2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 EXPORT_SYMBOL(sysctl_tcp_reordering
);
82 int sysctl_tcp_ecn __read_mostly
= 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 int sysctl_tcp_stdurg __read_mostly
;
90 int sysctl_tcp_rfc1337 __read_mostly
;
91 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
92 int sysctl_tcp_frto __read_mostly
= 2;
93 int sysctl_tcp_frto_response __read_mostly
;
94 int sysctl_tcp_nometrics_save __read_mostly
;
96 int sysctl_tcp_thin_dupack __read_mostly
;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_abc __read_mostly
;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
130 struct inet_connection_sock
*icsk
= inet_csk(sk
);
131 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
134 icsk
->icsk_ack
.last_seg_size
= 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
140 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
141 icsk
->icsk_ack
.rcv_mss
= len
;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len
+= skb
->data
- skb_transport_header(skb
);
149 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
156 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len
-= tcp_sk(sk
)->tcp_header_len
;
162 icsk
->icsk_ack
.last_seg_size
= len
;
164 icsk
->icsk_ack
.rcv_mss
= len
;
168 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
174 static void tcp_incr_quickack(struct sock
*sk
)
176 struct inet_connection_sock
*icsk
= inet_csk(sk
);
177 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
181 if (quickacks
> icsk
->icsk_ack
.quick
)
182 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
185 static void tcp_enter_quickack_mode(struct sock
*sk
)
187 struct inet_connection_sock
*icsk
= inet_csk(sk
);
188 tcp_incr_quickack(sk
);
189 icsk
->icsk_ack
.pingpong
= 0;
190 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
199 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
200 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
205 if (tp
->ecn_flags
& TCP_ECN_OK
)
206 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
211 if (tcp_hdr(skb
)->cwr
)
212 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
222 if (tp
->ecn_flags
& TCP_ECN_OK
) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
224 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
229 tcp_enter_quickack_mode((struct sock
*)tp
);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
235 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
236 tp
->ecn_flags
&= ~TCP_ECN_OK
;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
241 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
242 tp
->ecn_flags
&= ~TCP_ECN_OK
;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
247 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock
*sk
)
259 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
260 sizeof(struct sk_buff
);
262 if (sk
->sk_sndbuf
< 3 * sndmem
) {
263 sk
->sk_sndbuf
= 3 * sndmem
;
264 if (sk
->sk_sndbuf
> sysctl_tcp_wmem
[2])
265 sk
->sk_sndbuf
= sysctl_tcp_wmem
[2];
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
297 struct tcp_sock
*tp
= tcp_sk(sk
);
299 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
300 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
302 while (tp
->rcv_ssthresh
<= window
) {
303 if (truesize
<= skb
->len
)
304 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
312 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
314 struct tcp_sock
*tp
= tcp_sk(sk
);
317 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
318 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
319 !tcp_memory_pressure
) {
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
325 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
326 incr
= 2 * tp
->advmss
;
328 incr
= __tcp_grow_window(sk
, skb
);
331 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
333 inet_csk(sk
)->icsk_ack
.quick
|= 1;
338 /* 3. Tuning rcvbuf, when connection enters established state. */
340 static void tcp_fixup_rcvbuf(struct sock
*sk
)
342 struct tcp_sock
*tp
= tcp_sk(sk
);
343 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
345 /* Try to select rcvbuf so that 4 mss-sized segments
346 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
349 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
351 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
352 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
355 /* 4. Try to fixup all. It is made immediately after connection enters
358 static void tcp_init_buffer_space(struct sock
*sk
)
360 struct tcp_sock
*tp
= tcp_sk(sk
);
363 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
364 tcp_fixup_rcvbuf(sk
);
365 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
366 tcp_fixup_sndbuf(sk
);
368 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
370 maxwin
= tcp_full_space(sk
);
372 if (tp
->window_clamp
>= maxwin
) {
373 tp
->window_clamp
= maxwin
;
375 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
376 tp
->window_clamp
= max(maxwin
-
377 (maxwin
>> sysctl_tcp_app_win
),
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win
&&
383 tp
->window_clamp
> 2 * tp
->advmss
&&
384 tp
->window_clamp
+ tp
->advmss
> maxwin
)
385 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
387 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
388 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock
*sk
)
394 struct tcp_sock
*tp
= tcp_sk(sk
);
395 struct inet_connection_sock
*icsk
= inet_csk(sk
);
397 icsk
->icsk_ack
.quick
= 0;
399 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
400 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
401 !tcp_memory_pressure
&&
402 atomic_long_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
403 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
406 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
407 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
410 /* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
417 void tcp_initialize_rcv_mss(struct sock
*sk
)
419 struct tcp_sock
*tp
= tcp_sk(sk
);
420 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
422 hint
= min(hint
, tp
->rcv_wnd
/ 2);
423 hint
= min(hint
, TCP_MSS_DEFAULT
);
424 hint
= max(hint
, TCP_MIN_MSS
);
426 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
430 /* Receiver "autotuning" code.
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
436 * More detail on this code can be found at
437 * <http://staff.psc.edu/jheffner/>,
438 * though this reference is out of date. A new paper
441 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
443 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
449 if (new_sample
!= 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
455 * Also, since we are only going for a minimum in the
456 * non-timestamp case, we do not smooth things out
457 * else with timestamps disabled convergence takes too
461 m
-= (new_sample
>> 3);
463 } else if (m
< new_sample
)
466 /* No previous measure. */
470 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
471 tp
->rcv_rtt_est
.rtt
= new_sample
;
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
476 if (tp
->rcv_rtt_est
.time
== 0)
478 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
480 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
483 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
484 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
487 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
488 const struct sk_buff
*skb
)
490 struct tcp_sock
*tp
= tcp_sk(sk
);
491 if (tp
->rx_opt
.rcv_tsecr
&&
492 (TCP_SKB_CB(skb
)->end_seq
-
493 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
494 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
501 void tcp_rcv_space_adjust(struct sock
*sk
)
503 struct tcp_sock
*tp
= tcp_sk(sk
);
507 if (tp
->rcvq_space
.time
== 0)
510 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
511 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
514 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
516 space
= max(tp
->rcvq_space
.space
, space
);
518 if (tp
->rcvq_space
.space
!= space
) {
521 tp
->rcvq_space
.space
= space
;
523 if (sysctl_tcp_moderate_rcvbuf
&&
524 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
525 int new_clamp
= space
;
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
534 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
535 16 + sizeof(struct sk_buff
));
536 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
539 space
= min(space
, sysctl_tcp_rmem
[2]);
540 if (space
> sk
->sk_rcvbuf
) {
541 sk
->sk_rcvbuf
= space
;
543 /* Make the window clamp follow along. */
544 tp
->window_clamp
= new_clamp
;
550 tp
->rcvq_space
.seq
= tp
->copied_seq
;
551 tp
->rcvq_space
.time
= tcp_time_stamp
;
554 /* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
564 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
566 struct tcp_sock
*tp
= tcp_sk(sk
);
567 struct inet_connection_sock
*icsk
= inet_csk(sk
);
570 inet_csk_schedule_ack(sk
);
572 tcp_measure_rcv_mss(sk
, skb
);
574 tcp_rcv_rtt_measure(tp
);
576 now
= tcp_time_stamp
;
578 if (!icsk
->icsk_ack
.ato
) {
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
582 tcp_incr_quickack(sk
);
583 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
585 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
587 if (m
<= TCP_ATO_MIN
/ 2) {
588 /* The fastest case is the first. */
589 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
590 } else if (m
< icsk
->icsk_ack
.ato
) {
591 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
592 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
593 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
594 } else if (m
> icsk
->icsk_rto
) {
595 /* Too long gap. Apparently sender failed to
596 * restart window, so that we send ACKs quickly.
598 tcp_incr_quickack(sk
);
602 icsk
->icsk_ack
.lrcvtime
= now
;
604 TCP_ECN_check_ce(tp
, skb
);
607 tcp_grow_window(sk
, skb
);
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
619 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
621 struct tcp_sock
*tp
= tcp_sk(sk
);
622 long m
= mrtt
; /* RTT */
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
643 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
644 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
646 m
= -m
; /* m is now abs(error) */
647 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
659 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
661 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp
->mdev
> tp
->mdev_max
) {
663 tp
->mdev_max
= tp
->mdev
;
664 if (tp
->mdev_max
> tp
->rttvar
)
665 tp
->rttvar
= tp
->mdev_max
;
667 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
668 if (tp
->mdev_max
< tp
->rttvar
)
669 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
670 tp
->rtt_seq
= tp
->snd_nxt
;
671 tp
->mdev_max
= tcp_rto_min(sk
);
674 /* no previous measure. */
675 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
676 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
677 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
678 tp
->rtt_seq
= tp
->snd_nxt
;
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
685 static inline void tcp_set_rto(struct sock
*sk
)
687 const struct tcp_sock
*tp
= tcp_sk(sk
);
688 /* Old crap is replaced with new one. 8)
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
698 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 void tcp_update_metrics(struct sock
*sk
)
718 struct tcp_sock
*tp
= tcp_sk(sk
);
719 struct dst_entry
*dst
= __sk_dst_get(sk
);
721 if (sysctl_tcp_nometrics_save
)
726 if (dst
&& (dst
->flags
& DST_HOST
)) {
727 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
731 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
736 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
737 dst_metric_set(dst
, RTAX_RTT
, 0);
741 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
748 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
750 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
752 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
755 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
760 /* Scale deviation to rttvar fixed point */
765 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
769 var
-= (var
- m
) >> 2;
771 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
774 if (tcp_in_initial_slowstart(tp
)) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
777 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
778 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
779 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
780 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
781 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
782 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
783 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
784 icsk
->icsk_ca_state
== TCP_CA_Open
) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
787 dst_metric_set(dst
, RTAX_SSTHRESH
,
788 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
789 if (!dst_metric_locked(dst
, RTAX_CWND
))
790 dst_metric_set(dst
, RTAX_CWND
,
791 (dst_metric(dst
, RTAX_CWND
) +
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
797 if (!dst_metric_locked(dst
, RTAX_CWND
))
798 dst_metric_set(dst
, RTAX_CWND
,
799 (dst_metric(dst
, RTAX_CWND
) +
800 tp
->snd_ssthresh
) >> 1);
801 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
802 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
803 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
804 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
807 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
808 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
809 tp
->reordering
!= sysctl_tcp_reordering
)
810 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
815 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
817 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
820 cwnd
= rfc3390_bytes_to_packets(tp
->mss_cache
);
821 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
827 struct tcp_sock
*tp
= tcp_sk(sk
);
828 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
830 tp
->prior_ssthresh
= 0;
832 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
835 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
836 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
837 tcp_packets_in_flight(tp
) + 1U);
838 tp
->snd_cwnd_cnt
= 0;
839 tp
->high_seq
= tp
->snd_nxt
;
840 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
841 TCP_ECN_queue_cwr(tp
);
843 tcp_set_ca_state(sk
, TCP_CA_CWR
);
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
851 static void tcp_disable_fack(struct tcp_sock
*tp
)
853 /* RFC3517 uses different metric in lost marker => reset on change */
855 tp
->lost_skb_hint
= NULL
;
856 tp
->rx_opt
.sack_ok
&= ~2;
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock
*tp
)
862 tp
->rx_opt
.sack_ok
|= 4;
865 /* Initialize metrics on socket. */
867 static void tcp_init_metrics(struct sock
*sk
)
869 struct tcp_sock
*tp
= tcp_sk(sk
);
870 struct dst_entry
*dst
= __sk_dst_get(sk
);
877 if (dst_metric_locked(dst
, RTAX_CWND
))
878 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
879 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
880 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
881 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
882 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
884 if (dst_metric(dst
, RTAX_REORDERING
) &&
885 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
886 tcp_disable_fack(tp
);
887 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
890 if (dst_metric(dst
, RTAX_RTT
) == 0)
893 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
901 * A bit of theory. RTT is time passed after "normal" sized packet
902 * is sent until it is ACKed. In normal circumstances sending small
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
910 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
911 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
912 tp
->rtt_seq
= tp
->snd_nxt
;
914 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
915 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
916 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
919 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
) {
921 /* Play conservative. If timestamps are not
922 * supported, TCP will fail to recalculate correct
923 * rtt, if initial rto is too small. FORGET ALL AND RESET!
925 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
927 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
928 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
931 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
932 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
935 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
938 struct tcp_sock
*tp
= tcp_sk(sk
);
939 if (metric
> tp
->reordering
) {
942 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
944 /* This exciting event is worth to be remembered. 8) */
946 mib_idx
= LINUX_MIB_TCPTSREORDER
;
947 else if (tcp_is_reno(tp
))
948 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
949 else if (tcp_is_fack(tp
))
950 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
952 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
954 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
955 #if FASTRETRANS_DEBUG > 1
956 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
957 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
961 tp
->undo_marker
? tp
->undo_retrans
: 0);
963 tcp_disable_fack(tp
);
967 /* This must be called before lost_out is incremented */
968 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
970 if ((tp
->retransmit_skb_hint
== NULL
) ||
971 before(TCP_SKB_CB(skb
)->seq
,
972 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
973 tp
->retransmit_skb_hint
= skb
;
976 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
977 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
980 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
982 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
983 tcp_verify_retransmit_hint(tp
, skb
);
985 tp
->lost_out
+= tcp_skb_pcount(skb
);
986 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
993 tcp_verify_retransmit_hint(tp
, skb
);
995 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
996 tp
->lost_out
+= tcp_skb_pcount(skb
);
997 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1001 /* This procedure tags the retransmission queue when SACKs arrive.
1003 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004 * Packets in queue with these bits set are counted in variables
1005 * sacked_out, retrans_out and lost_out, correspondingly.
1007 * Valid combinations are:
1008 * Tag InFlight Description
1009 * 0 1 - orig segment is in flight.
1010 * S 0 - nothing flies, orig reached receiver.
1011 * L 0 - nothing flies, orig lost by net.
1012 * R 2 - both orig and retransmit are in flight.
1013 * L|R 1 - orig is lost, retransmit is in flight.
1014 * S|R 1 - orig reached receiver, retrans is still in flight.
1015 * (L|S|R is logically valid, it could occur when L|R is sacked,
1016 * but it is equivalent to plain S and code short-curcuits it to S.
1017 * L|S is logically invalid, it would mean -1 packet in flight 8))
1019 * These 6 states form finite state machine, controlled by the following events:
1020 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022 * 3. Loss detection event of one of three flavors:
1023 * A. Scoreboard estimator decided the packet is lost.
1024 * A'. Reno "three dupacks" marks head of queue lost.
1025 * A''. Its FACK modfication, head until snd.fack is lost.
1026 * B. SACK arrives sacking data transmitted after never retransmitted
1027 * hole was sent out.
1028 * C. SACK arrives sacking SND.NXT at the moment, when the
1029 * segment was retransmitted.
1030 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1032 * It is pleasant to note, that state diagram turns out to be commutative,
1033 * so that we are allowed not to be bothered by order of our actions,
1034 * when multiple events arrive simultaneously. (see the function below).
1036 * Reordering detection.
1037 * --------------------
1038 * Reordering metric is maximal distance, which a packet can be displaced
1039 * in packet stream. With SACKs we can estimate it:
1041 * 1. SACK fills old hole and the corresponding segment was not
1042 * ever retransmitted -> reordering. Alas, we cannot use it
1043 * when segment was retransmitted.
1044 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045 * for retransmitted and already SACKed segment -> reordering..
1046 * Both of these heuristics are not used in Loss state, when we cannot
1047 * account for retransmits accurately.
1049 * SACK block validation.
1050 * ----------------------
1052 * SACK block range validation checks that the received SACK block fits to
1053 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054 * Note that SND.UNA is not included to the range though being valid because
1055 * it means that the receiver is rather inconsistent with itself reporting
1056 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057 * perfectly valid, however, in light of RFC2018 which explicitly states
1058 * that "SACK block MUST reflect the newest segment. Even if the newest
1059 * segment is going to be discarded ...", not that it looks very clever
1060 * in case of head skb. Due to potentional receiver driven attacks, we
1061 * choose to avoid immediate execution of a walk in write queue due to
1062 * reneging and defer head skb's loss recovery to standard loss recovery
1063 * procedure that will eventually trigger (nothing forbids us doing this).
1065 * Implements also blockage to start_seq wrap-around. Problem lies in the
1066 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067 * there's no guarantee that it will be before snd_nxt (n). The problem
1068 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1071 * <- outs wnd -> <- wrapzone ->
1072 * u e n u_w e_w s n_w
1074 * |<------------+------+----- TCP seqno space --------------+---------->|
1075 * ...-- <2^31 ->| |<--------...
1076 * ...---- >2^31 ------>| |<--------...
1078 * Current code wouldn't be vulnerable but it's better still to discard such
1079 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082 * equal to the ideal case (infinite seqno space without wrap caused issues).
1084 * With D-SACK the lower bound is extended to cover sequence space below
1085 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086 * again, D-SACK block must not to go across snd_una (for the same reason as
1087 * for the normal SACK blocks, explained above). But there all simplicity
1088 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089 * fully below undo_marker they do not affect behavior in anyway and can
1090 * therefore be safely ignored. In rare cases (which are more or less
1091 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092 * fragmentation and packet reordering past skb's retransmission. To consider
1093 * them correctly, the acceptable range must be extended even more though
1094 * the exact amount is rather hard to quantify. However, tp->max_window can
1095 * be used as an exaggerated estimate.
1097 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1098 u32 start_seq
, u32 end_seq
)
1100 /* Too far in future, or reversed (interpretation is ambiguous) */
1101 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1104 /* Nasty start_seq wrap-around check (see comments above) */
1105 if (!before(start_seq
, tp
->snd_nxt
))
1108 /* In outstanding window? ...This is valid exit for D-SACKs too.
1109 * start_seq == snd_una is non-sensical (see comments above)
1111 if (after(start_seq
, tp
->snd_una
))
1114 if (!is_dsack
|| !tp
->undo_marker
)
1117 /* ...Then it's D-SACK, and must reside below snd_una completely */
1118 if (!after(end_seq
, tp
->snd_una
))
1121 if (!before(start_seq
, tp
->undo_marker
))
1125 if (!after(end_seq
, tp
->undo_marker
))
1128 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1129 * start_seq < undo_marker and end_seq >= undo_marker.
1131 return !before(start_seq
, end_seq
- tp
->max_window
);
1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135 * Event "C". Later note: FACK people cheated me again 8), we have to account
1136 * for reordering! Ugly, but should help.
1138 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139 * less than what is now known to be received by the other end (derived from
1140 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141 * retransmitted skbs to avoid some costly processing per ACKs.
1143 static void tcp_mark_lost_retrans(struct sock
*sk
)
1145 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1146 struct tcp_sock
*tp
= tcp_sk(sk
);
1147 struct sk_buff
*skb
;
1149 u32 new_low_seq
= tp
->snd_nxt
;
1150 u32 received_upto
= tcp_highest_sack_seq(tp
);
1152 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1153 !after(received_upto
, tp
->lost_retrans_low
) ||
1154 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1157 tcp_for_write_queue(skb
, sk
) {
1158 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1160 if (skb
== tcp_send_head(sk
))
1162 if (cnt
== tp
->retrans_out
)
1164 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1167 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1170 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1171 * constraint here (see above) but figuring out that at
1172 * least tp->reordering SACK blocks reside between ack_seq
1173 * and received_upto is not easy task to do cheaply with
1174 * the available datastructures.
1176 * Whether FACK should check here for tp->reordering segs
1177 * in-between one could argue for either way (it would be
1178 * rather simple to implement as we could count fack_count
1179 * during the walk and do tp->fackets_out - fack_count).
1181 if (after(received_upto
, ack_seq
)) {
1182 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1183 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1185 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1186 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1188 if (before(ack_seq
, new_low_seq
))
1189 new_low_seq
= ack_seq
;
1190 cnt
+= tcp_skb_pcount(skb
);
1194 if (tp
->retrans_out
)
1195 tp
->lost_retrans_low
= new_low_seq
;
1198 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1199 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1202 struct tcp_sock
*tp
= tcp_sk(sk
);
1203 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1204 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1207 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1210 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1211 } else if (num_sacks
> 1) {
1212 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1213 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1215 if (!after(end_seq_0
, end_seq_1
) &&
1216 !before(start_seq_0
, start_seq_1
)) {
1219 NET_INC_STATS_BH(sock_net(sk
),
1220 LINUX_MIB_TCPDSACKOFORECV
);
1224 /* D-SACK for already forgotten data... Do dumb counting. */
1226 !after(end_seq_0
, prior_snd_una
) &&
1227 after(end_seq_0
, tp
->undo_marker
))
1233 struct tcp_sacktag_state
{
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240 * the incoming SACK may not exactly match but we can find smaller MSS
1241 * aligned portion of it that matches. Therefore we might need to fragment
1242 * which may fail and creates some hassle (caller must handle error case
1245 * FIXME: this could be merged to shift decision code
1247 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1248 u32 start_seq
, u32 end_seq
)
1251 unsigned int pkt_len
;
1254 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1255 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1257 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1258 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1259 mss
= tcp_skb_mss(skb
);
1260 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1263 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1267 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1272 /* Round if necessary so that SACKs cover only full MSSes
1273 * and/or the remaining small portion (if present)
1275 if (pkt_len
> mss
) {
1276 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1277 if (!in_sack
&& new_len
< pkt_len
) {
1279 if (new_len
> skb
->len
)
1284 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1292 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1293 struct tcp_sacktag_state
*state
,
1294 int dup_sack
, int pcount
)
1296 struct tcp_sock
*tp
= tcp_sk(sk
);
1297 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1298 int fack_count
= state
->fack_count
;
1300 /* Account D-SACK for retransmitted packet. */
1301 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1302 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1304 if (sacked
& TCPCB_SACKED_ACKED
)
1305 state
->reord
= min(fack_count
, state
->reord
);
1308 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1309 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1312 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1313 if (sacked
& TCPCB_SACKED_RETRANS
) {
1314 /* If the segment is not tagged as lost,
1315 * we do not clear RETRANS, believing
1316 * that retransmission is still in flight.
1318 if (sacked
& TCPCB_LOST
) {
1319 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1320 tp
->lost_out
-= pcount
;
1321 tp
->retrans_out
-= pcount
;
1324 if (!(sacked
& TCPCB_RETRANS
)) {
1325 /* New sack for not retransmitted frame,
1326 * which was in hole. It is reordering.
1328 if (before(TCP_SKB_CB(skb
)->seq
,
1329 tcp_highest_sack_seq(tp
)))
1330 state
->reord
= min(fack_count
,
1333 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1335 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1338 if (sacked
& TCPCB_LOST
) {
1339 sacked
&= ~TCPCB_LOST
;
1340 tp
->lost_out
-= pcount
;
1344 sacked
|= TCPCB_SACKED_ACKED
;
1345 state
->flag
|= FLAG_DATA_SACKED
;
1346 tp
->sacked_out
+= pcount
;
1348 fack_count
+= pcount
;
1350 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1352 before(TCP_SKB_CB(skb
)->seq
,
1353 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1354 tp
->lost_cnt_hint
+= pcount
;
1356 if (fack_count
> tp
->fackets_out
)
1357 tp
->fackets_out
= fack_count
;
1360 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361 * frames and clear it. undo_retrans is decreased above, L|R frames
1362 * are accounted above as well.
1364 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1365 sacked
&= ~TCPCB_SACKED_RETRANS
;
1366 tp
->retrans_out
-= pcount
;
1372 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1373 struct tcp_sacktag_state
*state
,
1374 unsigned int pcount
, int shifted
, int mss
,
1377 struct tcp_sock
*tp
= tcp_sk(sk
);
1378 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1382 /* Tweak before seqno plays */
1383 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1384 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1385 tp
->lost_cnt_hint
+= pcount
;
1387 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1388 TCP_SKB_CB(skb
)->seq
+= shifted
;
1390 skb_shinfo(prev
)->gso_segs
+= pcount
;
1391 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1392 skb_shinfo(skb
)->gso_segs
-= pcount
;
1394 /* When we're adding to gso_segs == 1, gso_size will be zero,
1395 * in theory this shouldn't be necessary but as long as DSACK
1396 * code can come after this skb later on it's better to keep
1397 * setting gso_size to something.
1399 if (!skb_shinfo(prev
)->gso_size
) {
1400 skb_shinfo(prev
)->gso_size
= mss
;
1401 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1404 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1406 skb_shinfo(skb
)->gso_size
= 0;
1407 skb_shinfo(skb
)->gso_type
= 0;
1410 /* We discard results */
1411 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1413 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1417 BUG_ON(!tcp_skb_pcount(skb
));
1418 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1422 /* Whole SKB was eaten :-) */
1424 if (skb
== tp
->retransmit_skb_hint
)
1425 tp
->retransmit_skb_hint
= prev
;
1426 if (skb
== tp
->scoreboard_skb_hint
)
1427 tp
->scoreboard_skb_hint
= prev
;
1428 if (skb
== tp
->lost_skb_hint
) {
1429 tp
->lost_skb_hint
= prev
;
1430 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1433 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1434 if (skb
== tcp_highest_sack(sk
))
1435 tcp_advance_highest_sack(sk
, skb
);
1437 tcp_unlink_write_queue(skb
, sk
);
1438 sk_wmem_free_skb(sk
, skb
);
1440 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1445 /* I wish gso_size would have a bit more sane initialization than
1446 * something-or-zero which complicates things
1448 static int tcp_skb_seglen(struct sk_buff
*skb
)
1450 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1453 /* Shifting pages past head area doesn't work */
1454 static int skb_can_shift(struct sk_buff
*skb
)
1456 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1459 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1462 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1463 struct tcp_sacktag_state
*state
,
1464 u32 start_seq
, u32 end_seq
,
1467 struct tcp_sock
*tp
= tcp_sk(sk
);
1468 struct sk_buff
*prev
;
1474 if (!sk_can_gso(sk
))
1477 /* Normally R but no L won't result in plain S */
1479 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1481 if (!skb_can_shift(skb
))
1483 /* This frame is about to be dropped (was ACKed). */
1484 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1487 /* Can only happen with delayed DSACK + discard craziness */
1488 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1490 prev
= tcp_write_queue_prev(sk
, skb
);
1492 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1495 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1496 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1500 pcount
= tcp_skb_pcount(skb
);
1501 mss
= tcp_skb_seglen(skb
);
1503 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1504 * drop this restriction as unnecessary
1506 if (mss
!= tcp_skb_seglen(prev
))
1509 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1511 /* CHECKME: This is non-MSS split case only?, this will
1512 * cause skipped skbs due to advancing loop btw, original
1513 * has that feature too
1515 if (tcp_skb_pcount(skb
) <= 1)
1518 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1520 /* TODO: head merge to next could be attempted here
1521 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1522 * though it might not be worth of the additional hassle
1524 * ...we can probably just fallback to what was done
1525 * previously. We could try merging non-SACKed ones
1526 * as well but it probably isn't going to buy off
1527 * because later SACKs might again split them, and
1528 * it would make skb timestamp tracking considerably
1534 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1536 BUG_ON(len
> skb
->len
);
1538 /* MSS boundaries should be honoured or else pcount will
1539 * severely break even though it makes things bit trickier.
1540 * Optimize common case to avoid most of the divides
1542 mss
= tcp_skb_mss(skb
);
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1547 if (mss
!= tcp_skb_seglen(prev
))
1552 } else if (len
< mss
) {
1560 if (!skb_shift(prev
, skb
, len
))
1562 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1565 /* Hole filled allows collapsing with the next as well, this is very
1566 * useful when hole on every nth skb pattern happens
1568 if (prev
== tcp_write_queue_tail(sk
))
1570 skb
= tcp_write_queue_next(sk
, prev
);
1572 if (!skb_can_shift(skb
) ||
1573 (skb
== tcp_send_head(sk
)) ||
1574 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1575 (mss
!= tcp_skb_seglen(skb
)))
1579 if (skb_shift(prev
, skb
, len
)) {
1580 pcount
+= tcp_skb_pcount(skb
);
1581 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1585 state
->fack_count
+= pcount
;
1592 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1596 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1597 struct tcp_sack_block
*next_dup
,
1598 struct tcp_sacktag_state
*state
,
1599 u32 start_seq
, u32 end_seq
,
1602 struct tcp_sock
*tp
= tcp_sk(sk
);
1603 struct sk_buff
*tmp
;
1605 tcp_for_write_queue_from(skb
, sk
) {
1607 int dup_sack
= dup_sack_in
;
1609 if (skb
== tcp_send_head(sk
))
1612 /* queue is in-order => we can short-circuit the walk early */
1613 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1616 if ((next_dup
!= NULL
) &&
1617 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1618 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1619 next_dup
->start_seq
,
1625 /* skb reference here is a bit tricky to get right, since
1626 * shifting can eat and free both this skb and the next,
1627 * so not even _safe variant of the loop is enough.
1630 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1631 start_seq
, end_seq
, dup_sack
);
1640 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1646 if (unlikely(in_sack
< 0))
1650 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1653 tcp_skb_pcount(skb
));
1655 if (!before(TCP_SKB_CB(skb
)->seq
,
1656 tcp_highest_sack_seq(tp
)))
1657 tcp_advance_highest_sack(sk
, skb
);
1660 state
->fack_count
+= tcp_skb_pcount(skb
);
1665 /* Avoid all extra work that is being done by sacktag while walking in
1668 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1669 struct tcp_sacktag_state
*state
,
1672 tcp_for_write_queue_from(skb
, sk
) {
1673 if (skb
== tcp_send_head(sk
))
1676 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1679 state
->fack_count
+= tcp_skb_pcount(skb
);
1684 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1686 struct tcp_sack_block
*next_dup
,
1687 struct tcp_sacktag_state
*state
,
1690 if (next_dup
== NULL
)
1693 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1694 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1695 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1696 next_dup
->start_seq
, next_dup
->end_seq
,
1703 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1705 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1709 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1712 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1713 struct tcp_sock
*tp
= tcp_sk(sk
);
1714 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1715 TCP_SKB_CB(ack_skb
)->sacked
);
1716 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1717 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1718 struct tcp_sack_block
*cache
;
1719 struct tcp_sacktag_state state
;
1720 struct sk_buff
*skb
;
1721 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1723 int found_dup_sack
= 0;
1725 int first_sack_index
;
1728 state
.reord
= tp
->packets_out
;
1730 if (!tp
->sacked_out
) {
1731 if (WARN_ON(tp
->fackets_out
))
1732 tp
->fackets_out
= 0;
1733 tcp_highest_sack_reset(sk
);
1736 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1737 num_sacks
, prior_snd_una
);
1739 state
.flag
|= FLAG_DSACKING_ACK
;
1741 /* Eliminate too old ACKs, but take into
1742 * account more or less fresh ones, they can
1743 * contain valid SACK info.
1745 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1748 if (!tp
->packets_out
)
1752 first_sack_index
= 0;
1753 for (i
= 0; i
< num_sacks
; i
++) {
1754 int dup_sack
= !i
&& found_dup_sack
;
1756 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1757 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1759 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1760 sp
[used_sacks
].start_seq
,
1761 sp
[used_sacks
].end_seq
)) {
1765 if (!tp
->undo_marker
)
1766 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1768 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1770 /* Don't count olds caused by ACK reordering */
1771 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1772 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1774 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1777 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1779 first_sack_index
= -1;
1783 /* Ignore very old stuff early */
1784 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1790 /* order SACK blocks to allow in order walk of the retrans queue */
1791 for (i
= used_sacks
- 1; i
> 0; i
--) {
1792 for (j
= 0; j
< i
; j
++) {
1793 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1794 swap(sp
[j
], sp
[j
+ 1]);
1796 /* Track where the first SACK block goes to */
1797 if (j
== first_sack_index
)
1798 first_sack_index
= j
+ 1;
1803 skb
= tcp_write_queue_head(sk
);
1804 state
.fack_count
= 0;
1807 if (!tp
->sacked_out
) {
1808 /* It's already past, so skip checking against it */
1809 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1811 cache
= tp
->recv_sack_cache
;
1812 /* Skip empty blocks in at head of the cache */
1813 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1818 while (i
< used_sacks
) {
1819 u32 start_seq
= sp
[i
].start_seq
;
1820 u32 end_seq
= sp
[i
].end_seq
;
1821 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1822 struct tcp_sack_block
*next_dup
= NULL
;
1824 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1825 next_dup
= &sp
[i
+ 1];
1827 /* Event "B" in the comment above. */
1828 if (after(end_seq
, tp
->high_seq
))
1829 state
.flag
|= FLAG_DATA_LOST
;
1831 /* Skip too early cached blocks */
1832 while (tcp_sack_cache_ok(tp
, cache
) &&
1833 !before(start_seq
, cache
->end_seq
))
1836 /* Can skip some work by looking recv_sack_cache? */
1837 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1838 after(end_seq
, cache
->start_seq
)) {
1841 if (before(start_seq
, cache
->start_seq
)) {
1842 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1844 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1851 /* Rest of the block already fully processed? */
1852 if (!after(end_seq
, cache
->end_seq
))
1855 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1859 /* ...tail remains todo... */
1860 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1861 /* ...but better entrypoint exists! */
1862 skb
= tcp_highest_sack(sk
);
1865 state
.fack_count
= tp
->fackets_out
;
1870 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1871 /* Check overlap against next cached too (past this one already) */
1876 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1877 skb
= tcp_highest_sack(sk
);
1880 state
.fack_count
= tp
->fackets_out
;
1882 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1885 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1886 start_seq
, end_seq
, dup_sack
);
1889 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1890 * due to in-order walk
1892 if (after(end_seq
, tp
->frto_highmark
))
1893 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1898 /* Clear the head of the cache sack blocks so we can skip it next time */
1899 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1900 tp
->recv_sack_cache
[i
].start_seq
= 0;
1901 tp
->recv_sack_cache
[i
].end_seq
= 0;
1903 for (j
= 0; j
< used_sacks
; j
++)
1904 tp
->recv_sack_cache
[i
++] = sp
[j
];
1906 tcp_mark_lost_retrans(sk
);
1908 tcp_verify_left_out(tp
);
1910 if ((state
.reord
< tp
->fackets_out
) &&
1911 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1912 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1913 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1917 #if FASTRETRANS_DEBUG > 0
1918 WARN_ON((int)tp
->sacked_out
< 0);
1919 WARN_ON((int)tp
->lost_out
< 0);
1920 WARN_ON((int)tp
->retrans_out
< 0);
1921 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1926 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1927 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1929 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1933 holes
= max(tp
->lost_out
, 1U);
1934 holes
= min(holes
, tp
->packets_out
);
1936 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1937 tp
->sacked_out
= tp
->packets_out
- holes
;
1943 /* If we receive more dupacks than we expected counting segments
1944 * in assumption of absent reordering, interpret this as reordering.
1945 * The only another reason could be bug in receiver TCP.
1947 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1949 struct tcp_sock
*tp
= tcp_sk(sk
);
1950 if (tcp_limit_reno_sacked(tp
))
1951 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1954 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1956 static void tcp_add_reno_sack(struct sock
*sk
)
1958 struct tcp_sock
*tp
= tcp_sk(sk
);
1960 tcp_check_reno_reordering(sk
, 0);
1961 tcp_verify_left_out(tp
);
1964 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1966 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1968 struct tcp_sock
*tp
= tcp_sk(sk
);
1971 /* One ACK acked hole. The rest eat duplicate ACKs. */
1972 if (acked
- 1 >= tp
->sacked_out
)
1975 tp
->sacked_out
-= acked
- 1;
1977 tcp_check_reno_reordering(sk
, acked
);
1978 tcp_verify_left_out(tp
);
1981 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1986 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1988 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1991 /* F-RTO can only be used if TCP has never retransmitted anything other than
1992 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1994 int tcp_use_frto(struct sock
*sk
)
1996 const struct tcp_sock
*tp
= tcp_sk(sk
);
1997 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1998 struct sk_buff
*skb
;
2000 if (!sysctl_tcp_frto
)
2003 /* MTU probe and F-RTO won't really play nicely along currently */
2004 if (icsk
->icsk_mtup
.probe_size
)
2007 if (tcp_is_sackfrto(tp
))
2010 /* Avoid expensive walking of rexmit queue if possible */
2011 if (tp
->retrans_out
> 1)
2014 skb
= tcp_write_queue_head(sk
);
2015 if (tcp_skb_is_last(sk
, skb
))
2017 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2018 tcp_for_write_queue_from(skb
, sk
) {
2019 if (skb
== tcp_send_head(sk
))
2021 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2023 /* Short-circuit when first non-SACKed skb has been checked */
2024 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2030 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2031 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2032 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2033 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2034 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2035 * bits are handled if the Loss state is really to be entered (in
2036 * tcp_enter_frto_loss).
2038 * Do like tcp_enter_loss() would; when RTO expires the second time it
2040 * "Reduce ssthresh if it has not yet been made inside this window."
2042 void tcp_enter_frto(struct sock
*sk
)
2044 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2045 struct tcp_sock
*tp
= tcp_sk(sk
);
2046 struct sk_buff
*skb
;
2048 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2049 tp
->snd_una
== tp
->high_seq
||
2050 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2051 !icsk
->icsk_retransmits
)) {
2052 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2053 /* Our state is too optimistic in ssthresh() call because cwnd
2054 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2055 * recovery has not yet completed. Pattern would be this: RTO,
2056 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2058 * RFC4138 should be more specific on what to do, even though
2059 * RTO is quite unlikely to occur after the first Cumulative ACK
2060 * due to back-off and complexity of triggering events ...
2062 if (tp
->frto_counter
) {
2064 stored_cwnd
= tp
->snd_cwnd
;
2066 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2067 tp
->snd_cwnd
= stored_cwnd
;
2069 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2071 /* ... in theory, cong.control module could do "any tricks" in
2072 * ssthresh(), which means that ca_state, lost bits and lost_out
2073 * counter would have to be faked before the call occurs. We
2074 * consider that too expensive, unlikely and hacky, so modules
2075 * using these in ssthresh() must deal these incompatibility
2076 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2078 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2081 tp
->undo_marker
= tp
->snd_una
;
2082 tp
->undo_retrans
= 0;
2084 skb
= tcp_write_queue_head(sk
);
2085 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2086 tp
->undo_marker
= 0;
2087 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2088 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2089 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2091 tcp_verify_left_out(tp
);
2093 /* Too bad if TCP was application limited */
2094 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2096 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2097 * The last condition is necessary at least in tp->frto_counter case.
2099 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2100 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2101 after(tp
->high_seq
, tp
->snd_una
)) {
2102 tp
->frto_highmark
= tp
->high_seq
;
2104 tp
->frto_highmark
= tp
->snd_nxt
;
2106 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2107 tp
->high_seq
= tp
->snd_nxt
;
2108 tp
->frto_counter
= 1;
2111 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2112 * which indicates that we should follow the traditional RTO recovery,
2113 * i.e. mark everything lost and do go-back-N retransmission.
2115 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2117 struct tcp_sock
*tp
= tcp_sk(sk
);
2118 struct sk_buff
*skb
;
2121 tp
->retrans_out
= 0;
2122 if (tcp_is_reno(tp
))
2123 tcp_reset_reno_sack(tp
);
2125 tcp_for_write_queue(skb
, sk
) {
2126 if (skb
== tcp_send_head(sk
))
2129 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2131 * Count the retransmission made on RTO correctly (only when
2132 * waiting for the first ACK and did not get it)...
2134 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2135 /* For some reason this R-bit might get cleared? */
2136 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2137 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2138 /* ...enter this if branch just for the first segment */
2139 flag
|= FLAG_DATA_ACKED
;
2141 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2142 tp
->undo_marker
= 0;
2143 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2146 /* Marking forward transmissions that were made after RTO lost
2147 * can cause unnecessary retransmissions in some scenarios,
2148 * SACK blocks will mitigate that in some but not in all cases.
2149 * We used to not mark them but it was causing break-ups with
2150 * receivers that do only in-order receival.
2152 * TODO: we could detect presence of such receiver and select
2153 * different behavior per flow.
2155 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2156 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2157 tp
->lost_out
+= tcp_skb_pcount(skb
);
2158 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2161 tcp_verify_left_out(tp
);
2163 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2164 tp
->snd_cwnd_cnt
= 0;
2165 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2166 tp
->frto_counter
= 0;
2167 tp
->bytes_acked
= 0;
2169 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2170 sysctl_tcp_reordering
);
2171 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2172 tp
->high_seq
= tp
->snd_nxt
;
2173 TCP_ECN_queue_cwr(tp
);
2175 tcp_clear_all_retrans_hints(tp
);
2178 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2180 tp
->retrans_out
= 0;
2183 tp
->undo_marker
= 0;
2184 tp
->undo_retrans
= 0;
2187 void tcp_clear_retrans(struct tcp_sock
*tp
)
2189 tcp_clear_retrans_partial(tp
);
2191 tp
->fackets_out
= 0;
2195 /* Enter Loss state. If "how" is not zero, forget all SACK information
2196 * and reset tags completely, otherwise preserve SACKs. If receiver
2197 * dropped its ofo queue, we will know this due to reneging detection.
2199 void tcp_enter_loss(struct sock
*sk
, int how
)
2201 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2202 struct tcp_sock
*tp
= tcp_sk(sk
);
2203 struct sk_buff
*skb
;
2205 /* Reduce ssthresh if it has not yet been made inside this window. */
2206 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2207 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2208 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2209 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2210 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2213 tp
->snd_cwnd_cnt
= 0;
2214 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2216 tp
->bytes_acked
= 0;
2217 tcp_clear_retrans_partial(tp
);
2219 if (tcp_is_reno(tp
))
2220 tcp_reset_reno_sack(tp
);
2223 /* Push undo marker, if it was plain RTO and nothing
2224 * was retransmitted. */
2225 tp
->undo_marker
= tp
->snd_una
;
2228 tp
->fackets_out
= 0;
2230 tcp_clear_all_retrans_hints(tp
);
2232 tcp_for_write_queue(skb
, sk
) {
2233 if (skb
== tcp_send_head(sk
))
2236 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2237 tp
->undo_marker
= 0;
2238 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2239 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2240 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2241 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2242 tp
->lost_out
+= tcp_skb_pcount(skb
);
2243 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2246 tcp_verify_left_out(tp
);
2248 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2249 sysctl_tcp_reordering
);
2250 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2251 tp
->high_seq
= tp
->snd_nxt
;
2252 TCP_ECN_queue_cwr(tp
);
2253 /* Abort F-RTO algorithm if one is in progress */
2254 tp
->frto_counter
= 0;
2257 /* If ACK arrived pointing to a remembered SACK, it means that our
2258 * remembered SACKs do not reflect real state of receiver i.e.
2259 * receiver _host_ is heavily congested (or buggy).
2261 * Do processing similar to RTO timeout.
2263 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2265 if (flag
& FLAG_SACK_RENEGING
) {
2266 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2267 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2269 tcp_enter_loss(sk
, 1);
2270 icsk
->icsk_retransmits
++;
2271 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2272 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2273 icsk
->icsk_rto
, TCP_RTO_MAX
);
2279 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2281 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2284 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2285 * counter when SACK is enabled (without SACK, sacked_out is used for
2288 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2289 * segments up to the highest received SACK block so far and holes in
2292 * With reordering, holes may still be in flight, so RFC3517 recovery
2293 * uses pure sacked_out (total number of SACKed segments) even though
2294 * it violates the RFC that uses duplicate ACKs, often these are equal
2295 * but when e.g. out-of-window ACKs or packet duplication occurs,
2296 * they differ. Since neither occurs due to loss, TCP should really
2299 static inline int tcp_dupack_heuristics(struct tcp_sock
*tp
)
2301 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2304 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2306 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2309 static inline int tcp_head_timedout(struct sock
*sk
)
2311 struct tcp_sock
*tp
= tcp_sk(sk
);
2313 return tp
->packets_out
&&
2314 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2317 /* Linux NewReno/SACK/FACK/ECN state machine.
2318 * --------------------------------------
2320 * "Open" Normal state, no dubious events, fast path.
2321 * "Disorder" In all the respects it is "Open",
2322 * but requires a bit more attention. It is entered when
2323 * we see some SACKs or dupacks. It is split of "Open"
2324 * mainly to move some processing from fast path to slow one.
2325 * "CWR" CWND was reduced due to some Congestion Notification event.
2326 * It can be ECN, ICMP source quench, local device congestion.
2327 * "Recovery" CWND was reduced, we are fast-retransmitting.
2328 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2330 * tcp_fastretrans_alert() is entered:
2331 * - each incoming ACK, if state is not "Open"
2332 * - when arrived ACK is unusual, namely:
2337 * Counting packets in flight is pretty simple.
2339 * in_flight = packets_out - left_out + retrans_out
2341 * packets_out is SND.NXT-SND.UNA counted in packets.
2343 * retrans_out is number of retransmitted segments.
2345 * left_out is number of segments left network, but not ACKed yet.
2347 * left_out = sacked_out + lost_out
2349 * sacked_out: Packets, which arrived to receiver out of order
2350 * and hence not ACKed. With SACKs this number is simply
2351 * amount of SACKed data. Even without SACKs
2352 * it is easy to give pretty reliable estimate of this number,
2353 * counting duplicate ACKs.
2355 * lost_out: Packets lost by network. TCP has no explicit
2356 * "loss notification" feedback from network (for now).
2357 * It means that this number can be only _guessed_.
2358 * Actually, it is the heuristics to predict lossage that
2359 * distinguishes different algorithms.
2361 * F.e. after RTO, when all the queue is considered as lost,
2362 * lost_out = packets_out and in_flight = retrans_out.
2364 * Essentially, we have now two algorithms counting
2367 * FACK: It is the simplest heuristics. As soon as we decided
2368 * that something is lost, we decide that _all_ not SACKed
2369 * packets until the most forward SACK are lost. I.e.
2370 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2371 * It is absolutely correct estimate, if network does not reorder
2372 * packets. And it loses any connection to reality when reordering
2373 * takes place. We use FACK by default until reordering
2374 * is suspected on the path to this destination.
2376 * NewReno: when Recovery is entered, we assume that one segment
2377 * is lost (classic Reno). While we are in Recovery and
2378 * a partial ACK arrives, we assume that one more packet
2379 * is lost (NewReno). This heuristics are the same in NewReno
2382 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2383 * deflation etc. CWND is real congestion window, never inflated, changes
2384 * only according to classic VJ rules.
2386 * Really tricky (and requiring careful tuning) part of algorithm
2387 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2388 * The first determines the moment _when_ we should reduce CWND and,
2389 * hence, slow down forward transmission. In fact, it determines the moment
2390 * when we decide that hole is caused by loss, rather than by a reorder.
2392 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2393 * holes, caused by lost packets.
2395 * And the most logically complicated part of algorithm is undo
2396 * heuristics. We detect false retransmits due to both too early
2397 * fast retransmit (reordering) and underestimated RTO, analyzing
2398 * timestamps and D-SACKs. When we detect that some segments were
2399 * retransmitted by mistake and CWND reduction was wrong, we undo
2400 * window reduction and abort recovery phase. This logic is hidden
2401 * inside several functions named tcp_try_undo_<something>.
2404 /* This function decides, when we should leave Disordered state
2405 * and enter Recovery phase, reducing congestion window.
2407 * Main question: may we further continue forward transmission
2408 * with the same cwnd?
2410 static int tcp_time_to_recover(struct sock
*sk
)
2412 struct tcp_sock
*tp
= tcp_sk(sk
);
2415 /* Do not perform any recovery during F-RTO algorithm */
2416 if (tp
->frto_counter
)
2419 /* Trick#1: The loss is proven. */
2423 /* Not-A-Trick#2 : Classic rule... */
2424 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2427 /* Trick#3 : when we use RFC2988 timer restart, fast
2428 * retransmit can be triggered by timeout of queue head.
2430 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2433 /* Trick#4: It is still not OK... But will it be useful to delay
2436 packets_out
= tp
->packets_out
;
2437 if (packets_out
<= tp
->reordering
&&
2438 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2439 !tcp_may_send_now(sk
)) {
2440 /* We have nothing to send. This connection is limited
2441 * either by receiver window or by application.
2446 /* If a thin stream is detected, retransmit after first
2447 * received dupack. Employ only if SACK is supported in order
2448 * to avoid possible corner-case series of spurious retransmissions
2449 * Use only if there are no unsent data.
2451 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2452 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2453 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2459 /* New heuristics: it is possible only after we switched to restart timer
2460 * each time when something is ACKed. Hence, we can detect timed out packets
2461 * during fast retransmit without falling to slow start.
2463 * Usefulness of this as is very questionable, since we should know which of
2464 * the segments is the next to timeout which is relatively expensive to find
2465 * in general case unless we add some data structure just for that. The
2466 * current approach certainly won't find the right one too often and when it
2467 * finally does find _something_ it usually marks large part of the window
2468 * right away (because a retransmission with a larger timestamp blocks the
2469 * loop from advancing). -ij
2471 static void tcp_timeout_skbs(struct sock
*sk
)
2473 struct tcp_sock
*tp
= tcp_sk(sk
);
2474 struct sk_buff
*skb
;
2476 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2479 skb
= tp
->scoreboard_skb_hint
;
2480 if (tp
->scoreboard_skb_hint
== NULL
)
2481 skb
= tcp_write_queue_head(sk
);
2483 tcp_for_write_queue_from(skb
, sk
) {
2484 if (skb
== tcp_send_head(sk
))
2486 if (!tcp_skb_timedout(sk
, skb
))
2489 tcp_skb_mark_lost(tp
, skb
);
2492 tp
->scoreboard_skb_hint
= skb
;
2494 tcp_verify_left_out(tp
);
2497 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2498 * is against sacked "cnt", otherwise it's against facked "cnt"
2500 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2502 struct tcp_sock
*tp
= tcp_sk(sk
);
2503 struct sk_buff
*skb
;
2508 WARN_ON(packets
> tp
->packets_out
);
2509 if (tp
->lost_skb_hint
) {
2510 skb
= tp
->lost_skb_hint
;
2511 cnt
= tp
->lost_cnt_hint
;
2512 /* Head already handled? */
2513 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2516 skb
= tcp_write_queue_head(sk
);
2520 tcp_for_write_queue_from(skb
, sk
) {
2521 if (skb
== tcp_send_head(sk
))
2523 /* TODO: do this better */
2524 /* this is not the most efficient way to do this... */
2525 tp
->lost_skb_hint
= skb
;
2526 tp
->lost_cnt_hint
= cnt
;
2528 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2532 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2533 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2534 cnt
+= tcp_skb_pcount(skb
);
2536 if (cnt
> packets
) {
2537 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2538 (oldcnt
>= packets
))
2541 mss
= skb_shinfo(skb
)->gso_size
;
2542 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2548 tcp_skb_mark_lost(tp
, skb
);
2553 tcp_verify_left_out(tp
);
2556 /* Account newly detected lost packet(s) */
2558 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2560 struct tcp_sock
*tp
= tcp_sk(sk
);
2562 if (tcp_is_reno(tp
)) {
2563 tcp_mark_head_lost(sk
, 1, 1);
2564 } else if (tcp_is_fack(tp
)) {
2565 int lost
= tp
->fackets_out
- tp
->reordering
;
2568 tcp_mark_head_lost(sk
, lost
, 0);
2570 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2571 if (sacked_upto
>= 0)
2572 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2573 else if (fast_rexmit
)
2574 tcp_mark_head_lost(sk
, 1, 1);
2577 tcp_timeout_skbs(sk
);
2580 /* CWND moderation, preventing bursts due to too big ACKs
2581 * in dubious situations.
2583 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2585 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2586 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2587 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2590 /* Lower bound on congestion window is slow start threshold
2591 * unless congestion avoidance choice decides to overide it.
2593 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2595 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2597 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2600 /* Decrease cwnd each second ack. */
2601 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2603 struct tcp_sock
*tp
= tcp_sk(sk
);
2604 int decr
= tp
->snd_cwnd_cnt
+ 1;
2606 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2607 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2608 tp
->snd_cwnd_cnt
= decr
& 1;
2611 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2612 tp
->snd_cwnd
-= decr
;
2614 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2615 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2619 /* Nothing was retransmitted or returned timestamp is less
2620 * than timestamp of the first retransmission.
2622 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2624 return !tp
->retrans_stamp
||
2625 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2626 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2629 /* Undo procedures. */
2631 #if FASTRETRANS_DEBUG > 1
2632 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2634 struct tcp_sock
*tp
= tcp_sk(sk
);
2635 struct inet_sock
*inet
= inet_sk(sk
);
2637 if (sk
->sk_family
== AF_INET
) {
2638 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2640 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2641 tp
->snd_cwnd
, tcp_left_out(tp
),
2642 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2646 else if (sk
->sk_family
== AF_INET6
) {
2647 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2648 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2650 &np
->daddr
, ntohs(inet
->inet_dport
),
2651 tp
->snd_cwnd
, tcp_left_out(tp
),
2652 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2658 #define DBGUNDO(x...) do { } while (0)
2661 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2663 struct tcp_sock
*tp
= tcp_sk(sk
);
2665 if (tp
->prior_ssthresh
) {
2666 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2668 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2669 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2671 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2673 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2674 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2675 TCP_ECN_withdraw_cwr(tp
);
2678 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2680 tcp_moderate_cwnd(tp
);
2681 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2684 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2686 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2689 /* People celebrate: "We love our President!" */
2690 static int tcp_try_undo_recovery(struct sock
*sk
)
2692 struct tcp_sock
*tp
= tcp_sk(sk
);
2694 if (tcp_may_undo(tp
)) {
2697 /* Happy end! We did not retransmit anything
2698 * or our original transmission succeeded.
2700 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2701 tcp_undo_cwr(sk
, 1);
2702 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2703 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2705 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2707 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2708 tp
->undo_marker
= 0;
2710 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2711 /* Hold old state until something *above* high_seq
2712 * is ACKed. For Reno it is MUST to prevent false
2713 * fast retransmits (RFC2582). SACK TCP is safe. */
2714 tcp_moderate_cwnd(tp
);
2717 tcp_set_ca_state(sk
, TCP_CA_Open
);
2721 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2722 static void tcp_try_undo_dsack(struct sock
*sk
)
2724 struct tcp_sock
*tp
= tcp_sk(sk
);
2726 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2727 DBGUNDO(sk
, "D-SACK");
2728 tcp_undo_cwr(sk
, 1);
2729 tp
->undo_marker
= 0;
2730 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2734 /* We can clear retrans_stamp when there are no retransmissions in the
2735 * window. It would seem that it is trivially available for us in
2736 * tp->retrans_out, however, that kind of assumptions doesn't consider
2737 * what will happen if errors occur when sending retransmission for the
2738 * second time. ...It could the that such segment has only
2739 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2740 * the head skb is enough except for some reneging corner cases that
2741 * are not worth the effort.
2743 * Main reason for all this complexity is the fact that connection dying
2744 * time now depends on the validity of the retrans_stamp, in particular,
2745 * that successive retransmissions of a segment must not advance
2746 * retrans_stamp under any conditions.
2748 static int tcp_any_retrans_done(struct sock
*sk
)
2750 struct tcp_sock
*tp
= tcp_sk(sk
);
2751 struct sk_buff
*skb
;
2753 if (tp
->retrans_out
)
2756 skb
= tcp_write_queue_head(sk
);
2757 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2763 /* Undo during fast recovery after partial ACK. */
2765 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2767 struct tcp_sock
*tp
= tcp_sk(sk
);
2768 /* Partial ACK arrived. Force Hoe's retransmit. */
2769 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2771 if (tcp_may_undo(tp
)) {
2772 /* Plain luck! Hole if filled with delayed
2773 * packet, rather than with a retransmit.
2775 if (!tcp_any_retrans_done(sk
))
2776 tp
->retrans_stamp
= 0;
2778 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2781 tcp_undo_cwr(sk
, 0);
2782 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2784 /* So... Do not make Hoe's retransmit yet.
2785 * If the first packet was delayed, the rest
2786 * ones are most probably delayed as well.
2793 /* Undo during loss recovery after partial ACK. */
2794 static int tcp_try_undo_loss(struct sock
*sk
)
2796 struct tcp_sock
*tp
= tcp_sk(sk
);
2798 if (tcp_may_undo(tp
)) {
2799 struct sk_buff
*skb
;
2800 tcp_for_write_queue(skb
, sk
) {
2801 if (skb
== tcp_send_head(sk
))
2803 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2806 tcp_clear_all_retrans_hints(tp
);
2808 DBGUNDO(sk
, "partial loss");
2810 tcp_undo_cwr(sk
, 1);
2811 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2812 inet_csk(sk
)->icsk_retransmits
= 0;
2813 tp
->undo_marker
= 0;
2814 if (tcp_is_sack(tp
))
2815 tcp_set_ca_state(sk
, TCP_CA_Open
);
2821 static inline void tcp_complete_cwr(struct sock
*sk
)
2823 struct tcp_sock
*tp
= tcp_sk(sk
);
2824 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2825 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2826 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2829 static void tcp_try_keep_open(struct sock
*sk
)
2831 struct tcp_sock
*tp
= tcp_sk(sk
);
2832 int state
= TCP_CA_Open
;
2834 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
) || tp
->undo_marker
)
2835 state
= TCP_CA_Disorder
;
2837 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2838 tcp_set_ca_state(sk
, state
);
2839 tp
->high_seq
= tp
->snd_nxt
;
2843 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2845 struct tcp_sock
*tp
= tcp_sk(sk
);
2847 tcp_verify_left_out(tp
);
2849 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2850 tp
->retrans_stamp
= 0;
2852 if (flag
& FLAG_ECE
)
2853 tcp_enter_cwr(sk
, 1);
2855 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2856 tcp_try_keep_open(sk
);
2857 tcp_moderate_cwnd(tp
);
2859 tcp_cwnd_down(sk
, flag
);
2863 static void tcp_mtup_probe_failed(struct sock
*sk
)
2865 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2867 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2868 icsk
->icsk_mtup
.probe_size
= 0;
2871 static void tcp_mtup_probe_success(struct sock
*sk
)
2873 struct tcp_sock
*tp
= tcp_sk(sk
);
2874 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2876 /* FIXME: breaks with very large cwnd */
2877 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2878 tp
->snd_cwnd
= tp
->snd_cwnd
*
2879 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2880 icsk
->icsk_mtup
.probe_size
;
2881 tp
->snd_cwnd_cnt
= 0;
2882 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2883 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2885 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2886 icsk
->icsk_mtup
.probe_size
= 0;
2887 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2890 /* Do a simple retransmit without using the backoff mechanisms in
2891 * tcp_timer. This is used for path mtu discovery.
2892 * The socket is already locked here.
2894 void tcp_simple_retransmit(struct sock
*sk
)
2896 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2897 struct tcp_sock
*tp
= tcp_sk(sk
);
2898 struct sk_buff
*skb
;
2899 unsigned int mss
= tcp_current_mss(sk
);
2900 u32 prior_lost
= tp
->lost_out
;
2902 tcp_for_write_queue(skb
, sk
) {
2903 if (skb
== tcp_send_head(sk
))
2905 if (tcp_skb_seglen(skb
) > mss
&&
2906 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2907 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2908 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2909 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2911 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2915 tcp_clear_retrans_hints_partial(tp
);
2917 if (prior_lost
== tp
->lost_out
)
2920 if (tcp_is_reno(tp
))
2921 tcp_limit_reno_sacked(tp
);
2923 tcp_verify_left_out(tp
);
2925 /* Don't muck with the congestion window here.
2926 * Reason is that we do not increase amount of _data_
2927 * in network, but units changed and effective
2928 * cwnd/ssthresh really reduced now.
2930 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2931 tp
->high_seq
= tp
->snd_nxt
;
2932 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2933 tp
->prior_ssthresh
= 0;
2934 tp
->undo_marker
= 0;
2935 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2937 tcp_xmit_retransmit_queue(sk
);
2939 EXPORT_SYMBOL(tcp_simple_retransmit
);
2941 /* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2946 * Besides that it does CWND reduction, when packet loss is detected
2947 * and changes state of machine.
2949 * It does _not_ decide what to send, it is made in function
2950 * tcp_xmit_retransmit_queue().
2952 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2954 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2955 struct tcp_sock
*tp
= tcp_sk(sk
);
2956 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2957 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2958 (tcp_fackets_out(tp
) > tp
->reordering
));
2959 int fast_rexmit
= 0, mib_idx
;
2961 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2963 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2964 tp
->fackets_out
= 0;
2966 /* Now state machine starts.
2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968 if (flag
& FLAG_ECE
)
2969 tp
->prior_ssthresh
= 0;
2971 /* B. In all the states check for reneging SACKs. */
2972 if (tcp_check_sack_reneging(sk
, flag
))
2975 /* C. Process data loss notification, provided it is valid. */
2976 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2977 before(tp
->snd_una
, tp
->high_seq
) &&
2978 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2979 tp
->fackets_out
> tp
->reordering
) {
2980 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
, 0);
2981 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2984 /* D. Check consistency of the current state. */
2985 tcp_verify_left_out(tp
);
2987 /* E. Check state exit conditions. State can be terminated
2988 * when high_seq is ACKed. */
2989 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2990 WARN_ON(tp
->retrans_out
!= 0);
2991 tp
->retrans_stamp
= 0;
2992 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2993 switch (icsk
->icsk_ca_state
) {
2995 icsk
->icsk_retransmits
= 0;
2996 if (tcp_try_undo_recovery(sk
))
3001 /* CWR is to be held something *above* high_seq
3002 * is ACKed for CWR bit to reach receiver. */
3003 if (tp
->snd_una
!= tp
->high_seq
) {
3004 tcp_complete_cwr(sk
);
3005 tcp_set_ca_state(sk
, TCP_CA_Open
);
3009 case TCP_CA_Disorder
:
3010 tcp_try_undo_dsack(sk
);
3011 if (!tp
->undo_marker
||
3012 /* For SACK case do not Open to allow to undo
3013 * catching for all duplicate ACKs. */
3014 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
3015 tp
->undo_marker
= 0;
3016 tcp_set_ca_state(sk
, TCP_CA_Open
);
3020 case TCP_CA_Recovery
:
3021 if (tcp_is_reno(tp
))
3022 tcp_reset_reno_sack(tp
);
3023 if (tcp_try_undo_recovery(sk
))
3025 tcp_complete_cwr(sk
);
3030 /* F. Process state. */
3031 switch (icsk
->icsk_ca_state
) {
3032 case TCP_CA_Recovery
:
3033 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3034 if (tcp_is_reno(tp
) && is_dupack
)
3035 tcp_add_reno_sack(sk
);
3037 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3040 if (flag
& FLAG_DATA_ACKED
)
3041 icsk
->icsk_retransmits
= 0;
3042 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3043 tcp_reset_reno_sack(tp
);
3044 if (!tcp_try_undo_loss(sk
)) {
3045 tcp_moderate_cwnd(tp
);
3046 tcp_xmit_retransmit_queue(sk
);
3049 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3051 /* Loss is undone; fall through to processing in Open state. */
3053 if (tcp_is_reno(tp
)) {
3054 if (flag
& FLAG_SND_UNA_ADVANCED
)
3055 tcp_reset_reno_sack(tp
);
3057 tcp_add_reno_sack(sk
);
3060 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3061 tcp_try_undo_dsack(sk
);
3063 if (!tcp_time_to_recover(sk
)) {
3064 tcp_try_to_open(sk
, flag
);
3068 /* MTU probe failure: don't reduce cwnd */
3069 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3070 icsk
->icsk_mtup
.probe_size
&&
3071 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3072 tcp_mtup_probe_failed(sk
);
3073 /* Restores the reduction we did in tcp_mtup_probe() */
3075 tcp_simple_retransmit(sk
);
3079 /* Otherwise enter Recovery state */
3081 if (tcp_is_reno(tp
))
3082 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3084 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3086 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3088 tp
->high_seq
= tp
->snd_nxt
;
3089 tp
->prior_ssthresh
= 0;
3090 tp
->undo_marker
= tp
->snd_una
;
3091 tp
->undo_retrans
= tp
->retrans_out
;
3093 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3094 if (!(flag
& FLAG_ECE
))
3095 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3096 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3097 TCP_ECN_queue_cwr(tp
);
3100 tp
->bytes_acked
= 0;
3101 tp
->snd_cwnd_cnt
= 0;
3102 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3106 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3107 tcp_update_scoreboard(sk
, fast_rexmit
);
3108 tcp_cwnd_down(sk
, flag
);
3109 tcp_xmit_retransmit_queue(sk
);
3112 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3114 tcp_rtt_estimator(sk
, seq_rtt
);
3116 inet_csk(sk
)->icsk_backoff
= 0;
3119 /* Read draft-ietf-tcplw-high-performance before mucking
3120 * with this code. (Supersedes RFC1323)
3122 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3124 /* RTTM Rule: A TSecr value received in a segment is used to
3125 * update the averaged RTT measurement only if the segment
3126 * acknowledges some new data, i.e., only if it advances the
3127 * left edge of the send window.
3129 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 * Changed: reset backoff as soon as we see the first valid sample.
3133 * If we do not, we get strongly overestimated rto. With timestamps
3134 * samples are accepted even from very old segments: f.e., when rtt=1
3135 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136 * answer arrives rto becomes 120 seconds! If at least one of segments
3137 * in window is lost... Voila. --ANK (010210)
3139 struct tcp_sock
*tp
= tcp_sk(sk
);
3141 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3144 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3146 /* We don't have a timestamp. Can only use
3147 * packets that are not retransmitted to determine
3148 * rtt estimates. Also, we must not reset the
3149 * backoff for rto until we get a non-retransmitted
3150 * packet. This allows us to deal with a situation
3151 * where the network delay has increased suddenly.
3152 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3155 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3158 tcp_valid_rtt_meas(sk
, seq_rtt
);
3161 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3164 const struct tcp_sock
*tp
= tcp_sk(sk
);
3165 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3167 tcp_ack_saw_tstamp(sk
, flag
);
3168 else if (seq_rtt
>= 0)
3169 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3172 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3174 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3175 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3176 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3179 /* Restart timer after forward progress on connection.
3180 * RFC2988 recommends to restart timer to now+rto.
3182 static void tcp_rearm_rto(struct sock
*sk
)
3184 struct tcp_sock
*tp
= tcp_sk(sk
);
3186 if (!tp
->packets_out
) {
3187 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3189 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3190 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3194 /* If we get here, the whole TSO packet has not been acked. */
3195 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3197 struct tcp_sock
*tp
= tcp_sk(sk
);
3200 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3202 packets_acked
= tcp_skb_pcount(skb
);
3203 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3205 packets_acked
-= tcp_skb_pcount(skb
);
3207 if (packets_acked
) {
3208 BUG_ON(tcp_skb_pcount(skb
) == 0);
3209 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3212 return packets_acked
;
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216 * is before the ack sequence we can discard it as it's confirmed to have
3217 * arrived at the other end.
3219 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3222 struct tcp_sock
*tp
= tcp_sk(sk
);
3223 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3224 struct sk_buff
*skb
;
3225 u32 now
= tcp_time_stamp
;
3226 int fully_acked
= 1;
3229 u32 reord
= tp
->packets_out
;
3230 u32 prior_sacked
= tp
->sacked_out
;
3232 s32 ca_seq_rtt
= -1;
3233 ktime_t last_ackt
= net_invalid_timestamp();
3235 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3236 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3238 u8 sacked
= scb
->sacked
;
3240 /* Determine how many packets and what bytes were acked, tso and else */
3241 if (after(scb
->end_seq
, tp
->snd_una
)) {
3242 if (tcp_skb_pcount(skb
) == 1 ||
3243 !after(tp
->snd_una
, scb
->seq
))
3246 acked_pcount
= tcp_tso_acked(sk
, skb
);
3252 acked_pcount
= tcp_skb_pcount(skb
);
3255 if (sacked
& TCPCB_RETRANS
) {
3256 if (sacked
& TCPCB_SACKED_RETRANS
)
3257 tp
->retrans_out
-= acked_pcount
;
3258 flag
|= FLAG_RETRANS_DATA_ACKED
;
3261 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3262 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3264 ca_seq_rtt
= now
- scb
->when
;
3265 last_ackt
= skb
->tstamp
;
3267 seq_rtt
= ca_seq_rtt
;
3269 if (!(sacked
& TCPCB_SACKED_ACKED
))
3270 reord
= min(pkts_acked
, reord
);
3273 if (sacked
& TCPCB_SACKED_ACKED
)
3274 tp
->sacked_out
-= acked_pcount
;
3275 if (sacked
& TCPCB_LOST
)
3276 tp
->lost_out
-= acked_pcount
;
3278 tp
->packets_out
-= acked_pcount
;
3279 pkts_acked
+= acked_pcount
;
3281 /* Initial outgoing SYN's get put onto the write_queue
3282 * just like anything else we transmit. It is not
3283 * true data, and if we misinform our callers that
3284 * this ACK acks real data, we will erroneously exit
3285 * connection startup slow start one packet too
3286 * quickly. This is severely frowned upon behavior.
3288 if (!(scb
->flags
& TCPHDR_SYN
)) {
3289 flag
|= FLAG_DATA_ACKED
;
3291 flag
|= FLAG_SYN_ACKED
;
3292 tp
->retrans_stamp
= 0;
3298 tcp_unlink_write_queue(skb
, sk
);
3299 sk_wmem_free_skb(sk
, skb
);
3300 tp
->scoreboard_skb_hint
= NULL
;
3301 if (skb
== tp
->retransmit_skb_hint
)
3302 tp
->retransmit_skb_hint
= NULL
;
3303 if (skb
== tp
->lost_skb_hint
)
3304 tp
->lost_skb_hint
= NULL
;
3307 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3308 tp
->snd_up
= tp
->snd_una
;
3310 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3311 flag
|= FLAG_SACK_RENEGING
;
3313 if (flag
& FLAG_ACKED
) {
3314 const struct tcp_congestion_ops
*ca_ops
3315 = inet_csk(sk
)->icsk_ca_ops
;
3317 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3318 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3319 tcp_mtup_probe_success(sk
);
3322 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3325 if (tcp_is_reno(tp
)) {
3326 tcp_remove_reno_sacks(sk
, pkts_acked
);
3330 /* Non-retransmitted hole got filled? That's reordering */
3331 if (reord
< prior_fackets
)
3332 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3334 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3335 prior_sacked
- tp
->sacked_out
;
3336 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3339 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3341 if (ca_ops
->pkts_acked
) {
3344 /* Is the ACK triggering packet unambiguous? */
3345 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3346 /* High resolution needed and available? */
3347 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3348 !ktime_equal(last_ackt
,
3349 net_invalid_timestamp()))
3350 rtt_us
= ktime_us_delta(ktime_get_real(),
3352 else if (ca_seq_rtt
> 0)
3353 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3356 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3360 #if FASTRETRANS_DEBUG > 0
3361 WARN_ON((int)tp
->sacked_out
< 0);
3362 WARN_ON((int)tp
->lost_out
< 0);
3363 WARN_ON((int)tp
->retrans_out
< 0);
3364 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3365 icsk
= inet_csk(sk
);
3367 printk(KERN_DEBUG
"Leak l=%u %d\n",
3368 tp
->lost_out
, icsk
->icsk_ca_state
);
3371 if (tp
->sacked_out
) {
3372 printk(KERN_DEBUG
"Leak s=%u %d\n",
3373 tp
->sacked_out
, icsk
->icsk_ca_state
);
3376 if (tp
->retrans_out
) {
3377 printk(KERN_DEBUG
"Leak r=%u %d\n",
3378 tp
->retrans_out
, icsk
->icsk_ca_state
);
3379 tp
->retrans_out
= 0;
3386 static void tcp_ack_probe(struct sock
*sk
)
3388 const struct tcp_sock
*tp
= tcp_sk(sk
);
3389 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3391 /* Was it a usable window open? */
3393 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3394 icsk
->icsk_backoff
= 0;
3395 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3396 /* Socket must be waked up by subsequent tcp_data_snd_check().
3397 * This function is not for random using!
3400 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3401 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3406 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3408 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3409 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3412 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3414 const struct tcp_sock
*tp
= tcp_sk(sk
);
3415 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3416 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3419 /* Check that window update is acceptable.
3420 * The function assumes that snd_una<=ack<=snd_next.
3422 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3423 const u32 ack
, const u32 ack_seq
,
3426 return after(ack
, tp
->snd_una
) ||
3427 after(ack_seq
, tp
->snd_wl1
) ||
3428 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3431 /* Update our send window.
3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3439 struct tcp_sock
*tp
= tcp_sk(sk
);
3441 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3443 if (likely(!tcp_hdr(skb
)->syn
))
3444 nwin
<<= tp
->rx_opt
.snd_wscale
;
3446 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3447 flag
|= FLAG_WIN_UPDATE
;
3448 tcp_update_wl(tp
, ack_seq
);
3450 if (tp
->snd_wnd
!= nwin
) {
3453 /* Note, it is the only place, where
3454 * fast path is recovered for sending TCP.
3457 tcp_fast_path_check(sk
);
3459 if (nwin
> tp
->max_window
) {
3460 tp
->max_window
= nwin
;
3461 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3472 * continue in congestion avoidance.
3474 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3476 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3477 tp
->snd_cwnd_cnt
= 0;
3478 tp
->bytes_acked
= 0;
3479 TCP_ECN_queue_cwr(tp
);
3480 tcp_moderate_cwnd(tp
);
3483 /* A conservative spurious RTO response algorithm: reduce cwnd using
3484 * rate halving and continue in congestion avoidance.
3486 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3488 tcp_enter_cwr(sk
, 0);
3491 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3493 if (flag
& FLAG_ECE
)
3494 tcp_ratehalving_spur_to_response(sk
);
3496 tcp_undo_cwr(sk
, 1);
3499 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503 * window (but not to or beyond highest sequence sent before RTO):
3504 * On First ACK, send two new segments out.
3505 * On Second ACK, RTO was likely spurious. Do spurious response (response
3506 * algorithm is not part of the F-RTO detection algorithm
3507 * given in RFC4138 but can be selected separately).
3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514 * original window even after we transmit two new data segments.
3517 * on first step, wait until first cumulative ACK arrives, then move to
3518 * the second step. In second step, the next ACK decides.
3520 * F-RTO is implemented (mainly) in four functions:
3521 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523 * called when tcp_use_frto() showed green light
3524 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525 * - tcp_enter_frto_loss() is called if there is not enough evidence
3526 * to prove that the RTO is indeed spurious. It transfers the control
3527 * from F-RTO to the conventional RTO recovery
3529 static int tcp_process_frto(struct sock
*sk
, int flag
)
3531 struct tcp_sock
*tp
= tcp_sk(sk
);
3533 tcp_verify_left_out(tp
);
3535 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3536 if (flag
& FLAG_DATA_ACKED
)
3537 inet_csk(sk
)->icsk_retransmits
= 0;
3539 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3540 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3541 tp
->undo_marker
= 0;
3543 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3544 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3548 if (!tcp_is_sackfrto(tp
)) {
3549 /* RFC4138 shortcoming in step 2; should also have case c):
3550 * ACK isn't duplicate nor advances window, e.g., opposite dir
3553 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3556 if (!(flag
& FLAG_DATA_ACKED
)) {
3557 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3562 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3563 /* Prevent sending of new data. */
3564 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3565 tcp_packets_in_flight(tp
));
3569 if ((tp
->frto_counter
>= 2) &&
3570 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3571 ((flag
& FLAG_DATA_SACKED
) &&
3572 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3573 /* RFC4138 shortcoming (see comment above) */
3574 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3575 (flag
& FLAG_NOT_DUP
))
3578 tcp_enter_frto_loss(sk
, 3, flag
);
3583 if (tp
->frto_counter
== 1) {
3584 /* tcp_may_send_now needs to see updated state */
3585 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3586 tp
->frto_counter
= 2;
3588 if (!tcp_may_send_now(sk
))
3589 tcp_enter_frto_loss(sk
, 2, flag
);
3593 switch (sysctl_tcp_frto_response
) {
3595 tcp_undo_spur_to_response(sk
, flag
);
3598 tcp_conservative_spur_to_response(tp
);
3601 tcp_ratehalving_spur_to_response(sk
);
3604 tp
->frto_counter
= 0;
3605 tp
->undo_marker
= 0;
3606 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3611 /* This routine deals with incoming acks, but not outgoing ones. */
3612 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3614 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3615 struct tcp_sock
*tp
= tcp_sk(sk
);
3616 u32 prior_snd_una
= tp
->snd_una
;
3617 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3618 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3619 u32 prior_in_flight
;
3624 /* If the ack is older than previous acks
3625 * then we can probably ignore it.
3627 if (before(ack
, prior_snd_una
))
3630 /* If the ack includes data we haven't sent yet, discard
3631 * this segment (RFC793 Section 3.9).
3633 if (after(ack
, tp
->snd_nxt
))
3636 if (after(ack
, prior_snd_una
))
3637 flag
|= FLAG_SND_UNA_ADVANCED
;
3639 if (sysctl_tcp_abc
) {
3640 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3641 tp
->bytes_acked
+= ack
- prior_snd_una
;
3642 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3643 /* we assume just one segment left network */
3644 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3648 prior_fackets
= tp
->fackets_out
;
3649 prior_in_flight
= tcp_packets_in_flight(tp
);
3651 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3652 /* Window is constant, pure forward advance.
3653 * No more checks are required.
3654 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 tcp_update_wl(tp
, ack_seq
);
3658 flag
|= FLAG_WIN_UPDATE
;
3660 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3662 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3664 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3667 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3669 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3671 if (TCP_SKB_CB(skb
)->sacked
)
3672 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3674 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3677 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3680 /* We passed data and got it acked, remove any soft error
3681 * log. Something worked...
3683 sk
->sk_err_soft
= 0;
3684 icsk
->icsk_probes_out
= 0;
3685 tp
->rcv_tstamp
= tcp_time_stamp
;
3686 prior_packets
= tp
->packets_out
;
3690 /* See if we can take anything off of the retransmit queue. */
3691 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3693 if (tp
->frto_counter
)
3694 frto_cwnd
= tcp_process_frto(sk
, flag
);
3695 /* Guarantee sacktag reordering detection against wrap-arounds */
3696 if (before(tp
->frto_highmark
, tp
->snd_una
))
3697 tp
->frto_highmark
= 0;
3699 if (tcp_ack_is_dubious(sk
, flag
)) {
3700 /* Advance CWND, if state allows this. */
3701 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3702 tcp_may_raise_cwnd(sk
, flag
))
3703 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3704 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3707 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3708 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3711 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3712 dst_confirm(__sk_dst_get(sk
));
3717 /* If this ack opens up a zero window, clear backoff. It was
3718 * being used to time the probes, and is probably far higher than
3719 * it needs to be for normal retransmission.
3721 if (tcp_send_head(sk
))
3726 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3730 if (TCP_SKB_CB(skb
)->sacked
) {
3731 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3732 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3733 tcp_try_keep_open(sk
);
3736 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3744 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3745 u8
**hvpp
, int estab
)
3748 struct tcphdr
*th
= tcp_hdr(skb
);
3749 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3751 ptr
= (unsigned char *)(th
+ 1);
3752 opt_rx
->saw_tstamp
= 0;
3754 while (length
> 0) {
3755 int opcode
= *ptr
++;
3761 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3766 if (opsize
< 2) /* "silly options" */
3768 if (opsize
> length
)
3769 return; /* don't parse partial options */
3772 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3773 u16 in_mss
= get_unaligned_be16(ptr
);
3775 if (opt_rx
->user_mss
&&
3776 opt_rx
->user_mss
< in_mss
)
3777 in_mss
= opt_rx
->user_mss
;
3778 opt_rx
->mss_clamp
= in_mss
;
3783 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3784 !estab
&& sysctl_tcp_window_scaling
) {
3785 __u8 snd_wscale
= *(__u8
*)ptr
;
3786 opt_rx
->wscale_ok
= 1;
3787 if (snd_wscale
> 14) {
3788 if (net_ratelimit())
3789 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3790 "scaling value %d >14 received.\n",
3794 opt_rx
->snd_wscale
= snd_wscale
;
3797 case TCPOPT_TIMESTAMP
:
3798 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3799 ((estab
&& opt_rx
->tstamp_ok
) ||
3800 (!estab
&& sysctl_tcp_timestamps
))) {
3801 opt_rx
->saw_tstamp
= 1;
3802 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3803 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3806 case TCPOPT_SACK_PERM
:
3807 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3808 !estab
&& sysctl_tcp_sack
) {
3809 opt_rx
->sack_ok
= 1;
3810 tcp_sack_reset(opt_rx
);
3815 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3816 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3818 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3821 #ifdef CONFIG_TCP_MD5SIG
3824 * The MD5 Hash has already been
3825 * checked (see tcp_v{4,6}_do_rcv()).
3830 /* This option is variable length.
3833 case TCPOLEN_COOKIE_BASE
:
3834 /* not yet implemented */
3836 case TCPOLEN_COOKIE_PAIR
:
3837 /* not yet implemented */
3839 case TCPOLEN_COOKIE_MIN
+0:
3840 case TCPOLEN_COOKIE_MIN
+2:
3841 case TCPOLEN_COOKIE_MIN
+4:
3842 case TCPOLEN_COOKIE_MIN
+6:
3843 case TCPOLEN_COOKIE_MAX
:
3844 /* 16-bit multiple */
3845 opt_rx
->cookie_plus
= opsize
;
3860 EXPORT_SYMBOL(tcp_parse_options
);
3862 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3864 __be32
*ptr
= (__be32
*)(th
+ 1);
3866 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3867 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3868 tp
->rx_opt
.saw_tstamp
= 1;
3870 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3872 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3878 /* Fast parse options. This hopes to only see timestamps.
3879 * If it is wrong it falls back on tcp_parse_options().
3881 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3882 struct tcp_sock
*tp
, u8
**hvpp
)
3884 /* In the spirit of fast parsing, compare doff directly to constant
3885 * values. Because equality is used, short doff can be ignored here.
3887 if (th
->doff
== (sizeof(*th
) / 4)) {
3888 tp
->rx_opt
.saw_tstamp
= 0;
3890 } else if (tp
->rx_opt
.tstamp_ok
&&
3891 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3892 if (tcp_parse_aligned_timestamp(tp
, th
))
3895 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3899 #ifdef CONFIG_TCP_MD5SIG
3901 * Parse MD5 Signature option
3903 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3905 int length
= (th
->doff
<< 2) - sizeof (*th
);
3906 u8
*ptr
= (u8
*)(th
+ 1);
3908 /* If the TCP option is too short, we can short cut */
3909 if (length
< TCPOLEN_MD5SIG
)
3912 while (length
> 0) {
3913 int opcode
= *ptr
++;
3924 if (opsize
< 2 || opsize
> length
)
3926 if (opcode
== TCPOPT_MD5SIG
)
3927 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3934 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3937 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3939 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3940 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3943 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3945 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3946 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3947 * extra check below makes sure this can only happen
3948 * for pure ACK frames. -DaveM
3950 * Not only, also it occurs for expired timestamps.
3953 if (tcp_paws_check(&tp
->rx_opt
, 0))
3954 tcp_store_ts_recent(tp
);
3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3960 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3961 * it can pass through stack. So, the following predicate verifies that
3962 * this segment is not used for anything but congestion avoidance or
3963 * fast retransmit. Moreover, we even are able to eliminate most of such
3964 * second order effects, if we apply some small "replay" window (~RTO)
3965 * to timestamp space.
3967 * All these measures still do not guarantee that we reject wrapped ACKs
3968 * on networks with high bandwidth, when sequence space is recycled fastly,
3969 * but it guarantees that such events will be very rare and do not affect
3970 * connection seriously. This doesn't look nice, but alas, PAWS is really
3973 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3974 * states that events when retransmit arrives after original data are rare.
3975 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3976 * the biggest problem on large power networks even with minor reordering.
3977 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3978 * up to bandwidth of 18Gigabit/sec. 8) ]
3981 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3983 struct tcp_sock
*tp
= tcp_sk(sk
);
3984 struct tcphdr
*th
= tcp_hdr(skb
);
3985 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3986 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3988 return (/* 1. Pure ACK with correct sequence number. */
3989 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3991 /* 2. ... and duplicate ACK. */
3992 ack
== tp
->snd_una
&&
3994 /* 3. ... and does not update window. */
3995 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3997 /* 4. ... and sits in replay window. */
3998 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4001 static inline int tcp_paws_discard(const struct sock
*sk
,
4002 const struct sk_buff
*skb
)
4004 const struct tcp_sock
*tp
= tcp_sk(sk
);
4006 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4007 !tcp_disordered_ack(sk
, skb
);
4010 /* Check segment sequence number for validity.
4012 * Segment controls are considered valid, if the segment
4013 * fits to the window after truncation to the window. Acceptability
4014 * of data (and SYN, FIN, of course) is checked separately.
4015 * See tcp_data_queue(), for example.
4017 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4018 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4019 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4020 * (borrowed from freebsd)
4023 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4025 return !before(end_seq
, tp
->rcv_wup
) &&
4026 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4029 /* When we get a reset we do this. */
4030 static void tcp_reset(struct sock
*sk
)
4032 /* We want the right error as BSD sees it (and indeed as we do). */
4033 switch (sk
->sk_state
) {
4035 sk
->sk_err
= ECONNREFUSED
;
4037 case TCP_CLOSE_WAIT
:
4043 sk
->sk_err
= ECONNRESET
;
4045 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4048 if (!sock_flag(sk
, SOCK_DEAD
))
4049 sk
->sk_error_report(sk
);
4055 * Process the FIN bit. This now behaves as it is supposed to work
4056 * and the FIN takes effect when it is validly part of sequence
4057 * space. Not before when we get holes.
4059 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4060 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4063 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4064 * close and we go into CLOSING (and later onto TIME-WAIT)
4066 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4068 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
4070 struct tcp_sock
*tp
= tcp_sk(sk
);
4072 inet_csk_schedule_ack(sk
);
4074 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4075 sock_set_flag(sk
, SOCK_DONE
);
4077 switch (sk
->sk_state
) {
4079 case TCP_ESTABLISHED
:
4080 /* Move to CLOSE_WAIT */
4081 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4082 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4085 case TCP_CLOSE_WAIT
:
4087 /* Received a retransmission of the FIN, do
4092 /* RFC793: Remain in the LAST-ACK state. */
4096 /* This case occurs when a simultaneous close
4097 * happens, we must ack the received FIN and
4098 * enter the CLOSING state.
4101 tcp_set_state(sk
, TCP_CLOSING
);
4104 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4106 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4109 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4110 * cases we should never reach this piece of code.
4112 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4113 __func__
, sk
->sk_state
);
4117 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4118 * Probably, we should reset in this case. For now drop them.
4120 __skb_queue_purge(&tp
->out_of_order_queue
);
4121 if (tcp_is_sack(tp
))
4122 tcp_sack_reset(&tp
->rx_opt
);
4125 if (!sock_flag(sk
, SOCK_DEAD
)) {
4126 sk
->sk_state_change(sk
);
4128 /* Do not send POLL_HUP for half duplex close. */
4129 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4130 sk
->sk_state
== TCP_CLOSE
)
4131 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4133 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4137 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4140 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4141 if (before(seq
, sp
->start_seq
))
4142 sp
->start_seq
= seq
;
4143 if (after(end_seq
, sp
->end_seq
))
4144 sp
->end_seq
= end_seq
;
4150 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4152 struct tcp_sock
*tp
= tcp_sk(sk
);
4154 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4157 if (before(seq
, tp
->rcv_nxt
))
4158 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4160 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4162 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4164 tp
->rx_opt
.dsack
= 1;
4165 tp
->duplicate_sack
[0].start_seq
= seq
;
4166 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4170 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4172 struct tcp_sock
*tp
= tcp_sk(sk
);
4174 if (!tp
->rx_opt
.dsack
)
4175 tcp_dsack_set(sk
, seq
, end_seq
);
4177 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4180 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4182 struct tcp_sock
*tp
= tcp_sk(sk
);
4184 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4185 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4186 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4187 tcp_enter_quickack_mode(sk
);
4189 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4190 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4192 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4193 end_seq
= tp
->rcv_nxt
;
4194 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4201 /* These routines update the SACK block as out-of-order packets arrive or
4202 * in-order packets close up the sequence space.
4204 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4207 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4208 struct tcp_sack_block
*swalk
= sp
+ 1;
4210 /* See if the recent change to the first SACK eats into
4211 * or hits the sequence space of other SACK blocks, if so coalesce.
4213 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4214 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4217 /* Zap SWALK, by moving every further SACK up by one slot.
4218 * Decrease num_sacks.
4220 tp
->rx_opt
.num_sacks
--;
4221 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4225 this_sack
++, swalk
++;
4229 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4231 struct tcp_sock
*tp
= tcp_sk(sk
);
4232 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4233 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4239 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4240 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4241 /* Rotate this_sack to the first one. */
4242 for (; this_sack
> 0; this_sack
--, sp
--)
4243 swap(*sp
, *(sp
- 1));
4245 tcp_sack_maybe_coalesce(tp
);
4250 /* Could not find an adjacent existing SACK, build a new one,
4251 * put it at the front, and shift everyone else down. We
4252 * always know there is at least one SACK present already here.
4254 * If the sack array is full, forget about the last one.
4256 if (this_sack
>= TCP_NUM_SACKS
) {
4258 tp
->rx_opt
.num_sacks
--;
4261 for (; this_sack
> 0; this_sack
--, sp
--)
4265 /* Build the new head SACK, and we're done. */
4266 sp
->start_seq
= seq
;
4267 sp
->end_seq
= end_seq
;
4268 tp
->rx_opt
.num_sacks
++;
4271 /* RCV.NXT advances, some SACKs should be eaten. */
4273 static void tcp_sack_remove(struct tcp_sock
*tp
)
4275 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4276 int num_sacks
= tp
->rx_opt
.num_sacks
;
4279 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4280 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4281 tp
->rx_opt
.num_sacks
= 0;
4285 for (this_sack
= 0; this_sack
< num_sacks
;) {
4286 /* Check if the start of the sack is covered by RCV.NXT. */
4287 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4290 /* RCV.NXT must cover all the block! */
4291 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4293 /* Zap this SACK, by moving forward any other SACKS. */
4294 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4295 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4302 tp
->rx_opt
.num_sacks
= num_sacks
;
4305 /* This one checks to see if we can put data from the
4306 * out_of_order queue into the receive_queue.
4308 static void tcp_ofo_queue(struct sock
*sk
)
4310 struct tcp_sock
*tp
= tcp_sk(sk
);
4311 __u32 dsack_high
= tp
->rcv_nxt
;
4312 struct sk_buff
*skb
;
4314 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4315 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4318 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4319 __u32 dsack
= dsack_high
;
4320 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4321 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4322 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4325 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4326 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4327 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4331 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4332 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4333 TCP_SKB_CB(skb
)->end_seq
);
4335 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4336 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4337 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4338 if (tcp_hdr(skb
)->fin
)
4339 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4343 static int tcp_prune_ofo_queue(struct sock
*sk
);
4344 static int tcp_prune_queue(struct sock
*sk
);
4346 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4348 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4349 !sk_rmem_schedule(sk
, size
)) {
4351 if (tcp_prune_queue(sk
) < 0)
4354 if (!sk_rmem_schedule(sk
, size
)) {
4355 if (!tcp_prune_ofo_queue(sk
))
4358 if (!sk_rmem_schedule(sk
, size
))
4365 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4367 struct tcphdr
*th
= tcp_hdr(skb
);
4368 struct tcp_sock
*tp
= tcp_sk(sk
);
4371 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4375 __skb_pull(skb
, th
->doff
* 4);
4377 TCP_ECN_accept_cwr(tp
, skb
);
4379 tp
->rx_opt
.dsack
= 0;
4381 /* Queue data for delivery to the user.
4382 * Packets in sequence go to the receive queue.
4383 * Out of sequence packets to the out_of_order_queue.
4385 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4386 if (tcp_receive_window(tp
) == 0)
4389 /* Ok. In sequence. In window. */
4390 if (tp
->ucopy
.task
== current
&&
4391 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4392 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4393 int chunk
= min_t(unsigned int, skb
->len
,
4396 __set_current_state(TASK_RUNNING
);
4399 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4400 tp
->ucopy
.len
-= chunk
;
4401 tp
->copied_seq
+= chunk
;
4402 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4403 tcp_rcv_space_adjust(sk
);
4411 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4414 skb_set_owner_r(skb
, sk
);
4415 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4417 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4419 tcp_event_data_recv(sk
, skb
);
4421 tcp_fin(skb
, sk
, th
);
4423 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4426 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4427 * gap in queue is filled.
4429 if (skb_queue_empty(&tp
->out_of_order_queue
))
4430 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4433 if (tp
->rx_opt
.num_sacks
)
4434 tcp_sack_remove(tp
);
4436 tcp_fast_path_check(sk
);
4440 else if (!sock_flag(sk
, SOCK_DEAD
))
4441 sk
->sk_data_ready(sk
, 0);
4445 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4446 /* A retransmit, 2nd most common case. Force an immediate ack. */
4447 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4448 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4451 tcp_enter_quickack_mode(sk
);
4452 inet_csk_schedule_ack(sk
);
4458 /* Out of window. F.e. zero window probe. */
4459 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4462 tcp_enter_quickack_mode(sk
);
4464 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4465 /* Partial packet, seq < rcv_next < end_seq */
4466 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4467 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4468 TCP_SKB_CB(skb
)->end_seq
);
4470 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4472 /* If window is closed, drop tail of packet. But after
4473 * remembering D-SACK for its head made in previous line.
4475 if (!tcp_receive_window(tp
))
4480 TCP_ECN_check_ce(tp
, skb
);
4482 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4485 /* Disable header prediction. */
4487 inet_csk_schedule_ack(sk
);
4489 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4490 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4492 skb_set_owner_r(skb
, sk
);
4494 if (!skb_peek(&tp
->out_of_order_queue
)) {
4495 /* Initial out of order segment, build 1 SACK. */
4496 if (tcp_is_sack(tp
)) {
4497 tp
->rx_opt
.num_sacks
= 1;
4498 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4499 tp
->selective_acks
[0].end_seq
=
4500 TCP_SKB_CB(skb
)->end_seq
;
4502 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4504 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4505 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4506 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4508 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4509 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4511 if (!tp
->rx_opt
.num_sacks
||
4512 tp
->selective_acks
[0].end_seq
!= seq
)
4515 /* Common case: data arrive in order after hole. */
4516 tp
->selective_acks
[0].end_seq
= end_seq
;
4520 /* Find place to insert this segment. */
4522 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4524 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4528 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4531 /* Do skb overlap to previous one? */
4532 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4533 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4534 /* All the bits are present. Drop. */
4536 tcp_dsack_set(sk
, seq
, end_seq
);
4539 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4540 /* Partial overlap. */
4541 tcp_dsack_set(sk
, seq
,
4542 TCP_SKB_CB(skb1
)->end_seq
);
4544 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4548 skb1
= skb_queue_prev(
4549 &tp
->out_of_order_queue
,
4554 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4556 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4558 /* And clean segments covered by new one as whole. */
4559 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4560 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4562 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4564 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4565 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4569 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4570 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4571 TCP_SKB_CB(skb1
)->end_seq
);
4576 if (tcp_is_sack(tp
))
4577 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4581 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4582 struct sk_buff_head
*list
)
4584 struct sk_buff
*next
= NULL
;
4586 if (!skb_queue_is_last(list
, skb
))
4587 next
= skb_queue_next(list
, skb
);
4589 __skb_unlink(skb
, list
);
4591 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4596 /* Collapse contiguous sequence of skbs head..tail with
4597 * sequence numbers start..end.
4599 * If tail is NULL, this means until the end of the list.
4601 * Segments with FIN/SYN are not collapsed (only because this
4605 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4606 struct sk_buff
*head
, struct sk_buff
*tail
,
4609 struct sk_buff
*skb
, *n
;
4612 /* First, check that queue is collapsible and find
4613 * the point where collapsing can be useful. */
4617 skb_queue_walk_from_safe(list
, skb
, n
) {
4620 /* No new bits? It is possible on ofo queue. */
4621 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4622 skb
= tcp_collapse_one(sk
, skb
, list
);
4628 /* The first skb to collapse is:
4630 * - bloated or contains data before "start" or
4631 * overlaps to the next one.
4633 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4634 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4635 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4636 end_of_skbs
= false;
4640 if (!skb_queue_is_last(list
, skb
)) {
4641 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4643 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4644 end_of_skbs
= false;
4649 /* Decided to skip this, advance start seq. */
4650 start
= TCP_SKB_CB(skb
)->end_seq
;
4652 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4655 while (before(start
, end
)) {
4656 struct sk_buff
*nskb
;
4657 unsigned int header
= skb_headroom(skb
);
4658 int copy
= SKB_MAX_ORDER(header
, 0);
4660 /* Too big header? This can happen with IPv6. */
4663 if (end
- start
< copy
)
4665 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4669 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4670 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4672 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4674 skb_reserve(nskb
, header
);
4675 memcpy(nskb
->head
, skb
->head
, header
);
4676 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4677 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4678 __skb_queue_before(list
, skb
, nskb
);
4679 skb_set_owner_r(nskb
, sk
);
4681 /* Copy data, releasing collapsed skbs. */
4683 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4684 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4688 size
= min(copy
, size
);
4689 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4691 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4695 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4696 skb
= tcp_collapse_one(sk
, skb
, list
);
4699 tcp_hdr(skb
)->syn
||
4707 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4708 * and tcp_collapse() them until all the queue is collapsed.
4710 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4712 struct tcp_sock
*tp
= tcp_sk(sk
);
4713 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4714 struct sk_buff
*head
;
4720 start
= TCP_SKB_CB(skb
)->seq
;
4721 end
= TCP_SKB_CB(skb
)->end_seq
;
4725 struct sk_buff
*next
= NULL
;
4727 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4728 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4731 /* Segment is terminated when we see gap or when
4732 * we are at the end of all the queue. */
4734 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4735 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4736 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4737 head
, skb
, start
, end
);
4741 /* Start new segment */
4742 start
= TCP_SKB_CB(skb
)->seq
;
4743 end
= TCP_SKB_CB(skb
)->end_seq
;
4745 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4746 start
= TCP_SKB_CB(skb
)->seq
;
4747 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4748 end
= TCP_SKB_CB(skb
)->end_seq
;
4754 * Purge the out-of-order queue.
4755 * Return true if queue was pruned.
4757 static int tcp_prune_ofo_queue(struct sock
*sk
)
4759 struct tcp_sock
*tp
= tcp_sk(sk
);
4762 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4763 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4764 __skb_queue_purge(&tp
->out_of_order_queue
);
4766 /* Reset SACK state. A conforming SACK implementation will
4767 * do the same at a timeout based retransmit. When a connection
4768 * is in a sad state like this, we care only about integrity
4769 * of the connection not performance.
4771 if (tp
->rx_opt
.sack_ok
)
4772 tcp_sack_reset(&tp
->rx_opt
);
4779 /* Reduce allocated memory if we can, trying to get
4780 * the socket within its memory limits again.
4782 * Return less than zero if we should start dropping frames
4783 * until the socket owning process reads some of the data
4784 * to stabilize the situation.
4786 static int tcp_prune_queue(struct sock
*sk
)
4788 struct tcp_sock
*tp
= tcp_sk(sk
);
4790 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4792 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4794 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4795 tcp_clamp_window(sk
);
4796 else if (tcp_memory_pressure
)
4797 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4799 tcp_collapse_ofo_queue(sk
);
4800 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4801 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4802 skb_peek(&sk
->sk_receive_queue
),
4804 tp
->copied_seq
, tp
->rcv_nxt
);
4807 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4810 /* Collapsing did not help, destructive actions follow.
4811 * This must not ever occur. */
4813 tcp_prune_ofo_queue(sk
);
4815 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4818 /* If we are really being abused, tell the caller to silently
4819 * drop receive data on the floor. It will get retransmitted
4820 * and hopefully then we'll have sufficient space.
4822 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4824 /* Massive buffer overcommit. */
4829 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4830 * As additional protections, we do not touch cwnd in retransmission phases,
4831 * and if application hit its sndbuf limit recently.
4833 void tcp_cwnd_application_limited(struct sock
*sk
)
4835 struct tcp_sock
*tp
= tcp_sk(sk
);
4837 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4838 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4839 /* Limited by application or receiver window. */
4840 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4841 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4842 if (win_used
< tp
->snd_cwnd
) {
4843 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4844 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4846 tp
->snd_cwnd_used
= 0;
4848 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4851 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4853 struct tcp_sock
*tp
= tcp_sk(sk
);
4855 /* If the user specified a specific send buffer setting, do
4858 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4861 /* If we are under global TCP memory pressure, do not expand. */
4862 if (tcp_memory_pressure
)
4865 /* If we are under soft global TCP memory pressure, do not expand. */
4866 if (atomic_long_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4869 /* If we filled the congestion window, do not expand. */
4870 if (tp
->packets_out
>= tp
->snd_cwnd
)
4876 /* When incoming ACK allowed to free some skb from write_queue,
4877 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4878 * on the exit from tcp input handler.
4880 * PROBLEM: sndbuf expansion does not work well with largesend.
4882 static void tcp_new_space(struct sock
*sk
)
4884 struct tcp_sock
*tp
= tcp_sk(sk
);
4886 if (tcp_should_expand_sndbuf(sk
)) {
4887 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4888 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4889 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4890 tp
->reordering
+ 1);
4891 sndmem
*= 2 * demanded
;
4892 if (sndmem
> sk
->sk_sndbuf
)
4893 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4894 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4897 sk
->sk_write_space(sk
);
4900 static void tcp_check_space(struct sock
*sk
)
4902 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4903 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4904 if (sk
->sk_socket
&&
4905 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4910 static inline void tcp_data_snd_check(struct sock
*sk
)
4912 tcp_push_pending_frames(sk
);
4913 tcp_check_space(sk
);
4917 * Check if sending an ack is needed.
4919 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4921 struct tcp_sock
*tp
= tcp_sk(sk
);
4923 /* More than one full frame received... */
4924 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4925 /* ... and right edge of window advances far enough.
4926 * (tcp_recvmsg() will send ACK otherwise). Or...
4928 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4929 /* We ACK each frame or... */
4930 tcp_in_quickack_mode(sk
) ||
4931 /* We have out of order data. */
4932 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4933 /* Then ack it now */
4936 /* Else, send delayed ack. */
4937 tcp_send_delayed_ack(sk
);
4941 static inline void tcp_ack_snd_check(struct sock
*sk
)
4943 if (!inet_csk_ack_scheduled(sk
)) {
4944 /* We sent a data segment already. */
4947 __tcp_ack_snd_check(sk
, 1);
4951 * This routine is only called when we have urgent data
4952 * signaled. Its the 'slow' part of tcp_urg. It could be
4953 * moved inline now as tcp_urg is only called from one
4954 * place. We handle URGent data wrong. We have to - as
4955 * BSD still doesn't use the correction from RFC961.
4956 * For 1003.1g we should support a new option TCP_STDURG to permit
4957 * either form (or just set the sysctl tcp_stdurg).
4960 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4962 struct tcp_sock
*tp
= tcp_sk(sk
);
4963 u32 ptr
= ntohs(th
->urg_ptr
);
4965 if (ptr
&& !sysctl_tcp_stdurg
)
4967 ptr
+= ntohl(th
->seq
);
4969 /* Ignore urgent data that we've already seen and read. */
4970 if (after(tp
->copied_seq
, ptr
))
4973 /* Do not replay urg ptr.
4975 * NOTE: interesting situation not covered by specs.
4976 * Misbehaving sender may send urg ptr, pointing to segment,
4977 * which we already have in ofo queue. We are not able to fetch
4978 * such data and will stay in TCP_URG_NOTYET until will be eaten
4979 * by recvmsg(). Seems, we are not obliged to handle such wicked
4980 * situations. But it is worth to think about possibility of some
4981 * DoSes using some hypothetical application level deadlock.
4983 if (before(ptr
, tp
->rcv_nxt
))
4986 /* Do we already have a newer (or duplicate) urgent pointer? */
4987 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4990 /* Tell the world about our new urgent pointer. */
4993 /* We may be adding urgent data when the last byte read was
4994 * urgent. To do this requires some care. We cannot just ignore
4995 * tp->copied_seq since we would read the last urgent byte again
4996 * as data, nor can we alter copied_seq until this data arrives
4997 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4999 * NOTE. Double Dutch. Rendering to plain English: author of comment
5000 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5001 * and expect that both A and B disappear from stream. This is _wrong_.
5002 * Though this happens in BSD with high probability, this is occasional.
5003 * Any application relying on this is buggy. Note also, that fix "works"
5004 * only in this artificial test. Insert some normal data between A and B and we will
5005 * decline of BSD again. Verdict: it is better to remove to trap
5008 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5009 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5010 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5012 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5013 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5018 tp
->urg_data
= TCP_URG_NOTYET
;
5021 /* Disable header prediction. */
5025 /* This is the 'fast' part of urgent handling. */
5026 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
5028 struct tcp_sock
*tp
= tcp_sk(sk
);
5030 /* Check if we get a new urgent pointer - normally not. */
5032 tcp_check_urg(sk
, th
);
5034 /* Do we wait for any urgent data? - normally not... */
5035 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5036 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5039 /* Is the urgent pointer pointing into this packet? */
5040 if (ptr
< skb
->len
) {
5042 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5044 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5045 if (!sock_flag(sk
, SOCK_DEAD
))
5046 sk
->sk_data_ready(sk
, 0);
5051 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5053 struct tcp_sock
*tp
= tcp_sk(sk
);
5054 int chunk
= skb
->len
- hlen
;
5058 if (skb_csum_unnecessary(skb
))
5059 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5061 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5065 tp
->ucopy
.len
-= chunk
;
5066 tp
->copied_seq
+= chunk
;
5067 tcp_rcv_space_adjust(sk
);
5074 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5075 struct sk_buff
*skb
)
5079 if (sock_owned_by_user(sk
)) {
5081 result
= __tcp_checksum_complete(skb
);
5084 result
= __tcp_checksum_complete(skb
);
5089 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5090 struct sk_buff
*skb
)
5092 return !skb_csum_unnecessary(skb
) &&
5093 __tcp_checksum_complete_user(sk
, skb
);
5096 #ifdef CONFIG_NET_DMA
5097 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5100 struct tcp_sock
*tp
= tcp_sk(sk
);
5101 int chunk
= skb
->len
- hlen
;
5103 int copied_early
= 0;
5105 if (tp
->ucopy
.wakeup
)
5108 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5109 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5111 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5113 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5115 tp
->ucopy
.iov
, chunk
,
5116 tp
->ucopy
.pinned_list
);
5121 tp
->ucopy
.dma_cookie
= dma_cookie
;
5124 tp
->ucopy
.len
-= chunk
;
5125 tp
->copied_seq
+= chunk
;
5126 tcp_rcv_space_adjust(sk
);
5128 if ((tp
->ucopy
.len
== 0) ||
5129 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5130 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5131 tp
->ucopy
.wakeup
= 1;
5132 sk
->sk_data_ready(sk
, 0);
5134 } else if (chunk
> 0) {
5135 tp
->ucopy
.wakeup
= 1;
5136 sk
->sk_data_ready(sk
, 0);
5139 return copied_early
;
5141 #endif /* CONFIG_NET_DMA */
5143 /* Does PAWS and seqno based validation of an incoming segment, flags will
5144 * play significant role here.
5146 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5147 struct tcphdr
*th
, int syn_inerr
)
5150 struct tcp_sock
*tp
= tcp_sk(sk
);
5152 /* RFC1323: H1. Apply PAWS check first. */
5153 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5154 tp
->rx_opt
.saw_tstamp
&&
5155 tcp_paws_discard(sk
, skb
)) {
5157 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5158 tcp_send_dupack(sk
, skb
);
5161 /* Reset is accepted even if it did not pass PAWS. */
5164 /* Step 1: check sequence number */
5165 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5166 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5167 * (RST) segments are validated by checking their SEQ-fields."
5168 * And page 69: "If an incoming segment is not acceptable,
5169 * an acknowledgment should be sent in reply (unless the RST
5170 * bit is set, if so drop the segment and return)".
5173 tcp_send_dupack(sk
, skb
);
5177 /* Step 2: check RST bit */
5183 /* ts_recent update must be made after we are sure that the packet
5186 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5188 /* step 3: check security and precedence [ignored] */
5190 /* step 4: Check for a SYN in window. */
5191 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5193 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5194 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5207 * TCP receive function for the ESTABLISHED state.
5209 * It is split into a fast path and a slow path. The fast path is
5211 * - A zero window was announced from us - zero window probing
5212 * is only handled properly in the slow path.
5213 * - Out of order segments arrived.
5214 * - Urgent data is expected.
5215 * - There is no buffer space left
5216 * - Unexpected TCP flags/window values/header lengths are received
5217 * (detected by checking the TCP header against pred_flags)
5218 * - Data is sent in both directions. Fast path only supports pure senders
5219 * or pure receivers (this means either the sequence number or the ack
5220 * value must stay constant)
5221 * - Unexpected TCP option.
5223 * When these conditions are not satisfied it drops into a standard
5224 * receive procedure patterned after RFC793 to handle all cases.
5225 * The first three cases are guaranteed by proper pred_flags setting,
5226 * the rest is checked inline. Fast processing is turned on in
5227 * tcp_data_queue when everything is OK.
5229 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5230 struct tcphdr
*th
, unsigned len
)
5232 struct tcp_sock
*tp
= tcp_sk(sk
);
5236 * Header prediction.
5237 * The code loosely follows the one in the famous
5238 * "30 instruction TCP receive" Van Jacobson mail.
5240 * Van's trick is to deposit buffers into socket queue
5241 * on a device interrupt, to call tcp_recv function
5242 * on the receive process context and checksum and copy
5243 * the buffer to user space. smart...
5245 * Our current scheme is not silly either but we take the
5246 * extra cost of the net_bh soft interrupt processing...
5247 * We do checksum and copy also but from device to kernel.
5250 tp
->rx_opt
.saw_tstamp
= 0;
5252 /* pred_flags is 0xS?10 << 16 + snd_wnd
5253 * if header_prediction is to be made
5254 * 'S' will always be tp->tcp_header_len >> 2
5255 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5256 * turn it off (when there are holes in the receive
5257 * space for instance)
5258 * PSH flag is ignored.
5261 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5262 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5263 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5264 int tcp_header_len
= tp
->tcp_header_len
;
5266 /* Timestamp header prediction: tcp_header_len
5267 * is automatically equal to th->doff*4 due to pred_flags
5271 /* Check timestamp */
5272 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5273 /* No? Slow path! */
5274 if (!tcp_parse_aligned_timestamp(tp
, th
))
5277 /* If PAWS failed, check it more carefully in slow path */
5278 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5281 /* DO NOT update ts_recent here, if checksum fails
5282 * and timestamp was corrupted part, it will result
5283 * in a hung connection since we will drop all
5284 * future packets due to the PAWS test.
5288 if (len
<= tcp_header_len
) {
5289 /* Bulk data transfer: sender */
5290 if (len
== tcp_header_len
) {
5291 /* Predicted packet is in window by definition.
5292 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5293 * Hence, check seq<=rcv_wup reduces to:
5295 if (tcp_header_len
==
5296 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5297 tp
->rcv_nxt
== tp
->rcv_wup
)
5298 tcp_store_ts_recent(tp
);
5300 /* We know that such packets are checksummed
5303 tcp_ack(sk
, skb
, 0);
5305 tcp_data_snd_check(sk
);
5307 } else { /* Header too small */
5308 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5313 int copied_early
= 0;
5315 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5316 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5317 #ifdef CONFIG_NET_DMA
5318 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5323 if (tp
->ucopy
.task
== current
&&
5324 sock_owned_by_user(sk
) && !copied_early
) {
5325 __set_current_state(TASK_RUNNING
);
5327 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5331 /* Predicted packet is in window by definition.
5332 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5333 * Hence, check seq<=rcv_wup reduces to:
5335 if (tcp_header_len
==
5336 (sizeof(struct tcphdr
) +
5337 TCPOLEN_TSTAMP_ALIGNED
) &&
5338 tp
->rcv_nxt
== tp
->rcv_wup
)
5339 tcp_store_ts_recent(tp
);
5341 tcp_rcv_rtt_measure_ts(sk
, skb
);
5343 __skb_pull(skb
, tcp_header_len
);
5344 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5345 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5348 tcp_cleanup_rbuf(sk
, skb
->len
);
5351 if (tcp_checksum_complete_user(sk
, skb
))
5354 /* Predicted packet is in window by definition.
5355 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5356 * Hence, check seq<=rcv_wup reduces to:
5358 if (tcp_header_len
==
5359 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5360 tp
->rcv_nxt
== tp
->rcv_wup
)
5361 tcp_store_ts_recent(tp
);
5363 tcp_rcv_rtt_measure_ts(sk
, skb
);
5365 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5368 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5370 /* Bulk data transfer: receiver */
5371 __skb_pull(skb
, tcp_header_len
);
5372 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5373 skb_set_owner_r(skb
, sk
);
5374 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5377 tcp_event_data_recv(sk
, skb
);
5379 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5380 /* Well, only one small jumplet in fast path... */
5381 tcp_ack(sk
, skb
, FLAG_DATA
);
5382 tcp_data_snd_check(sk
);
5383 if (!inet_csk_ack_scheduled(sk
))
5387 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5388 __tcp_ack_snd_check(sk
, 0);
5390 #ifdef CONFIG_NET_DMA
5392 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5398 sk
->sk_data_ready(sk
, 0);
5404 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5408 * Standard slow path.
5411 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5416 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5419 tcp_rcv_rtt_measure_ts(sk
, skb
);
5421 /* Process urgent data. */
5422 tcp_urg(sk
, skb
, th
);
5424 /* step 7: process the segment text */
5425 tcp_data_queue(sk
, skb
);
5427 tcp_data_snd_check(sk
);
5428 tcp_ack_snd_check(sk
);
5432 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5438 EXPORT_SYMBOL(tcp_rcv_established
);
5440 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5441 struct tcphdr
*th
, unsigned len
)
5444 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5445 struct tcp_sock
*tp
= tcp_sk(sk
);
5446 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5447 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5449 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5453 * "If the state is SYN-SENT then
5454 * first check the ACK bit
5455 * If the ACK bit is set
5456 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5457 * a reset (unless the RST bit is set, if so drop
5458 * the segment and return)"
5460 * We do not send data with SYN, so that RFC-correct
5463 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5464 goto reset_and_undo
;
5466 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5467 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5469 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5470 goto reset_and_undo
;
5473 /* Now ACK is acceptable.
5475 * "If the RST bit is set
5476 * If the ACK was acceptable then signal the user "error:
5477 * connection reset", drop the segment, enter CLOSED state,
5478 * delete TCB, and return."
5487 * "fifth, if neither of the SYN or RST bits is set then
5488 * drop the segment and return."
5494 goto discard_and_undo
;
5497 * "If the SYN bit is on ...
5498 * are acceptable then ...
5499 * (our SYN has been ACKed), change the connection
5500 * state to ESTABLISHED..."
5503 TCP_ECN_rcv_synack(tp
, th
);
5505 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5506 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5508 /* Ok.. it's good. Set up sequence numbers and
5509 * move to established.
5511 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5512 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5514 /* RFC1323: The window in SYN & SYN/ACK segments is
5517 tp
->snd_wnd
= ntohs(th
->window
);
5518 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5520 if (!tp
->rx_opt
.wscale_ok
) {
5521 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5522 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5525 if (tp
->rx_opt
.saw_tstamp
) {
5526 tp
->rx_opt
.tstamp_ok
= 1;
5527 tp
->tcp_header_len
=
5528 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5529 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5530 tcp_store_ts_recent(tp
);
5532 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5535 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5536 tcp_enable_fack(tp
);
5539 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5540 tcp_initialize_rcv_mss(sk
);
5542 /* Remember, tcp_poll() does not lock socket!
5543 * Change state from SYN-SENT only after copied_seq
5544 * is initialized. */
5545 tp
->copied_seq
= tp
->rcv_nxt
;
5548 cvp
->cookie_pair_size
> 0 &&
5549 tp
->rx_opt
.cookie_plus
> 0) {
5550 int cookie_size
= tp
->rx_opt
.cookie_plus
5551 - TCPOLEN_COOKIE_BASE
;
5552 int cookie_pair_size
= cookie_size
5553 + cvp
->cookie_desired
;
5555 /* A cookie extension option was sent and returned.
5556 * Note that each incoming SYNACK replaces the
5557 * Responder cookie. The initial exchange is most
5558 * fragile, as protection against spoofing relies
5559 * entirely upon the sequence and timestamp (above).
5560 * This replacement strategy allows the correct pair to
5561 * pass through, while any others will be filtered via
5562 * Responder verification later.
5564 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5565 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5566 hash_location
, cookie_size
);
5567 cvp
->cookie_pair_size
= cookie_pair_size
;
5572 tcp_set_state(sk
, TCP_ESTABLISHED
);
5574 security_inet_conn_established(sk
, skb
);
5576 /* Make sure socket is routed, for correct metrics. */
5577 icsk
->icsk_af_ops
->rebuild_header(sk
);
5579 tcp_init_metrics(sk
);
5581 tcp_init_congestion_control(sk
);
5583 /* Prevent spurious tcp_cwnd_restart() on first data
5586 tp
->lsndtime
= tcp_time_stamp
;
5588 tcp_init_buffer_space(sk
);
5590 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5591 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5593 if (!tp
->rx_opt
.snd_wscale
)
5594 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5598 if (!sock_flag(sk
, SOCK_DEAD
)) {
5599 sk
->sk_state_change(sk
);
5600 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5603 if (sk
->sk_write_pending
||
5604 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5605 icsk
->icsk_ack
.pingpong
) {
5606 /* Save one ACK. Data will be ready after
5607 * several ticks, if write_pending is set.
5609 * It may be deleted, but with this feature tcpdumps
5610 * look so _wonderfully_ clever, that I was not able
5611 * to stand against the temptation 8) --ANK
5613 inet_csk_schedule_ack(sk
);
5614 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5615 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5616 tcp_incr_quickack(sk
);
5617 tcp_enter_quickack_mode(sk
);
5618 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5619 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5630 /* No ACK in the segment */
5634 * "If the RST bit is set
5636 * Otherwise (no ACK) drop the segment and return."
5639 goto discard_and_undo
;
5643 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5644 tcp_paws_reject(&tp
->rx_opt
, 0))
5645 goto discard_and_undo
;
5648 /* We see SYN without ACK. It is attempt of
5649 * simultaneous connect with crossed SYNs.
5650 * Particularly, it can be connect to self.
5652 tcp_set_state(sk
, TCP_SYN_RECV
);
5654 if (tp
->rx_opt
.saw_tstamp
) {
5655 tp
->rx_opt
.tstamp_ok
= 1;
5656 tcp_store_ts_recent(tp
);
5657 tp
->tcp_header_len
=
5658 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5660 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5663 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5664 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5666 /* RFC1323: The window in SYN & SYN/ACK segments is
5669 tp
->snd_wnd
= ntohs(th
->window
);
5670 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5671 tp
->max_window
= tp
->snd_wnd
;
5673 TCP_ECN_rcv_syn(tp
, th
);
5676 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5677 tcp_initialize_rcv_mss(sk
);
5679 tcp_send_synack(sk
);
5681 /* Note, we could accept data and URG from this segment.
5682 * There are no obstacles to make this.
5684 * However, if we ignore data in ACKless segments sometimes,
5685 * we have no reasons to accept it sometimes.
5686 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5687 * is not flawless. So, discard packet for sanity.
5688 * Uncomment this return to process the data.
5695 /* "fifth, if neither of the SYN or RST bits is set then
5696 * drop the segment and return."
5700 tcp_clear_options(&tp
->rx_opt
);
5701 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5705 tcp_clear_options(&tp
->rx_opt
);
5706 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5711 * This function implements the receiving procedure of RFC 793 for
5712 * all states except ESTABLISHED and TIME_WAIT.
5713 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5714 * address independent.
5717 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5718 struct tcphdr
*th
, unsigned len
)
5720 struct tcp_sock
*tp
= tcp_sk(sk
);
5721 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5725 tp
->rx_opt
.saw_tstamp
= 0;
5727 switch (sk
->sk_state
) {
5739 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5742 /* Now we have several options: In theory there is
5743 * nothing else in the frame. KA9Q has an option to
5744 * send data with the syn, BSD accepts data with the
5745 * syn up to the [to be] advertised window and
5746 * Solaris 2.1 gives you a protocol error. For now
5747 * we just ignore it, that fits the spec precisely
5748 * and avoids incompatibilities. It would be nice in
5749 * future to drop through and process the data.
5751 * Now that TTCP is starting to be used we ought to
5753 * But, this leaves one open to an easy denial of
5754 * service attack, and SYN cookies can't defend
5755 * against this problem. So, we drop the data
5756 * in the interest of security over speed unless
5757 * it's still in use.
5765 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5769 /* Do step6 onward by hand. */
5770 tcp_urg(sk
, skb
, th
);
5772 tcp_data_snd_check(sk
);
5776 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5780 /* step 5: check the ACK field */
5782 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5784 switch (sk
->sk_state
) {
5787 tp
->copied_seq
= tp
->rcv_nxt
;
5789 tcp_set_state(sk
, TCP_ESTABLISHED
);
5790 sk
->sk_state_change(sk
);
5792 /* Note, that this wakeup is only for marginal
5793 * crossed SYN case. Passively open sockets
5794 * are not waked up, because sk->sk_sleep ==
5795 * NULL and sk->sk_socket == NULL.
5799 SOCK_WAKE_IO
, POLL_OUT
);
5801 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5802 tp
->snd_wnd
= ntohs(th
->window
) <<
5803 tp
->rx_opt
.snd_wscale
;
5804 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5806 /* tcp_ack considers this ACK as duplicate
5807 * and does not calculate rtt.
5810 tcp_ack_update_rtt(sk
, 0, 0);
5812 if (tp
->rx_opt
.tstamp_ok
)
5813 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5815 /* Make sure socket is routed, for
5818 icsk
->icsk_af_ops
->rebuild_header(sk
);
5820 tcp_init_metrics(sk
);
5822 tcp_init_congestion_control(sk
);
5824 /* Prevent spurious tcp_cwnd_restart() on
5825 * first data packet.
5827 tp
->lsndtime
= tcp_time_stamp
;
5830 tcp_initialize_rcv_mss(sk
);
5831 tcp_init_buffer_space(sk
);
5832 tcp_fast_path_on(tp
);
5839 if (tp
->snd_una
== tp
->write_seq
) {
5840 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5841 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5842 dst_confirm(__sk_dst_get(sk
));
5844 if (!sock_flag(sk
, SOCK_DEAD
))
5845 /* Wake up lingering close() */
5846 sk
->sk_state_change(sk
);
5850 if (tp
->linger2
< 0 ||
5851 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5852 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5854 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5858 tmo
= tcp_fin_time(sk
);
5859 if (tmo
> TCP_TIMEWAIT_LEN
) {
5860 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5861 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5862 /* Bad case. We could lose such FIN otherwise.
5863 * It is not a big problem, but it looks confusing
5864 * and not so rare event. We still can lose it now,
5865 * if it spins in bh_lock_sock(), but it is really
5868 inet_csk_reset_keepalive_timer(sk
, tmo
);
5870 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5878 if (tp
->snd_una
== tp
->write_seq
) {
5879 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5885 if (tp
->snd_una
== tp
->write_seq
) {
5886 tcp_update_metrics(sk
);
5895 /* step 6: check the URG bit */
5896 tcp_urg(sk
, skb
, th
);
5898 /* step 7: process the segment text */
5899 switch (sk
->sk_state
) {
5900 case TCP_CLOSE_WAIT
:
5903 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5907 /* RFC 793 says to queue data in these states,
5908 * RFC 1122 says we MUST send a reset.
5909 * BSD 4.4 also does reset.
5911 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5912 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5913 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5914 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5920 case TCP_ESTABLISHED
:
5921 tcp_data_queue(sk
, skb
);
5926 /* tcp_data could move socket to TIME-WAIT */
5927 if (sk
->sk_state
!= TCP_CLOSE
) {
5928 tcp_data_snd_check(sk
);
5929 tcp_ack_snd_check(sk
);
5938 EXPORT_SYMBOL(tcp_rcv_state_process
);