dm: relax ordering of bio-based flush implementation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm.c
blob2011704b8ba0ca515159dfec69552c46c942162e
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/smp_lock.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
25 #include <trace/events/block.h>
27 #define DM_MSG_PREFIX "core"
30 * Cookies are numeric values sent with CHANGE and REMOVE
31 * uevents while resuming, removing or renaming the device.
33 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
34 #define DM_COOKIE_LENGTH 24
36 static const char *_name = DM_NAME;
38 static unsigned int major = 0;
39 static unsigned int _major = 0;
41 static DEFINE_SPINLOCK(_minor_lock);
43 * For bio-based dm.
44 * One of these is allocated per bio.
46 struct dm_io {
47 struct mapped_device *md;
48 int error;
49 atomic_t io_count;
50 struct bio *bio;
51 unsigned long start_time;
52 spinlock_t endio_lock;
56 * For bio-based dm.
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
60 struct dm_target_io {
61 struct dm_io *io;
62 struct dm_target *ti;
63 union map_info info;
67 * For request-based dm.
68 * One of these is allocated per request.
70 struct dm_rq_target_io {
71 struct mapped_device *md;
72 struct dm_target *ti;
73 struct request *orig, clone;
74 int error;
75 union map_info info;
79 * For request-based dm.
80 * One of these is allocated per bio.
82 struct dm_rq_clone_bio_info {
83 struct bio *orig;
84 struct dm_rq_target_io *tio;
87 union map_info *dm_get_mapinfo(struct bio *bio)
89 if (bio && bio->bi_private)
90 return &((struct dm_target_io *)bio->bi_private)->info;
91 return NULL;
94 union map_info *dm_get_rq_mapinfo(struct request *rq)
96 if (rq && rq->end_io_data)
97 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
98 return NULL;
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
102 #define MINOR_ALLOCED ((void *)-1)
105 * Bits for the md->flags field.
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
109 #define DMF_FROZEN 2
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
115 * Work processed by per-device workqueue.
117 struct mapped_device {
118 struct rw_semaphore io_lock;
119 struct mutex suspend_lock;
120 rwlock_t map_lock;
121 atomic_t holders;
122 atomic_t open_count;
124 unsigned long flags;
126 struct request_queue *queue;
127 unsigned type;
128 /* Protect queue and type against concurrent access. */
129 struct mutex type_lock;
131 struct gendisk *disk;
132 char name[16];
134 void *interface_ptr;
137 * A list of ios that arrived while we were suspended.
139 atomic_t pending[2];
140 wait_queue_head_t wait;
141 struct work_struct work;
142 struct bio_list deferred;
143 spinlock_t deferred_lock;
146 * Processing queue (flush)
148 struct workqueue_struct *wq;
151 * The current mapping.
153 struct dm_table *map;
156 * io objects are allocated from here.
158 mempool_t *io_pool;
159 mempool_t *tio_pool;
161 struct bio_set *bs;
164 * Event handling.
166 atomic_t event_nr;
167 wait_queue_head_t eventq;
168 atomic_t uevent_seq;
169 struct list_head uevent_list;
170 spinlock_t uevent_lock; /* Protect access to uevent_list */
173 * freeze/thaw support require holding onto a super block
175 struct super_block *frozen_sb;
176 struct block_device *bdev;
178 /* forced geometry settings */
179 struct hd_geometry geometry;
181 /* For saving the address of __make_request for request based dm */
182 make_request_fn *saved_make_request_fn;
184 /* sysfs handle */
185 struct kobject kobj;
187 /* zero-length flush that will be cloned and submitted to targets */
188 struct bio flush_bio;
192 * For mempools pre-allocation at the table loading time.
194 struct dm_md_mempools {
195 mempool_t *io_pool;
196 mempool_t *tio_pool;
197 struct bio_set *bs;
200 #define MIN_IOS 256
201 static struct kmem_cache *_io_cache;
202 static struct kmem_cache *_tio_cache;
203 static struct kmem_cache *_rq_tio_cache;
204 static struct kmem_cache *_rq_bio_info_cache;
206 static int __init local_init(void)
208 int r = -ENOMEM;
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
212 if (!_io_cache)
213 return r;
215 /* allocate a slab for the target ios */
216 _tio_cache = KMEM_CACHE(dm_target_io, 0);
217 if (!_tio_cache)
218 goto out_free_io_cache;
220 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
221 if (!_rq_tio_cache)
222 goto out_free_tio_cache;
224 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
225 if (!_rq_bio_info_cache)
226 goto out_free_rq_tio_cache;
228 r = dm_uevent_init();
229 if (r)
230 goto out_free_rq_bio_info_cache;
232 _major = major;
233 r = register_blkdev(_major, _name);
234 if (r < 0)
235 goto out_uevent_exit;
237 if (!_major)
238 _major = r;
240 return 0;
242 out_uevent_exit:
243 dm_uevent_exit();
244 out_free_rq_bio_info_cache:
245 kmem_cache_destroy(_rq_bio_info_cache);
246 out_free_rq_tio_cache:
247 kmem_cache_destroy(_rq_tio_cache);
248 out_free_tio_cache:
249 kmem_cache_destroy(_tio_cache);
250 out_free_io_cache:
251 kmem_cache_destroy(_io_cache);
253 return r;
256 static void local_exit(void)
258 kmem_cache_destroy(_rq_bio_info_cache);
259 kmem_cache_destroy(_rq_tio_cache);
260 kmem_cache_destroy(_tio_cache);
261 kmem_cache_destroy(_io_cache);
262 unregister_blkdev(_major, _name);
263 dm_uevent_exit();
265 _major = 0;
267 DMINFO("cleaned up");
270 static int (*_inits[])(void) __initdata = {
271 local_init,
272 dm_target_init,
273 dm_linear_init,
274 dm_stripe_init,
275 dm_io_init,
276 dm_kcopyd_init,
277 dm_interface_init,
280 static void (*_exits[])(void) = {
281 local_exit,
282 dm_target_exit,
283 dm_linear_exit,
284 dm_stripe_exit,
285 dm_io_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
290 static int __init dm_init(void)
292 const int count = ARRAY_SIZE(_inits);
294 int r, i;
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
302 return 0;
304 bad:
305 while (i--)
306 _exits[i]();
308 return r;
311 static void __exit dm_exit(void)
313 int i = ARRAY_SIZE(_exits);
315 while (i--)
316 _exits[i]();
320 * Block device functions
322 int dm_deleting_md(struct mapped_device *md)
324 return test_bit(DMF_DELETING, &md->flags);
327 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
329 struct mapped_device *md;
331 lock_kernel();
332 spin_lock(&_minor_lock);
334 md = bdev->bd_disk->private_data;
335 if (!md)
336 goto out;
338 if (test_bit(DMF_FREEING, &md->flags) ||
339 dm_deleting_md(md)) {
340 md = NULL;
341 goto out;
344 dm_get(md);
345 atomic_inc(&md->open_count);
347 out:
348 spin_unlock(&_minor_lock);
349 unlock_kernel();
351 return md ? 0 : -ENXIO;
354 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
356 struct mapped_device *md = disk->private_data;
358 lock_kernel();
359 atomic_dec(&md->open_count);
360 dm_put(md);
361 unlock_kernel();
363 return 0;
366 int dm_open_count(struct mapped_device *md)
368 return atomic_read(&md->open_count);
372 * Guarantees nothing is using the device before it's deleted.
374 int dm_lock_for_deletion(struct mapped_device *md)
376 int r = 0;
378 spin_lock(&_minor_lock);
380 if (dm_open_count(md))
381 r = -EBUSY;
382 else
383 set_bit(DMF_DELETING, &md->flags);
385 spin_unlock(&_minor_lock);
387 return r;
390 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392 struct mapped_device *md = bdev->bd_disk->private_data;
394 return dm_get_geometry(md, geo);
397 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
398 unsigned int cmd, unsigned long arg)
400 struct mapped_device *md = bdev->bd_disk->private_data;
401 struct dm_table *map = dm_get_live_table(md);
402 struct dm_target *tgt;
403 int r = -ENOTTY;
405 if (!map || !dm_table_get_size(map))
406 goto out;
408 /* We only support devices that have a single target */
409 if (dm_table_get_num_targets(map) != 1)
410 goto out;
412 tgt = dm_table_get_target(map, 0);
414 if (dm_suspended_md(md)) {
415 r = -EAGAIN;
416 goto out;
419 if (tgt->type->ioctl)
420 r = tgt->type->ioctl(tgt, cmd, arg);
422 out:
423 dm_table_put(map);
425 return r;
428 static struct dm_io *alloc_io(struct mapped_device *md)
430 return mempool_alloc(md->io_pool, GFP_NOIO);
433 static void free_io(struct mapped_device *md, struct dm_io *io)
435 mempool_free(io, md->io_pool);
438 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
440 mempool_free(tio, md->tio_pool);
443 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
444 gfp_t gfp_mask)
446 return mempool_alloc(md->tio_pool, gfp_mask);
449 static void free_rq_tio(struct dm_rq_target_io *tio)
451 mempool_free(tio, tio->md->tio_pool);
454 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
456 return mempool_alloc(md->io_pool, GFP_ATOMIC);
459 static void free_bio_info(struct dm_rq_clone_bio_info *info)
461 mempool_free(info, info->tio->md->io_pool);
464 static int md_in_flight(struct mapped_device *md)
466 return atomic_read(&md->pending[READ]) +
467 atomic_read(&md->pending[WRITE]);
470 static void start_io_acct(struct dm_io *io)
472 struct mapped_device *md = io->md;
473 int cpu;
474 int rw = bio_data_dir(io->bio);
476 io->start_time = jiffies;
478 cpu = part_stat_lock();
479 part_round_stats(cpu, &dm_disk(md)->part0);
480 part_stat_unlock();
481 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
484 static void end_io_acct(struct dm_io *io)
486 struct mapped_device *md = io->md;
487 struct bio *bio = io->bio;
488 unsigned long duration = jiffies - io->start_time;
489 int pending, cpu;
490 int rw = bio_data_dir(bio);
492 cpu = part_stat_lock();
493 part_round_stats(cpu, &dm_disk(md)->part0);
494 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 part_stat_unlock();
498 * After this is decremented the bio must not be touched if it is
499 * a flush.
501 dm_disk(md)->part0.in_flight[rw] = pending =
502 atomic_dec_return(&md->pending[rw]);
503 pending += atomic_read(&md->pending[rw^0x1]);
505 /* nudge anyone waiting on suspend queue */
506 if (!pending)
507 wake_up(&md->wait);
511 * Add the bio to the list of deferred io.
513 static void queue_io(struct mapped_device *md, struct bio *bio)
515 spin_lock_irq(&md->deferred_lock);
516 bio_list_add(&md->deferred, bio);
517 spin_unlock_irq(&md->deferred_lock);
518 queue_work(md->wq, &md->work);
522 * Everyone (including functions in this file), should use this
523 * function to access the md->map field, and make sure they call
524 * dm_table_put() when finished.
526 struct dm_table *dm_get_live_table(struct mapped_device *md)
528 struct dm_table *t;
529 unsigned long flags;
531 read_lock_irqsave(&md->map_lock, flags);
532 t = md->map;
533 if (t)
534 dm_table_get(t);
535 read_unlock_irqrestore(&md->map_lock, flags);
537 return t;
541 * Get the geometry associated with a dm device
543 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
545 *geo = md->geometry;
547 return 0;
551 * Set the geometry of a device.
553 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
557 if (geo->start > sz) {
558 DMWARN("Start sector is beyond the geometry limits.");
559 return -EINVAL;
562 md->geometry = *geo;
564 return 0;
567 /*-----------------------------------------------------------------
568 * CRUD START:
569 * A more elegant soln is in the works that uses the queue
570 * merge fn, unfortunately there are a couple of changes to
571 * the block layer that I want to make for this. So in the
572 * interests of getting something for people to use I give
573 * you this clearly demarcated crap.
574 *---------------------------------------------------------------*/
576 static int __noflush_suspending(struct mapped_device *md)
578 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
582 * Decrements the number of outstanding ios that a bio has been
583 * cloned into, completing the original io if necc.
585 static void dec_pending(struct dm_io *io, int error)
587 unsigned long flags;
588 int io_error;
589 struct bio *bio;
590 struct mapped_device *md = io->md;
592 /* Push-back supersedes any I/O errors */
593 if (unlikely(error)) {
594 spin_lock_irqsave(&io->endio_lock, flags);
595 if (!(io->error > 0 && __noflush_suspending(md)))
596 io->error = error;
597 spin_unlock_irqrestore(&io->endio_lock, flags);
600 if (atomic_dec_and_test(&io->io_count)) {
601 if (io->error == DM_ENDIO_REQUEUE) {
603 * Target requested pushing back the I/O.
605 spin_lock_irqsave(&md->deferred_lock, flags);
606 if (__noflush_suspending(md))
607 bio_list_add_head(&md->deferred, io->bio);
608 else
609 /* noflush suspend was interrupted. */
610 io->error = -EIO;
611 spin_unlock_irqrestore(&md->deferred_lock, flags);
614 io_error = io->error;
615 bio = io->bio;
616 end_io_acct(io);
617 free_io(md, io);
619 if (io_error == DM_ENDIO_REQUEUE)
620 return;
622 if (!(bio->bi_rw & REQ_FLUSH) || !bio->bi_size) {
623 trace_block_bio_complete(md->queue, bio);
624 bio_endio(bio, io_error);
625 } else {
627 * Preflush done for flush with data, reissue
628 * without REQ_FLUSH.
630 bio->bi_rw &= ~REQ_FLUSH;
631 queue_io(md, bio);
636 static void clone_endio(struct bio *bio, int error)
638 int r = 0;
639 struct dm_target_io *tio = bio->bi_private;
640 struct dm_io *io = tio->io;
641 struct mapped_device *md = tio->io->md;
642 dm_endio_fn endio = tio->ti->type->end_io;
644 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
645 error = -EIO;
647 if (endio) {
648 r = endio(tio->ti, bio, error, &tio->info);
649 if (r < 0 || r == DM_ENDIO_REQUEUE)
651 * error and requeue request are handled
652 * in dec_pending().
654 error = r;
655 else if (r == DM_ENDIO_INCOMPLETE)
656 /* The target will handle the io */
657 return;
658 else if (r) {
659 DMWARN("unimplemented target endio return value: %d", r);
660 BUG();
665 * Store md for cleanup instead of tio which is about to get freed.
667 bio->bi_private = md->bs;
669 free_tio(md, tio);
670 bio_put(bio);
671 dec_pending(io, error);
675 * Partial completion handling for request-based dm
677 static void end_clone_bio(struct bio *clone, int error)
679 struct dm_rq_clone_bio_info *info = clone->bi_private;
680 struct dm_rq_target_io *tio = info->tio;
681 struct bio *bio = info->orig;
682 unsigned int nr_bytes = info->orig->bi_size;
684 bio_put(clone);
686 if (tio->error)
688 * An error has already been detected on the request.
689 * Once error occurred, just let clone->end_io() handle
690 * the remainder.
692 return;
693 else if (error) {
695 * Don't notice the error to the upper layer yet.
696 * The error handling decision is made by the target driver,
697 * when the request is completed.
699 tio->error = error;
700 return;
704 * I/O for the bio successfully completed.
705 * Notice the data completion to the upper layer.
709 * bios are processed from the head of the list.
710 * So the completing bio should always be rq->bio.
711 * If it's not, something wrong is happening.
713 if (tio->orig->bio != bio)
714 DMERR("bio completion is going in the middle of the request");
717 * Update the original request.
718 * Do not use blk_end_request() here, because it may complete
719 * the original request before the clone, and break the ordering.
721 blk_update_request(tio->orig, 0, nr_bytes);
725 * Don't touch any member of the md after calling this function because
726 * the md may be freed in dm_put() at the end of this function.
727 * Or do dm_get() before calling this function and dm_put() later.
729 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
731 atomic_dec(&md->pending[rw]);
733 /* nudge anyone waiting on suspend queue */
734 if (!md_in_flight(md))
735 wake_up(&md->wait);
737 if (run_queue)
738 blk_run_queue(md->queue);
741 * dm_put() must be at the end of this function. See the comment above
743 dm_put(md);
746 static void free_rq_clone(struct request *clone)
748 struct dm_rq_target_io *tio = clone->end_io_data;
750 blk_rq_unprep_clone(clone);
751 free_rq_tio(tio);
755 * Complete the clone and the original request.
756 * Must be called without queue lock.
758 static void dm_end_request(struct request *clone, int error)
760 int rw = rq_data_dir(clone);
761 struct dm_rq_target_io *tio = clone->end_io_data;
762 struct mapped_device *md = tio->md;
763 struct request *rq = tio->orig;
765 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
766 rq->errors = clone->errors;
767 rq->resid_len = clone->resid_len;
769 if (rq->sense)
771 * We are using the sense buffer of the original
772 * request.
773 * So setting the length of the sense data is enough.
775 rq->sense_len = clone->sense_len;
778 free_rq_clone(clone);
779 blk_end_request_all(rq, error);
780 rq_completed(md, rw, true);
783 static void dm_unprep_request(struct request *rq)
785 struct request *clone = rq->special;
787 rq->special = NULL;
788 rq->cmd_flags &= ~REQ_DONTPREP;
790 free_rq_clone(clone);
794 * Requeue the original request of a clone.
796 void dm_requeue_unmapped_request(struct request *clone)
798 int rw = rq_data_dir(clone);
799 struct dm_rq_target_io *tio = clone->end_io_data;
800 struct mapped_device *md = tio->md;
801 struct request *rq = tio->orig;
802 struct request_queue *q = rq->q;
803 unsigned long flags;
805 dm_unprep_request(rq);
807 spin_lock_irqsave(q->queue_lock, flags);
808 if (elv_queue_empty(q))
809 blk_plug_device(q);
810 blk_requeue_request(q, rq);
811 spin_unlock_irqrestore(q->queue_lock, flags);
813 rq_completed(md, rw, 0);
815 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
817 static void __stop_queue(struct request_queue *q)
819 blk_stop_queue(q);
822 static void stop_queue(struct request_queue *q)
824 unsigned long flags;
826 spin_lock_irqsave(q->queue_lock, flags);
827 __stop_queue(q);
828 spin_unlock_irqrestore(q->queue_lock, flags);
831 static void __start_queue(struct request_queue *q)
833 if (blk_queue_stopped(q))
834 blk_start_queue(q);
837 static void start_queue(struct request_queue *q)
839 unsigned long flags;
841 spin_lock_irqsave(q->queue_lock, flags);
842 __start_queue(q);
843 spin_unlock_irqrestore(q->queue_lock, flags);
846 static void dm_done(struct request *clone, int error, bool mapped)
848 int r = error;
849 struct dm_rq_target_io *tio = clone->end_io_data;
850 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
852 if (mapped && rq_end_io)
853 r = rq_end_io(tio->ti, clone, error, &tio->info);
855 if (r <= 0)
856 /* The target wants to complete the I/O */
857 dm_end_request(clone, r);
858 else if (r == DM_ENDIO_INCOMPLETE)
859 /* The target will handle the I/O */
860 return;
861 else if (r == DM_ENDIO_REQUEUE)
862 /* The target wants to requeue the I/O */
863 dm_requeue_unmapped_request(clone);
864 else {
865 DMWARN("unimplemented target endio return value: %d", r);
866 BUG();
871 * Request completion handler for request-based dm
873 static void dm_softirq_done(struct request *rq)
875 bool mapped = true;
876 struct request *clone = rq->completion_data;
877 struct dm_rq_target_io *tio = clone->end_io_data;
879 if (rq->cmd_flags & REQ_FAILED)
880 mapped = false;
882 dm_done(clone, tio->error, mapped);
886 * Complete the clone and the original request with the error status
887 * through softirq context.
889 static void dm_complete_request(struct request *clone, int error)
891 struct dm_rq_target_io *tio = clone->end_io_data;
892 struct request *rq = tio->orig;
894 tio->error = error;
895 rq->completion_data = clone;
896 blk_complete_request(rq);
900 * Complete the not-mapped clone and the original request with the error status
901 * through softirq context.
902 * Target's rq_end_io() function isn't called.
903 * This may be used when the target's map_rq() function fails.
905 void dm_kill_unmapped_request(struct request *clone, int error)
907 struct dm_rq_target_io *tio = clone->end_io_data;
908 struct request *rq = tio->orig;
910 rq->cmd_flags |= REQ_FAILED;
911 dm_complete_request(clone, error);
913 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
916 * Called with the queue lock held
918 static void end_clone_request(struct request *clone, int error)
921 * For just cleaning up the information of the queue in which
922 * the clone was dispatched.
923 * The clone is *NOT* freed actually here because it is alloced from
924 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
926 __blk_put_request(clone->q, clone);
929 * Actual request completion is done in a softirq context which doesn't
930 * hold the queue lock. Otherwise, deadlock could occur because:
931 * - another request may be submitted by the upper level driver
932 * of the stacking during the completion
933 * - the submission which requires queue lock may be done
934 * against this queue
936 dm_complete_request(clone, error);
940 * Return maximum size of I/O possible at the supplied sector up to the current
941 * target boundary.
943 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
945 sector_t target_offset = dm_target_offset(ti, sector);
947 return ti->len - target_offset;
950 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
952 sector_t len = max_io_len_target_boundary(sector, ti);
955 * Does the target need to split even further ?
957 if (ti->split_io) {
958 sector_t boundary;
959 sector_t offset = dm_target_offset(ti, sector);
960 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
961 - offset;
962 if (len > boundary)
963 len = boundary;
966 return len;
969 static void __map_bio(struct dm_target *ti, struct bio *clone,
970 struct dm_target_io *tio)
972 int r;
973 sector_t sector;
974 struct mapped_device *md;
976 clone->bi_end_io = clone_endio;
977 clone->bi_private = tio;
980 * Map the clone. If r == 0 we don't need to do
981 * anything, the target has assumed ownership of
982 * this io.
984 atomic_inc(&tio->io->io_count);
985 sector = clone->bi_sector;
986 r = ti->type->map(ti, clone, &tio->info);
987 if (r == DM_MAPIO_REMAPPED) {
988 /* the bio has been remapped so dispatch it */
990 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
991 tio->io->bio->bi_bdev->bd_dev, sector);
993 generic_make_request(clone);
994 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
995 /* error the io and bail out, or requeue it if needed */
996 md = tio->io->md;
997 dec_pending(tio->io, r);
999 * Store bio_set for cleanup.
1001 clone->bi_private = md->bs;
1002 bio_put(clone);
1003 free_tio(md, tio);
1004 } else if (r) {
1005 DMWARN("unimplemented target map return value: %d", r);
1006 BUG();
1010 struct clone_info {
1011 struct mapped_device *md;
1012 struct dm_table *map;
1013 struct bio *bio;
1014 struct dm_io *io;
1015 sector_t sector;
1016 sector_t sector_count;
1017 unsigned short idx;
1020 static void dm_bio_destructor(struct bio *bio)
1022 struct bio_set *bs = bio->bi_private;
1024 bio_free(bio, bs);
1028 * Creates a little bio that just does part of a bvec.
1030 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1031 unsigned short idx, unsigned int offset,
1032 unsigned int len, struct bio_set *bs)
1034 struct bio *clone;
1035 struct bio_vec *bv = bio->bi_io_vec + idx;
1037 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1038 clone->bi_destructor = dm_bio_destructor;
1039 *clone->bi_io_vec = *bv;
1041 clone->bi_sector = sector;
1042 clone->bi_bdev = bio->bi_bdev;
1043 clone->bi_rw = bio->bi_rw;
1044 clone->bi_vcnt = 1;
1045 clone->bi_size = to_bytes(len);
1046 clone->bi_io_vec->bv_offset = offset;
1047 clone->bi_io_vec->bv_len = clone->bi_size;
1048 clone->bi_flags |= 1 << BIO_CLONED;
1050 if (bio_integrity(bio)) {
1051 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1052 bio_integrity_trim(clone,
1053 bio_sector_offset(bio, idx, offset), len);
1056 return clone;
1060 * Creates a bio that consists of range of complete bvecs.
1062 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1063 unsigned short idx, unsigned short bv_count,
1064 unsigned int len, struct bio_set *bs)
1066 struct bio *clone;
1068 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1069 __bio_clone(clone, bio);
1070 clone->bi_destructor = dm_bio_destructor;
1071 clone->bi_sector = sector;
1072 clone->bi_idx = idx;
1073 clone->bi_vcnt = idx + bv_count;
1074 clone->bi_size = to_bytes(len);
1075 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1077 if (bio_integrity(bio)) {
1078 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1080 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1081 bio_integrity_trim(clone,
1082 bio_sector_offset(bio, idx, 0), len);
1085 return clone;
1088 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1089 struct dm_target *ti)
1091 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1093 tio->io = ci->io;
1094 tio->ti = ti;
1095 memset(&tio->info, 0, sizeof(tio->info));
1097 return tio;
1100 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1101 unsigned request_nr, sector_t len)
1103 struct dm_target_io *tio = alloc_tio(ci, ti);
1104 struct bio *clone;
1106 tio->info.target_request_nr = request_nr;
1109 * Discard requests require the bio's inline iovecs be initialized.
1110 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1111 * and discard, so no need for concern about wasted bvec allocations.
1113 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1114 __bio_clone(clone, ci->bio);
1115 clone->bi_destructor = dm_bio_destructor;
1116 if (len) {
1117 clone->bi_sector = ci->sector;
1118 clone->bi_size = to_bytes(len);
1121 __map_bio(ti, clone, tio);
1124 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1125 unsigned num_requests, sector_t len)
1127 unsigned request_nr;
1129 for (request_nr = 0; request_nr < num_requests; request_nr++)
1130 __issue_target_request(ci, ti, request_nr, len);
1133 static int __clone_and_map_flush(struct clone_info *ci)
1135 unsigned target_nr = 0;
1136 struct dm_target *ti;
1138 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1139 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1141 ci->sector_count = 0;
1143 return 0;
1147 * Perform all io with a single clone.
1149 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1151 struct bio *clone, *bio = ci->bio;
1152 struct dm_target_io *tio;
1154 tio = alloc_tio(ci, ti);
1155 clone = clone_bio(bio, ci->sector, ci->idx,
1156 bio->bi_vcnt - ci->idx, ci->sector_count,
1157 ci->md->bs);
1158 __map_bio(ti, clone, tio);
1159 ci->sector_count = 0;
1162 static int __clone_and_map_discard(struct clone_info *ci)
1164 struct dm_target *ti;
1165 sector_t len;
1167 do {
1168 ti = dm_table_find_target(ci->map, ci->sector);
1169 if (!dm_target_is_valid(ti))
1170 return -EIO;
1173 * Even though the device advertised discard support,
1174 * reconfiguration might have changed that since the
1175 * check was performed.
1177 if (!ti->num_discard_requests)
1178 return -EOPNOTSUPP;
1180 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1182 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1184 ci->sector += len;
1185 } while (ci->sector_count -= len);
1187 return 0;
1190 static int __clone_and_map(struct clone_info *ci)
1192 struct bio *clone, *bio = ci->bio;
1193 struct dm_target *ti;
1194 sector_t len = 0, max;
1195 struct dm_target_io *tio;
1197 if (unlikely(bio->bi_rw & REQ_DISCARD))
1198 return __clone_and_map_discard(ci);
1200 ti = dm_table_find_target(ci->map, ci->sector);
1201 if (!dm_target_is_valid(ti))
1202 return -EIO;
1204 max = max_io_len(ci->sector, ti);
1206 if (ci->sector_count <= max) {
1208 * Optimise for the simple case where we can do all of
1209 * the remaining io with a single clone.
1211 __clone_and_map_simple(ci, ti);
1213 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1215 * There are some bvecs that don't span targets.
1216 * Do as many of these as possible.
1218 int i;
1219 sector_t remaining = max;
1220 sector_t bv_len;
1222 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1223 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1225 if (bv_len > remaining)
1226 break;
1228 remaining -= bv_len;
1229 len += bv_len;
1232 tio = alloc_tio(ci, ti);
1233 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1234 ci->md->bs);
1235 __map_bio(ti, clone, tio);
1237 ci->sector += len;
1238 ci->sector_count -= len;
1239 ci->idx = i;
1241 } else {
1243 * Handle a bvec that must be split between two or more targets.
1245 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1246 sector_t remaining = to_sector(bv->bv_len);
1247 unsigned int offset = 0;
1249 do {
1250 if (offset) {
1251 ti = dm_table_find_target(ci->map, ci->sector);
1252 if (!dm_target_is_valid(ti))
1253 return -EIO;
1255 max = max_io_len(ci->sector, ti);
1258 len = min(remaining, max);
1260 tio = alloc_tio(ci, ti);
1261 clone = split_bvec(bio, ci->sector, ci->idx,
1262 bv->bv_offset + offset, len,
1263 ci->md->bs);
1265 __map_bio(ti, clone, tio);
1267 ci->sector += len;
1268 ci->sector_count -= len;
1269 offset += to_bytes(len);
1270 } while (remaining -= len);
1272 ci->idx++;
1275 return 0;
1279 * Split the bio into several clones and submit it to targets.
1281 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1283 bool is_flush = bio->bi_rw & REQ_FLUSH;
1284 struct clone_info ci;
1285 int error = 0;
1287 ci.map = dm_get_live_table(md);
1288 if (unlikely(!ci.map)) {
1289 bio_io_error(bio);
1290 return;
1293 ci.md = md;
1294 ci.io = alloc_io(md);
1295 ci.io->error = 0;
1296 atomic_set(&ci.io->io_count, 1);
1297 ci.io->bio = bio;
1298 ci.io->md = md;
1299 spin_lock_init(&ci.io->endio_lock);
1300 ci.sector = bio->bi_sector;
1301 ci.idx = bio->bi_idx;
1303 if (!is_flush) {
1304 ci.bio = bio;
1305 ci.sector_count = bio_sectors(bio);
1306 } else {
1307 ci.bio = &ci.md->flush_bio;
1308 ci.sector_count = 1;
1311 start_io_acct(ci.io);
1312 while (ci.sector_count && !error) {
1313 if (!is_flush)
1314 error = __clone_and_map(&ci);
1315 else
1316 error = __clone_and_map_flush(&ci);
1319 /* drop the extra reference count */
1320 dec_pending(ci.io, error);
1321 dm_table_put(ci.map);
1323 /*-----------------------------------------------------------------
1324 * CRUD END
1325 *---------------------------------------------------------------*/
1327 static int dm_merge_bvec(struct request_queue *q,
1328 struct bvec_merge_data *bvm,
1329 struct bio_vec *biovec)
1331 struct mapped_device *md = q->queuedata;
1332 struct dm_table *map = dm_get_live_table(md);
1333 struct dm_target *ti;
1334 sector_t max_sectors;
1335 int max_size = 0;
1337 if (unlikely(!map))
1338 goto out;
1340 ti = dm_table_find_target(map, bvm->bi_sector);
1341 if (!dm_target_is_valid(ti))
1342 goto out_table;
1345 * Find maximum amount of I/O that won't need splitting
1347 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1348 (sector_t) BIO_MAX_SECTORS);
1349 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1350 if (max_size < 0)
1351 max_size = 0;
1354 * merge_bvec_fn() returns number of bytes
1355 * it can accept at this offset
1356 * max is precomputed maximal io size
1358 if (max_size && ti->type->merge)
1359 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1361 * If the target doesn't support merge method and some of the devices
1362 * provided their merge_bvec method (we know this by looking at
1363 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1364 * entries. So always set max_size to 0, and the code below allows
1365 * just one page.
1367 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1369 max_size = 0;
1371 out_table:
1372 dm_table_put(map);
1374 out:
1376 * Always allow an entire first page
1378 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1379 max_size = biovec->bv_len;
1381 return max_size;
1385 * The request function that just remaps the bio built up by
1386 * dm_merge_bvec.
1388 static int _dm_request(struct request_queue *q, struct bio *bio)
1390 int rw = bio_data_dir(bio);
1391 struct mapped_device *md = q->queuedata;
1392 int cpu;
1394 down_read(&md->io_lock);
1396 cpu = part_stat_lock();
1397 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1398 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1399 part_stat_unlock();
1401 /* if we're suspended, we have to queue this io for later */
1402 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1403 up_read(&md->io_lock);
1405 if (bio_rw(bio) != READA)
1406 queue_io(md, bio);
1407 else
1408 bio_io_error(bio);
1409 return 0;
1412 __split_and_process_bio(md, bio);
1413 up_read(&md->io_lock);
1414 return 0;
1417 static int dm_make_request(struct request_queue *q, struct bio *bio)
1419 struct mapped_device *md = q->queuedata;
1421 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1424 static int dm_request_based(struct mapped_device *md)
1426 return blk_queue_stackable(md->queue);
1429 static int dm_request(struct request_queue *q, struct bio *bio)
1431 struct mapped_device *md = q->queuedata;
1433 if (dm_request_based(md))
1434 return dm_make_request(q, bio);
1436 return _dm_request(q, bio);
1439 void dm_dispatch_request(struct request *rq)
1441 int r;
1443 if (blk_queue_io_stat(rq->q))
1444 rq->cmd_flags |= REQ_IO_STAT;
1446 rq->start_time = jiffies;
1447 r = blk_insert_cloned_request(rq->q, rq);
1448 if (r)
1449 dm_complete_request(rq, r);
1451 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1453 static void dm_rq_bio_destructor(struct bio *bio)
1455 struct dm_rq_clone_bio_info *info = bio->bi_private;
1456 struct mapped_device *md = info->tio->md;
1458 free_bio_info(info);
1459 bio_free(bio, md->bs);
1462 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1463 void *data)
1465 struct dm_rq_target_io *tio = data;
1466 struct mapped_device *md = tio->md;
1467 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1469 if (!info)
1470 return -ENOMEM;
1472 info->orig = bio_orig;
1473 info->tio = tio;
1474 bio->bi_end_io = end_clone_bio;
1475 bio->bi_private = info;
1476 bio->bi_destructor = dm_rq_bio_destructor;
1478 return 0;
1481 static int setup_clone(struct request *clone, struct request *rq,
1482 struct dm_rq_target_io *tio)
1484 int r;
1486 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1487 dm_rq_bio_constructor, tio);
1488 if (r)
1489 return r;
1491 clone->cmd = rq->cmd;
1492 clone->cmd_len = rq->cmd_len;
1493 clone->sense = rq->sense;
1494 clone->buffer = rq->buffer;
1495 clone->end_io = end_clone_request;
1496 clone->end_io_data = tio;
1498 return 0;
1501 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1502 gfp_t gfp_mask)
1504 struct request *clone;
1505 struct dm_rq_target_io *tio;
1507 tio = alloc_rq_tio(md, gfp_mask);
1508 if (!tio)
1509 return NULL;
1511 tio->md = md;
1512 tio->ti = NULL;
1513 tio->orig = rq;
1514 tio->error = 0;
1515 memset(&tio->info, 0, sizeof(tio->info));
1517 clone = &tio->clone;
1518 if (setup_clone(clone, rq, tio)) {
1519 /* -ENOMEM */
1520 free_rq_tio(tio);
1521 return NULL;
1524 return clone;
1528 * Called with the queue lock held.
1530 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1532 struct mapped_device *md = q->queuedata;
1533 struct request *clone;
1535 if (unlikely(rq->special)) {
1536 DMWARN("Already has something in rq->special.");
1537 return BLKPREP_KILL;
1540 clone = clone_rq(rq, md, GFP_ATOMIC);
1541 if (!clone)
1542 return BLKPREP_DEFER;
1544 rq->special = clone;
1545 rq->cmd_flags |= REQ_DONTPREP;
1547 return BLKPREP_OK;
1551 * Returns:
1552 * 0 : the request has been processed (not requeued)
1553 * !0 : the request has been requeued
1555 static int map_request(struct dm_target *ti, struct request *clone,
1556 struct mapped_device *md)
1558 int r, requeued = 0;
1559 struct dm_rq_target_io *tio = clone->end_io_data;
1562 * Hold the md reference here for the in-flight I/O.
1563 * We can't rely on the reference count by device opener,
1564 * because the device may be closed during the request completion
1565 * when all bios are completed.
1566 * See the comment in rq_completed() too.
1568 dm_get(md);
1570 tio->ti = ti;
1571 r = ti->type->map_rq(ti, clone, &tio->info);
1572 switch (r) {
1573 case DM_MAPIO_SUBMITTED:
1574 /* The target has taken the I/O to submit by itself later */
1575 break;
1576 case DM_MAPIO_REMAPPED:
1577 /* The target has remapped the I/O so dispatch it */
1578 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1579 blk_rq_pos(tio->orig));
1580 dm_dispatch_request(clone);
1581 break;
1582 case DM_MAPIO_REQUEUE:
1583 /* The target wants to requeue the I/O */
1584 dm_requeue_unmapped_request(clone);
1585 requeued = 1;
1586 break;
1587 default:
1588 if (r > 0) {
1589 DMWARN("unimplemented target map return value: %d", r);
1590 BUG();
1593 /* The target wants to complete the I/O */
1594 dm_kill_unmapped_request(clone, r);
1595 break;
1598 return requeued;
1602 * q->request_fn for request-based dm.
1603 * Called with the queue lock held.
1605 static void dm_request_fn(struct request_queue *q)
1607 struct mapped_device *md = q->queuedata;
1608 struct dm_table *map = dm_get_live_table(md);
1609 struct dm_target *ti;
1610 struct request *rq, *clone;
1611 sector_t pos;
1614 * For suspend, check blk_queue_stopped() and increment
1615 * ->pending within a single queue_lock not to increment the
1616 * number of in-flight I/Os after the queue is stopped in
1617 * dm_suspend().
1619 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1620 rq = blk_peek_request(q);
1621 if (!rq)
1622 goto plug_and_out;
1624 /* always use block 0 to find the target for flushes for now */
1625 pos = 0;
1626 if (!(rq->cmd_flags & REQ_FLUSH))
1627 pos = blk_rq_pos(rq);
1629 ti = dm_table_find_target(map, pos);
1630 BUG_ON(!dm_target_is_valid(ti));
1632 if (ti->type->busy && ti->type->busy(ti))
1633 goto plug_and_out;
1635 blk_start_request(rq);
1636 clone = rq->special;
1637 atomic_inc(&md->pending[rq_data_dir(clone)]);
1639 spin_unlock(q->queue_lock);
1640 if (map_request(ti, clone, md))
1641 goto requeued;
1643 spin_lock_irq(q->queue_lock);
1646 goto out;
1648 requeued:
1649 spin_lock_irq(q->queue_lock);
1651 plug_and_out:
1652 if (!elv_queue_empty(q))
1653 /* Some requests still remain, retry later */
1654 blk_plug_device(q);
1656 out:
1657 dm_table_put(map);
1659 return;
1662 int dm_underlying_device_busy(struct request_queue *q)
1664 return blk_lld_busy(q);
1666 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1668 static int dm_lld_busy(struct request_queue *q)
1670 int r;
1671 struct mapped_device *md = q->queuedata;
1672 struct dm_table *map = dm_get_live_table(md);
1674 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1675 r = 1;
1676 else
1677 r = dm_table_any_busy_target(map);
1679 dm_table_put(map);
1681 return r;
1684 static void dm_unplug_all(struct request_queue *q)
1686 struct mapped_device *md = q->queuedata;
1687 struct dm_table *map = dm_get_live_table(md);
1689 if (map) {
1690 if (dm_request_based(md))
1691 generic_unplug_device(q);
1693 dm_table_unplug_all(map);
1694 dm_table_put(map);
1698 static int dm_any_congested(void *congested_data, int bdi_bits)
1700 int r = bdi_bits;
1701 struct mapped_device *md = congested_data;
1702 struct dm_table *map;
1704 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1705 map = dm_get_live_table(md);
1706 if (map) {
1708 * Request-based dm cares about only own queue for
1709 * the query about congestion status of request_queue
1711 if (dm_request_based(md))
1712 r = md->queue->backing_dev_info.state &
1713 bdi_bits;
1714 else
1715 r = dm_table_any_congested(map, bdi_bits);
1717 dm_table_put(map);
1721 return r;
1724 /*-----------------------------------------------------------------
1725 * An IDR is used to keep track of allocated minor numbers.
1726 *---------------------------------------------------------------*/
1727 static DEFINE_IDR(_minor_idr);
1729 static void free_minor(int minor)
1731 spin_lock(&_minor_lock);
1732 idr_remove(&_minor_idr, minor);
1733 spin_unlock(&_minor_lock);
1737 * See if the device with a specific minor # is free.
1739 static int specific_minor(int minor)
1741 int r, m;
1743 if (minor >= (1 << MINORBITS))
1744 return -EINVAL;
1746 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1747 if (!r)
1748 return -ENOMEM;
1750 spin_lock(&_minor_lock);
1752 if (idr_find(&_minor_idr, minor)) {
1753 r = -EBUSY;
1754 goto out;
1757 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1758 if (r)
1759 goto out;
1761 if (m != minor) {
1762 idr_remove(&_minor_idr, m);
1763 r = -EBUSY;
1764 goto out;
1767 out:
1768 spin_unlock(&_minor_lock);
1769 return r;
1772 static int next_free_minor(int *minor)
1774 int r, m;
1776 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1777 if (!r)
1778 return -ENOMEM;
1780 spin_lock(&_minor_lock);
1782 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1783 if (r)
1784 goto out;
1786 if (m >= (1 << MINORBITS)) {
1787 idr_remove(&_minor_idr, m);
1788 r = -ENOSPC;
1789 goto out;
1792 *minor = m;
1794 out:
1795 spin_unlock(&_minor_lock);
1796 return r;
1799 static const struct block_device_operations dm_blk_dops;
1801 static void dm_wq_work(struct work_struct *work);
1803 static void dm_init_md_queue(struct mapped_device *md)
1806 * Request-based dm devices cannot be stacked on top of bio-based dm
1807 * devices. The type of this dm device has not been decided yet.
1808 * The type is decided at the first table loading time.
1809 * To prevent problematic device stacking, clear the queue flag
1810 * for request stacking support until then.
1812 * This queue is new, so no concurrency on the queue_flags.
1814 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1816 md->queue->queuedata = md;
1817 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1818 md->queue->backing_dev_info.congested_data = md;
1819 blk_queue_make_request(md->queue, dm_request);
1820 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1821 md->queue->unplug_fn = dm_unplug_all;
1822 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1823 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1827 * Allocate and initialise a blank device with a given minor.
1829 static struct mapped_device *alloc_dev(int minor)
1831 int r;
1832 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1833 void *old_md;
1835 if (!md) {
1836 DMWARN("unable to allocate device, out of memory.");
1837 return NULL;
1840 if (!try_module_get(THIS_MODULE))
1841 goto bad_module_get;
1843 /* get a minor number for the dev */
1844 if (minor == DM_ANY_MINOR)
1845 r = next_free_minor(&minor);
1846 else
1847 r = specific_minor(minor);
1848 if (r < 0)
1849 goto bad_minor;
1851 md->type = DM_TYPE_NONE;
1852 init_rwsem(&md->io_lock);
1853 mutex_init(&md->suspend_lock);
1854 mutex_init(&md->type_lock);
1855 spin_lock_init(&md->deferred_lock);
1856 rwlock_init(&md->map_lock);
1857 atomic_set(&md->holders, 1);
1858 atomic_set(&md->open_count, 0);
1859 atomic_set(&md->event_nr, 0);
1860 atomic_set(&md->uevent_seq, 0);
1861 INIT_LIST_HEAD(&md->uevent_list);
1862 spin_lock_init(&md->uevent_lock);
1864 md->queue = blk_alloc_queue(GFP_KERNEL);
1865 if (!md->queue)
1866 goto bad_queue;
1868 dm_init_md_queue(md);
1870 md->disk = alloc_disk(1);
1871 if (!md->disk)
1872 goto bad_disk;
1874 atomic_set(&md->pending[0], 0);
1875 atomic_set(&md->pending[1], 0);
1876 init_waitqueue_head(&md->wait);
1877 INIT_WORK(&md->work, dm_wq_work);
1878 init_waitqueue_head(&md->eventq);
1880 md->disk->major = _major;
1881 md->disk->first_minor = minor;
1882 md->disk->fops = &dm_blk_dops;
1883 md->disk->queue = md->queue;
1884 md->disk->private_data = md;
1885 sprintf(md->disk->disk_name, "dm-%d", minor);
1886 add_disk(md->disk);
1887 format_dev_t(md->name, MKDEV(_major, minor));
1889 md->wq = create_singlethread_workqueue("kdmflush");
1890 if (!md->wq)
1891 goto bad_thread;
1893 md->bdev = bdget_disk(md->disk, 0);
1894 if (!md->bdev)
1895 goto bad_bdev;
1897 bio_init(&md->flush_bio);
1898 md->flush_bio.bi_bdev = md->bdev;
1899 md->flush_bio.bi_rw = WRITE_FLUSH;
1901 /* Populate the mapping, nobody knows we exist yet */
1902 spin_lock(&_minor_lock);
1903 old_md = idr_replace(&_minor_idr, md, minor);
1904 spin_unlock(&_minor_lock);
1906 BUG_ON(old_md != MINOR_ALLOCED);
1908 return md;
1910 bad_bdev:
1911 destroy_workqueue(md->wq);
1912 bad_thread:
1913 del_gendisk(md->disk);
1914 put_disk(md->disk);
1915 bad_disk:
1916 blk_cleanup_queue(md->queue);
1917 bad_queue:
1918 free_minor(minor);
1919 bad_minor:
1920 module_put(THIS_MODULE);
1921 bad_module_get:
1922 kfree(md);
1923 return NULL;
1926 static void unlock_fs(struct mapped_device *md);
1928 static void free_dev(struct mapped_device *md)
1930 int minor = MINOR(disk_devt(md->disk));
1932 unlock_fs(md);
1933 bdput(md->bdev);
1934 destroy_workqueue(md->wq);
1935 if (md->tio_pool)
1936 mempool_destroy(md->tio_pool);
1937 if (md->io_pool)
1938 mempool_destroy(md->io_pool);
1939 if (md->bs)
1940 bioset_free(md->bs);
1941 blk_integrity_unregister(md->disk);
1942 del_gendisk(md->disk);
1943 free_minor(minor);
1945 spin_lock(&_minor_lock);
1946 md->disk->private_data = NULL;
1947 spin_unlock(&_minor_lock);
1949 put_disk(md->disk);
1950 blk_cleanup_queue(md->queue);
1951 module_put(THIS_MODULE);
1952 kfree(md);
1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1957 struct dm_md_mempools *p;
1959 if (md->io_pool && md->tio_pool && md->bs)
1960 /* the md already has necessary mempools */
1961 goto out;
1963 p = dm_table_get_md_mempools(t);
1964 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1966 md->io_pool = p->io_pool;
1967 p->io_pool = NULL;
1968 md->tio_pool = p->tio_pool;
1969 p->tio_pool = NULL;
1970 md->bs = p->bs;
1971 p->bs = NULL;
1973 out:
1974 /* mempool bind completed, now no need any mempools in the table */
1975 dm_table_free_md_mempools(t);
1979 * Bind a table to the device.
1981 static void event_callback(void *context)
1983 unsigned long flags;
1984 LIST_HEAD(uevents);
1985 struct mapped_device *md = (struct mapped_device *) context;
1987 spin_lock_irqsave(&md->uevent_lock, flags);
1988 list_splice_init(&md->uevent_list, &uevents);
1989 spin_unlock_irqrestore(&md->uevent_lock, flags);
1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1993 atomic_inc(&md->event_nr);
1994 wake_up(&md->eventq);
1997 static void __set_size(struct mapped_device *md, sector_t size)
1999 set_capacity(md->disk, size);
2001 mutex_lock(&md->bdev->bd_inode->i_mutex);
2002 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2003 mutex_unlock(&md->bdev->bd_inode->i_mutex);
2007 * Returns old map, which caller must destroy.
2009 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2010 struct queue_limits *limits)
2012 struct dm_table *old_map;
2013 struct request_queue *q = md->queue;
2014 sector_t size;
2015 unsigned long flags;
2017 size = dm_table_get_size(t);
2020 * Wipe any geometry if the size of the table changed.
2022 if (size != get_capacity(md->disk))
2023 memset(&md->geometry, 0, sizeof(md->geometry));
2025 __set_size(md, size);
2027 dm_table_event_callback(t, event_callback, md);
2030 * The queue hasn't been stopped yet, if the old table type wasn't
2031 * for request-based during suspension. So stop it to prevent
2032 * I/O mapping before resume.
2033 * This must be done before setting the queue restrictions,
2034 * because request-based dm may be run just after the setting.
2036 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2037 stop_queue(q);
2039 __bind_mempools(md, t);
2041 write_lock_irqsave(&md->map_lock, flags);
2042 old_map = md->map;
2043 md->map = t;
2044 dm_table_set_restrictions(t, q, limits);
2045 write_unlock_irqrestore(&md->map_lock, flags);
2047 return old_map;
2051 * Returns unbound table for the caller to free.
2053 static struct dm_table *__unbind(struct mapped_device *md)
2055 struct dm_table *map = md->map;
2056 unsigned long flags;
2058 if (!map)
2059 return NULL;
2061 dm_table_event_callback(map, NULL, NULL);
2062 write_lock_irqsave(&md->map_lock, flags);
2063 md->map = NULL;
2064 write_unlock_irqrestore(&md->map_lock, flags);
2066 return map;
2070 * Constructor for a new device.
2072 int dm_create(int minor, struct mapped_device **result)
2074 struct mapped_device *md;
2076 md = alloc_dev(minor);
2077 if (!md)
2078 return -ENXIO;
2080 dm_sysfs_init(md);
2082 *result = md;
2083 return 0;
2087 * Functions to manage md->type.
2088 * All are required to hold md->type_lock.
2090 void dm_lock_md_type(struct mapped_device *md)
2092 mutex_lock(&md->type_lock);
2095 void dm_unlock_md_type(struct mapped_device *md)
2097 mutex_unlock(&md->type_lock);
2100 void dm_set_md_type(struct mapped_device *md, unsigned type)
2102 md->type = type;
2105 unsigned dm_get_md_type(struct mapped_device *md)
2107 return md->type;
2111 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2113 static int dm_init_request_based_queue(struct mapped_device *md)
2115 struct request_queue *q = NULL;
2117 if (md->queue->elevator)
2118 return 1;
2120 /* Fully initialize the queue */
2121 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2122 if (!q)
2123 return 0;
2125 md->queue = q;
2126 md->saved_make_request_fn = md->queue->make_request_fn;
2127 dm_init_md_queue(md);
2128 blk_queue_softirq_done(md->queue, dm_softirq_done);
2129 blk_queue_prep_rq(md->queue, dm_prep_fn);
2130 blk_queue_lld_busy(md->queue, dm_lld_busy);
2132 elv_register_queue(md->queue);
2134 return 1;
2138 * Setup the DM device's queue based on md's type
2140 int dm_setup_md_queue(struct mapped_device *md)
2142 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2143 !dm_init_request_based_queue(md)) {
2144 DMWARN("Cannot initialize queue for request-based mapped device");
2145 return -EINVAL;
2148 return 0;
2151 static struct mapped_device *dm_find_md(dev_t dev)
2153 struct mapped_device *md;
2154 unsigned minor = MINOR(dev);
2156 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2157 return NULL;
2159 spin_lock(&_minor_lock);
2161 md = idr_find(&_minor_idr, minor);
2162 if (md && (md == MINOR_ALLOCED ||
2163 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2164 dm_deleting_md(md) ||
2165 test_bit(DMF_FREEING, &md->flags))) {
2166 md = NULL;
2167 goto out;
2170 out:
2171 spin_unlock(&_minor_lock);
2173 return md;
2176 struct mapped_device *dm_get_md(dev_t dev)
2178 struct mapped_device *md = dm_find_md(dev);
2180 if (md)
2181 dm_get(md);
2183 return md;
2186 void *dm_get_mdptr(struct mapped_device *md)
2188 return md->interface_ptr;
2191 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2193 md->interface_ptr = ptr;
2196 void dm_get(struct mapped_device *md)
2198 atomic_inc(&md->holders);
2199 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2202 const char *dm_device_name(struct mapped_device *md)
2204 return md->name;
2206 EXPORT_SYMBOL_GPL(dm_device_name);
2208 static void __dm_destroy(struct mapped_device *md, bool wait)
2210 struct dm_table *map;
2212 might_sleep();
2214 spin_lock(&_minor_lock);
2215 map = dm_get_live_table(md);
2216 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2217 set_bit(DMF_FREEING, &md->flags);
2218 spin_unlock(&_minor_lock);
2220 if (!dm_suspended_md(md)) {
2221 dm_table_presuspend_targets(map);
2222 dm_table_postsuspend_targets(map);
2226 * Rare, but there may be I/O requests still going to complete,
2227 * for example. Wait for all references to disappear.
2228 * No one should increment the reference count of the mapped_device,
2229 * after the mapped_device state becomes DMF_FREEING.
2231 if (wait)
2232 while (atomic_read(&md->holders))
2233 msleep(1);
2234 else if (atomic_read(&md->holders))
2235 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2236 dm_device_name(md), atomic_read(&md->holders));
2238 dm_sysfs_exit(md);
2239 dm_table_put(map);
2240 dm_table_destroy(__unbind(md));
2241 free_dev(md);
2244 void dm_destroy(struct mapped_device *md)
2246 __dm_destroy(md, true);
2249 void dm_destroy_immediate(struct mapped_device *md)
2251 __dm_destroy(md, false);
2254 void dm_put(struct mapped_device *md)
2256 atomic_dec(&md->holders);
2258 EXPORT_SYMBOL_GPL(dm_put);
2260 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2262 int r = 0;
2263 DECLARE_WAITQUEUE(wait, current);
2265 dm_unplug_all(md->queue);
2267 add_wait_queue(&md->wait, &wait);
2269 while (1) {
2270 set_current_state(interruptible);
2272 smp_mb();
2273 if (!md_in_flight(md))
2274 break;
2276 if (interruptible == TASK_INTERRUPTIBLE &&
2277 signal_pending(current)) {
2278 r = -EINTR;
2279 break;
2282 io_schedule();
2284 set_current_state(TASK_RUNNING);
2286 remove_wait_queue(&md->wait, &wait);
2288 return r;
2292 * Process the deferred bios
2294 static void dm_wq_work(struct work_struct *work)
2296 struct mapped_device *md = container_of(work, struct mapped_device,
2297 work);
2298 struct bio *c;
2300 down_read(&md->io_lock);
2302 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2303 spin_lock_irq(&md->deferred_lock);
2304 c = bio_list_pop(&md->deferred);
2305 spin_unlock_irq(&md->deferred_lock);
2307 if (!c)
2308 break;
2310 up_read(&md->io_lock);
2312 if (dm_request_based(md))
2313 generic_make_request(c);
2314 else
2315 __split_and_process_bio(md, c);
2317 down_read(&md->io_lock);
2320 up_read(&md->io_lock);
2323 static void dm_queue_flush(struct mapped_device *md)
2325 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2326 smp_mb__after_clear_bit();
2327 queue_work(md->wq, &md->work);
2331 * Swap in a new table, returning the old one for the caller to destroy.
2333 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2335 struct dm_table *map = ERR_PTR(-EINVAL);
2336 struct queue_limits limits;
2337 int r;
2339 mutex_lock(&md->suspend_lock);
2341 /* device must be suspended */
2342 if (!dm_suspended_md(md))
2343 goto out;
2345 r = dm_calculate_queue_limits(table, &limits);
2346 if (r) {
2347 map = ERR_PTR(r);
2348 goto out;
2351 map = __bind(md, table, &limits);
2353 out:
2354 mutex_unlock(&md->suspend_lock);
2355 return map;
2359 * Functions to lock and unlock any filesystem running on the
2360 * device.
2362 static int lock_fs(struct mapped_device *md)
2364 int r;
2366 WARN_ON(md->frozen_sb);
2368 md->frozen_sb = freeze_bdev(md->bdev);
2369 if (IS_ERR(md->frozen_sb)) {
2370 r = PTR_ERR(md->frozen_sb);
2371 md->frozen_sb = NULL;
2372 return r;
2375 set_bit(DMF_FROZEN, &md->flags);
2377 return 0;
2380 static void unlock_fs(struct mapped_device *md)
2382 if (!test_bit(DMF_FROZEN, &md->flags))
2383 return;
2385 thaw_bdev(md->bdev, md->frozen_sb);
2386 md->frozen_sb = NULL;
2387 clear_bit(DMF_FROZEN, &md->flags);
2391 * We need to be able to change a mapping table under a mounted
2392 * filesystem. For example we might want to move some data in
2393 * the background. Before the table can be swapped with
2394 * dm_bind_table, dm_suspend must be called to flush any in
2395 * flight bios and ensure that any further io gets deferred.
2398 * Suspend mechanism in request-based dm.
2400 * 1. Flush all I/Os by lock_fs() if needed.
2401 * 2. Stop dispatching any I/O by stopping the request_queue.
2402 * 3. Wait for all in-flight I/Os to be completed or requeued.
2404 * To abort suspend, start the request_queue.
2406 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2408 struct dm_table *map = NULL;
2409 int r = 0;
2410 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2411 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2413 mutex_lock(&md->suspend_lock);
2415 if (dm_suspended_md(md)) {
2416 r = -EINVAL;
2417 goto out_unlock;
2420 map = dm_get_live_table(md);
2423 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2424 * This flag is cleared before dm_suspend returns.
2426 if (noflush)
2427 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2429 /* This does not get reverted if there's an error later. */
2430 dm_table_presuspend_targets(map);
2433 * Flush I/O to the device.
2434 * Any I/O submitted after lock_fs() may not be flushed.
2435 * noflush takes precedence over do_lockfs.
2436 * (lock_fs() flushes I/Os and waits for them to complete.)
2438 if (!noflush && do_lockfs) {
2439 r = lock_fs(md);
2440 if (r)
2441 goto out;
2445 * Here we must make sure that no processes are submitting requests
2446 * to target drivers i.e. no one may be executing
2447 * __split_and_process_bio. This is called from dm_request and
2448 * dm_wq_work.
2450 * To get all processes out of __split_and_process_bio in dm_request,
2451 * we take the write lock. To prevent any process from reentering
2452 * __split_and_process_bio from dm_request and quiesce the thread
2453 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2454 * flush_workqueue(md->wq).
2456 down_write(&md->io_lock);
2457 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2458 up_write(&md->io_lock);
2461 * Stop md->queue before flushing md->wq in case request-based
2462 * dm defers requests to md->wq from md->queue.
2464 if (dm_request_based(md))
2465 stop_queue(md->queue);
2467 flush_workqueue(md->wq);
2470 * At this point no more requests are entering target request routines.
2471 * We call dm_wait_for_completion to wait for all existing requests
2472 * to finish.
2474 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2476 down_write(&md->io_lock);
2477 if (noflush)
2478 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2479 up_write(&md->io_lock);
2481 /* were we interrupted ? */
2482 if (r < 0) {
2483 dm_queue_flush(md);
2485 if (dm_request_based(md))
2486 start_queue(md->queue);
2488 unlock_fs(md);
2489 goto out; /* pushback list is already flushed, so skip flush */
2493 * If dm_wait_for_completion returned 0, the device is completely
2494 * quiescent now. There is no request-processing activity. All new
2495 * requests are being added to md->deferred list.
2498 set_bit(DMF_SUSPENDED, &md->flags);
2500 dm_table_postsuspend_targets(map);
2502 out:
2503 dm_table_put(map);
2505 out_unlock:
2506 mutex_unlock(&md->suspend_lock);
2507 return r;
2510 int dm_resume(struct mapped_device *md)
2512 int r = -EINVAL;
2513 struct dm_table *map = NULL;
2515 mutex_lock(&md->suspend_lock);
2516 if (!dm_suspended_md(md))
2517 goto out;
2519 map = dm_get_live_table(md);
2520 if (!map || !dm_table_get_size(map))
2521 goto out;
2523 r = dm_table_resume_targets(map);
2524 if (r)
2525 goto out;
2527 dm_queue_flush(md);
2530 * Flushing deferred I/Os must be done after targets are resumed
2531 * so that mapping of targets can work correctly.
2532 * Request-based dm is queueing the deferred I/Os in its request_queue.
2534 if (dm_request_based(md))
2535 start_queue(md->queue);
2537 unlock_fs(md);
2539 clear_bit(DMF_SUSPENDED, &md->flags);
2541 dm_table_unplug_all(map);
2542 r = 0;
2543 out:
2544 dm_table_put(map);
2545 mutex_unlock(&md->suspend_lock);
2547 return r;
2550 /*-----------------------------------------------------------------
2551 * Event notification.
2552 *---------------------------------------------------------------*/
2553 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2554 unsigned cookie)
2556 char udev_cookie[DM_COOKIE_LENGTH];
2557 char *envp[] = { udev_cookie, NULL };
2559 if (!cookie)
2560 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2561 else {
2562 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2563 DM_COOKIE_ENV_VAR_NAME, cookie);
2564 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2565 action, envp);
2569 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2571 return atomic_add_return(1, &md->uevent_seq);
2574 uint32_t dm_get_event_nr(struct mapped_device *md)
2576 return atomic_read(&md->event_nr);
2579 int dm_wait_event(struct mapped_device *md, int event_nr)
2581 return wait_event_interruptible(md->eventq,
2582 (event_nr != atomic_read(&md->event_nr)));
2585 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2587 unsigned long flags;
2589 spin_lock_irqsave(&md->uevent_lock, flags);
2590 list_add(elist, &md->uevent_list);
2591 spin_unlock_irqrestore(&md->uevent_lock, flags);
2595 * The gendisk is only valid as long as you have a reference
2596 * count on 'md'.
2598 struct gendisk *dm_disk(struct mapped_device *md)
2600 return md->disk;
2603 struct kobject *dm_kobject(struct mapped_device *md)
2605 return &md->kobj;
2609 * struct mapped_device should not be exported outside of dm.c
2610 * so use this check to verify that kobj is part of md structure
2612 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2614 struct mapped_device *md;
2616 md = container_of(kobj, struct mapped_device, kobj);
2617 if (&md->kobj != kobj)
2618 return NULL;
2620 if (test_bit(DMF_FREEING, &md->flags) ||
2621 dm_deleting_md(md))
2622 return NULL;
2624 dm_get(md);
2625 return md;
2628 int dm_suspended_md(struct mapped_device *md)
2630 return test_bit(DMF_SUSPENDED, &md->flags);
2633 int dm_suspended(struct dm_target *ti)
2635 return dm_suspended_md(dm_table_get_md(ti->table));
2637 EXPORT_SYMBOL_GPL(dm_suspended);
2639 int dm_noflush_suspending(struct dm_target *ti)
2641 return __noflush_suspending(dm_table_get_md(ti->table));
2643 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2645 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2647 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2649 if (!pools)
2650 return NULL;
2652 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2653 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2654 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2655 if (!pools->io_pool)
2656 goto free_pools_and_out;
2658 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2659 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2660 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2661 if (!pools->tio_pool)
2662 goto free_io_pool_and_out;
2664 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2665 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2666 if (!pools->bs)
2667 goto free_tio_pool_and_out;
2669 return pools;
2671 free_tio_pool_and_out:
2672 mempool_destroy(pools->tio_pool);
2674 free_io_pool_and_out:
2675 mempool_destroy(pools->io_pool);
2677 free_pools_and_out:
2678 kfree(pools);
2680 return NULL;
2683 void dm_free_md_mempools(struct dm_md_mempools *pools)
2685 if (!pools)
2686 return;
2688 if (pools->io_pool)
2689 mempool_destroy(pools->io_pool);
2691 if (pools->tio_pool)
2692 mempool_destroy(pools->tio_pool);
2694 if (pools->bs)
2695 bioset_free(pools->bs);
2697 kfree(pools);
2700 static const struct block_device_operations dm_blk_dops = {
2701 .open = dm_blk_open,
2702 .release = dm_blk_close,
2703 .ioctl = dm_blk_ioctl,
2704 .getgeo = dm_blk_getgeo,
2705 .owner = THIS_MODULE
2708 EXPORT_SYMBOL(dm_get_mapinfo);
2711 * module hooks
2713 module_init(dm_init);
2714 module_exit(dm_exit);
2716 module_param(major, uint, 0);
2717 MODULE_PARM_DESC(major, "The major number of the device mapper");
2718 MODULE_DESCRIPTION(DM_NAME " driver");
2719 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2720 MODULE_LICENSE("GPL");