, source, dest, flags);
1014 if (err > 0)
1015 busy += err;
1016 if (err < 0)
1017 break;
1019 out:
1020 up_read(&mm->mmap_sem);
1021 if (err < 0)
1022 return err;
1023 return busy;
1028 * Allocate a new page for page migration based on vma policy.
1029 * Start assuming that page is mapped by vma pointed to by @private.
1030 * Search forward from there, if not. N.B., this assumes that the
1031 * list of pages handed to migrate_pages()--which is how we get here--
1032 * is in virtual address order.
1034 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1036 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1037 unsigned long uninitialized_var(address);
1039 while (vma) {
1040 address = page_address_in_vma(page, vma);
1041 if (address != -EFAULT)
1042 break;
1043 vma = vma->vm_next;
1047 * if !vma, alloc_page_vma() will use task or system default policy
1049 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1051 #else
1053 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1054 unsigned long flags)
1058 int do_migrate_pages(struct mm_struct *mm,
1059 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1061 return -ENOSYS;
1064 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1066 return NULL;
1068 #endif
1070 static long do_mbind(unsigned long start, unsigned long len,
1071 unsigned short mode, unsigned short mode_flags,
1072 nodemask_t *nmask, unsigned long flags)
1074 struct vm_area_struct *vma;
1075 struct mm_struct *mm = current->mm;
1076 struct mempolicy *new;
1077 unsigned long end;
1078 int err;
1079 LIST_HEAD(pagelist);
1081 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1082 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1083 return -EINVAL;
1084 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1085 return -EPERM;
1087 if (start & ~PAGE_MASK)
1088 return -EINVAL;
1090 if (mode == MPOL_DEFAULT)
1091 flags &= ~MPOL_MF_STRICT;
1093 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1094 end = start + len;
1096 if (end < start)
1097 return -EINVAL;
1098 if (end == start)
1099 return 0;
1101 new = mpol_new(mode, mode_flags, nmask);
1102 if (IS_ERR(new))
1103 return PTR_ERR(new);
1106 * If we are using the default policy then operation
1107 * on discontinuous address spaces is okay after all
1109 if (!new)
1110 flags |= MPOL_MF_DISCONTIG_OK;
1112 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1113 start, start + len, mode, mode_flags,
1114 nmask ? nodes_addr(*nmask)[0] : -1);
1116 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1118 err = migrate_prep();
1119 if (err)
1120 goto mpol_out;
1123 NODEMASK_SCRATCH(scratch);
1124 if (scratch) {
1125 down_write(&mm->mmap_sem);
1126 task_lock(current);
1127 err = mpol_set_nodemask(new, nmask, scratch);
1128 task_unlock(current);
1129 if (err)
1130 up_write(&mm->mmap_sem);
1131 } else
1132 err = -ENOMEM;
1133 NODEMASK_SCRATCH_FREE(scratch);
1135 if (err)
1136 goto mpol_out;
1138 vma = check_range(mm, start, end, nmask,
1139 flags | MPOL_MF_INVERT, &pagelist);
1141 err = PTR_ERR(vma);
1142 if (!IS_ERR(vma)) {
1143 int nr_failed = 0;
1145 err = mbind_range(mm, start, end, new);
1147 if (!list_empty(&pagelist)) {
1148 nr_failed = migrate_pages(&pagelist, new_vma_page,
1149 (unsigned long)vma,
1150 false, true);
1151 if (nr_failed)
1152 putback_lru_pages(&pagelist);
1155 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1156 err = -EIO;
1157 } else
1158 putback_lru_pages(&pagelist);
1160 up_write(&mm->mmap_sem);
1161 mpol_out:
1162 mpol_put(new);
1163 return err;
1167 * User space interface with variable sized bitmaps for nodelists.
1170 /* Copy a node mask from user space. */
1171 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1172 unsigned long maxnode)
1174 unsigned long k;
1175 unsigned long nlongs;
1176 unsigned long endmask;
1178 --maxnode;
1179 nodes_clear(*nodes);
1180 if (maxnode == 0 || !nmask)
1181 return 0;
1182 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1183 return -EINVAL;
1185 nlongs = BITS_TO_LONGS(maxnode);
1186 if ((maxnode % BITS_PER_LONG) == 0)
1187 endmask = ~0UL;
1188 else
1189 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1191 /* When the user specified more nodes than supported just check
1192 if the non supported part is all zero. */
1193 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1194 if (nlongs > PAGE_SIZE/sizeof(long))
1195 return -EINVAL;
1196 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1197 unsigned long t;
1198 if (get_user(t, nmask + k))
1199 return -EFAULT;
1200 if (k == nlongs - 1) {
1201 if (t & endmask)
1202 return -EINVAL;
1203 } else if (t)
1204 return -EINVAL;
1206 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1207 endmask = ~0UL;
1210 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1211 return -EFAULT;
1212 nodes_addr(*nodes)[nlongs-1] &= endmask;
1213 return 0;
1216 /* Copy a kernel node mask to user space */
1217 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1218 nodemask_t *nodes)
1220 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1221 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1223 if (copy > nbytes) {
1224 if (copy > PAGE_SIZE)
1225 return -EINVAL;
1226 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1227 return -EFAULT;
1228 copy = nbytes;
1230 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1233 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1234 unsigned long, mode, unsigned long __user *, nmask,
1235 unsigned long, maxnode, unsigned, flags)
1237 nodemask_t nodes;
1238 int err;
1239 unsigned short mode_flags;
1241 mode_flags = mode & MPOL_MODE_FLAGS;
1242 mode &= ~MPOL_MODE_FLAGS;
1243 if (mode >= MPOL_MAX)
1244 return -EINVAL;
1245 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1246 (mode_flags & MPOL_F_RELATIVE_NODES))
1247 return -EINVAL;
1248 err = get_nodes(&nodes, nmask, maxnode);
1249 if (err)
1250 return err;
1251 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1254 /* Set the process memory policy */
1255 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1256 unsigned long, maxnode)
1258 int err;
1259 nodemask_t nodes;
1260 unsigned short flags;
1262 flags = mode & MPOL_MODE_FLAGS;
1263 mode &= ~MPOL_MODE_FLAGS;
1264 if ((unsigned int)mode >= MPOL_MAX)
1265 return -EINVAL;
1266 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1267 return -EINVAL;
1268 err = get_nodes(&nodes, nmask, maxnode);
1269 if (err)
1270 return err;
1271 return do_set_mempolicy(mode, flags, &nodes);
1274 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1275 const unsigned long __user *, old_nodes,
1276 const unsigned long __user *, new_nodes)
1278 const struct cred *cred = current_cred(), *tcred;
1279 struct mm_struct *mm = NULL;
1280 struct task_struct *task;
1281 nodemask_t task_nodes;
1282 int err;
1283 nodemask_t *old;
1284 nodemask_t *new;
1285 NODEMASK_SCRATCH(scratch);
1287 if (!scratch)
1288 return -ENOMEM;
1290 old = &scratch->mask1;
1291 new = &scratch->mask2;
1293 err = get_nodes(old, old_nodes, maxnode);
1294 if (err)
1295 goto out;
1297 err = get_nodes(new, new_nodes, maxnode);
1298 if (err)
1299 goto out;
1301 /* Find the mm_struct */
1302 rcu_read_lock();
1303 task = pid ? find_task_by_vpid(pid) : current;
1304 if (!task) {
1305 rcu_read_unlock();
1306 err = -ESRCH;
1307 goto out;
1309 mm = get_task_mm(task);
1310 rcu_read_unlock();
1312 err = -EINVAL;
1313 if (!mm)
1314 goto out;
1317 * Check if this process has the right to modify the specified
1318 * process. The right exists if the process has administrative
1319 * capabilities, superuser privileges or the same
1320 * userid as the target process.
1322 rcu_read_lock();
1323 tcred = __task_cred(task);
1324 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1325 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1326 !capable(CAP_SYS_NICE)) {
1327 rcu_read_unlock();
1328 err = -EPERM;
1329 goto out;
1331 rcu_read_unlock();
1333 task_nodes = cpuset_mems_allowed(task);
1334 /* Is the user allowed to access the target nodes? */
1335 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1336 err = -EPERM;
1337 goto out;
1340 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1341 err = -EINVAL;
1342 goto out;
1345 err = security_task_movememory(task);
1346 if (err)
1347 goto out;
1349 err = do_migrate_pages(mm, old, new,
1350 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1351 out:
1352 if (mm)
1353 mmput(mm);
1354 NODEMASK_SCRATCH_FREE(scratch);
1356 return err;
1360 /* Retrieve NUMA policy */
1361 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1362 unsigned long __user *, nmask, unsigned long, maxnode,
1363 unsigned long, addr, unsigned long, flags)
1365 int err;
1366 int uninitialized_var(pval);
1367 nodemask_t nodes;
1369 if (nmask != NULL && maxnode < MAX_NUMNODES)
1370 return -EINVAL;
1372 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1374 if (err)
1375 return err;
1377 if (policy && put_user(pval, policy))
1378 return -EFAULT;
1380 if (nmask)
1381 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1383 return err;
1386 #ifdef CONFIG_COMPAT
1388 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1389 compat_ulong_t __user *nmask,
1390 compat_ulong_t maxnode,
1391 compat_ulong_t addr, compat_ulong_t flags)
1393 long err;
1394 unsigned long __user *nm = NULL;
1395 unsigned long nr_bits, alloc_size;
1396 DECLARE_BITMAP(bm, MAX_NUMNODES);
1398 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1399 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1401 if (nmask)
1402 nm = compat_alloc_user_space(alloc_size);
1404 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1406 if (!err && nmask) {
1407 err = copy_from_user(bm, nm, alloc_size);
1408 /* ensure entire bitmap is zeroed */
1409 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1410 err |= compat_put_bitmap(nmask, bm, nr_bits);
1413 return err;
1416 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1417 compat_ulong_t maxnode)
1419 long err = 0;
1420 unsigned long __user *nm = NULL;
1421 unsigned long nr_bits, alloc_size;
1422 DECLARE_BITMAP(bm, MAX_NUMNODES);
1424 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1425 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1427 if (nmask) {
1428 err = compat_get_bitmap(bm, nmask, nr_bits);
1429 nm = compat_alloc_user_space(alloc_size);
1430 err |= copy_to_user(nm, bm, alloc_size);
1433 if (err)
1434 return -EFAULT;
1436 return sys_set_mempolicy(mode, nm, nr_bits+1);
1439 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1440 compat_ulong_t mode, compat_ulong_t __user *nmask,
1441 compat_ulong_t maxnode, compat_ulong_t flags)
1443 long err = 0;
1444 unsigned long __user *nm = NULL;
1445 unsigned long nr_bits, alloc_size;
1446 nodemask_t bm;
1448 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1449 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1451 if (nmask) {
1452 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1453 nm = compat_alloc_user_space(alloc_size);
1454 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1457 if (err)
1458 return -EFAULT;
1460 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1463 #endif
1466 * get_vma_policy(@task, @vma, @addr)
1467 * @task - task for fallback if vma policy == default
1468 * @vma - virtual memory area whose policy is sought
1469 * @addr - address in @vma for shared policy lookup
1471 * Returns effective policy for a VMA at specified address.
1472 * Falls back to @task or system default policy, as necessary.
1473 * Current or other task's task mempolicy and non-shared vma policies
1474 * are protected by the task's mmap_sem, which must be held for read by
1475 * the caller.
1476 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1477 * count--added by the get_policy() vm_op, as appropriate--to protect against
1478 * freeing by another task. It is the caller's responsibility to free the
1479 * extra reference for shared policies.
1481 struct mempolicy *get_vma_policy(struct task_struct *task,
1482 struct vm_area_struct *vma, unsigned long addr)
1484 struct mempolicy *pol = task->mempolicy;
1486 if (vma) {
1487 if (vma->vm_ops && vma->vm_ops->get_policy) {
1488 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1489 addr);
1490 if (vpol)
1491 pol = vpol;
1492 } else if (vma->vm_policy)
1493 pol = vma->vm_policy;
1495 if (!pol)
1496 pol = &default_policy;
1497 return pol;
1501 * Return a nodemask representing a mempolicy for filtering nodes for
1502 * page allocation
1504 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1506 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1507 if (unlikely(policy->mode == MPOL_BIND) &&
1508 gfp_zone(gfp) >= policy_zone &&
1509 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1510 return &policy->v.nodes;
1512 return NULL;
1515 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1516 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1517 int nd)
1519 switch (policy->mode) {
1520 case MPOL_PREFERRED:
1521 if (!(policy->flags & MPOL_F_LOCAL))
1522 nd = policy->v.preferred_node;
1523 break;
1524 case MPOL_BIND:
1526 * Normally, MPOL_BIND allocations are node-local within the
1527 * allowed nodemask. However, if __GFP_THISNODE is set and the
1528 * current node isn't part of the mask, we use the zonelist for
1529 * the first node in the mask instead.
1531 if (unlikely(gfp & __GFP_THISNODE) &&
1532 unlikely(!node_isset(nd, policy->v.nodes)))
1533 nd = first_node(policy->v.nodes);
1534 break;
1535 default:
1536 BUG();
1538 return node_zonelist(nd, gfp);
1541 /* Do dynamic interleaving for a process */
1542 static unsigned interleave_nodes(struct mempolicy *policy)
1544 unsigned nid, next;
1545 struct task_struct *me = current;
1547 nid = me->il_next;
1548 next = next_node(nid, policy->v.nodes);
1549 if (next >= MAX_NUMNODES)
1550 next = first_node(policy->v.nodes);
1551 if (next < MAX_NUMNODES)
1552 me->il_next = next;
1553 return nid;
1557 * Depending on the memory policy provide a node from which to allocate the
1558 * next slab entry.
1559 * @policy must be protected by freeing by the caller. If @policy is
1560 * the current task's mempolicy, this protection is implicit, as only the
1561 * task can change it's policy. The system default policy requires no
1562 * such protection.
1564 unsigned slab_node(struct mempolicy *policy)
1566 if (!policy || policy->flags & MPOL_F_LOCAL)
1567 return numa_node_id();
1569 switch (policy->mode) {
1570 case MPOL_PREFERRED:
1572 * handled MPOL_F_LOCAL above
1574 return policy->v.preferred_node;
1576 case MPOL_INTERLEAVE:
1577 return interleave_nodes(policy);
1579 case MPOL_BIND: {
1581 * Follow bind policy behavior and start allocation at the
1582 * first node.
1584 struct zonelist *zonelist;
1585 struct zone *zone;
1586 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1587 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1588 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1589 &policy->v.nodes,
1590 &zone);
1591 return zone ? zone->node : numa_node_id();
1594 default:
1595 BUG();
1599 /* Do static interleaving for a VMA with known offset. */
1600 static unsigned offset_il_node(struct mempolicy *pol,
1601 struct vm_area_struct *vma, unsigned long off)
1603 unsigned nnodes = nodes_weight(pol->v.nodes);
1604 unsigned target;
1605 int c;
1606 int nid = -1;
1608 if (!nnodes)
1609 return numa_node_id();
1610 target = (unsigned int)off % nnodes;
1611 c = 0;
1612 do {
1613 nid = next_node(nid, pol->v.nodes);
1614 c++;
1615 } while (c <= target);
1616 return nid;
1619 /* Determine a node number for interleave */
1620 static inline unsigned interleave_nid(struct mempolicy *pol,
1621 struct vm_area_struct *vma, unsigned long addr, int shift)
1623 if (vma) {
1624 unsigned long off;
1627 * for small pages, there is no difference between
1628 * shift and PAGE_SHIFT, so the bit-shift is safe.
1629 * for huge pages, since vm_pgoff is in units of small
1630 * pages, we need to shift off the always 0 bits to get
1631 * a useful offset.
1633 BUG_ON(shift < PAGE_SHIFT);
1634 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1635 off += (addr - vma->vm_start) >> shift;
1636 return offset_il_node(pol, vma, off);
1637 } else
1638 return interleave_nodes(pol);
1641 #ifdef CONFIG_HUGETLBFS
1643 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1644 * @vma = virtual memory area whose policy is sought
1645 * @addr = address in @vma for shared policy lookup and interleave policy
1646 * @gfp_flags = for requested zone
1647 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1648 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1650 * Returns a zonelist suitable for a huge page allocation and a pointer
1651 * to the struct mempolicy for conditional unref after allocation.
1652 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1653 * @nodemask for filtering the zonelist.
1655 * Must be protected by get_mems_allowed()
1657 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1658 gfp_t gfp_flags, struct mempolicy **mpol,
1659 nodemask_t **nodemask)
1661 struct zonelist *zl;
1663 *mpol = get_vma_policy(current, vma, addr);
1664 *nodemask = NULL; /* assume !MPOL_BIND */
1666 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1667 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1668 huge_page_shift(hstate_vma(vma))), gfp_flags);
1669 } else {
1670 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1671 if ((*mpol)->mode == MPOL_BIND)
1672 *nodemask = &(*mpol)->v.nodes;
1674 return zl;
1678 * init_nodemask_of_mempolicy
1680 * If the current task's mempolicy is "default" [NULL], return 'false'
1681 * to indicate default policy. Otherwise, extract the policy nodemask
1682 * for 'bind' or 'interleave' policy into the argument nodemask, or
1683 * initialize the argument nodemask to contain the single node for
1684 * 'preferred' or 'local' policy and return 'true' to indicate presence
1685 * of non-default mempolicy.
1687 * We don't bother with reference counting the mempolicy [mpol_get/put]
1688 * because the current task is examining it's own mempolicy and a task's
1689 * mempolicy is only ever changed by the task itself.
1691 * N.B., it is the caller's responsibility to free a returned nodemask.
1693 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1695 struct mempolicy *mempolicy;
1696 int nid;
1698 if (!(mask && current->mempolicy))
1699 return false;
1701 task_lock(current);
1702 mempolicy = current->mempolicy;
1703 switch (mempolicy->mode) {
1704 case MPOL_PREFERRED:
1705 if (mempolicy->flags & MPOL_F_LOCAL)
1706 nid = numa_node_id();
1707 else
1708 nid = mempolicy->v.preferred_node;
1709 init_nodemask_of_node(mask, nid);
1710 break;
1712 case MPOL_BIND:
1713 /* Fall through */
1714 case MPOL_INTERLEAVE:
1715 *mask = mempolicy->v.nodes;
1716 break;
1718 default:
1719 BUG();
1721 task_unlock(current);
1723 return true;
1725 #endif
1728 * mempolicy_nodemask_intersects
1730 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1731 * policy. Otherwise, check for intersection between mask and the policy
1732 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1733 * policy, always return true since it may allocate elsewhere on fallback.
1735 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1737 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1738 const nodemask_t *mask)
1740 struct mempolicy *mempolicy;
1741 bool ret = true;
1743 if (!mask)
1744 return ret;
1745 task_lock(tsk);
1746 mempolicy = tsk->mempolicy;
1747 if (!mempolicy)
1748 goto out;
1750 switch (mempolicy->mode) {
1751 case MPOL_PREFERRED:
1753 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1754 * allocate from, they may fallback to other nodes when oom.
1755 * Thus, it's possible for tsk to have allocated memory from
1756 * nodes in mask.
1758 break;
1759 case MPOL_BIND:
1760 case MPOL_INTERLEAVE:
1761 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1762 break;
1763 default:
1764 BUG();
1766 out:
1767 task_unlock(tsk);
1768 return ret;
1771 /* Allocate a page in interleaved policy.
1772 Own path because it needs to do special accounting. */
1773 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1774 unsigned nid)
1776 struct zonelist *zl;
1777 struct page *page;
1779 zl = node_zonelist(nid, gfp);
1780 page = __alloc_pages(gfp, order, zl);
1781 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1782 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1783 return page;
1787 * alloc_pages_vma - Allocate a page for a VMA.
1789 * @gfp:
1790 * %GFP_USER user allocation.
1791 * %GFP_KERNEL kernel allocations,
1792 * %GFP_HIGHMEM highmem/user allocations,
1793 * %GFP_FS allocation should not call back into a file system.
1794 * %GFP_ATOMIC don't sleep.
1796 * @order:Order of the GFP allocation.
1797 * @vma: Pointer to VMA or NULL if not available.
1798 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1800 * This function allocates a page from the kernel page pool and applies
1801 * a NUMA policy associated with the VMA or the current process.
1802 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1803 * mm_struct of the VMA to prevent it from going away. Should be used for
1804 * all allocations for pages that will be mapped into
1805 * user space. Returns NULL when no page can be allocated.
1807 * Should be called with the mm_sem of the vma hold.
1809 struct page *
1810 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1811 unsigned long addr, int node)
1813 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1814 struct zonelist *zl;
1815 struct page *page;
1817 get_mems_allowed();
1818 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1819 unsigned nid;
1821 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1822 mpol_cond_put(pol);
1823 page = alloc_page_interleave(gfp, order, nid);
1824 put_mems_allowed();
1825 return page;
1827 zl = policy_zonelist(gfp, pol, node);
1828 if (unlikely(mpol_needs_cond_ref(pol))) {
1830 * slow path: ref counted shared policy
1832 struct page *page = __alloc_pages_nodemask(gfp, order,
1833 zl, policy_nodemask(gfp, pol));
1834 __mpol_put(pol);
1835 put_mems_allowed();
1836 return page;
1839 * fast path: default or task policy
1841 page = __alloc_pages_nodemask(gfp, order, zl,
1842 policy_nodemask(gfp, pol));
1843 put_mems_allowed();
1844 return page;
1848 * alloc_pages_current - Allocate pages.
1850 * @gfp:
1851 * %GFP_USER user allocation,
1852 * %GFP_KERNEL kernel allocation,
1853 * %GFP_HIGHMEM highmem allocation,
1854 * %GFP_FS don't call back into a file system.
1855 * %GFP_ATOMIC don't sleep.
1856 * @order: Power of two of allocation size in pages. 0 is a single page.
1858 * Allocate a page from the kernel page pool. When not in
1859 * interrupt context and apply the current process NUMA policy.
1860 * Returns NULL when no page can be allocated.
1862 * Don't call cpuset_update_task_memory_state() unless
1863 * 1) it's ok to take cpuset_sem (can WAIT), and
1864 * 2) allocating for current task (not interrupt).
1866 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1868 struct mempolicy *pol = current->mempolicy;
1869 struct page *page;
1871 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1872 pol = &default_policy;
1874 get_mems_allowed();
1876 * No reference counting needed for current->mempolicy
1877 * nor system default_policy
1879 if (pol->mode == MPOL_INTERLEAVE)
1880 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1881 else
1882 page = __alloc_pages_nodemask(gfp, order,
1883 policy_zonelist(gfp, pol, numa_node_id()),
1884 policy_nodemask(gfp, pol));
1885 put_mems_allowed();
1886 return page;
1888 EXPORT_SYMBOL(alloc_pages_current);
1891 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1892 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1893 * with the mems_allowed returned by cpuset_mems_allowed(). This
1894 * keeps mempolicies cpuset relative after its cpuset moves. See
1895 * further kernel/cpuset.c update_nodemask().
1897 * current's mempolicy may be rebinded by the other task(the task that changes
1898 * cpuset's mems), so we needn't do rebind work for current task.
1901 /* Slow path of a mempolicy duplicate */
1902 struct mempolicy *__mpol_dup(struct mempolicy *old)
1904 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1906 if (!new)
1907 return ERR_PTR(-ENOMEM);
1909 /* task's mempolicy is protected by alloc_lock */
1910 if (old == current->mempolicy) {
1911 task_lock(current);
1912 *new = *old;
1913 task_unlock(current);
1914 } else
1915 *new = *old;
1917 rcu_read_lock();
1918 if (current_cpuset_is_being_rebound()) {
1919 nodemask_t mems = cpuset_mems_allowed(current);
1920 if (new->flags & MPOL_F_REBINDING)
1921 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1922 else
1923 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1925 rcu_read_unlock();
1926 atomic_set(&new->refcnt, 1);
1927 return new;
1931 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1932 * eliminate the * MPOL_F_* flags that require conditional ref and
1933 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1934 * after return. Use the returned value.
1936 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1937 * policy lookup, even if the policy needs/has extra ref on lookup.
1938 * shmem_readahead needs this.
1940 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1941 struct mempolicy *frompol)
1943 if (!mpol_needs_cond_ref(frompol))
1944 return frompol;
1946 *tompol = *frompol;
1947 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1948 __mpol_put(frompol);
1949 return tompol;
1952 /* Slow path of a mempolicy comparison */
1953 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1955 if (!a || !b)
1956 return 0;
1957 if (a->mode != b->mode)
1958 return 0;
1959 if (a->flags != b->flags)
1960 return 0;
1961 if (mpol_store_user_nodemask(a))
1962 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1963 return 0;
1965 switch (a->mode) {
1966 case MPOL_BIND:
1967 /* Fall through */
1968 case MPOL_INTERLEAVE:
1969 return nodes_equal(a->v.nodes, b->v.nodes);
1970 case MPOL_PREFERRED:
1971 return a->v.preferred_node == b->v.preferred_node;
1972 default:
1973 BUG();
1974 return 0;
1979 * Shared memory backing store policy support.
1981 * Remember policies even when nobody has shared memory mapped.
1982 * The policies are kept in Red-Black tree linked from the inode.
1983 * They are protected by the sp->lock spinlock, which should be held
1984 * for any accesses to the tree.
1987 /* lookup first element intersecting start-end */
1988 /* Caller holds sp->lock */
1989 static struct sp_node *
1990 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1992 struct rb_node *n = sp->root.rb_node;
1994 while (n) {
1995 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1997 if (start >= p->end)
1998 n = n->rb_right;
1999 else if (end <= p->start)
2000 n = n->rb_left;
2001 else
2002 break;
2004 if (!n)
2005 return NULL;
2006 for (;;) {
2007 struct sp_node *w = NULL;
2008 struct rb_node *prev = rb_prev(n);
2009 if (!prev)
2010 break;
2011 w = rb_entry(prev, struct sp_node, nd);
2012 if (w->end <= start)
2013 break;
2014 n = prev;
2016 return rb_entry(n, struct sp_node, nd);
2019 /* Insert a new shared policy into the list. */
2020 /* Caller holds sp->lock */
2021 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2023 struct rb_node **p = &sp->root.rb_node;
2024 struct rb_node *parent = NULL;
2025 struct sp_node *nd;
2027 while (*p) {
2028 parent = *p;
2029 nd = rb_entry(parent, struct sp_node, nd);
2030 if (new->start < nd->start)
2031 p = &(*p)->rb_left;
2032 else if (new->end > nd->end)
2033 p = &(*p)->rb_right;
2034 else
2035 BUG();
2037 rb_link_node(&new->nd, parent, p);
2038 rb_insert_color(&new->nd, &sp->root);
2039 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2040 new->policy ? new->policy->mode : 0);
2043 /* Find shared policy intersecting idx */
2044 struct mempolicy *
2045 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2047 struct mempolicy *pol = NULL;
2048 struct sp_node *sn;
2050 if (!sp->root.rb_node)
2051 return NULL;
2052 spin_lock(&sp->lock);
2053 sn = sp_lookup(sp, idx, idx+1);
2054 if (sn) {
2055 mpol_get(sn->policy);
2056 pol = sn->policy;
2058 spin_unlock(&sp->lock);
2059 return pol;
2062 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2064 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2065 rb_erase(&n->nd, &sp->root);
2066 mpol_put(n->policy);
2067 kmem_cache_free(sn_cache, n);
2070 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2071 struct mempolicy *pol)
2073 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2075 if (!n)
2076 return NULL;
2077 n->start = start;
2078 n->end = end;
2079 mpol_get(pol);
2080 pol->flags |= MPOL_F_SHARED; /* for unref */
2081 n->policy = pol;
2082 return n;
2085 /* Replace a policy range. */
2086 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2087 unsigned long end, struct sp_node *new)
2089 struct sp_node *n, *new2 = NULL;
2091 restart:
2092 spin_lock(&sp->lock);
2093 n = sp_lookup(sp, start, end);
2094 /* Take care of old policies in the same range. */
2095 while (n && n->start < end) {
2096 struct rb_node *next = rb_next(&n->nd);
2097 if (n->start >= start) {
2098 if (n->end <= end)
2099 sp_delete(sp, n);
2100 else
2101 n->start = end;
2102 } else {
2103 /* Old policy spanning whole new range. */
2104 if (n->end > end) {
2105 if (!new2) {
2106 spin_unlock(&sp->lock);
2107 new2 = sp_alloc(end, n->end, n->policy);
2108 if (!new2)
2109 return -ENOMEM;
2110 goto restart;
2112 n->end = start;
2113 sp_insert(sp, new2);
2114 new2 = NULL;
2115 break;
2116 } else
2117 n->end = start;
2119 if (!next)
2120 break;
2121 n = rb_entry(next, struct sp_node, nd);
2123 if (new)
2124 sp_insert(sp, new);
2125 spin_unlock(&sp->lock);
2126 if (new2) {
2127 mpol_put(new2->policy);
2128 kmem_cache_free(sn_cache, new2);
2130 return 0;
2134 * mpol_shared_policy_init - initialize shared policy for inode
2135 * @sp: pointer to inode shared policy
2136 * @mpol: struct mempolicy to install
2138 * Install non-NULL @mpol in inode's shared policy rb-tree.
2139 * On entry, the current task has a reference on a non-NULL @mpol.
2140 * This must be released on exit.
2141 * This is called at get_inode() calls and we can use GFP_KERNEL.
2143 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2145 int ret;
2147 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2148 spin_lock_init(&sp->lock);
2150 if (mpol) {
2151 struct vm_area_struct pvma;
2152 struct mempolicy *new;
2153 NODEMASK_SCRATCH(scratch);
2155 if (!scratch)
2156 goto put_mpol;
2157 /* contextualize the tmpfs mount point mempolicy */
2158 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2159 if (IS_ERR(new))
2160 goto free_scratch; /* no valid nodemask intersection */
2162 task_lock(current);
2163 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2164 task_unlock(current);
2165 if (ret)
2166 goto put_new;
2168 /* Create pseudo-vma that contains just the policy */
2169 memset(&pvma, 0, sizeof(struct vm_area_struct));
2170 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2171 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2173 put_new:
2174 mpol_put(new); /* drop initial ref */
2175 free_scratch:
2176 NODEMASK_SCRATCH_FREE(scratch);
2177 put_mpol:
2178 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2182 int mpol_set_shared_policy(struct shared_policy *info,
2183 struct vm_area_struct *vma, struct mempolicy *npol)
2185 int err;
2186 struct sp_node *new = NULL;
2187 unsigned long sz = vma_pages(vma);
2189 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2190 vma->vm_pgoff,
2191 sz, npol ? npol->mode : -1,
2192 npol ? npol->flags : -1,
2193 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2195 if (npol) {
2196 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2197 if (!new)
2198 return -ENOMEM;
2200 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2201 if (err && new)
2202 kmem_cache_free(sn_cache, new);
2203 return err;
2206 /* Free a backing policy store on inode delete. */
2207 void mpol_free_shared_policy(struct shared_policy *p)
2209 struct sp_node *n;
2210 struct rb_node *next;
2212 if (!p->root.rb_node)
2213 return;
2214 spin_lock(&p->lock);
2215 next = rb_first(&p->root);
2216 while (next) {
2217 n = rb_entry(next, struct sp_node, nd);
2218 next = rb_next(&n->nd);
2219 rb_erase(&n->nd, &p->root);
2220 mpol_put(n->policy);
2221 kmem_cache_free(sn_cache, n);
2223 spin_unlock(&p->lock);
2226 /* assumes fs == KERNEL_DS */
2227 void __init numa_policy_init(void)
2229 nodemask_t interleave_nodes;
2230 unsigned long largest = 0;
2231 int nid, prefer = 0;
2233 policy_cache = kmem_cache_create("numa_policy",
2234 sizeof(struct mempolicy),
2235 0, SLAB_PANIC, NULL);
2237 sn_cache = kmem_cache_create("shared_policy_node",
2238 sizeof(struct sp_node),
2239 0, SLAB_PANIC, NULL);
2242 * Set interleaving policy for system init. Interleaving is only
2243 * enabled across suitably sized nodes (default is >= 16MB), or
2244 * fall back to the largest node if they're all smaller.
2246 nodes_clear(interleave_nodes);
2247 for_each_node_state(nid, N_HIGH_MEMORY) {
2248 unsigned long total_pages = node_present_pages(nid);
2250 /* Preserve the largest node */
2251 if (largest < total_pages) {
2252 largest = total_pages;
2253 prefer = nid;
2256 /* Interleave this node? */
2257 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2258 node_set(nid, interleave_nodes);
2261 /* All too small, use the largest */
2262 if (unlikely(nodes_empty(interleave_nodes)))
2263 node_set(prefer, interleave_nodes);
2265 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2266 printk("numa_policy_init: interleaving failed\n");
2269 /* Reset policy of current process to default */
2270 void numa_default_policy(void)
2272 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2276 * Parse and format mempolicy from/to strings
2280 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2281 * Used only for mpol_parse_str() and mpol_to_str()
2283 #define MPOL_LOCAL MPOL_MAX
2284 static const char * const policy_modes[] =
2286 [MPOL_DEFAULT] = "default",
2287 [MPOL_PREFERRED] = "prefer",
2288 [MPOL_BIND] = "bind",
2289 [MPOL_INTERLEAVE] = "interleave",
2290 [MPOL_LOCAL] = "local"
2294 #ifdef CONFIG_TMPFS
2296 * mpol_parse_str - parse string to mempolicy
2297 * @str: string containing mempolicy to parse
2298 * @mpol: pointer to struct mempolicy pointer, returned on success.
2299 * @no_context: flag whether to "contextualize" the mempolicy
2301 * Format of input:
2302 * <mode>[=<flags>][:<nodelist>]
2304 * if @no_context is true, save the input nodemask in w.user_nodemask in
2305 * the returned mempolicy. This will be used to "clone" the mempolicy in
2306 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2307 * mount option. Note that if 'static' or 'relative' mode flags were
2308 * specified, the input nodemask will already have been saved. Saving
2309 * it again is redundant, but safe.
2311 * On success, returns 0, else 1
2313 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2315 struct mempolicy *new = NULL;
2316 unsigned short mode;
2317 unsigned short uninitialized_var(mode_flags);
2318 nodemask_t nodes;
2319 char *nodelist = strchr(str, ':');
2320 char *flags = strchr(str, '=');
2321 int err = 1;
2323 if (nodelist) {
2324 /* NUL-terminate mode or flags string */
2325 *nodelist++ = '\0';
2326 if (nodelist_parse(nodelist, nodes))
2327 goto out;
2328 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2329 goto out;
2330 } else
2331 nodes_clear(nodes);
2333 if (flags)
2334 *flags++ = '\0'; /* terminate mode string */
2336 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2337 if (!strcmp(str, policy_modes[mode])) {
2338 break;
2341 if (mode > MPOL_LOCAL)
2342 goto out;
2344 switch (mode) {
2345 case MPOL_PREFERRED:
2347 * Insist on a nodelist of one node only
2349 if (nodelist) {
2350 char *rest = nodelist;
2351 while (isdigit(*rest))
2352 rest++;
2353 if (*rest)
2354 goto out;
2356 break;
2357 case MPOL_INTERLEAVE:
2359 * Default to online nodes with memory if no nodelist
2361 if (!nodelist)
2362 nodes = node_states[N_HIGH_MEMORY];
2363 break;
2364 case MPOL_LOCAL:
2366 * Don't allow a nodelist; mpol_new() checks flags
2368 if (nodelist)
2369 goto out;
2370 mode = MPOL_PREFERRED;
2371 break;
2372 case MPOL_DEFAULT:
2374 * Insist on a empty nodelist
2376 if (!nodelist)
2377 err = 0;
2378 goto out;
2379 case MPOL_BIND:
2381 * Insist on a nodelist
2383 if (!nodelist)
2384 goto out;
2387 mode_flags = 0;
2388 if (flags) {
2390 * Currently, we only support two mutually exclusive
2391 * mode flags.
2393 if (!strcmp(flags, "static"))
2394 mode_flags |= MPOL_F_STATIC_NODES;
2395 else if (!strcmp(flags, "relative"))
2396 mode_flags |= MPOL_F_RELATIVE_NODES;
2397 else
2398 goto out;
2401 new = mpol_new(mode, mode_flags, &nodes);
2402 if (IS_ERR(new))
2403 goto out;
2405 if (no_context) {
2406 /* save for contextualization */
2407 new->w.user_nodemask = nodes;
2408 } else {
2409 int ret;
2410 NODEMASK_SCRATCH(scratch);
2411 if (scratch) {
2412 task_lock(current);
2413 ret = mpol_set_nodemask(new, &nodes, scratch);
2414 task_unlock(current);
2415 } else
2416 ret = -ENOMEM;
2417 NODEMASK_SCRATCH_FREE(scratch);
2418 if (ret) {
2419 mpol_put(new);
2420 goto out;
2423 err = 0;
2425 out:
2426 /* Restore string for error message */
2427 if (nodelist)
2428 *--nodelist = ':';
2429 if (flags)
2430 *--flags = '=';
2431 if (!err)
2432 *mpol = new;
2433 return err;
2435 #endif /* CONFIG_TMPFS */
2438 * mpol_to_str - format a mempolicy structure for printing
2439 * @buffer: to contain formatted mempolicy string
2440 * @maxlen: length of @buffer
2441 * @pol: pointer to mempolicy to be formatted
2442 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2444 * Convert a mempolicy into a string.
2445 * Returns the number of characters in buffer (if positive)
2446 * or an error (negative)
2448 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2450 char *p = buffer;
2451 int l;
2452 nodemask_t nodes;
2453 unsigned short mode;
2454 unsigned short flags = pol ? pol->flags : 0;
2457 * Sanity check: room for longest mode, flag and some nodes
2459 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2461 if (!pol || pol == &default_policy)
2462 mode = MPOL_DEFAULT;
2463 else
2464 mode = pol->mode;
2466 switch (mode) {
2467 case MPOL_DEFAULT:
2468 nodes_clear(nodes);
2469 break;
2471 case MPOL_PREFERRED:
2472 nodes_clear(nodes);
2473 if (flags & MPOL_F_LOCAL)
2474 mode = MPOL_LOCAL; /* pseudo-policy */
2475 else
2476 node_set(pol->v.preferred_node, nodes);
2477 break;
2479 case MPOL_BIND:
2480 /* Fall through */
2481 case MPOL_INTERLEAVE:
2482 if (no_context)
2483 nodes = pol->w.user_nodemask;
2484 else
2485 nodes = pol->v.nodes;
2486 break;
2488 default:
2489 BUG();
2492 l = strlen(policy_modes[mode]);
2493 if (buffer + maxlen < p + l + 1)
2494 return -ENOSPC;
2496 strcpy(p, policy_modes[mode]);
2497 p += l;
2499 if (flags & MPOL_MODE_FLAGS) {
2500 if (buffer + maxlen < p + 2)
2501 return -ENOSPC;
2502 *p++ = '=';
2505 * Currently, the only defined flags are mutually exclusive
2507 if (flags & MPOL_F_STATIC_NODES)
2508 p += snprintf(p, buffer + maxlen - p, "static");
2509 else if (flags & MPOL_F_RELATIVE_NODES)
2510 p += snprintf(p, buffer + maxlen - p, "relative");
2513 if (!nodes_empty(nodes)) {
2514 if (buffer + maxlen < p + 2)
2515 return -ENOSPC;
2516 *p++ = ':';
2517 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2519 return p - buffer;