2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
35 static void __init
rcu_bootup_announce_oddness(void)
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO
"\tRCU debugfs-based tracing is enabled.\n");
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO
"\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO
"\tHierarchical RCU autobalancing is disabled.\n");
47 #ifdef CONFIG_RCU_FAST_NO_HZ
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO
"\tRCU lockdep checking is enabled.\n");
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO
"\tRCU torture testing starts during boot.\n");
57 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 printk(KERN_INFO
"\tVerbose stalled-CPUs detection is disabled.\n");
60 #if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO
"\tExperimental four-level hierarchy is enabled.\n");
65 #ifdef CONFIG_TREE_PREEMPT_RCU
67 struct rcu_state rcu_preempt_state
= RCU_STATE_INITIALIZER(rcu_preempt_state
);
68 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
69 static struct rcu_state
*rcu_state
= &rcu_preempt_state
;
71 static void rcu_read_unlock_special(struct task_struct
*t
);
72 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
75 * Tell them what RCU they are running.
77 static void __init
rcu_bootup_announce(void)
79 printk(KERN_INFO
"Preemptible hierarchical RCU implementation.\n");
80 rcu_bootup_announce_oddness();
84 * Return the number of RCU-preempt batches processed thus far
85 * for debug and statistics.
87 long rcu_batches_completed_preempt(void)
89 return rcu_preempt_state
.completed
;
91 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
94 * Return the number of RCU batches processed thus far for debug & stats.
96 long rcu_batches_completed(void)
98 return rcu_batches_completed_preempt();
100 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
103 * Force a quiescent state for preemptible RCU.
105 void rcu_force_quiescent_state(void)
107 force_quiescent_state(&rcu_preempt_state
, 0);
109 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
112 * Record a preemptible-RCU quiescent state for the specified CPU. Note
113 * that this just means that the task currently running on the CPU is
114 * not in a quiescent state. There might be any number of tasks blocked
115 * while in an RCU read-side critical section.
117 * Unlike the other rcu_*_qs() functions, callers to this function
118 * must disable irqs in order to protect the assignment to
119 * ->rcu_read_unlock_special.
121 static void rcu_preempt_qs(int cpu
)
123 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
125 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
127 rdp
->passed_quiesc
= 1;
128 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
132 * We have entered the scheduler, and the current task might soon be
133 * context-switched away from. If this task is in an RCU read-side
134 * critical section, we will no longer be able to rely on the CPU to
135 * record that fact, so we enqueue the task on the blkd_tasks list.
136 * The task will dequeue itself when it exits the outermost enclosing
137 * RCU read-side critical section. Therefore, the current grace period
138 * cannot be permitted to complete until the blkd_tasks list entries
139 * predating the current grace period drain, in other words, until
140 * rnp->gp_tasks becomes NULL.
142 * Caller must disable preemption.
144 static void rcu_preempt_note_context_switch(int cpu
)
146 struct task_struct
*t
= current
;
148 struct rcu_data
*rdp
;
149 struct rcu_node
*rnp
;
151 if (t
->rcu_read_lock_nesting
> 0 &&
152 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
154 /* Possibly blocking in an RCU read-side critical section. */
155 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
157 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
158 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
159 t
->rcu_blocked_node
= rnp
;
162 * If this CPU has already checked in, then this task
163 * will hold up the next grace period rather than the
164 * current grace period. Queue the task accordingly.
165 * If the task is queued for the current grace period
166 * (i.e., this CPU has not yet passed through a quiescent
167 * state for the current grace period), then as long
168 * as that task remains queued, the current grace period
169 * cannot end. Note that there is some uncertainty as
170 * to exactly when the current grace period started.
171 * We take a conservative approach, which can result
172 * in unnecessarily waiting on tasks that started very
173 * slightly after the current grace period began. C'est
176 * But first, note that the current CPU must still be
179 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
180 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
181 if ((rnp
->qsmask
& rdp
->grpmask
) && rnp
->gp_tasks
!= NULL
) {
182 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
->prev
);
183 rnp
->gp_tasks
= &t
->rcu_node_entry
;
184 #ifdef CONFIG_RCU_BOOST
185 if (rnp
->boost_tasks
!= NULL
)
186 rnp
->boost_tasks
= rnp
->gp_tasks
;
187 #endif /* #ifdef CONFIG_RCU_BOOST */
189 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
190 if (rnp
->qsmask
& rdp
->grpmask
)
191 rnp
->gp_tasks
= &t
->rcu_node_entry
;
193 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
194 } else if (t
->rcu_read_lock_nesting
< 0 &&
195 t
->rcu_read_unlock_special
) {
198 * Complete exit from RCU read-side critical section on
199 * behalf of preempted instance of __rcu_read_unlock().
201 rcu_read_unlock_special(t
);
205 * Either we were not in an RCU read-side critical section to
206 * begin with, or we have now recorded that critical section
207 * globally. Either way, we can now note a quiescent state
208 * for this CPU. Again, if we were in an RCU read-side critical
209 * section, and if that critical section was blocking the current
210 * grace period, then the fact that the task has been enqueued
211 * means that we continue to block the current grace period.
213 local_irq_save(flags
);
215 local_irq_restore(flags
);
219 * Tree-preemptible RCU implementation for rcu_read_lock().
220 * Just increment ->rcu_read_lock_nesting, shared state will be updated
223 void __rcu_read_lock(void)
225 current
->rcu_read_lock_nesting
++;
226 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
228 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
231 * Check for preempted RCU readers blocking the current grace period
232 * for the specified rcu_node structure. If the caller needs a reliable
233 * answer, it must hold the rcu_node's ->lock.
235 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
237 return rnp
->gp_tasks
!= NULL
;
241 * Record a quiescent state for all tasks that were previously queued
242 * on the specified rcu_node structure and that were blocking the current
243 * RCU grace period. The caller must hold the specified rnp->lock with
244 * irqs disabled, and this lock is released upon return, but irqs remain
247 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
248 __releases(rnp
->lock
)
251 struct rcu_node
*rnp_p
;
253 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
254 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
255 return; /* Still need more quiescent states! */
261 * Either there is only one rcu_node in the tree,
262 * or tasks were kicked up to root rcu_node due to
263 * CPUs going offline.
265 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
269 /* Report up the rest of the hierarchy. */
271 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
272 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
273 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
277 * Advance a ->blkd_tasks-list pointer to the next entry, instead
278 * returning NULL if at the end of the list.
280 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
281 struct rcu_node
*rnp
)
283 struct list_head
*np
;
285 np
= t
->rcu_node_entry
.next
;
286 if (np
== &rnp
->blkd_tasks
)
292 * Handle special cases during rcu_read_unlock(), such as needing to
293 * notify RCU core processing or task having blocked during the RCU
294 * read-side critical section.
296 static noinline
void rcu_read_unlock_special(struct task_struct
*t
)
301 struct list_head
*np
;
302 struct rcu_node
*rnp
;
305 /* NMI handlers cannot block and cannot safely manipulate state. */
309 local_irq_save(flags
);
312 * If RCU core is waiting for this CPU to exit critical section,
313 * let it know that we have done so.
315 special
= t
->rcu_read_unlock_special
;
316 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
317 rcu_preempt_qs(smp_processor_id());
320 /* Hardware IRQ handlers cannot block. */
321 if (in_irq() || in_serving_softirq()) {
322 local_irq_restore(flags
);
326 /* Clean up if blocked during RCU read-side critical section. */
327 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
328 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
331 * Remove this task from the list it blocked on. The
332 * task can migrate while we acquire the lock, but at
333 * most one time. So at most two passes through loop.
336 rnp
= t
->rcu_blocked_node
;
337 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
338 if (rnp
== t
->rcu_blocked_node
)
340 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
342 empty
= !rcu_preempt_blocked_readers_cgp(rnp
);
343 empty_exp
= !rcu_preempted_readers_exp(rnp
);
344 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
345 np
= rcu_next_node_entry(t
, rnp
);
346 list_del_init(&t
->rcu_node_entry
);
347 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
349 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
351 #ifdef CONFIG_RCU_BOOST
352 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
353 rnp
->boost_tasks
= np
;
354 /* Snapshot and clear ->rcu_boosted with rcu_node lock held. */
355 if (t
->rcu_boosted
) {
356 special
|= RCU_READ_UNLOCK_BOOSTED
;
359 #endif /* #ifdef CONFIG_RCU_BOOST */
360 t
->rcu_blocked_node
= NULL
;
363 * If this was the last task on the current list, and if
364 * we aren't waiting on any CPUs, report the quiescent state.
365 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
368 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
370 rcu_report_unblock_qs_rnp(rnp
, flags
);
372 #ifdef CONFIG_RCU_BOOST
373 /* Unboost if we were boosted. */
374 if (special
& RCU_READ_UNLOCK_BOOSTED
) {
375 rt_mutex_unlock(t
->rcu_boost_mutex
);
376 t
->rcu_boost_mutex
= NULL
;
378 #endif /* #ifdef CONFIG_RCU_BOOST */
381 * If this was the last task on the expedited lists,
382 * then we need to report up the rcu_node hierarchy.
384 if (!empty_exp
&& !rcu_preempted_readers_exp(rnp
))
385 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
);
387 local_irq_restore(flags
);
392 * Tree-preemptible RCU implementation for rcu_read_unlock().
393 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
394 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
395 * invoke rcu_read_unlock_special() to clean up after a context switch
396 * in an RCU read-side critical section and other special cases.
398 void __rcu_read_unlock(void)
400 struct task_struct
*t
= current
;
402 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
403 if (t
->rcu_read_lock_nesting
!= 1)
404 --t
->rcu_read_lock_nesting
;
406 t
->rcu_read_lock_nesting
= INT_MIN
;
407 barrier(); /* assign before ->rcu_read_unlock_special load */
408 if (unlikely(ACCESS_ONCE(t
->rcu_read_unlock_special
)))
409 rcu_read_unlock_special(t
);
410 barrier(); /* ->rcu_read_unlock_special load before assign */
411 t
->rcu_read_lock_nesting
= 0;
413 #ifdef CONFIG_PROVE_LOCKING
415 int rrln
= ACCESS_ONCE(t
->rcu_read_lock_nesting
);
417 WARN_ON_ONCE(rrln
< 0 && rrln
> INT_MIN
/ 2);
419 #endif /* #ifdef CONFIG_PROVE_LOCKING */
421 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
423 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
426 * Dump detailed information for all tasks blocking the current RCU
427 * grace period on the specified rcu_node structure.
429 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
432 struct task_struct
*t
;
434 if (!rcu_preempt_blocked_readers_cgp(rnp
))
436 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
437 t
= list_entry(rnp
->gp_tasks
,
438 struct task_struct
, rcu_node_entry
);
439 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
441 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
445 * Dump detailed information for all tasks blocking the current RCU
448 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
450 struct rcu_node
*rnp
= rcu_get_root(rsp
);
452 rcu_print_detail_task_stall_rnp(rnp
);
453 rcu_for_each_leaf_node(rsp
, rnp
)
454 rcu_print_detail_task_stall_rnp(rnp
);
457 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
459 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
463 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
466 * Scan the current list of tasks blocked within RCU read-side critical
467 * sections, printing out the tid of each.
469 static void rcu_print_task_stall(struct rcu_node
*rnp
)
471 struct task_struct
*t
;
473 if (!rcu_preempt_blocked_readers_cgp(rnp
))
475 t
= list_entry(rnp
->gp_tasks
,
476 struct task_struct
, rcu_node_entry
);
477 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
478 printk(" P%d", t
->pid
);
482 * Suppress preemptible RCU's CPU stall warnings by pushing the
483 * time of the next stall-warning message comfortably far into the
486 static void rcu_preempt_stall_reset(void)
488 rcu_preempt_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
492 * Check that the list of blocked tasks for the newly completed grace
493 * period is in fact empty. It is a serious bug to complete a grace
494 * period that still has RCU readers blocked! This function must be
495 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
496 * must be held by the caller.
498 * Also, if there are blocked tasks on the list, they automatically
499 * block the newly created grace period, so set up ->gp_tasks accordingly.
501 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
503 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
504 if (!list_empty(&rnp
->blkd_tasks
))
505 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
506 WARN_ON_ONCE(rnp
->qsmask
);
509 #ifdef CONFIG_HOTPLUG_CPU
512 * Handle tasklist migration for case in which all CPUs covered by the
513 * specified rcu_node have gone offline. Move them up to the root
514 * rcu_node. The reason for not just moving them to the immediate
515 * parent is to remove the need for rcu_read_unlock_special() to
516 * make more than two attempts to acquire the target rcu_node's lock.
517 * Returns true if there were tasks blocking the current RCU grace
520 * Returns 1 if there was previously a task blocking the current grace
521 * period on the specified rcu_node structure.
523 * The caller must hold rnp->lock with irqs disabled.
525 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
526 struct rcu_node
*rnp
,
527 struct rcu_data
*rdp
)
529 struct list_head
*lp
;
530 struct list_head
*lp_root
;
532 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
533 struct task_struct
*t
;
535 if (rnp
== rnp_root
) {
536 WARN_ONCE(1, "Last CPU thought to be offlined?");
537 return 0; /* Shouldn't happen: at least one CPU online. */
540 /* If we are on an internal node, complain bitterly. */
541 WARN_ON_ONCE(rnp
!= rdp
->mynode
);
544 * Move tasks up to root rcu_node. Don't try to get fancy for
545 * this corner-case operation -- just put this node's tasks
546 * at the head of the root node's list, and update the root node's
547 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
548 * if non-NULL. This might result in waiting for more tasks than
549 * absolutely necessary, but this is a good performance/complexity
552 if (rcu_preempt_blocked_readers_cgp(rnp
))
553 retval
|= RCU_OFL_TASKS_NORM_GP
;
554 if (rcu_preempted_readers_exp(rnp
))
555 retval
|= RCU_OFL_TASKS_EXP_GP
;
556 lp
= &rnp
->blkd_tasks
;
557 lp_root
= &rnp_root
->blkd_tasks
;
558 while (!list_empty(lp
)) {
559 t
= list_entry(lp
->next
, typeof(*t
), rcu_node_entry
);
560 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
561 list_del(&t
->rcu_node_entry
);
562 t
->rcu_blocked_node
= rnp_root
;
563 list_add(&t
->rcu_node_entry
, lp_root
);
564 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
565 rnp_root
->gp_tasks
= rnp
->gp_tasks
;
566 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
567 rnp_root
->exp_tasks
= rnp
->exp_tasks
;
568 #ifdef CONFIG_RCU_BOOST
569 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
570 rnp_root
->boost_tasks
= rnp
->boost_tasks
;
571 #endif /* #ifdef CONFIG_RCU_BOOST */
572 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
575 #ifdef CONFIG_RCU_BOOST
576 /* In case root is being boosted and leaf is not. */
577 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
578 if (rnp_root
->boost_tasks
!= NULL
&&
579 rnp_root
->boost_tasks
!= rnp_root
->gp_tasks
)
580 rnp_root
->boost_tasks
= rnp_root
->gp_tasks
;
581 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
582 #endif /* #ifdef CONFIG_RCU_BOOST */
584 rnp
->gp_tasks
= NULL
;
585 rnp
->exp_tasks
= NULL
;
590 * Do CPU-offline processing for preemptible RCU.
592 static void rcu_preempt_offline_cpu(int cpu
)
594 __rcu_offline_cpu(cpu
, &rcu_preempt_state
);
597 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
600 * Check for a quiescent state from the current CPU. When a task blocks,
601 * the task is recorded in the corresponding CPU's rcu_node structure,
602 * which is checked elsewhere.
604 * Caller must disable hard irqs.
606 static void rcu_preempt_check_callbacks(int cpu
)
608 struct task_struct
*t
= current
;
610 if (t
->rcu_read_lock_nesting
== 0) {
614 if (t
->rcu_read_lock_nesting
> 0 &&
615 per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
616 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
620 * Process callbacks for preemptible RCU.
622 static void rcu_preempt_process_callbacks(void)
624 __rcu_process_callbacks(&rcu_preempt_state
,
625 &__get_cpu_var(rcu_preempt_data
));
628 #ifdef CONFIG_RCU_BOOST
630 static void rcu_preempt_do_callbacks(void)
632 rcu_do_batch(&rcu_preempt_state
, &__get_cpu_var(rcu_preempt_data
));
635 #endif /* #ifdef CONFIG_RCU_BOOST */
638 * Queue a preemptible-RCU callback for invocation after a grace period.
640 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
642 __call_rcu(head
, func
, &rcu_preempt_state
);
644 EXPORT_SYMBOL_GPL(call_rcu
);
647 * synchronize_rcu - wait until a grace period has elapsed.
649 * Control will return to the caller some time after a full grace
650 * period has elapsed, in other words after all currently executing RCU
651 * read-side critical sections have completed. Note, however, that
652 * upon return from synchronize_rcu(), the caller might well be executing
653 * concurrently with new RCU read-side critical sections that began while
654 * synchronize_rcu() was waiting. RCU read-side critical sections are
655 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
657 void synchronize_rcu(void)
659 struct rcu_synchronize rcu
;
661 if (!rcu_scheduler_active
)
664 init_rcu_head_on_stack(&rcu
.head
);
665 init_completion(&rcu
.completion
);
666 /* Will wake me after RCU finished. */
667 call_rcu(&rcu
.head
, wakeme_after_rcu
);
669 wait_for_completion(&rcu
.completion
);
670 destroy_rcu_head_on_stack(&rcu
.head
);
672 EXPORT_SYMBOL_GPL(synchronize_rcu
);
674 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
675 static long sync_rcu_preempt_exp_count
;
676 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
679 * Return non-zero if there are any tasks in RCU read-side critical
680 * sections blocking the current preemptible-RCU expedited grace period.
681 * If there is no preemptible-RCU expedited grace period currently in
682 * progress, returns zero unconditionally.
684 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
686 return rnp
->exp_tasks
!= NULL
;
690 * return non-zero if there is no RCU expedited grace period in progress
691 * for the specified rcu_node structure, in other words, if all CPUs and
692 * tasks covered by the specified rcu_node structure have done their bit
693 * for the current expedited grace period. Works only for preemptible
694 * RCU -- other RCU implementation use other means.
696 * Caller must hold sync_rcu_preempt_exp_mutex.
698 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
700 return !rcu_preempted_readers_exp(rnp
) &&
701 ACCESS_ONCE(rnp
->expmask
) == 0;
705 * Report the exit from RCU read-side critical section for the last task
706 * that queued itself during or before the current expedited preemptible-RCU
707 * grace period. This event is reported either to the rcu_node structure on
708 * which the task was queued or to one of that rcu_node structure's ancestors,
709 * recursively up the tree. (Calm down, calm down, we do the recursion
712 * Caller must hold sync_rcu_preempt_exp_mutex.
714 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
719 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
721 if (!sync_rcu_preempt_exp_done(rnp
)) {
722 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
725 if (rnp
->parent
== NULL
) {
726 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
727 wake_up(&sync_rcu_preempt_exp_wq
);
731 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
733 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
734 rnp
->expmask
&= ~mask
;
739 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
740 * grace period for the specified rcu_node structure. If there are no such
741 * tasks, report it up the rcu_node hierarchy.
743 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
746 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
751 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
752 if (list_empty(&rnp
->blkd_tasks
))
753 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
755 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
756 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
760 rcu_report_exp_rnp(rsp
, rnp
);
764 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
765 * is to invoke synchronize_sched_expedited() to push all the tasks to
766 * the ->blkd_tasks lists and wait for this list to drain.
768 void synchronize_rcu_expedited(void)
771 struct rcu_node
*rnp
;
772 struct rcu_state
*rsp
= &rcu_preempt_state
;
776 smp_mb(); /* Caller's modifications seen first by other CPUs. */
777 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
778 smp_mb(); /* Above access cannot bleed into critical section. */
781 * Acquire lock, falling back to synchronize_rcu() if too many
782 * lock-acquisition failures. Of course, if someone does the
783 * expedited grace period for us, just leave.
785 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
787 udelay(trycount
* num_online_cpus());
792 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
793 goto mb_ret
; /* Others did our work for us. */
795 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
796 goto unlock_mb_ret
; /* Others did our work for us. */
798 /* force all RCU readers onto ->blkd_tasks lists. */
799 synchronize_sched_expedited();
801 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
803 /* Initialize ->expmask for all non-leaf rcu_node structures. */
804 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
805 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
806 rnp
->expmask
= rnp
->qsmaskinit
;
807 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
810 /* Snapshot current state of ->blkd_tasks lists. */
811 rcu_for_each_leaf_node(rsp
, rnp
)
812 sync_rcu_preempt_exp_init(rsp
, rnp
);
813 if (NUM_RCU_NODES
> 1)
814 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
816 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
818 /* Wait for snapshotted ->blkd_tasks lists to drain. */
819 rnp
= rcu_get_root(rsp
);
820 wait_event(sync_rcu_preempt_exp_wq
,
821 sync_rcu_preempt_exp_done(rnp
));
823 /* Clean up and exit. */
824 smp_mb(); /* ensure expedited GP seen before counter increment. */
825 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
827 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
829 smp_mb(); /* ensure subsequent action seen after grace period. */
831 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
834 * Check to see if there is any immediate preemptible-RCU-related work
837 static int rcu_preempt_pending(int cpu
)
839 return __rcu_pending(&rcu_preempt_state
,
840 &per_cpu(rcu_preempt_data
, cpu
));
844 * Does preemptible RCU need the CPU to stay out of dynticks mode?
846 static int rcu_preempt_needs_cpu(int cpu
)
848 return !!per_cpu(rcu_preempt_data
, cpu
).nxtlist
;
852 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
854 void rcu_barrier(void)
856 _rcu_barrier(&rcu_preempt_state
, call_rcu
);
858 EXPORT_SYMBOL_GPL(rcu_barrier
);
861 * Initialize preemptible RCU's per-CPU data.
863 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
865 rcu_init_percpu_data(cpu
, &rcu_preempt_state
, 1);
869 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
871 static void rcu_preempt_send_cbs_to_online(void)
873 rcu_send_cbs_to_online(&rcu_preempt_state
);
877 * Initialize preemptible RCU's state structures.
879 static void __init
__rcu_init_preempt(void)
881 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
885 * Check for a task exiting while in a preemptible-RCU read-side
886 * critical section, clean up if so. No need to issue warnings,
887 * as debug_check_no_locks_held() already does this if lockdep
892 struct task_struct
*t
= current
;
894 if (t
->rcu_read_lock_nesting
== 0)
896 t
->rcu_read_lock_nesting
= 1;
900 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
902 static struct rcu_state
*rcu_state
= &rcu_sched_state
;
905 * Tell them what RCU they are running.
907 static void __init
rcu_bootup_announce(void)
909 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
910 rcu_bootup_announce_oddness();
914 * Return the number of RCU batches processed thus far for debug & stats.
916 long rcu_batches_completed(void)
918 return rcu_batches_completed_sched();
920 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
923 * Force a quiescent state for RCU, which, because there is no preemptible
924 * RCU, becomes the same as rcu-sched.
926 void rcu_force_quiescent_state(void)
928 rcu_sched_force_quiescent_state();
930 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
933 * Because preemptible RCU does not exist, we never have to check for
934 * CPUs being in quiescent states.
936 static void rcu_preempt_note_context_switch(int cpu
)
941 * Because preemptible RCU does not exist, there are never any preempted
944 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
949 #ifdef CONFIG_HOTPLUG_CPU
951 /* Because preemptible RCU does not exist, no quieting of tasks. */
952 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
954 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
957 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
960 * Because preemptible RCU does not exist, we never have to check for
961 * tasks blocked within RCU read-side critical sections.
963 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
968 * Because preemptible RCU does not exist, we never have to check for
969 * tasks blocked within RCU read-side critical sections.
971 static void rcu_print_task_stall(struct rcu_node
*rnp
)
976 * Because preemptible RCU does not exist, there is no need to suppress
977 * its CPU stall warnings.
979 static void rcu_preempt_stall_reset(void)
984 * Because there is no preemptible RCU, there can be no readers blocked,
985 * so there is no need to check for blocked tasks. So check only for
986 * bogus qsmask values.
988 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
990 WARN_ON_ONCE(rnp
->qsmask
);
993 #ifdef CONFIG_HOTPLUG_CPU
996 * Because preemptible RCU does not exist, it never needs to migrate
997 * tasks that were blocked within RCU read-side critical sections, and
998 * such non-existent tasks cannot possibly have been blocking the current
1001 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
1002 struct rcu_node
*rnp
,
1003 struct rcu_data
*rdp
)
1009 * Because preemptible RCU does not exist, it never needs CPU-offline
1012 static void rcu_preempt_offline_cpu(int cpu
)
1016 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1019 * Because preemptible RCU does not exist, it never has any callbacks
1022 static void rcu_preempt_check_callbacks(int cpu
)
1027 * Because preemptible RCU does not exist, it never has any callbacks
1030 static void rcu_preempt_process_callbacks(void)
1035 * Wait for an rcu-preempt grace period, but make it happen quickly.
1036 * But because preemptible RCU does not exist, map to rcu-sched.
1038 void synchronize_rcu_expedited(void)
1040 synchronize_sched_expedited();
1042 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
1044 #ifdef CONFIG_HOTPLUG_CPU
1047 * Because preemptible RCU does not exist, there is never any need to
1048 * report on tasks preempted in RCU read-side critical sections during
1049 * expedited RCU grace periods.
1051 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1056 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1059 * Because preemptible RCU does not exist, it never has any work to do.
1061 static int rcu_preempt_pending(int cpu
)
1067 * Because preemptible RCU does not exist, it never needs any CPU.
1069 static int rcu_preempt_needs_cpu(int cpu
)
1075 * Because preemptible RCU does not exist, rcu_barrier() is just
1076 * another name for rcu_barrier_sched().
1078 void rcu_barrier(void)
1080 rcu_barrier_sched();
1082 EXPORT_SYMBOL_GPL(rcu_barrier
);
1085 * Because preemptible RCU does not exist, there is no per-CPU
1086 * data to initialize.
1088 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
1093 * Because there is no preemptible RCU, there are no callbacks to move.
1095 static void rcu_preempt_send_cbs_to_online(void)
1100 * Because preemptible RCU does not exist, it need not be initialized.
1102 static void __init
__rcu_init_preempt(void)
1106 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1108 #ifdef CONFIG_RCU_BOOST
1110 #include "rtmutex_common.h"
1112 #ifdef CONFIG_RCU_TRACE
1114 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1116 if (list_empty(&rnp
->blkd_tasks
))
1117 rnp
->n_balk_blkd_tasks
++;
1118 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
1119 rnp
->n_balk_exp_gp_tasks
++;
1120 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
1121 rnp
->n_balk_boost_tasks
++;
1122 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
1123 rnp
->n_balk_notblocked
++;
1124 else if (rnp
->gp_tasks
!= NULL
&&
1125 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
1126 rnp
->n_balk_notyet
++;
1131 #else /* #ifdef CONFIG_RCU_TRACE */
1133 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1137 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1140 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1141 * or ->boost_tasks, advancing the pointer to the next task in the
1142 * ->blkd_tasks list.
1144 * Note that irqs must be enabled: boosting the task can block.
1145 * Returns 1 if there are more tasks needing to be boosted.
1147 static int rcu_boost(struct rcu_node
*rnp
)
1149 unsigned long flags
;
1150 struct rt_mutex mtx
;
1151 struct task_struct
*t
;
1152 struct list_head
*tb
;
1154 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
)
1155 return 0; /* Nothing left to boost. */
1157 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1160 * Recheck under the lock: all tasks in need of boosting
1161 * might exit their RCU read-side critical sections on their own.
1163 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1164 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1169 * Preferentially boost tasks blocking expedited grace periods.
1170 * This cannot starve the normal grace periods because a second
1171 * expedited grace period must boost all blocked tasks, including
1172 * those blocking the pre-existing normal grace period.
1174 if (rnp
->exp_tasks
!= NULL
) {
1175 tb
= rnp
->exp_tasks
;
1176 rnp
->n_exp_boosts
++;
1178 tb
= rnp
->boost_tasks
;
1179 rnp
->n_normal_boosts
++;
1181 rnp
->n_tasks_boosted
++;
1184 * We boost task t by manufacturing an rt_mutex that appears to
1185 * be held by task t. We leave a pointer to that rt_mutex where
1186 * task t can find it, and task t will release the mutex when it
1187 * exits its outermost RCU read-side critical section. Then
1188 * simply acquiring this artificial rt_mutex will boost task
1189 * t's priority. (Thanks to tglx for suggesting this approach!)
1191 * Note that task t must acquire rnp->lock to remove itself from
1192 * the ->blkd_tasks list, which it will do from exit() if from
1193 * nowhere else. We therefore are guaranteed that task t will
1194 * stay around at least until we drop rnp->lock. Note that
1195 * rnp->lock also resolves races between our priority boosting
1196 * and task t's exiting its outermost RCU read-side critical
1199 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1200 rt_mutex_init_proxy_locked(&mtx
, t
);
1201 t
->rcu_boost_mutex
= &mtx
;
1203 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1204 rt_mutex_lock(&mtx
); /* Side effect: boosts task t's priority. */
1205 rt_mutex_unlock(&mtx
); /* Keep lockdep happy. */
1207 return rnp
->exp_tasks
!= NULL
|| rnp
->boost_tasks
!= NULL
;
1211 * Timer handler to initiate waking up of boost kthreads that
1212 * have yielded the CPU due to excessive numbers of tasks to
1213 * boost. We wake up the per-rcu_node kthread, which in turn
1214 * will wake up the booster kthread.
1216 static void rcu_boost_kthread_timer(unsigned long arg
)
1218 invoke_rcu_node_kthread((struct rcu_node
*)arg
);
1222 * Priority-boosting kthread. One per leaf rcu_node and one for the
1225 static int rcu_boost_kthread(void *arg
)
1227 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1232 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1233 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1234 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1235 more2boost
= rcu_boost(rnp
);
1241 rcu_yield(rcu_boost_kthread_timer
, (unsigned long)rnp
);
1250 * Check to see if it is time to start boosting RCU readers that are
1251 * blocking the current grace period, and, if so, tell the per-rcu_node
1252 * kthread to start boosting them. If there is an expedited grace
1253 * period in progress, it is always time to boost.
1255 * The caller must hold rnp->lock, which this function releases,
1256 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1257 * so we don't need to worry about it going away.
1259 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1261 struct task_struct
*t
;
1263 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1264 rnp
->n_balk_exp_gp_tasks
++;
1265 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1268 if (rnp
->exp_tasks
!= NULL
||
1269 (rnp
->gp_tasks
!= NULL
&&
1270 rnp
->boost_tasks
== NULL
&&
1272 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1273 if (rnp
->exp_tasks
== NULL
)
1274 rnp
->boost_tasks
= rnp
->gp_tasks
;
1275 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1276 t
= rnp
->boost_kthread_task
;
1280 rcu_initiate_boost_trace(rnp
);
1281 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1286 * Wake up the per-CPU kthread to invoke RCU callbacks.
1288 static void invoke_rcu_callbacks_kthread(void)
1290 unsigned long flags
;
1292 local_irq_save(flags
);
1293 __this_cpu_write(rcu_cpu_has_work
, 1);
1294 if (__this_cpu_read(rcu_cpu_kthread_task
) == NULL
) {
1295 local_irq_restore(flags
);
1298 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task
));
1299 local_irq_restore(flags
);
1303 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1304 * held, so no one should be messing with the existence of the boost
1307 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
,
1310 struct task_struct
*t
;
1312 t
= rnp
->boost_kthread_task
;
1314 set_cpus_allowed_ptr(rnp
->boost_kthread_task
, cm
);
1317 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1320 * Do priority-boost accounting for the start of a new grace period.
1322 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1324 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1328 * Create an RCU-boost kthread for the specified node if one does not
1329 * already exist. We only create this kthread for preemptible RCU.
1330 * Returns zero if all is well, a negated errno otherwise.
1332 static int __cpuinit
rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1333 struct rcu_node
*rnp
,
1336 unsigned long flags
;
1337 struct sched_param sp
;
1338 struct task_struct
*t
;
1340 if (&rcu_preempt_state
!= rsp
)
1343 if (rnp
->boost_kthread_task
!= NULL
)
1345 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1346 "rcub%d", rnp_index
);
1349 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1350 rnp
->boost_kthread_task
= t
;
1351 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1352 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1353 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1354 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1358 #ifdef CONFIG_HOTPLUG_CPU
1361 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1363 static void rcu_stop_cpu_kthread(int cpu
)
1365 struct task_struct
*t
;
1367 /* Stop the CPU's kthread. */
1368 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1370 per_cpu(rcu_cpu_kthread_task
, cpu
) = NULL
;
1375 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1377 static void rcu_kthread_do_work(void)
1379 rcu_do_batch(&rcu_sched_state
, &__get_cpu_var(rcu_sched_data
));
1380 rcu_do_batch(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1381 rcu_preempt_do_callbacks();
1385 * Wake up the specified per-rcu_node-structure kthread.
1386 * Because the per-rcu_node kthreads are immortal, we don't need
1387 * to do anything to keep them alive.
1389 static void invoke_rcu_node_kthread(struct rcu_node
*rnp
)
1391 struct task_struct
*t
;
1393 t
= rnp
->node_kthread_task
;
1399 * Set the specified CPU's kthread to run RT or not, as specified by
1400 * the to_rt argument. The CPU-hotplug locks are held, so the task
1401 * is not going away.
1403 static void rcu_cpu_kthread_setrt(int cpu
, int to_rt
)
1406 struct sched_param sp
;
1407 struct task_struct
*t
;
1409 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1413 policy
= SCHED_FIFO
;
1414 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1416 policy
= SCHED_NORMAL
;
1417 sp
.sched_priority
= 0;
1419 sched_setscheduler_nocheck(t
, policy
, &sp
);
1423 * Timer handler to initiate the waking up of per-CPU kthreads that
1424 * have yielded the CPU due to excess numbers of RCU callbacks.
1425 * We wake up the per-rcu_node kthread, which in turn will wake up
1426 * the booster kthread.
1428 static void rcu_cpu_kthread_timer(unsigned long arg
)
1430 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, arg
);
1431 struct rcu_node
*rnp
= rdp
->mynode
;
1433 atomic_or(rdp
->grpmask
, &rnp
->wakemask
);
1434 invoke_rcu_node_kthread(rnp
);
1438 * Drop to non-real-time priority and yield, but only after posting a
1439 * timer that will cause us to regain our real-time priority if we
1440 * remain preempted. Either way, we restore our real-time priority
1443 static void rcu_yield(void (*f
)(unsigned long), unsigned long arg
)
1445 struct sched_param sp
;
1446 struct timer_list yield_timer
;
1448 setup_timer_on_stack(&yield_timer
, f
, arg
);
1449 mod_timer(&yield_timer
, jiffies
+ 2);
1450 sp
.sched_priority
= 0;
1451 sched_setscheduler_nocheck(current
, SCHED_NORMAL
, &sp
);
1452 set_user_nice(current
, 19);
1454 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1455 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1456 del_timer(&yield_timer
);
1460 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1461 * This can happen while the corresponding CPU is either coming online
1462 * or going offline. We cannot wait until the CPU is fully online
1463 * before starting the kthread, because the various notifier functions
1464 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1465 * the corresponding CPU is online.
1467 * Return 1 if the kthread needs to stop, 0 otherwise.
1469 * Caller must disable bh. This function can momentarily enable it.
1471 static int rcu_cpu_kthread_should_stop(int cpu
)
1473 while (cpu_is_offline(cpu
) ||
1474 !cpumask_equal(¤t
->cpus_allowed
, cpumask_of(cpu
)) ||
1475 smp_processor_id() != cpu
) {
1476 if (kthread_should_stop())
1478 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1479 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = raw_smp_processor_id();
1481 schedule_timeout_uninterruptible(1);
1482 if (!cpumask_equal(¤t
->cpus_allowed
, cpumask_of(cpu
)))
1483 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
1486 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = cpu
;
1491 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1492 * earlier RCU softirq.
1494 static int rcu_cpu_kthread(void *arg
)
1496 int cpu
= (int)(long)arg
;
1497 unsigned long flags
;
1499 unsigned int *statusp
= &per_cpu(rcu_cpu_kthread_status
, cpu
);
1501 char *workp
= &per_cpu(rcu_cpu_has_work
, cpu
);
1504 *statusp
= RCU_KTHREAD_WAITING
;
1505 rcu_wait(*workp
!= 0 || kthread_should_stop());
1507 if (rcu_cpu_kthread_should_stop(cpu
)) {
1511 *statusp
= RCU_KTHREAD_RUNNING
;
1512 per_cpu(rcu_cpu_kthread_loops
, cpu
)++;
1513 local_irq_save(flags
);
1516 local_irq_restore(flags
);
1518 rcu_kthread_do_work();
1525 *statusp
= RCU_KTHREAD_YIELDING
;
1526 rcu_yield(rcu_cpu_kthread_timer
, (unsigned long)cpu
);
1530 *statusp
= RCU_KTHREAD_STOPPED
;
1535 * Spawn a per-CPU kthread, setting up affinity and priority.
1536 * Because the CPU hotplug lock is held, no other CPU will be attempting
1537 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1538 * attempting to access it during boot, but the locking in kthread_bind()
1539 * will enforce sufficient ordering.
1541 * Please note that we cannot simply refuse to wake up the per-CPU
1542 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1543 * which can result in softlockup complaints if the task ends up being
1544 * idle for more than a couple of minutes.
1546 * However, please note also that we cannot bind the per-CPU kthread to its
1547 * CPU until that CPU is fully online. We also cannot wait until the
1548 * CPU is fully online before we create its per-CPU kthread, as this would
1549 * deadlock the system when CPU notifiers tried waiting for grace
1550 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1551 * is online. If its CPU is not yet fully online, then the code in
1552 * rcu_cpu_kthread() will wait until it is fully online, and then do
1555 static int __cpuinit
rcu_spawn_one_cpu_kthread(int cpu
)
1557 struct sched_param sp
;
1558 struct task_struct
*t
;
1560 if (!rcu_scheduler_fully_active
||
1561 per_cpu(rcu_cpu_kthread_task
, cpu
) != NULL
)
1563 t
= kthread_create(rcu_cpu_kthread
, (void *)(long)cpu
, "rcuc%d", cpu
);
1566 if (cpu_online(cpu
))
1567 kthread_bind(t
, cpu
);
1568 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = cpu
;
1569 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task
, cpu
) != NULL
);
1570 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1571 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1572 per_cpu(rcu_cpu_kthread_task
, cpu
) = t
;
1573 wake_up_process(t
); /* Get to TASK_INTERRUPTIBLE quickly. */
1578 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1579 * kthreads when needed. We ignore requests to wake up kthreads
1580 * for offline CPUs, which is OK because force_quiescent_state()
1581 * takes care of this case.
1583 static int rcu_node_kthread(void *arg
)
1586 unsigned long flags
;
1588 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1589 struct sched_param sp
;
1590 struct task_struct
*t
;
1593 rnp
->node_kthread_status
= RCU_KTHREAD_WAITING
;
1594 rcu_wait(atomic_read(&rnp
->wakemask
) != 0);
1595 rnp
->node_kthread_status
= RCU_KTHREAD_RUNNING
;
1596 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1597 mask
= atomic_xchg(&rnp
->wakemask
, 0);
1598 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1599 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1) {
1600 if ((mask
& 0x1) == 0)
1603 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1604 if (!cpu_online(cpu
) || t
== NULL
) {
1608 per_cpu(rcu_cpu_has_work
, cpu
) = 1;
1609 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1610 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1615 rnp
->node_kthread_status
= RCU_KTHREAD_STOPPED
;
1620 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1621 * served by the rcu_node in question. The CPU hotplug lock is still
1622 * held, so the value of rnp->qsmaskinit will be stable.
1624 * We don't include outgoingcpu in the affinity set, use -1 if there is
1625 * no outgoing CPU. If there are no CPUs left in the affinity set,
1626 * this function allows the kthread to execute on any CPU.
1628 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1632 unsigned long mask
= rnp
->qsmaskinit
;
1634 if (rnp
->node_kthread_task
== NULL
)
1636 if (!alloc_cpumask_var(&cm
, GFP_KERNEL
))
1639 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1640 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1641 cpumask_set_cpu(cpu
, cm
);
1642 if (cpumask_weight(cm
) == 0) {
1644 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1645 cpumask_clear_cpu(cpu
, cm
);
1646 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1648 set_cpus_allowed_ptr(rnp
->node_kthread_task
, cm
);
1649 rcu_boost_kthread_setaffinity(rnp
, cm
);
1650 free_cpumask_var(cm
);
1654 * Spawn a per-rcu_node kthread, setting priority and affinity.
1655 * Called during boot before online/offline can happen, or, if
1656 * during runtime, with the main CPU-hotplug locks held. So only
1657 * one of these can be executing at a time.
1659 static int __cpuinit
rcu_spawn_one_node_kthread(struct rcu_state
*rsp
,
1660 struct rcu_node
*rnp
)
1662 unsigned long flags
;
1663 int rnp_index
= rnp
- &rsp
->node
[0];
1664 struct sched_param sp
;
1665 struct task_struct
*t
;
1667 if (!rcu_scheduler_fully_active
||
1668 rnp
->qsmaskinit
== 0)
1670 if (rnp
->node_kthread_task
== NULL
) {
1671 t
= kthread_create(rcu_node_kthread
, (void *)rnp
,
1672 "rcun%d", rnp_index
);
1675 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1676 rnp
->node_kthread_task
= t
;
1677 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1678 sp
.sched_priority
= 99;
1679 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1680 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1682 return rcu_spawn_one_boost_kthread(rsp
, rnp
, rnp_index
);
1686 * Spawn all kthreads -- called as soon as the scheduler is running.
1688 static int __init
rcu_spawn_kthreads(void)
1691 struct rcu_node
*rnp
;
1693 rcu_scheduler_fully_active
= 1;
1694 for_each_possible_cpu(cpu
) {
1695 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1696 if (cpu_online(cpu
))
1697 (void)rcu_spawn_one_cpu_kthread(cpu
);
1699 rnp
= rcu_get_root(rcu_state
);
1700 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1701 if (NUM_RCU_NODES
> 1) {
1702 rcu_for_each_leaf_node(rcu_state
, rnp
)
1703 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1707 early_initcall(rcu_spawn_kthreads
);
1709 static void __cpuinit
rcu_prepare_kthreads(int cpu
)
1711 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1712 struct rcu_node
*rnp
= rdp
->mynode
;
1714 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1715 if (rcu_scheduler_fully_active
) {
1716 (void)rcu_spawn_one_cpu_kthread(cpu
);
1717 if (rnp
->node_kthread_task
== NULL
)
1718 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1722 #else /* #ifdef CONFIG_RCU_BOOST */
1724 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1726 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1729 static void invoke_rcu_callbacks_kthread(void)
1734 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1738 #ifdef CONFIG_HOTPLUG_CPU
1740 static void rcu_stop_cpu_kthread(int cpu
)
1744 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1746 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1750 static void rcu_cpu_kthread_setrt(int cpu
, int to_rt
)
1754 static int __init
rcu_scheduler_really_started(void)
1756 rcu_scheduler_fully_active
= 1;
1759 early_initcall(rcu_scheduler_really_started
);
1761 static void __cpuinit
rcu_prepare_kthreads(int cpu
)
1765 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1769 void synchronize_sched_expedited(void)
1773 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
1775 #else /* #ifndef CONFIG_SMP */
1777 static atomic_t sync_sched_expedited_started
= ATOMIC_INIT(0);
1778 static atomic_t sync_sched_expedited_done
= ATOMIC_INIT(0);
1780 static int synchronize_sched_expedited_cpu_stop(void *data
)
1783 * There must be a full memory barrier on each affected CPU
1784 * between the time that try_stop_cpus() is called and the
1785 * time that it returns.
1787 * In the current initial implementation of cpu_stop, the
1788 * above condition is already met when the control reaches
1789 * this point and the following smp_mb() is not strictly
1790 * necessary. Do smp_mb() anyway for documentation and
1791 * robustness against future implementation changes.
1793 smp_mb(); /* See above comment block. */
1798 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1799 * approach to force grace period to end quickly. This consumes
1800 * significant time on all CPUs, and is thus not recommended for
1801 * any sort of common-case code.
1803 * Note that it is illegal to call this function while holding any
1804 * lock that is acquired by a CPU-hotplug notifier. Failing to
1805 * observe this restriction will result in deadlock.
1807 * This implementation can be thought of as an application of ticket
1808 * locking to RCU, with sync_sched_expedited_started and
1809 * sync_sched_expedited_done taking on the roles of the halves
1810 * of the ticket-lock word. Each task atomically increments
1811 * sync_sched_expedited_started upon entry, snapshotting the old value,
1812 * then attempts to stop all the CPUs. If this succeeds, then each
1813 * CPU will have executed a context switch, resulting in an RCU-sched
1814 * grace period. We are then done, so we use atomic_cmpxchg() to
1815 * update sync_sched_expedited_done to match our snapshot -- but
1816 * only if someone else has not already advanced past our snapshot.
1818 * On the other hand, if try_stop_cpus() fails, we check the value
1819 * of sync_sched_expedited_done. If it has advanced past our
1820 * initial snapshot, then someone else must have forced a grace period
1821 * some time after we took our snapshot. In this case, our work is
1822 * done for us, and we can simply return. Otherwise, we try again,
1823 * but keep our initial snapshot for purposes of checking for someone
1824 * doing our work for us.
1826 * If we fail too many times in a row, we fall back to synchronize_sched().
1828 void synchronize_sched_expedited(void)
1830 int firstsnap
, s
, snap
, trycount
= 0;
1832 /* Note that atomic_inc_return() implies full memory barrier. */
1833 firstsnap
= snap
= atomic_inc_return(&sync_sched_expedited_started
);
1837 * Each pass through the following loop attempts to force a
1838 * context switch on each CPU.
1840 while (try_stop_cpus(cpu_online_mask
,
1841 synchronize_sched_expedited_cpu_stop
,
1845 /* No joy, try again later. Or just synchronize_sched(). */
1846 if (trycount
++ < 10)
1847 udelay(trycount
* num_online_cpus());
1849 synchronize_sched();
1853 /* Check to see if someone else did our work for us. */
1854 s
= atomic_read(&sync_sched_expedited_done
);
1855 if (UINT_CMP_GE((unsigned)s
, (unsigned)firstsnap
)) {
1856 smp_mb(); /* ensure test happens before caller kfree */
1861 * Refetching sync_sched_expedited_started allows later
1862 * callers to piggyback on our grace period. We subtract
1863 * 1 to get the same token that the last incrementer got.
1864 * We retry after they started, so our grace period works
1865 * for them, and they started after our first try, so their
1866 * grace period works for us.
1869 snap
= atomic_read(&sync_sched_expedited_started
) - 1;
1870 smp_mb(); /* ensure read is before try_stop_cpus(). */
1874 * Everyone up to our most recent fetch is covered by our grace
1875 * period. Update the counter, but only if our work is still
1876 * relevant -- which it won't be if someone who started later
1877 * than we did beat us to the punch.
1880 s
= atomic_read(&sync_sched_expedited_done
);
1881 if (UINT_CMP_GE((unsigned)s
, (unsigned)snap
)) {
1882 smp_mb(); /* ensure test happens before caller kfree */
1885 } while (atomic_cmpxchg(&sync_sched_expedited_done
, s
, snap
) != s
);
1889 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
1891 #endif /* #else #ifndef CONFIG_SMP */
1893 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1896 * Check to see if any future RCU-related work will need to be done
1897 * by the current CPU, even if none need be done immediately, returning
1898 * 1 if so. This function is part of the RCU implementation; it is -not-
1899 * an exported member of the RCU API.
1901 * Because we have preemptible RCU, just check whether this CPU needs
1902 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1903 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1905 int rcu_needs_cpu(int cpu
)
1907 return rcu_needs_cpu_quick_check(cpu
);
1911 * Check to see if we need to continue a callback-flush operations to
1912 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1913 * entry is not configured, so we never do need to.
1915 static void rcu_needs_cpu_flush(void)
1919 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1921 #define RCU_NEEDS_CPU_FLUSHES 5
1922 static DEFINE_PER_CPU(int, rcu_dyntick_drain
);
1923 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff
);
1926 * Check to see if any future RCU-related work will need to be done
1927 * by the current CPU, even if none need be done immediately, returning
1928 * 1 if so. This function is part of the RCU implementation; it is -not-
1929 * an exported member of the RCU API.
1931 * Because we are not supporting preemptible RCU, attempt to accelerate
1932 * any current grace periods so that RCU no longer needs this CPU, but
1933 * only if all other CPUs are already in dynticks-idle mode. This will
1934 * allow the CPU cores to be powered down immediately, as opposed to after
1935 * waiting many milliseconds for grace periods to elapse.
1937 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1938 * disabled, we do one pass of force_quiescent_state(), then do a
1939 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1940 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
1942 int rcu_needs_cpu(int cpu
)
1948 /* Check for being in the holdoff period. */
1949 if (per_cpu(rcu_dyntick_holdoff
, cpu
) == jiffies
)
1950 return rcu_needs_cpu_quick_check(cpu
);
1952 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1953 for_each_online_cpu(thatcpu
) {
1956 snap
= atomic_add_return(0, &per_cpu(rcu_dynticks
,
1958 smp_mb(); /* Order sampling of snap with end of grace period. */
1959 if ((snap
& 0x1) != 0) {
1960 per_cpu(rcu_dyntick_drain
, cpu
) = 0;
1961 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
- 1;
1962 return rcu_needs_cpu_quick_check(cpu
);
1966 /* Check and update the rcu_dyntick_drain sequencing. */
1967 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1968 /* First time through, initialize the counter. */
1969 per_cpu(rcu_dyntick_drain
, cpu
) = RCU_NEEDS_CPU_FLUSHES
;
1970 } else if (--per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1971 /* We have hit the limit, so time to give up. */
1972 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
;
1973 return rcu_needs_cpu_quick_check(cpu
);
1976 /* Do one step pushing remaining RCU callbacks through. */
1977 if (per_cpu(rcu_sched_data
, cpu
).nxtlist
) {
1979 force_quiescent_state(&rcu_sched_state
, 0);
1980 c
= c
|| per_cpu(rcu_sched_data
, cpu
).nxtlist
;
1982 if (per_cpu(rcu_bh_data
, cpu
).nxtlist
) {
1984 force_quiescent_state(&rcu_bh_state
, 0);
1985 c
= c
|| per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1988 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1995 * Check to see if we need to continue a callback-flush operations to
1996 * allow the last CPU to enter dyntick-idle mode.
1998 static void rcu_needs_cpu_flush(void)
2000 int cpu
= smp_processor_id();
2001 unsigned long flags
;
2003 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0)
2005 local_irq_save(flags
);
2006 (void)rcu_needs_cpu(cpu
);
2007 local_irq_restore(flags
);
2010 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */