2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/smp_lock.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
25 #include <trace/events/block.h>
27 #define DM_MSG_PREFIX "core"
30 * Cookies are numeric values sent with CHANGE and REMOVE
31 * uevents while resuming, removing or renaming the device.
33 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
34 #define DM_COOKIE_LENGTH 24
36 static const char *_name
= DM_NAME
;
38 static unsigned int major
= 0;
39 static unsigned int _major
= 0;
41 static DEFINE_SPINLOCK(_minor_lock
);
44 * One of these is allocated per bio.
47 struct mapped_device
*md
;
51 unsigned long start_time
;
52 spinlock_t endio_lock
;
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
67 * For request-based dm.
68 * One of these is allocated per request.
70 struct dm_rq_target_io
{
71 struct mapped_device
*md
;
73 struct request
*orig
, clone
;
79 * For request-based dm.
80 * One of these is allocated per bio.
82 struct dm_rq_clone_bio_info
{
84 struct dm_rq_target_io
*tio
;
87 union map_info
*dm_get_mapinfo(struct bio
*bio
)
89 if (bio
&& bio
->bi_private
)
90 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
94 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
96 if (rq
&& rq
->end_io_data
)
97 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
102 #define MINOR_ALLOCED ((void *)-1)
105 * Bits for the md->flags field.
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
115 * Work processed by per-device workqueue.
117 struct mapped_device
{
118 struct rw_semaphore io_lock
;
119 struct mutex suspend_lock
;
126 struct request_queue
*queue
;
128 /* Protect queue and type against concurrent access. */
129 struct mutex type_lock
;
131 struct gendisk
*disk
;
137 * A list of ios that arrived while we were suspended.
140 wait_queue_head_t wait
;
141 struct work_struct work
;
142 struct bio_list deferred
;
143 spinlock_t deferred_lock
;
146 * Processing queue (flush)
148 struct workqueue_struct
*wq
;
151 * The current mapping.
153 struct dm_table
*map
;
156 * io objects are allocated from here.
167 wait_queue_head_t eventq
;
169 struct list_head uevent_list
;
170 spinlock_t uevent_lock
; /* Protect access to uevent_list */
173 * freeze/thaw support require holding onto a super block
175 struct super_block
*frozen_sb
;
176 struct block_device
*bdev
;
178 /* forced geometry settings */
179 struct hd_geometry geometry
;
181 /* For saving the address of __make_request for request based dm */
182 make_request_fn
*saved_make_request_fn
;
187 /* zero-length flush that will be cloned and submitted to targets */
188 struct bio flush_bio
;
192 * For mempools pre-allocation at the table loading time.
194 struct dm_md_mempools
{
201 static struct kmem_cache
*_io_cache
;
202 static struct kmem_cache
*_tio_cache
;
203 static struct kmem_cache
*_rq_tio_cache
;
204 static struct kmem_cache
*_rq_bio_info_cache
;
206 static int __init
local_init(void)
210 /* allocate a slab for the dm_ios */
211 _io_cache
= KMEM_CACHE(dm_io
, 0);
215 /* allocate a slab for the target ios */
216 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
218 goto out_free_io_cache
;
220 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
222 goto out_free_tio_cache
;
224 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
225 if (!_rq_bio_info_cache
)
226 goto out_free_rq_tio_cache
;
228 r
= dm_uevent_init();
230 goto out_free_rq_bio_info_cache
;
233 r
= register_blkdev(_major
, _name
);
235 goto out_uevent_exit
;
244 out_free_rq_bio_info_cache
:
245 kmem_cache_destroy(_rq_bio_info_cache
);
246 out_free_rq_tio_cache
:
247 kmem_cache_destroy(_rq_tio_cache
);
249 kmem_cache_destroy(_tio_cache
);
251 kmem_cache_destroy(_io_cache
);
256 static void local_exit(void)
258 kmem_cache_destroy(_rq_bio_info_cache
);
259 kmem_cache_destroy(_rq_tio_cache
);
260 kmem_cache_destroy(_tio_cache
);
261 kmem_cache_destroy(_io_cache
);
262 unregister_blkdev(_major
, _name
);
267 DMINFO("cleaned up");
270 static int (*_inits
[])(void) __initdata
= {
280 static void (*_exits
[])(void) = {
290 static int __init
dm_init(void)
292 const int count
= ARRAY_SIZE(_inits
);
296 for (i
= 0; i
< count
; i
++) {
311 static void __exit
dm_exit(void)
313 int i
= ARRAY_SIZE(_exits
);
320 * Block device functions
322 int dm_deleting_md(struct mapped_device
*md
)
324 return test_bit(DMF_DELETING
, &md
->flags
);
327 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
329 struct mapped_device
*md
;
332 spin_lock(&_minor_lock
);
334 md
= bdev
->bd_disk
->private_data
;
338 if (test_bit(DMF_FREEING
, &md
->flags
) ||
339 dm_deleting_md(md
)) {
345 atomic_inc(&md
->open_count
);
348 spin_unlock(&_minor_lock
);
351 return md
? 0 : -ENXIO
;
354 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
356 struct mapped_device
*md
= disk
->private_data
;
359 atomic_dec(&md
->open_count
);
366 int dm_open_count(struct mapped_device
*md
)
368 return atomic_read(&md
->open_count
);
372 * Guarantees nothing is using the device before it's deleted.
374 int dm_lock_for_deletion(struct mapped_device
*md
)
378 spin_lock(&_minor_lock
);
380 if (dm_open_count(md
))
383 set_bit(DMF_DELETING
, &md
->flags
);
385 spin_unlock(&_minor_lock
);
390 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
392 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
394 return dm_get_geometry(md
, geo
);
397 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
398 unsigned int cmd
, unsigned long arg
)
400 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
401 struct dm_table
*map
= dm_get_live_table(md
);
402 struct dm_target
*tgt
;
405 if (!map
|| !dm_table_get_size(map
))
408 /* We only support devices that have a single target */
409 if (dm_table_get_num_targets(map
) != 1)
412 tgt
= dm_table_get_target(map
, 0);
414 if (dm_suspended_md(md
)) {
419 if (tgt
->type
->ioctl
)
420 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
428 static struct dm_io
*alloc_io(struct mapped_device
*md
)
430 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
433 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
435 mempool_free(io
, md
->io_pool
);
438 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
440 mempool_free(tio
, md
->tio_pool
);
443 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
446 return mempool_alloc(md
->tio_pool
, gfp_mask
);
449 static void free_rq_tio(struct dm_rq_target_io
*tio
)
451 mempool_free(tio
, tio
->md
->tio_pool
);
454 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
456 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
459 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
461 mempool_free(info
, info
->tio
->md
->io_pool
);
464 static int md_in_flight(struct mapped_device
*md
)
466 return atomic_read(&md
->pending
[READ
]) +
467 atomic_read(&md
->pending
[WRITE
]);
470 static void start_io_acct(struct dm_io
*io
)
472 struct mapped_device
*md
= io
->md
;
474 int rw
= bio_data_dir(io
->bio
);
476 io
->start_time
= jiffies
;
478 cpu
= part_stat_lock();
479 part_round_stats(cpu
, &dm_disk(md
)->part0
);
481 dm_disk(md
)->part0
.in_flight
[rw
] = atomic_inc_return(&md
->pending
[rw
]);
484 static void end_io_acct(struct dm_io
*io
)
486 struct mapped_device
*md
= io
->md
;
487 struct bio
*bio
= io
->bio
;
488 unsigned long duration
= jiffies
- io
->start_time
;
490 int rw
= bio_data_dir(bio
);
492 cpu
= part_stat_lock();
493 part_round_stats(cpu
, &dm_disk(md
)->part0
);
494 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
498 * After this is decremented the bio must not be touched if it is
501 dm_disk(md
)->part0
.in_flight
[rw
] = pending
=
502 atomic_dec_return(&md
->pending
[rw
]);
503 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
505 /* nudge anyone waiting on suspend queue */
511 * Add the bio to the list of deferred io.
513 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
515 spin_lock_irq(&md
->deferred_lock
);
516 bio_list_add(&md
->deferred
, bio
);
517 spin_unlock_irq(&md
->deferred_lock
);
518 queue_work(md
->wq
, &md
->work
);
522 * Everyone (including functions in this file), should use this
523 * function to access the md->map field, and make sure they call
524 * dm_table_put() when finished.
526 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
531 read_lock_irqsave(&md
->map_lock
, flags
);
535 read_unlock_irqrestore(&md
->map_lock
, flags
);
541 * Get the geometry associated with a dm device
543 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
551 * Set the geometry of a device.
553 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
555 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
557 if (geo
->start
> sz
) {
558 DMWARN("Start sector is beyond the geometry limits.");
567 /*-----------------------------------------------------------------
569 * A more elegant soln is in the works that uses the queue
570 * merge fn, unfortunately there are a couple of changes to
571 * the block layer that I want to make for this. So in the
572 * interests of getting something for people to use I give
573 * you this clearly demarcated crap.
574 *---------------------------------------------------------------*/
576 static int __noflush_suspending(struct mapped_device
*md
)
578 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
582 * Decrements the number of outstanding ios that a bio has been
583 * cloned into, completing the original io if necc.
585 static void dec_pending(struct dm_io
*io
, int error
)
590 struct mapped_device
*md
= io
->md
;
592 /* Push-back supersedes any I/O errors */
593 if (unlikely(error
)) {
594 spin_lock_irqsave(&io
->endio_lock
, flags
);
595 if (!(io
->error
> 0 && __noflush_suspending(md
)))
597 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
600 if (atomic_dec_and_test(&io
->io_count
)) {
601 if (io
->error
== DM_ENDIO_REQUEUE
) {
603 * Target requested pushing back the I/O.
605 spin_lock_irqsave(&md
->deferred_lock
, flags
);
606 if (__noflush_suspending(md
))
607 bio_list_add_head(&md
->deferred
, io
->bio
);
609 /* noflush suspend was interrupted. */
611 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
614 io_error
= io
->error
;
619 if (io_error
== DM_ENDIO_REQUEUE
)
622 if (!(bio
->bi_rw
& REQ_FLUSH
) || !bio
->bi_size
) {
623 trace_block_bio_complete(md
->queue
, bio
);
624 bio_endio(bio
, io_error
);
627 * Preflush done for flush with data, reissue
630 bio
->bi_rw
&= ~REQ_FLUSH
;
636 static void clone_endio(struct bio
*bio
, int error
)
639 struct dm_target_io
*tio
= bio
->bi_private
;
640 struct dm_io
*io
= tio
->io
;
641 struct mapped_device
*md
= tio
->io
->md
;
642 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
644 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
648 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
649 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
651 * error and requeue request are handled
655 else if (r
== DM_ENDIO_INCOMPLETE
)
656 /* The target will handle the io */
659 DMWARN("unimplemented target endio return value: %d", r
);
665 * Store md for cleanup instead of tio which is about to get freed.
667 bio
->bi_private
= md
->bs
;
671 dec_pending(io
, error
);
675 * Partial completion handling for request-based dm
677 static void end_clone_bio(struct bio
*clone
, int error
)
679 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
680 struct dm_rq_target_io
*tio
= info
->tio
;
681 struct bio
*bio
= info
->orig
;
682 unsigned int nr_bytes
= info
->orig
->bi_size
;
688 * An error has already been detected on the request.
689 * Once error occurred, just let clone->end_io() handle
695 * Don't notice the error to the upper layer yet.
696 * The error handling decision is made by the target driver,
697 * when the request is completed.
704 * I/O for the bio successfully completed.
705 * Notice the data completion to the upper layer.
709 * bios are processed from the head of the list.
710 * So the completing bio should always be rq->bio.
711 * If it's not, something wrong is happening.
713 if (tio
->orig
->bio
!= bio
)
714 DMERR("bio completion is going in the middle of the request");
717 * Update the original request.
718 * Do not use blk_end_request() here, because it may complete
719 * the original request before the clone, and break the ordering.
721 blk_update_request(tio
->orig
, 0, nr_bytes
);
725 * Don't touch any member of the md after calling this function because
726 * the md may be freed in dm_put() at the end of this function.
727 * Or do dm_get() before calling this function and dm_put() later.
729 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
731 atomic_dec(&md
->pending
[rw
]);
733 /* nudge anyone waiting on suspend queue */
734 if (!md_in_flight(md
))
738 blk_run_queue(md
->queue
);
741 * dm_put() must be at the end of this function. See the comment above
746 static void free_rq_clone(struct request
*clone
)
748 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
750 blk_rq_unprep_clone(clone
);
755 * Complete the clone and the original request.
756 * Must be called without queue lock.
758 static void dm_end_request(struct request
*clone
, int error
)
760 int rw
= rq_data_dir(clone
);
761 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
762 struct mapped_device
*md
= tio
->md
;
763 struct request
*rq
= tio
->orig
;
765 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
766 rq
->errors
= clone
->errors
;
767 rq
->resid_len
= clone
->resid_len
;
771 * We are using the sense buffer of the original
773 * So setting the length of the sense data is enough.
775 rq
->sense_len
= clone
->sense_len
;
778 free_rq_clone(clone
);
779 blk_end_request_all(rq
, error
);
780 rq_completed(md
, rw
, true);
783 static void dm_unprep_request(struct request
*rq
)
785 struct request
*clone
= rq
->special
;
788 rq
->cmd_flags
&= ~REQ_DONTPREP
;
790 free_rq_clone(clone
);
794 * Requeue the original request of a clone.
796 void dm_requeue_unmapped_request(struct request
*clone
)
798 int rw
= rq_data_dir(clone
);
799 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
800 struct mapped_device
*md
= tio
->md
;
801 struct request
*rq
= tio
->orig
;
802 struct request_queue
*q
= rq
->q
;
805 dm_unprep_request(rq
);
807 spin_lock_irqsave(q
->queue_lock
, flags
);
808 if (elv_queue_empty(q
))
810 blk_requeue_request(q
, rq
);
811 spin_unlock_irqrestore(q
->queue_lock
, flags
);
813 rq_completed(md
, rw
, 0);
815 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
817 static void __stop_queue(struct request_queue
*q
)
822 static void stop_queue(struct request_queue
*q
)
826 spin_lock_irqsave(q
->queue_lock
, flags
);
828 spin_unlock_irqrestore(q
->queue_lock
, flags
);
831 static void __start_queue(struct request_queue
*q
)
833 if (blk_queue_stopped(q
))
837 static void start_queue(struct request_queue
*q
)
841 spin_lock_irqsave(q
->queue_lock
, flags
);
843 spin_unlock_irqrestore(q
->queue_lock
, flags
);
846 static void dm_done(struct request
*clone
, int error
, bool mapped
)
849 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
850 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
852 if (mapped
&& rq_end_io
)
853 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
856 /* The target wants to complete the I/O */
857 dm_end_request(clone
, r
);
858 else if (r
== DM_ENDIO_INCOMPLETE
)
859 /* The target will handle the I/O */
861 else if (r
== DM_ENDIO_REQUEUE
)
862 /* The target wants to requeue the I/O */
863 dm_requeue_unmapped_request(clone
);
865 DMWARN("unimplemented target endio return value: %d", r
);
871 * Request completion handler for request-based dm
873 static void dm_softirq_done(struct request
*rq
)
876 struct request
*clone
= rq
->completion_data
;
877 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
879 if (rq
->cmd_flags
& REQ_FAILED
)
882 dm_done(clone
, tio
->error
, mapped
);
886 * Complete the clone and the original request with the error status
887 * through softirq context.
889 static void dm_complete_request(struct request
*clone
, int error
)
891 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
892 struct request
*rq
= tio
->orig
;
895 rq
->completion_data
= clone
;
896 blk_complete_request(rq
);
900 * Complete the not-mapped clone and the original request with the error status
901 * through softirq context.
902 * Target's rq_end_io() function isn't called.
903 * This may be used when the target's map_rq() function fails.
905 void dm_kill_unmapped_request(struct request
*clone
, int error
)
907 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
908 struct request
*rq
= tio
->orig
;
910 rq
->cmd_flags
|= REQ_FAILED
;
911 dm_complete_request(clone
, error
);
913 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
916 * Called with the queue lock held
918 static void end_clone_request(struct request
*clone
, int error
)
921 * For just cleaning up the information of the queue in which
922 * the clone was dispatched.
923 * The clone is *NOT* freed actually here because it is alloced from
924 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
926 __blk_put_request(clone
->q
, clone
);
929 * Actual request completion is done in a softirq context which doesn't
930 * hold the queue lock. Otherwise, deadlock could occur because:
931 * - another request may be submitted by the upper level driver
932 * of the stacking during the completion
933 * - the submission which requires queue lock may be done
936 dm_complete_request(clone
, error
);
940 * Return maximum size of I/O possible at the supplied sector up to the current
943 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
945 sector_t target_offset
= dm_target_offset(ti
, sector
);
947 return ti
->len
- target_offset
;
950 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
952 sector_t len
= max_io_len_target_boundary(sector
, ti
);
955 * Does the target need to split even further ?
959 sector_t offset
= dm_target_offset(ti
, sector
);
960 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
969 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
970 struct dm_target_io
*tio
)
974 struct mapped_device
*md
;
976 clone
->bi_end_io
= clone_endio
;
977 clone
->bi_private
= tio
;
980 * Map the clone. If r == 0 we don't need to do
981 * anything, the target has assumed ownership of
984 atomic_inc(&tio
->io
->io_count
);
985 sector
= clone
->bi_sector
;
986 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
987 if (r
== DM_MAPIO_REMAPPED
) {
988 /* the bio has been remapped so dispatch it */
990 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
991 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
993 generic_make_request(clone
);
994 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
995 /* error the io and bail out, or requeue it if needed */
997 dec_pending(tio
->io
, r
);
999 * Store bio_set for cleanup.
1001 clone
->bi_private
= md
->bs
;
1005 DMWARN("unimplemented target map return value: %d", r
);
1011 struct mapped_device
*md
;
1012 struct dm_table
*map
;
1016 sector_t sector_count
;
1020 static void dm_bio_destructor(struct bio
*bio
)
1022 struct bio_set
*bs
= bio
->bi_private
;
1028 * Creates a little bio that just does part of a bvec.
1030 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1031 unsigned short idx
, unsigned int offset
,
1032 unsigned int len
, struct bio_set
*bs
)
1035 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1037 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1038 clone
->bi_destructor
= dm_bio_destructor
;
1039 *clone
->bi_io_vec
= *bv
;
1041 clone
->bi_sector
= sector
;
1042 clone
->bi_bdev
= bio
->bi_bdev
;
1043 clone
->bi_rw
= bio
->bi_rw
;
1045 clone
->bi_size
= to_bytes(len
);
1046 clone
->bi_io_vec
->bv_offset
= offset
;
1047 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1048 clone
->bi_flags
|= 1 << BIO_CLONED
;
1050 if (bio_integrity(bio
)) {
1051 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1052 bio_integrity_trim(clone
,
1053 bio_sector_offset(bio
, idx
, offset
), len
);
1060 * Creates a bio that consists of range of complete bvecs.
1062 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1063 unsigned short idx
, unsigned short bv_count
,
1064 unsigned int len
, struct bio_set
*bs
)
1068 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1069 __bio_clone(clone
, bio
);
1070 clone
->bi_destructor
= dm_bio_destructor
;
1071 clone
->bi_sector
= sector
;
1072 clone
->bi_idx
= idx
;
1073 clone
->bi_vcnt
= idx
+ bv_count
;
1074 clone
->bi_size
= to_bytes(len
);
1075 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1077 if (bio_integrity(bio
)) {
1078 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1080 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1081 bio_integrity_trim(clone
,
1082 bio_sector_offset(bio
, idx
, 0), len
);
1088 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1089 struct dm_target
*ti
)
1091 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1095 memset(&tio
->info
, 0, sizeof(tio
->info
));
1100 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1101 unsigned request_nr
, sector_t len
)
1103 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1106 tio
->info
.target_request_nr
= request_nr
;
1109 * Discard requests require the bio's inline iovecs be initialized.
1110 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1111 * and discard, so no need for concern about wasted bvec allocations.
1113 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1114 __bio_clone(clone
, ci
->bio
);
1115 clone
->bi_destructor
= dm_bio_destructor
;
1117 clone
->bi_sector
= ci
->sector
;
1118 clone
->bi_size
= to_bytes(len
);
1121 __map_bio(ti
, clone
, tio
);
1124 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1125 unsigned num_requests
, sector_t len
)
1127 unsigned request_nr
;
1129 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1130 __issue_target_request(ci
, ti
, request_nr
, len
);
1133 static int __clone_and_map_flush(struct clone_info
*ci
)
1135 unsigned target_nr
= 0;
1136 struct dm_target
*ti
;
1138 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1139 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1141 ci
->sector_count
= 0;
1147 * Perform all io with a single clone.
1149 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1151 struct bio
*clone
, *bio
= ci
->bio
;
1152 struct dm_target_io
*tio
;
1154 tio
= alloc_tio(ci
, ti
);
1155 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1156 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1158 __map_bio(ti
, clone
, tio
);
1159 ci
->sector_count
= 0;
1162 static int __clone_and_map_discard(struct clone_info
*ci
)
1164 struct dm_target
*ti
;
1168 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1169 if (!dm_target_is_valid(ti
))
1173 * Even though the device advertised discard support,
1174 * reconfiguration might have changed that since the
1175 * check was performed.
1177 if (!ti
->num_discard_requests
)
1180 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1182 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1185 } while (ci
->sector_count
-= len
);
1190 static int __clone_and_map(struct clone_info
*ci
)
1192 struct bio
*clone
, *bio
= ci
->bio
;
1193 struct dm_target
*ti
;
1194 sector_t len
= 0, max
;
1195 struct dm_target_io
*tio
;
1197 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1198 return __clone_and_map_discard(ci
);
1200 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1201 if (!dm_target_is_valid(ti
))
1204 max
= max_io_len(ci
->sector
, ti
);
1206 if (ci
->sector_count
<= max
) {
1208 * Optimise for the simple case where we can do all of
1209 * the remaining io with a single clone.
1211 __clone_and_map_simple(ci
, ti
);
1213 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1215 * There are some bvecs that don't span targets.
1216 * Do as many of these as possible.
1219 sector_t remaining
= max
;
1222 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1223 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1225 if (bv_len
> remaining
)
1228 remaining
-= bv_len
;
1232 tio
= alloc_tio(ci
, ti
);
1233 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1235 __map_bio(ti
, clone
, tio
);
1238 ci
->sector_count
-= len
;
1243 * Handle a bvec that must be split between two or more targets.
1245 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1246 sector_t remaining
= to_sector(bv
->bv_len
);
1247 unsigned int offset
= 0;
1251 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1252 if (!dm_target_is_valid(ti
))
1255 max
= max_io_len(ci
->sector
, ti
);
1258 len
= min(remaining
, max
);
1260 tio
= alloc_tio(ci
, ti
);
1261 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1262 bv
->bv_offset
+ offset
, len
,
1265 __map_bio(ti
, clone
, tio
);
1268 ci
->sector_count
-= len
;
1269 offset
+= to_bytes(len
);
1270 } while (remaining
-= len
);
1279 * Split the bio into several clones and submit it to targets.
1281 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1283 bool is_flush
= bio
->bi_rw
& REQ_FLUSH
;
1284 struct clone_info ci
;
1287 ci
.map
= dm_get_live_table(md
);
1288 if (unlikely(!ci
.map
)) {
1294 ci
.io
= alloc_io(md
);
1296 atomic_set(&ci
.io
->io_count
, 1);
1299 spin_lock_init(&ci
.io
->endio_lock
);
1300 ci
.sector
= bio
->bi_sector
;
1301 ci
.idx
= bio
->bi_idx
;
1305 ci
.sector_count
= bio_sectors(bio
);
1307 ci
.bio
= &ci
.md
->flush_bio
;
1308 ci
.sector_count
= 1;
1311 start_io_acct(ci
.io
);
1312 while (ci
.sector_count
&& !error
) {
1314 error
= __clone_and_map(&ci
);
1316 error
= __clone_and_map_flush(&ci
);
1319 /* drop the extra reference count */
1320 dec_pending(ci
.io
, error
);
1321 dm_table_put(ci
.map
);
1323 /*-----------------------------------------------------------------
1325 *---------------------------------------------------------------*/
1327 static int dm_merge_bvec(struct request_queue
*q
,
1328 struct bvec_merge_data
*bvm
,
1329 struct bio_vec
*biovec
)
1331 struct mapped_device
*md
= q
->queuedata
;
1332 struct dm_table
*map
= dm_get_live_table(md
);
1333 struct dm_target
*ti
;
1334 sector_t max_sectors
;
1340 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1341 if (!dm_target_is_valid(ti
))
1345 * Find maximum amount of I/O that won't need splitting
1347 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1348 (sector_t
) BIO_MAX_SECTORS
);
1349 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1354 * merge_bvec_fn() returns number of bytes
1355 * it can accept at this offset
1356 * max is precomputed maximal io size
1358 if (max_size
&& ti
->type
->merge
)
1359 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1361 * If the target doesn't support merge method and some of the devices
1362 * provided their merge_bvec method (we know this by looking at
1363 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1364 * entries. So always set max_size to 0, and the code below allows
1367 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1376 * Always allow an entire first page
1378 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1379 max_size
= biovec
->bv_len
;
1385 * The request function that just remaps the bio built up by
1388 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1390 int rw
= bio_data_dir(bio
);
1391 struct mapped_device
*md
= q
->queuedata
;
1394 down_read(&md
->io_lock
);
1396 cpu
= part_stat_lock();
1397 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1398 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1401 /* if we're suspended, we have to queue this io for later */
1402 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1403 up_read(&md
->io_lock
);
1405 if (bio_rw(bio
) != READA
)
1412 __split_and_process_bio(md
, bio
);
1413 up_read(&md
->io_lock
);
1417 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1419 struct mapped_device
*md
= q
->queuedata
;
1421 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1424 static int dm_request_based(struct mapped_device
*md
)
1426 return blk_queue_stackable(md
->queue
);
1429 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1431 struct mapped_device
*md
= q
->queuedata
;
1433 if (dm_request_based(md
))
1434 return dm_make_request(q
, bio
);
1436 return _dm_request(q
, bio
);
1439 void dm_dispatch_request(struct request
*rq
)
1443 if (blk_queue_io_stat(rq
->q
))
1444 rq
->cmd_flags
|= REQ_IO_STAT
;
1446 rq
->start_time
= jiffies
;
1447 r
= blk_insert_cloned_request(rq
->q
, rq
);
1449 dm_complete_request(rq
, r
);
1451 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1453 static void dm_rq_bio_destructor(struct bio
*bio
)
1455 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1456 struct mapped_device
*md
= info
->tio
->md
;
1458 free_bio_info(info
);
1459 bio_free(bio
, md
->bs
);
1462 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1465 struct dm_rq_target_io
*tio
= data
;
1466 struct mapped_device
*md
= tio
->md
;
1467 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1472 info
->orig
= bio_orig
;
1474 bio
->bi_end_io
= end_clone_bio
;
1475 bio
->bi_private
= info
;
1476 bio
->bi_destructor
= dm_rq_bio_destructor
;
1481 static int setup_clone(struct request
*clone
, struct request
*rq
,
1482 struct dm_rq_target_io
*tio
)
1486 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1487 dm_rq_bio_constructor
, tio
);
1491 clone
->cmd
= rq
->cmd
;
1492 clone
->cmd_len
= rq
->cmd_len
;
1493 clone
->sense
= rq
->sense
;
1494 clone
->buffer
= rq
->buffer
;
1495 clone
->end_io
= end_clone_request
;
1496 clone
->end_io_data
= tio
;
1501 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1504 struct request
*clone
;
1505 struct dm_rq_target_io
*tio
;
1507 tio
= alloc_rq_tio(md
, gfp_mask
);
1515 memset(&tio
->info
, 0, sizeof(tio
->info
));
1517 clone
= &tio
->clone
;
1518 if (setup_clone(clone
, rq
, tio
)) {
1528 * Called with the queue lock held.
1530 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1532 struct mapped_device
*md
= q
->queuedata
;
1533 struct request
*clone
;
1535 if (unlikely(rq
->special
)) {
1536 DMWARN("Already has something in rq->special.");
1537 return BLKPREP_KILL
;
1540 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1542 return BLKPREP_DEFER
;
1544 rq
->special
= clone
;
1545 rq
->cmd_flags
|= REQ_DONTPREP
;
1552 * 0 : the request has been processed (not requeued)
1553 * !0 : the request has been requeued
1555 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1556 struct mapped_device
*md
)
1558 int r
, requeued
= 0;
1559 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1562 * Hold the md reference here for the in-flight I/O.
1563 * We can't rely on the reference count by device opener,
1564 * because the device may be closed during the request completion
1565 * when all bios are completed.
1566 * See the comment in rq_completed() too.
1571 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1573 case DM_MAPIO_SUBMITTED
:
1574 /* The target has taken the I/O to submit by itself later */
1576 case DM_MAPIO_REMAPPED
:
1577 /* The target has remapped the I/O so dispatch it */
1578 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1579 blk_rq_pos(tio
->orig
));
1580 dm_dispatch_request(clone
);
1582 case DM_MAPIO_REQUEUE
:
1583 /* The target wants to requeue the I/O */
1584 dm_requeue_unmapped_request(clone
);
1589 DMWARN("unimplemented target map return value: %d", r
);
1593 /* The target wants to complete the I/O */
1594 dm_kill_unmapped_request(clone
, r
);
1602 * q->request_fn for request-based dm.
1603 * Called with the queue lock held.
1605 static void dm_request_fn(struct request_queue
*q
)
1607 struct mapped_device
*md
= q
->queuedata
;
1608 struct dm_table
*map
= dm_get_live_table(md
);
1609 struct dm_target
*ti
;
1610 struct request
*rq
, *clone
;
1614 * For suspend, check blk_queue_stopped() and increment
1615 * ->pending within a single queue_lock not to increment the
1616 * number of in-flight I/Os after the queue is stopped in
1619 while (!blk_queue_plugged(q
) && !blk_queue_stopped(q
)) {
1620 rq
= blk_peek_request(q
);
1624 /* always use block 0 to find the target for flushes for now */
1626 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1627 pos
= blk_rq_pos(rq
);
1629 ti
= dm_table_find_target(map
, pos
);
1630 BUG_ON(!dm_target_is_valid(ti
));
1632 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1635 blk_start_request(rq
);
1636 clone
= rq
->special
;
1637 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1639 spin_unlock(q
->queue_lock
);
1640 if (map_request(ti
, clone
, md
))
1643 spin_lock_irq(q
->queue_lock
);
1649 spin_lock_irq(q
->queue_lock
);
1652 if (!elv_queue_empty(q
))
1653 /* Some requests still remain, retry later */
1662 int dm_underlying_device_busy(struct request_queue
*q
)
1664 return blk_lld_busy(q
);
1666 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1668 static int dm_lld_busy(struct request_queue
*q
)
1671 struct mapped_device
*md
= q
->queuedata
;
1672 struct dm_table
*map
= dm_get_live_table(md
);
1674 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1677 r
= dm_table_any_busy_target(map
);
1684 static void dm_unplug_all(struct request_queue
*q
)
1686 struct mapped_device
*md
= q
->queuedata
;
1687 struct dm_table
*map
= dm_get_live_table(md
);
1690 if (dm_request_based(md
))
1691 generic_unplug_device(q
);
1693 dm_table_unplug_all(map
);
1698 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1701 struct mapped_device
*md
= congested_data
;
1702 struct dm_table
*map
;
1704 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1705 map
= dm_get_live_table(md
);
1708 * Request-based dm cares about only own queue for
1709 * the query about congestion status of request_queue
1711 if (dm_request_based(md
))
1712 r
= md
->queue
->backing_dev_info
.state
&
1715 r
= dm_table_any_congested(map
, bdi_bits
);
1724 /*-----------------------------------------------------------------
1725 * An IDR is used to keep track of allocated minor numbers.
1726 *---------------------------------------------------------------*/
1727 static DEFINE_IDR(_minor_idr
);
1729 static void free_minor(int minor
)
1731 spin_lock(&_minor_lock
);
1732 idr_remove(&_minor_idr
, minor
);
1733 spin_unlock(&_minor_lock
);
1737 * See if the device with a specific minor # is free.
1739 static int specific_minor(int minor
)
1743 if (minor
>= (1 << MINORBITS
))
1746 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1750 spin_lock(&_minor_lock
);
1752 if (idr_find(&_minor_idr
, minor
)) {
1757 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1762 idr_remove(&_minor_idr
, m
);
1768 spin_unlock(&_minor_lock
);
1772 static int next_free_minor(int *minor
)
1776 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1780 spin_lock(&_minor_lock
);
1782 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1786 if (m
>= (1 << MINORBITS
)) {
1787 idr_remove(&_minor_idr
, m
);
1795 spin_unlock(&_minor_lock
);
1799 static const struct block_device_operations dm_blk_dops
;
1801 static void dm_wq_work(struct work_struct
*work
);
1803 static void dm_init_md_queue(struct mapped_device
*md
)
1806 * Request-based dm devices cannot be stacked on top of bio-based dm
1807 * devices. The type of this dm device has not been decided yet.
1808 * The type is decided at the first table loading time.
1809 * To prevent problematic device stacking, clear the queue flag
1810 * for request stacking support until then.
1812 * This queue is new, so no concurrency on the queue_flags.
1814 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1816 md
->queue
->queuedata
= md
;
1817 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1818 md
->queue
->backing_dev_info
.congested_data
= md
;
1819 blk_queue_make_request(md
->queue
, dm_request
);
1820 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1821 md
->queue
->unplug_fn
= dm_unplug_all
;
1822 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1823 blk_queue_flush(md
->queue
, REQ_FLUSH
| REQ_FUA
);
1827 * Allocate and initialise a blank device with a given minor.
1829 static struct mapped_device
*alloc_dev(int minor
)
1832 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1836 DMWARN("unable to allocate device, out of memory.");
1840 if (!try_module_get(THIS_MODULE
))
1841 goto bad_module_get
;
1843 /* get a minor number for the dev */
1844 if (minor
== DM_ANY_MINOR
)
1845 r
= next_free_minor(&minor
);
1847 r
= specific_minor(minor
);
1851 md
->type
= DM_TYPE_NONE
;
1852 init_rwsem(&md
->io_lock
);
1853 mutex_init(&md
->suspend_lock
);
1854 mutex_init(&md
->type_lock
);
1855 spin_lock_init(&md
->deferred_lock
);
1856 rwlock_init(&md
->map_lock
);
1857 atomic_set(&md
->holders
, 1);
1858 atomic_set(&md
->open_count
, 0);
1859 atomic_set(&md
->event_nr
, 0);
1860 atomic_set(&md
->uevent_seq
, 0);
1861 INIT_LIST_HEAD(&md
->uevent_list
);
1862 spin_lock_init(&md
->uevent_lock
);
1864 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1868 dm_init_md_queue(md
);
1870 md
->disk
= alloc_disk(1);
1874 atomic_set(&md
->pending
[0], 0);
1875 atomic_set(&md
->pending
[1], 0);
1876 init_waitqueue_head(&md
->wait
);
1877 INIT_WORK(&md
->work
, dm_wq_work
);
1878 init_waitqueue_head(&md
->eventq
);
1880 md
->disk
->major
= _major
;
1881 md
->disk
->first_minor
= minor
;
1882 md
->disk
->fops
= &dm_blk_dops
;
1883 md
->disk
->queue
= md
->queue
;
1884 md
->disk
->private_data
= md
;
1885 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1887 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1889 md
->wq
= create_singlethread_workqueue("kdmflush");
1893 md
->bdev
= bdget_disk(md
->disk
, 0);
1897 bio_init(&md
->flush_bio
);
1898 md
->flush_bio
.bi_bdev
= md
->bdev
;
1899 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1901 /* Populate the mapping, nobody knows we exist yet */
1902 spin_lock(&_minor_lock
);
1903 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1904 spin_unlock(&_minor_lock
);
1906 BUG_ON(old_md
!= MINOR_ALLOCED
);
1911 destroy_workqueue(md
->wq
);
1913 del_gendisk(md
->disk
);
1916 blk_cleanup_queue(md
->queue
);
1920 module_put(THIS_MODULE
);
1926 static void unlock_fs(struct mapped_device
*md
);
1928 static void free_dev(struct mapped_device
*md
)
1930 int minor
= MINOR(disk_devt(md
->disk
));
1934 destroy_workqueue(md
->wq
);
1936 mempool_destroy(md
->tio_pool
);
1938 mempool_destroy(md
->io_pool
);
1940 bioset_free(md
->bs
);
1941 blk_integrity_unregister(md
->disk
);
1942 del_gendisk(md
->disk
);
1945 spin_lock(&_minor_lock
);
1946 md
->disk
->private_data
= NULL
;
1947 spin_unlock(&_minor_lock
);
1950 blk_cleanup_queue(md
->queue
);
1951 module_put(THIS_MODULE
);
1955 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1957 struct dm_md_mempools
*p
;
1959 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1960 /* the md already has necessary mempools */
1963 p
= dm_table_get_md_mempools(t
);
1964 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1966 md
->io_pool
= p
->io_pool
;
1968 md
->tio_pool
= p
->tio_pool
;
1974 /* mempool bind completed, now no need any mempools in the table */
1975 dm_table_free_md_mempools(t
);
1979 * Bind a table to the device.
1981 static void event_callback(void *context
)
1983 unsigned long flags
;
1985 struct mapped_device
*md
= (struct mapped_device
*) context
;
1987 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1988 list_splice_init(&md
->uevent_list
, &uevents
);
1989 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1991 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1993 atomic_inc(&md
->event_nr
);
1994 wake_up(&md
->eventq
);
1997 static void __set_size(struct mapped_device
*md
, sector_t size
)
1999 set_capacity(md
->disk
, size
);
2001 mutex_lock(&md
->bdev
->bd_inode
->i_mutex
);
2002 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2003 mutex_unlock(&md
->bdev
->bd_inode
->i_mutex
);
2007 * Returns old map, which caller must destroy.
2009 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2010 struct queue_limits
*limits
)
2012 struct dm_table
*old_map
;
2013 struct request_queue
*q
= md
->queue
;
2015 unsigned long flags
;
2017 size
= dm_table_get_size(t
);
2020 * Wipe any geometry if the size of the table changed.
2022 if (size
!= get_capacity(md
->disk
))
2023 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2025 __set_size(md
, size
);
2027 dm_table_event_callback(t
, event_callback
, md
);
2030 * The queue hasn't been stopped yet, if the old table type wasn't
2031 * for request-based during suspension. So stop it to prevent
2032 * I/O mapping before resume.
2033 * This must be done before setting the queue restrictions,
2034 * because request-based dm may be run just after the setting.
2036 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2039 __bind_mempools(md
, t
);
2041 write_lock_irqsave(&md
->map_lock
, flags
);
2044 dm_table_set_restrictions(t
, q
, limits
);
2045 write_unlock_irqrestore(&md
->map_lock
, flags
);
2051 * Returns unbound table for the caller to free.
2053 static struct dm_table
*__unbind(struct mapped_device
*md
)
2055 struct dm_table
*map
= md
->map
;
2056 unsigned long flags
;
2061 dm_table_event_callback(map
, NULL
, NULL
);
2062 write_lock_irqsave(&md
->map_lock
, flags
);
2064 write_unlock_irqrestore(&md
->map_lock
, flags
);
2070 * Constructor for a new device.
2072 int dm_create(int minor
, struct mapped_device
**result
)
2074 struct mapped_device
*md
;
2076 md
= alloc_dev(minor
);
2087 * Functions to manage md->type.
2088 * All are required to hold md->type_lock.
2090 void dm_lock_md_type(struct mapped_device
*md
)
2092 mutex_lock(&md
->type_lock
);
2095 void dm_unlock_md_type(struct mapped_device
*md
)
2097 mutex_unlock(&md
->type_lock
);
2100 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2105 unsigned dm_get_md_type(struct mapped_device
*md
)
2111 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2113 static int dm_init_request_based_queue(struct mapped_device
*md
)
2115 struct request_queue
*q
= NULL
;
2117 if (md
->queue
->elevator
)
2120 /* Fully initialize the queue */
2121 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2126 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
2127 dm_init_md_queue(md
);
2128 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2129 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2130 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2132 elv_register_queue(md
->queue
);
2138 * Setup the DM device's queue based on md's type
2140 int dm_setup_md_queue(struct mapped_device
*md
)
2142 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2143 !dm_init_request_based_queue(md
)) {
2144 DMWARN("Cannot initialize queue for request-based mapped device");
2151 static struct mapped_device
*dm_find_md(dev_t dev
)
2153 struct mapped_device
*md
;
2154 unsigned minor
= MINOR(dev
);
2156 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2159 spin_lock(&_minor_lock
);
2161 md
= idr_find(&_minor_idr
, minor
);
2162 if (md
&& (md
== MINOR_ALLOCED
||
2163 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2164 dm_deleting_md(md
) ||
2165 test_bit(DMF_FREEING
, &md
->flags
))) {
2171 spin_unlock(&_minor_lock
);
2176 struct mapped_device
*dm_get_md(dev_t dev
)
2178 struct mapped_device
*md
= dm_find_md(dev
);
2186 void *dm_get_mdptr(struct mapped_device
*md
)
2188 return md
->interface_ptr
;
2191 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2193 md
->interface_ptr
= ptr
;
2196 void dm_get(struct mapped_device
*md
)
2198 atomic_inc(&md
->holders
);
2199 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2202 const char *dm_device_name(struct mapped_device
*md
)
2206 EXPORT_SYMBOL_GPL(dm_device_name
);
2208 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2210 struct dm_table
*map
;
2214 spin_lock(&_minor_lock
);
2215 map
= dm_get_live_table(md
);
2216 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2217 set_bit(DMF_FREEING
, &md
->flags
);
2218 spin_unlock(&_minor_lock
);
2220 if (!dm_suspended_md(md
)) {
2221 dm_table_presuspend_targets(map
);
2222 dm_table_postsuspend_targets(map
);
2226 * Rare, but there may be I/O requests still going to complete,
2227 * for example. Wait for all references to disappear.
2228 * No one should increment the reference count of the mapped_device,
2229 * after the mapped_device state becomes DMF_FREEING.
2232 while (atomic_read(&md
->holders
))
2234 else if (atomic_read(&md
->holders
))
2235 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2236 dm_device_name(md
), atomic_read(&md
->holders
));
2240 dm_table_destroy(__unbind(md
));
2244 void dm_destroy(struct mapped_device
*md
)
2246 __dm_destroy(md
, true);
2249 void dm_destroy_immediate(struct mapped_device
*md
)
2251 __dm_destroy(md
, false);
2254 void dm_put(struct mapped_device
*md
)
2256 atomic_dec(&md
->holders
);
2258 EXPORT_SYMBOL_GPL(dm_put
);
2260 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2263 DECLARE_WAITQUEUE(wait
, current
);
2265 dm_unplug_all(md
->queue
);
2267 add_wait_queue(&md
->wait
, &wait
);
2270 set_current_state(interruptible
);
2273 if (!md_in_flight(md
))
2276 if (interruptible
== TASK_INTERRUPTIBLE
&&
2277 signal_pending(current
)) {
2284 set_current_state(TASK_RUNNING
);
2286 remove_wait_queue(&md
->wait
, &wait
);
2292 * Process the deferred bios
2294 static void dm_wq_work(struct work_struct
*work
)
2296 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2300 down_read(&md
->io_lock
);
2302 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2303 spin_lock_irq(&md
->deferred_lock
);
2304 c
= bio_list_pop(&md
->deferred
);
2305 spin_unlock_irq(&md
->deferred_lock
);
2310 up_read(&md
->io_lock
);
2312 if (dm_request_based(md
))
2313 generic_make_request(c
);
2315 __split_and_process_bio(md
, c
);
2317 down_read(&md
->io_lock
);
2320 up_read(&md
->io_lock
);
2323 static void dm_queue_flush(struct mapped_device
*md
)
2325 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2326 smp_mb__after_clear_bit();
2327 queue_work(md
->wq
, &md
->work
);
2331 * Swap in a new table, returning the old one for the caller to destroy.
2333 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2335 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2336 struct queue_limits limits
;
2339 mutex_lock(&md
->suspend_lock
);
2341 /* device must be suspended */
2342 if (!dm_suspended_md(md
))
2345 r
= dm_calculate_queue_limits(table
, &limits
);
2351 map
= __bind(md
, table
, &limits
);
2354 mutex_unlock(&md
->suspend_lock
);
2359 * Functions to lock and unlock any filesystem running on the
2362 static int lock_fs(struct mapped_device
*md
)
2366 WARN_ON(md
->frozen_sb
);
2368 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2369 if (IS_ERR(md
->frozen_sb
)) {
2370 r
= PTR_ERR(md
->frozen_sb
);
2371 md
->frozen_sb
= NULL
;
2375 set_bit(DMF_FROZEN
, &md
->flags
);
2380 static void unlock_fs(struct mapped_device
*md
)
2382 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2385 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2386 md
->frozen_sb
= NULL
;
2387 clear_bit(DMF_FROZEN
, &md
->flags
);
2391 * We need to be able to change a mapping table under a mounted
2392 * filesystem. For example we might want to move some data in
2393 * the background. Before the table can be swapped with
2394 * dm_bind_table, dm_suspend must be called to flush any in
2395 * flight bios and ensure that any further io gets deferred.
2398 * Suspend mechanism in request-based dm.
2400 * 1. Flush all I/Os by lock_fs() if needed.
2401 * 2. Stop dispatching any I/O by stopping the request_queue.
2402 * 3. Wait for all in-flight I/Os to be completed or requeued.
2404 * To abort suspend, start the request_queue.
2406 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2408 struct dm_table
*map
= NULL
;
2410 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2411 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2413 mutex_lock(&md
->suspend_lock
);
2415 if (dm_suspended_md(md
)) {
2420 map
= dm_get_live_table(md
);
2423 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2424 * This flag is cleared before dm_suspend returns.
2427 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2429 /* This does not get reverted if there's an error later. */
2430 dm_table_presuspend_targets(map
);
2433 * Flush I/O to the device.
2434 * Any I/O submitted after lock_fs() may not be flushed.
2435 * noflush takes precedence over do_lockfs.
2436 * (lock_fs() flushes I/Os and waits for them to complete.)
2438 if (!noflush
&& do_lockfs
) {
2445 * Here we must make sure that no processes are submitting requests
2446 * to target drivers i.e. no one may be executing
2447 * __split_and_process_bio. This is called from dm_request and
2450 * To get all processes out of __split_and_process_bio in dm_request,
2451 * we take the write lock. To prevent any process from reentering
2452 * __split_and_process_bio from dm_request and quiesce the thread
2453 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2454 * flush_workqueue(md->wq).
2456 down_write(&md
->io_lock
);
2457 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2458 up_write(&md
->io_lock
);
2461 * Stop md->queue before flushing md->wq in case request-based
2462 * dm defers requests to md->wq from md->queue.
2464 if (dm_request_based(md
))
2465 stop_queue(md
->queue
);
2467 flush_workqueue(md
->wq
);
2470 * At this point no more requests are entering target request routines.
2471 * We call dm_wait_for_completion to wait for all existing requests
2474 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2476 down_write(&md
->io_lock
);
2478 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2479 up_write(&md
->io_lock
);
2481 /* were we interrupted ? */
2485 if (dm_request_based(md
))
2486 start_queue(md
->queue
);
2489 goto out
; /* pushback list is already flushed, so skip flush */
2493 * If dm_wait_for_completion returned 0, the device is completely
2494 * quiescent now. There is no request-processing activity. All new
2495 * requests are being added to md->deferred list.
2498 set_bit(DMF_SUSPENDED
, &md
->flags
);
2500 dm_table_postsuspend_targets(map
);
2506 mutex_unlock(&md
->suspend_lock
);
2510 int dm_resume(struct mapped_device
*md
)
2513 struct dm_table
*map
= NULL
;
2515 mutex_lock(&md
->suspend_lock
);
2516 if (!dm_suspended_md(md
))
2519 map
= dm_get_live_table(md
);
2520 if (!map
|| !dm_table_get_size(map
))
2523 r
= dm_table_resume_targets(map
);
2530 * Flushing deferred I/Os must be done after targets are resumed
2531 * so that mapping of targets can work correctly.
2532 * Request-based dm is queueing the deferred I/Os in its request_queue.
2534 if (dm_request_based(md
))
2535 start_queue(md
->queue
);
2539 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2541 dm_table_unplug_all(map
);
2545 mutex_unlock(&md
->suspend_lock
);
2550 /*-----------------------------------------------------------------
2551 * Event notification.
2552 *---------------------------------------------------------------*/
2553 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2556 char udev_cookie
[DM_COOKIE_LENGTH
];
2557 char *envp
[] = { udev_cookie
, NULL
};
2560 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2562 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2563 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2564 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2569 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2571 return atomic_add_return(1, &md
->uevent_seq
);
2574 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2576 return atomic_read(&md
->event_nr
);
2579 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2581 return wait_event_interruptible(md
->eventq
,
2582 (event_nr
!= atomic_read(&md
->event_nr
)));
2585 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2587 unsigned long flags
;
2589 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2590 list_add(elist
, &md
->uevent_list
);
2591 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2595 * The gendisk is only valid as long as you have a reference
2598 struct gendisk
*dm_disk(struct mapped_device
*md
)
2603 struct kobject
*dm_kobject(struct mapped_device
*md
)
2609 * struct mapped_device should not be exported outside of dm.c
2610 * so use this check to verify that kobj is part of md structure
2612 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2614 struct mapped_device
*md
;
2616 md
= container_of(kobj
, struct mapped_device
, kobj
);
2617 if (&md
->kobj
!= kobj
)
2620 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2628 int dm_suspended_md(struct mapped_device
*md
)
2630 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2633 int dm_suspended(struct dm_target
*ti
)
2635 return dm_suspended_md(dm_table_get_md(ti
->table
));
2637 EXPORT_SYMBOL_GPL(dm_suspended
);
2639 int dm_noflush_suspending(struct dm_target
*ti
)
2641 return __noflush_suspending(dm_table_get_md(ti
->table
));
2643 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2645 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
)
2647 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2652 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2653 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2654 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2655 if (!pools
->io_pool
)
2656 goto free_pools_and_out
;
2658 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2659 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2660 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2661 if (!pools
->tio_pool
)
2662 goto free_io_pool_and_out
;
2664 pools
->bs
= (type
== DM_TYPE_BIO_BASED
) ?
2665 bioset_create(16, 0) : bioset_create(MIN_IOS
, 0);
2667 goto free_tio_pool_and_out
;
2671 free_tio_pool_and_out
:
2672 mempool_destroy(pools
->tio_pool
);
2674 free_io_pool_and_out
:
2675 mempool_destroy(pools
->io_pool
);
2683 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2689 mempool_destroy(pools
->io_pool
);
2691 if (pools
->tio_pool
)
2692 mempool_destroy(pools
->tio_pool
);
2695 bioset_free(pools
->bs
);
2700 static const struct block_device_operations dm_blk_dops
= {
2701 .open
= dm_blk_open
,
2702 .release
= dm_blk_close
,
2703 .ioctl
= dm_blk_ioctl
,
2704 .getgeo
= dm_blk_getgeo
,
2705 .owner
= THIS_MODULE
2708 EXPORT_SYMBOL(dm_get_mapinfo
);
2713 module_init(dm_init
);
2714 module_exit(dm_exit
);
2716 module_param(major
, uint
, 0);
2717 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2718 MODULE_DESCRIPTION(DM_NAME
" driver");
2719 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2720 MODULE_LICENSE("GPL");