2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * --> More errata workarounds for PCI-X.
33 * --> Complete a full errata audit for all chipsets to identify others.
35 * --> Develop a low-power-consumption strategy, and implement it.
37 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
39 * --> [Experiment, Marvell value added] Is it possible to use target
40 * mode to cross-connect two Linux boxes with Marvell cards? If so,
41 * creating LibATA target mode support would be very interesting.
43 * Target mode, for those without docs, is the ability to directly
44 * connect two SATA ports.
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/init.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/interrupt.h>
54 #include <linux/dmapool.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/device.h>
57 #include <linux/platform_device.h>
58 #include <linux/ata_platform.h>
59 #include <linux/mbus.h>
60 #include <linux/bitops.h>
61 #include <scsi/scsi_host.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_device.h>
64 #include <linux/libata.h>
66 #define DRV_NAME "sata_mv"
67 #define DRV_VERSION "1.27"
75 module_param(msi
, int, S_IRUGO
);
76 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
79 static int irq_coalescing_io_count
;
80 module_param(irq_coalescing_io_count
, int, S_IRUGO
);
81 MODULE_PARM_DESC(irq_coalescing_io_count
,
82 "IRQ coalescing I/O count threshold (0..255)");
84 static int irq_coalescing_usecs
;
85 module_param(irq_coalescing_usecs
, int, S_IRUGO
);
86 MODULE_PARM_DESC(irq_coalescing_usecs
,
87 "IRQ coalescing time threshold in usecs");
90 /* BAR's are enumerated in terms of pci_resource_start() terms */
91 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
92 MV_IO_BAR
= 2, /* offset 0x18: IO space */
93 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
95 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
96 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
98 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
99 COAL_CLOCKS_PER_USEC
= 150, /* for calculating COAL_TIMEs */
100 MAX_COAL_TIME_THRESHOLD
= ((1 << 24) - 1), /* internal clocks count */
101 MAX_COAL_IO_COUNT
= 255, /* completed I/O count */
106 * Per-chip ("all ports") interrupt coalescing feature.
107 * This is only for GEN_II / GEN_IIE hardware.
109 * Coalescing defers the interrupt until either the IO_THRESHOLD
110 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
112 MV_COAL_REG_BASE
= 0x18000,
113 MV_IRQ_COAL_CAUSE
= (MV_COAL_REG_BASE
+ 0x08),
114 ALL_PORTS_COAL_IRQ
= (1 << 4), /* all ports irq event */
116 MV_IRQ_COAL_IO_THRESHOLD
= (MV_COAL_REG_BASE
+ 0xcc),
117 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_COAL_REG_BASE
+ 0xd0),
120 * Registers for the (unused here) transaction coalescing feature:
122 MV_TRAN_COAL_CAUSE_LO
= (MV_COAL_REG_BASE
+ 0x88),
123 MV_TRAN_COAL_CAUSE_HI
= (MV_COAL_REG_BASE
+ 0x8c),
125 MV_SATAHC0_REG_BASE
= 0x20000,
126 MV_FLASH_CTL_OFS
= 0x1046c,
127 MV_GPIO_PORT_CTL_OFS
= 0x104f0,
128 MV_RESET_CFG_OFS
= 0x180d8,
130 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
131 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
132 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
133 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
136 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
138 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
139 * CRPB needs alignment on a 256B boundary. Size == 256B
140 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
142 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
143 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
145 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
147 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
148 MV_PORT_HC_SHIFT
= 2,
149 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
150 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
151 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
154 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
156 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
157 ATA_FLAG_MMIO
| ATA_FLAG_PIO_POLLING
,
159 MV_GEN_I_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NO_ATAPI
,
161 MV_GEN_II_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NCQ
|
162 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
,
164 MV_GEN_IIE_FLAGS
= MV_GEN_II_FLAGS
| ATA_FLAG_AN
,
166 CRQB_FLAG_READ
= (1 << 0),
168 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
169 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
170 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
171 CRQB_CMD_ADDR_SHIFT
= 8,
172 CRQB_CMD_CS
= (0x2 << 11),
173 CRQB_CMD_LAST
= (1 << 15),
175 CRPB_FLAG_STATUS_SHIFT
= 8,
176 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
177 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
179 EPRD_FLAG_END_OF_TBL
= (1 << 31),
181 /* PCI interface registers */
183 PCI_COMMAND_OFS
= 0xc00,
184 PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
186 PCI_MAIN_CMD_STS_OFS
= 0xd30,
187 STOP_PCI_MASTER
= (1 << 2),
188 PCI_MASTER_EMPTY
= (1 << 3),
189 GLOB_SFT_RST
= (1 << 4),
191 MV_PCI_MODE_OFS
= 0xd00,
192 MV_PCI_MODE_MASK
= 0x30,
194 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
195 MV_PCI_DISC_TIMER
= 0xd04,
196 MV_PCI_MSI_TRIGGER
= 0xc38,
197 MV_PCI_SERR_MASK
= 0xc28,
198 MV_PCI_XBAR_TMOUT_OFS
= 0x1d04,
199 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
200 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
201 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
202 MV_PCI_ERR_COMMAND
= 0x1d50,
204 PCI_IRQ_CAUSE_OFS
= 0x1d58,
205 PCI_IRQ_MASK_OFS
= 0x1d5c,
206 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
208 PCIE_IRQ_CAUSE_OFS
= 0x1900,
209 PCIE_IRQ_MASK_OFS
= 0x1910,
210 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
212 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
213 PCI_HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
214 PCI_HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
215 SOC_HC_MAIN_IRQ_CAUSE_OFS
= 0x20020,
216 SOC_HC_MAIN_IRQ_MASK_OFS
= 0x20024,
217 ERR_IRQ
= (1 << 0), /* shift by (2 * port #) */
218 DONE_IRQ
= (1 << 1), /* shift by (2 * port #) */
219 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
220 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
221 DONE_IRQ_0_3
= 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
222 DONE_IRQ_4_7
= (DONE_IRQ_0_3
<< HC_SHIFT
), /* 4,5,6,7 */
224 TRAN_COAL_LO_DONE
= (1 << 19), /* transaction coalescing */
225 TRAN_COAL_HI_DONE
= (1 << 20), /* transaction coalescing */
226 PORTS_0_3_COAL_DONE
= (1 << 8), /* HC0 IRQ coalescing */
227 PORTS_4_7_COAL_DONE
= (1 << 17), /* HC1 IRQ coalescing */
228 ALL_PORTS_COAL_DONE
= (1 << 21), /* GEN_II(E) IRQ coalescing */
229 GPIO_INT
= (1 << 22),
230 SELF_INT
= (1 << 23),
231 TWSI_INT
= (1 << 24),
232 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
233 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
234 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
236 /* SATAHC registers */
239 HC_IRQ_CAUSE_OFS
= 0x14,
240 DMA_IRQ
= (1 << 0), /* shift by port # */
241 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
242 DEV_IRQ
= (1 << 8), /* shift by port # */
245 * Per-HC (Host-Controller) interrupt coalescing feature.
246 * This is present on all chip generations.
248 * Coalescing defers the interrupt until either the IO_THRESHOLD
249 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
251 HC_IRQ_COAL_IO_THRESHOLD_OFS
= 0x000c,
252 HC_IRQ_COAL_TIME_THRESHOLD_OFS
= 0x0010,
254 SOC_LED_CTRL_OFS
= 0x2c,
255 SOC_LED_CTRL_BLINK
= (1 << 0), /* Active LED blink */
256 SOC_LED_CTRL_ACT_PRESENCE
= (1 << 2), /* Multiplex dev presence */
257 /* with dev activity LED */
259 /* Shadow block registers */
261 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
264 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
265 SATA_ACTIVE_OFS
= 0x350,
266 SATA_FIS_IRQ_CAUSE_OFS
= 0x364,
267 SATA_FIS_IRQ_AN
= (1 << 9), /* async notification */
270 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
274 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
275 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
276 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
277 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
280 SATA_IFCTL_OFS
= 0x344,
281 SATA_TESTCTL_OFS
= 0x348,
282 SATA_IFSTAT_OFS
= 0x34c,
283 VENDOR_UNIQUE_FIS_OFS
= 0x35c,
286 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
287 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
290 MV5_LTMODE_OFS
= 0x30,
291 MV5_PHY_CTL_OFS
= 0x0C,
292 SATA_INTERFACE_CFG_OFS
= 0x050,
294 MV_M2_PREAMP_MASK
= 0x7e0,
298 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
299 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
300 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
301 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
302 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
303 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
304 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
306 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
307 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
308 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
309 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
310 EDMA_ERR_DEV
= (1 << 2), /* device error */
311 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
312 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
313 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
314 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
315 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
316 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
317 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
318 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
319 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
320 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
321 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
323 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
324 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
325 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
326 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
327 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
329 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
331 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
332 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
335 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
336 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
338 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
340 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
341 EDMA_ERR_OVERRUN_5
= (1 << 5),
342 EDMA_ERR_UNDERRUN_5
= (1 << 6),
344 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
345 EDMA_ERR_LNK_CTRL_RX_1
|
346 EDMA_ERR_LNK_CTRL_RX_3
|
347 EDMA_ERR_LNK_CTRL_TX
,
349 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
359 EDMA_ERR_LNK_CTRL_RX_2
|
360 EDMA_ERR_LNK_DATA_RX
|
361 EDMA_ERR_LNK_DATA_TX
|
362 EDMA_ERR_TRANS_PROTO
,
364 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
369 EDMA_ERR_UNDERRUN_5
|
370 EDMA_ERR_SELF_DIS_5
|
376 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
377 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
379 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
380 EDMA_REQ_Q_PTR_SHIFT
= 5,
382 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
383 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
384 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
385 EDMA_RSP_Q_PTR_SHIFT
= 3,
387 EDMA_CMD_OFS
= 0x28, /* EDMA command register */
388 EDMA_EN
= (1 << 0), /* enable EDMA */
389 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
390 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
392 EDMA_STATUS_OFS
= 0x30, /* EDMA engine status */
393 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
394 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
396 EDMA_IORDY_TMOUT_OFS
= 0x34,
397 EDMA_ARB_CFG_OFS
= 0x38,
399 EDMA_HALTCOND_OFS
= 0x60, /* GenIIe halt conditions */
400 EDMA_UNKNOWN_RSVD_OFS
= 0x6C, /* GenIIe unknown/reserved */
402 BMDMA_CMD_OFS
= 0x224, /* bmdma command register */
403 BMDMA_STATUS_OFS
= 0x228, /* bmdma status register */
404 BMDMA_PRD_LOW_OFS
= 0x22c, /* bmdma PRD addr 31:0 */
405 BMDMA_PRD_HIGH_OFS
= 0x230, /* bmdma PRD addr 63:32 */
407 /* Host private flags (hp_flags) */
408 MV_HP_FLAG_MSI
= (1 << 0),
409 MV_HP_ERRATA_50XXB0
= (1 << 1),
410 MV_HP_ERRATA_50XXB2
= (1 << 2),
411 MV_HP_ERRATA_60X1B2
= (1 << 3),
412 MV_HP_ERRATA_60X1C0
= (1 << 4),
413 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
414 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
415 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
416 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
417 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
418 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
419 MV_HP_QUIRK_LED_BLINK_EN
= (1 << 12), /* is led blinking enabled? */
421 /* Port private flags (pp_flags) */
422 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
423 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
424 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
425 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
426 MV_PP_FLAG_FAKE_ATA_BUSY
= (1 << 4), /* ignore initial ATA_DRDY */
429 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
430 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
431 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
432 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
433 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
435 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
436 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
439 /* DMA boundary 0xffff is required by the s/g splitting
440 * we need on /length/ in mv_fill-sg().
442 MV_DMA_BOUNDARY
= 0xffffU
,
444 /* mask of register bits containing lower 32 bits
445 * of EDMA request queue DMA address
447 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
449 /* ditto, for response queue */
450 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
464 /* Command ReQuest Block: 32B */
480 /* Command ResPonse Block: 8B */
487 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
496 * We keep a local cache of a few frequently accessed port
497 * registers here, to avoid having to read them (very slow)
498 * when switching between EDMA and non-EDMA modes.
500 struct mv_cached_regs
{
507 struct mv_port_priv
{
508 struct mv_crqb
*crqb
;
510 struct mv_crpb
*crpb
;
512 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
513 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
515 unsigned int req_idx
;
516 unsigned int resp_idx
;
519 struct mv_cached_regs cached
;
520 unsigned int delayed_eh_pmp_map
;
523 struct mv_port_signal
{
528 struct mv_host_priv
{
531 struct mv_port_signal signal
[8];
532 const struct mv_hw_ops
*ops
;
535 void __iomem
*main_irq_cause_addr
;
536 void __iomem
*main_irq_mask_addr
;
541 * These consistent DMA memory pools give us guaranteed
542 * alignment for hardware-accessed data structures,
543 * and less memory waste in accomplishing the alignment.
545 struct dma_pool
*crqb_pool
;
546 struct dma_pool
*crpb_pool
;
547 struct dma_pool
*sg_tbl_pool
;
551 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
553 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
554 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
556 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
558 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
559 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
562 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
563 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
564 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
565 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
566 static int mv_port_start(struct ata_port
*ap
);
567 static void mv_port_stop(struct ata_port
*ap
);
568 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
569 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
570 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
571 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
572 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
573 unsigned long deadline
);
574 static void mv_eh_freeze(struct ata_port
*ap
);
575 static void mv_eh_thaw(struct ata_port
*ap
);
576 static void mv6_dev_config(struct ata_device
*dev
);
578 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
580 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
581 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
583 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
585 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
586 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
588 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
590 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
591 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
593 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
595 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
596 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
598 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
600 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
601 void __iomem
*mmio
, unsigned int n_hc
);
602 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
604 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
605 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
606 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
607 unsigned int port_no
);
608 static int mv_stop_edma(struct ata_port
*ap
);
609 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
610 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
);
612 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
613 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
614 unsigned long deadline
);
615 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
616 unsigned long deadline
);
617 static void mv_pmp_error_handler(struct ata_port
*ap
);
618 static void mv_process_crpb_entries(struct ata_port
*ap
,
619 struct mv_port_priv
*pp
);
621 static void mv_sff_irq_clear(struct ata_port
*ap
);
622 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
);
623 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
);
624 static void mv_bmdma_start(struct ata_queued_cmd
*qc
);
625 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
);
626 static u8
mv_bmdma_status(struct ata_port
*ap
);
627 static u8
mv_sff_check_status(struct ata_port
*ap
);
629 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
630 * because we have to allow room for worst case splitting of
631 * PRDs for 64K boundaries in mv_fill_sg().
633 static struct scsi_host_template mv5_sht
= {
634 ATA_BASE_SHT(DRV_NAME
),
635 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
636 .dma_boundary
= MV_DMA_BOUNDARY
,
639 static struct scsi_host_template mv6_sht
= {
640 ATA_NCQ_SHT(DRV_NAME
),
641 .can_queue
= MV_MAX_Q_DEPTH
- 1,
642 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
643 .dma_boundary
= MV_DMA_BOUNDARY
,
646 static struct ata_port_operations mv5_ops
= {
647 .inherits
= &ata_sff_port_ops
,
649 .lost_interrupt
= ATA_OP_NULL
,
651 .qc_defer
= mv_qc_defer
,
652 .qc_prep
= mv_qc_prep
,
653 .qc_issue
= mv_qc_issue
,
655 .freeze
= mv_eh_freeze
,
657 .hardreset
= mv_hardreset
,
658 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
659 .post_internal_cmd
= ATA_OP_NULL
,
661 .scr_read
= mv5_scr_read
,
662 .scr_write
= mv5_scr_write
,
664 .port_start
= mv_port_start
,
665 .port_stop
= mv_port_stop
,
668 static struct ata_port_operations mv6_ops
= {
669 .inherits
= &mv5_ops
,
670 .dev_config
= mv6_dev_config
,
671 .scr_read
= mv_scr_read
,
672 .scr_write
= mv_scr_write
,
674 .pmp_hardreset
= mv_pmp_hardreset
,
675 .pmp_softreset
= mv_softreset
,
676 .softreset
= mv_softreset
,
677 .error_handler
= mv_pmp_error_handler
,
679 .sff_check_status
= mv_sff_check_status
,
680 .sff_irq_clear
= mv_sff_irq_clear
,
681 .check_atapi_dma
= mv_check_atapi_dma
,
682 .bmdma_setup
= mv_bmdma_setup
,
683 .bmdma_start
= mv_bmdma_start
,
684 .bmdma_stop
= mv_bmdma_stop
,
685 .bmdma_status
= mv_bmdma_status
,
688 static struct ata_port_operations mv_iie_ops
= {
689 .inherits
= &mv6_ops
,
690 .dev_config
= ATA_OP_NULL
,
691 .qc_prep
= mv_qc_prep_iie
,
694 static const struct ata_port_info mv_port_info
[] = {
696 .flags
= MV_GEN_I_FLAGS
,
697 .pio_mask
= 0x1f, /* pio0-4 */
698 .udma_mask
= ATA_UDMA6
,
699 .port_ops
= &mv5_ops
,
702 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
703 .pio_mask
= 0x1f, /* pio0-4 */
704 .udma_mask
= ATA_UDMA6
,
705 .port_ops
= &mv5_ops
,
708 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
709 .pio_mask
= 0x1f, /* pio0-4 */
710 .udma_mask
= ATA_UDMA6
,
711 .port_ops
= &mv5_ops
,
714 .flags
= MV_GEN_II_FLAGS
,
715 .pio_mask
= 0x1f, /* pio0-4 */
716 .udma_mask
= ATA_UDMA6
,
717 .port_ops
= &mv6_ops
,
720 .flags
= MV_GEN_II_FLAGS
| MV_FLAG_DUAL_HC
,
721 .pio_mask
= 0x1f, /* pio0-4 */
722 .udma_mask
= ATA_UDMA6
,
723 .port_ops
= &mv6_ops
,
726 .flags
= MV_GEN_IIE_FLAGS
,
727 .pio_mask
= 0x1f, /* pio0-4 */
728 .udma_mask
= ATA_UDMA6
,
729 .port_ops
= &mv_iie_ops
,
732 .flags
= MV_GEN_IIE_FLAGS
,
733 .pio_mask
= 0x1f, /* pio0-4 */
734 .udma_mask
= ATA_UDMA6
,
735 .port_ops
= &mv_iie_ops
,
738 .flags
= MV_GEN_IIE_FLAGS
,
739 .pio_mask
= 0x1f, /* pio0-4 */
740 .udma_mask
= ATA_UDMA6
,
741 .port_ops
= &mv_iie_ops
,
745 static const struct pci_device_id mv_pci_tbl
[] = {
746 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
747 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
748 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
749 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
750 /* RocketRAID 1720/174x have different identifiers */
751 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
752 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
753 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
755 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
756 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
757 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
758 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
759 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
761 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
764 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
766 /* Marvell 7042 support */
767 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
769 /* Highpoint RocketRAID PCIe series */
770 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
771 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
773 { } /* terminate list */
776 static const struct mv_hw_ops mv5xxx_ops
= {
777 .phy_errata
= mv5_phy_errata
,
778 .enable_leds
= mv5_enable_leds
,
779 .read_preamp
= mv5_read_preamp
,
780 .reset_hc
= mv5_reset_hc
,
781 .reset_flash
= mv5_reset_flash
,
782 .reset_bus
= mv5_reset_bus
,
785 static const struct mv_hw_ops mv6xxx_ops
= {
786 .phy_errata
= mv6_phy_errata
,
787 .enable_leds
= mv6_enable_leds
,
788 .read_preamp
= mv6_read_preamp
,
789 .reset_hc
= mv6_reset_hc
,
790 .reset_flash
= mv6_reset_flash
,
791 .reset_bus
= mv_reset_pci_bus
,
794 static const struct mv_hw_ops mv_soc_ops
= {
795 .phy_errata
= mv6_phy_errata
,
796 .enable_leds
= mv_soc_enable_leds
,
797 .read_preamp
= mv_soc_read_preamp
,
798 .reset_hc
= mv_soc_reset_hc
,
799 .reset_flash
= mv_soc_reset_flash
,
800 .reset_bus
= mv_soc_reset_bus
,
807 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
810 (void) readl(addr
); /* flush to avoid PCI posted write */
813 static inline unsigned int mv_hc_from_port(unsigned int port
)
815 return port
>> MV_PORT_HC_SHIFT
;
818 static inline unsigned int mv_hardport_from_port(unsigned int port
)
820 return port
& MV_PORT_MASK
;
824 * Consolidate some rather tricky bit shift calculations.
825 * This is hot-path stuff, so not a function.
826 * Simple code, with two return values, so macro rather than inline.
828 * port is the sole input, in range 0..7.
829 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
830 * hardport is the other output, in range 0..3.
832 * Note that port and hardport may be the same variable in some cases.
834 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
836 shift = mv_hc_from_port(port) * HC_SHIFT; \
837 hardport = mv_hardport_from_port(port); \
838 shift += hardport * 2; \
841 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
843 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
846 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
849 return mv_hc_base(base
, mv_hc_from_port(port
));
852 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
854 return mv_hc_base_from_port(base
, port
) +
855 MV_SATAHC_ARBTR_REG_SZ
+
856 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
859 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
861 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
862 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
864 return hc_mmio
+ ofs
;
867 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
869 struct mv_host_priv
*hpriv
= host
->private_data
;
873 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
875 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
878 static inline int mv_get_hc_count(unsigned long port_flags
)
880 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
884 * mv_save_cached_regs - (re-)initialize cached port registers
885 * @ap: the port whose registers we are caching
887 * Initialize the local cache of port registers,
888 * so that reading them over and over again can
889 * be avoided on the hotter paths of this driver.
890 * This saves a few microseconds each time we switch
891 * to/from EDMA mode to perform (eg.) a drive cache flush.
893 static void mv_save_cached_regs(struct ata_port
*ap
)
895 void __iomem
*port_mmio
= mv_ap_base(ap
);
896 struct mv_port_priv
*pp
= ap
->private_data
;
898 pp
->cached
.fiscfg
= readl(port_mmio
+ FISCFG_OFS
);
899 pp
->cached
.ltmode
= readl(port_mmio
+ LTMODE_OFS
);
900 pp
->cached
.haltcond
= readl(port_mmio
+ EDMA_HALTCOND_OFS
);
901 pp
->cached
.unknown_rsvd
= readl(port_mmio
+ EDMA_UNKNOWN_RSVD_OFS
);
905 * mv_write_cached_reg - write to a cached port register
906 * @addr: hardware address of the register
907 * @old: pointer to cached value of the register
908 * @new: new value for the register
910 * Write a new value to a cached register,
911 * but only if the value is different from before.
913 static inline void mv_write_cached_reg(void __iomem
*addr
, u32
*old
, u32
new)
921 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
922 struct mv_host_priv
*hpriv
,
923 struct mv_port_priv
*pp
)
928 * initialize request queue
930 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
931 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
933 WARN_ON(pp
->crqb_dma
& 0x3ff);
934 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
935 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
936 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
937 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
940 * initialize response queue
942 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
943 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
945 WARN_ON(pp
->crpb_dma
& 0xff);
946 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
947 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
948 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
949 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
952 static void mv_write_main_irq_mask(u32 mask
, struct mv_host_priv
*hpriv
)
955 * When writing to the main_irq_mask in hardware,
956 * we must ensure exclusivity between the interrupt coalescing bits
957 * and the corresponding individual port DONE_IRQ bits.
959 * Note that this register is really an "IRQ enable" register,
960 * not an "IRQ mask" register as Marvell's naming might suggest.
962 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_0_3_COAL_DONE
))
963 mask
&= ~DONE_IRQ_0_3
;
964 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_4_7_COAL_DONE
))
965 mask
&= ~DONE_IRQ_4_7
;
966 writelfl(mask
, hpriv
->main_irq_mask_addr
);
969 static void mv_set_main_irq_mask(struct ata_host
*host
,
970 u32 disable_bits
, u32 enable_bits
)
972 struct mv_host_priv
*hpriv
= host
->private_data
;
973 u32 old_mask
, new_mask
;
975 old_mask
= hpriv
->main_irq_mask
;
976 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
977 if (new_mask
!= old_mask
) {
978 hpriv
->main_irq_mask
= new_mask
;
979 mv_write_main_irq_mask(new_mask
, hpriv
);
983 static void mv_enable_port_irqs(struct ata_port
*ap
,
984 unsigned int port_bits
)
986 unsigned int shift
, hardport
, port
= ap
->port_no
;
987 u32 disable_bits
, enable_bits
;
989 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
991 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
992 enable_bits
= port_bits
<< shift
;
993 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
996 static void mv_clear_and_enable_port_irqs(struct ata_port
*ap
,
997 void __iomem
*port_mmio
,
998 unsigned int port_irqs
)
1000 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1001 int hardport
= mv_hardport_from_port(ap
->port_no
);
1002 void __iomem
*hc_mmio
= mv_hc_base_from_port(
1003 mv_host_base(ap
->host
), ap
->port_no
);
1006 /* clear EDMA event indicators, if any */
1007 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1009 /* clear pending irq events */
1010 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
1011 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1013 /* clear FIS IRQ Cause */
1014 if (IS_GEN_IIE(hpriv
))
1015 writelfl(0, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1017 mv_enable_port_irqs(ap
, port_irqs
);
1020 static void mv_set_irq_coalescing(struct ata_host
*host
,
1021 unsigned int count
, unsigned int usecs
)
1023 struct mv_host_priv
*hpriv
= host
->private_data
;
1024 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
1025 u32 coal_enable
= 0;
1026 unsigned long flags
;
1027 unsigned int clks
, is_dual_hc
= hpriv
->n_ports
> MV_PORTS_PER_HC
;
1028 const u32 coal_disable
= PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
1029 ALL_PORTS_COAL_DONE
;
1031 /* Disable IRQ coalescing if either threshold is zero */
1032 if (!usecs
|| !count
) {
1035 /* Respect maximum limits of the hardware */
1036 clks
= usecs
* COAL_CLOCKS_PER_USEC
;
1037 if (clks
> MAX_COAL_TIME_THRESHOLD
)
1038 clks
= MAX_COAL_TIME_THRESHOLD
;
1039 if (count
> MAX_COAL_IO_COUNT
)
1040 count
= MAX_COAL_IO_COUNT
;
1043 spin_lock_irqsave(&host
->lock
, flags
);
1044 mv_set_main_irq_mask(host
, coal_disable
, 0);
1046 if (is_dual_hc
&& !IS_GEN_I(hpriv
)) {
1048 * GEN_II/GEN_IIE with dual host controllers:
1049 * one set of global thresholds for the entire chip.
1051 writel(clks
, mmio
+ MV_IRQ_COAL_TIME_THRESHOLD
);
1052 writel(count
, mmio
+ MV_IRQ_COAL_IO_THRESHOLD
);
1053 /* clear leftover coal IRQ bit */
1054 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ MV_IRQ_COAL_CAUSE
);
1056 coal_enable
= ALL_PORTS_COAL_DONE
;
1057 clks
= count
= 0; /* force clearing of regular regs below */
1061 * All chips: independent thresholds for each HC on the chip.
1063 hc_mmio
= mv_hc_base_from_port(mmio
, 0);
1064 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD_OFS
);
1065 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD_OFS
);
1066 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1068 coal_enable
|= PORTS_0_3_COAL_DONE
;
1070 hc_mmio
= mv_hc_base_from_port(mmio
, MV_PORTS_PER_HC
);
1071 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD_OFS
);
1072 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD_OFS
);
1073 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1075 coal_enable
|= PORTS_4_7_COAL_DONE
;
1078 mv_set_main_irq_mask(host
, 0, coal_enable
);
1079 spin_unlock_irqrestore(&host
->lock
, flags
);
1083 * mv_start_edma - Enable eDMA engine
1084 * @base: port base address
1085 * @pp: port private data
1087 * Verify the local cache of the eDMA state is accurate with a
1091 * Inherited from caller.
1093 static void mv_start_edma(struct ata_port
*ap
, void __iomem
*port_mmio
,
1094 struct mv_port_priv
*pp
, u8 protocol
)
1096 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
1098 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1099 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
1100 if (want_ncq
!= using_ncq
)
1103 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1104 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1106 mv_edma_cfg(ap
, want_ncq
, 1);
1108 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
1109 mv_clear_and_enable_port_irqs(ap
, port_mmio
, DONE_IRQ
|ERR_IRQ
);
1111 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD_OFS
);
1112 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
1116 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
1118 void __iomem
*port_mmio
= mv_ap_base(ap
);
1119 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
1120 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
1124 * Wait for the EDMA engine to finish transactions in progress.
1125 * No idea what a good "timeout" value might be, but measurements
1126 * indicate that it often requires hundreds of microseconds
1127 * with two drives in-use. So we use the 15msec value above
1128 * as a rough guess at what even more drives might require.
1130 for (i
= 0; i
< timeout
; ++i
) {
1131 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS_OFS
);
1132 if ((edma_stat
& empty_idle
) == empty_idle
)
1136 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1140 * mv_stop_edma_engine - Disable eDMA engine
1141 * @port_mmio: io base address
1144 * Inherited from caller.
1146 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
1150 /* Disable eDMA. The disable bit auto clears. */
1151 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
1153 /* Wait for the chip to confirm eDMA is off. */
1154 for (i
= 10000; i
> 0; i
--) {
1155 u32 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
1156 if (!(reg
& EDMA_EN
))
1163 static int mv_stop_edma(struct ata_port
*ap
)
1165 void __iomem
*port_mmio
= mv_ap_base(ap
);
1166 struct mv_port_priv
*pp
= ap
->private_data
;
1169 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1171 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1172 mv_wait_for_edma_empty_idle(ap
);
1173 if (mv_stop_edma_engine(port_mmio
)) {
1174 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
1177 mv_edma_cfg(ap
, 0, 0);
1182 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
1185 for (b
= 0; b
< bytes
; ) {
1186 DPRINTK("%p: ", start
+ b
);
1187 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1188 printk("%08x ", readl(start
+ b
));
1196 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
1201 for (b
= 0; b
< bytes
; ) {
1202 DPRINTK("%02x: ", b
);
1203 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1204 (void) pci_read_config_dword(pdev
, b
, &dw
);
1205 printk("%08x ", dw
);
1212 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1213 struct pci_dev
*pdev
)
1216 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1217 port
>> MV_PORT_HC_SHIFT
);
1218 void __iomem
*port_base
;
1219 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1222 start_hc
= start_port
= 0;
1223 num_ports
= 8; /* shld be benign for 4 port devs */
1226 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1228 num_ports
= num_hcs
= 1;
1230 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1231 num_ports
> 1 ? num_ports
- 1 : start_port
);
1234 DPRINTK("PCI config space regs:\n");
1235 mv_dump_pci_cfg(pdev
, 0x68);
1237 DPRINTK("PCI regs:\n");
1238 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1239 mv_dump_mem(mmio_base
+0xd00, 0x34);
1240 mv_dump_mem(mmio_base
+0xf00, 0x4);
1241 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1242 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1243 hc_base
= mv_hc_base(mmio_base
, hc
);
1244 DPRINTK("HC regs (HC %i):\n", hc
);
1245 mv_dump_mem(hc_base
, 0x1c);
1247 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1248 port_base
= mv_port_base(mmio_base
, p
);
1249 DPRINTK("EDMA regs (port %i):\n", p
);
1250 mv_dump_mem(port_base
, 0x54);
1251 DPRINTK("SATA regs (port %i):\n", p
);
1252 mv_dump_mem(port_base
+0x300, 0x60);
1257 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1261 switch (sc_reg_in
) {
1265 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
1268 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
1277 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1279 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1281 if (ofs
!= 0xffffffffU
) {
1282 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1288 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1290 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1292 if (ofs
!= 0xffffffffU
) {
1293 writelfl(val
, mv_ap_base(link
->ap
) + ofs
);
1299 static void mv6_dev_config(struct ata_device
*adev
)
1302 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1304 * Gen-II does not support NCQ over a port multiplier
1305 * (no FIS-based switching).
1307 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1308 if (sata_pmp_attached(adev
->link
->ap
)) {
1309 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1310 ata_dev_printk(adev
, KERN_INFO
,
1311 "NCQ disabled for command-based switching\n");
1316 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1318 struct ata_link
*link
= qc
->dev
->link
;
1319 struct ata_port
*ap
= link
->ap
;
1320 struct mv_port_priv
*pp
= ap
->private_data
;
1323 * Don't allow new commands if we're in a delayed EH state
1324 * for NCQ and/or FIS-based switching.
1326 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1327 return ATA_DEFER_PORT
;
1329 * If the port is completely idle, then allow the new qc.
1331 if (ap
->nr_active_links
== 0)
1335 * The port is operating in host queuing mode (EDMA) with NCQ
1336 * enabled, allow multiple NCQ commands. EDMA also allows
1337 * queueing multiple DMA commands but libata core currently
1340 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1341 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) && ata_is_ncq(qc
->tf
.protocol
))
1344 return ATA_DEFER_PORT
;
1347 static void mv_config_fbs(struct ata_port
*ap
, int want_ncq
, int want_fbs
)
1349 struct mv_port_priv
*pp
= ap
->private_data
;
1350 void __iomem
*port_mmio
;
1352 u32 fiscfg
, *old_fiscfg
= &pp
->cached
.fiscfg
;
1353 u32 ltmode
, *old_ltmode
= &pp
->cached
.ltmode
;
1354 u32 haltcond
, *old_haltcond
= &pp
->cached
.haltcond
;
1356 ltmode
= *old_ltmode
& ~LTMODE_BIT8
;
1357 haltcond
= *old_haltcond
| EDMA_ERR_DEV
;
1360 fiscfg
= *old_fiscfg
| FISCFG_SINGLE_SYNC
;
1361 ltmode
= *old_ltmode
| LTMODE_BIT8
;
1363 haltcond
&= ~EDMA_ERR_DEV
;
1365 fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1367 fiscfg
= *old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1370 port_mmio
= mv_ap_base(ap
);
1371 mv_write_cached_reg(port_mmio
+ FISCFG_OFS
, old_fiscfg
, fiscfg
);
1372 mv_write_cached_reg(port_mmio
+ LTMODE_OFS
, old_ltmode
, ltmode
);
1373 mv_write_cached_reg(port_mmio
+ EDMA_HALTCOND_OFS
, old_haltcond
, haltcond
);
1376 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1378 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1381 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1382 old
= readl(hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1384 new = old
| (1 << 22);
1386 new = old
& ~(1 << 22);
1388 writel(new, hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1392 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1393 * @ap: Port being initialized
1395 * There are two DMA modes on these chips: basic DMA, and EDMA.
1397 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1398 * of basic DMA on the GEN_IIE versions of the chips.
1400 * This bit survives EDMA resets, and must be set for basic DMA
1401 * to function, and should be cleared when EDMA is active.
1403 static void mv_bmdma_enable_iie(struct ata_port
*ap
, int enable_bmdma
)
1405 struct mv_port_priv
*pp
= ap
->private_data
;
1406 u32
new, *old
= &pp
->cached
.unknown_rsvd
;
1412 mv_write_cached_reg(mv_ap_base(ap
) + EDMA_UNKNOWN_RSVD_OFS
, old
, new);
1416 * SOC chips have an issue whereby the HDD LEDs don't always blink
1417 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1418 * of the SOC takes care of it, generating a steady blink rate when
1419 * any drive on the chip is active.
1421 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1422 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1424 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1425 * LED operation works then, and provides better (more accurate) feedback.
1427 * Note that this code assumes that an SOC never has more than one HC onboard.
1429 static void mv_soc_led_blink_enable(struct ata_port
*ap
)
1431 struct ata_host
*host
= ap
->host
;
1432 struct mv_host_priv
*hpriv
= host
->private_data
;
1433 void __iomem
*hc_mmio
;
1436 if (hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
)
1438 hpriv
->hp_flags
|= MV_HP_QUIRK_LED_BLINK_EN
;
1439 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1440 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL_OFS
);
1441 writel(led_ctrl
| SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL_OFS
);
1444 static void mv_soc_led_blink_disable(struct ata_port
*ap
)
1446 struct ata_host
*host
= ap
->host
;
1447 struct mv_host_priv
*hpriv
= host
->private_data
;
1448 void __iomem
*hc_mmio
;
1452 if (!(hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
))
1455 /* disable led-blink only if no ports are using NCQ */
1456 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1457 struct ata_port
*this_ap
= host
->ports
[port
];
1458 struct mv_port_priv
*pp
= this_ap
->private_data
;
1460 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1464 hpriv
->hp_flags
&= ~MV_HP_QUIRK_LED_BLINK_EN
;
1465 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1466 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL_OFS
);
1467 writel(led_ctrl
& ~SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL_OFS
);
1470 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
)
1473 struct mv_port_priv
*pp
= ap
->private_data
;
1474 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1475 void __iomem
*port_mmio
= mv_ap_base(ap
);
1477 /* set up non-NCQ EDMA configuration */
1478 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1480 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
1482 if (IS_GEN_I(hpriv
))
1483 cfg
|= (1 << 8); /* enab config burst size mask */
1485 else if (IS_GEN_II(hpriv
)) {
1486 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1487 mv_60x1_errata_sata25(ap
, want_ncq
);
1489 } else if (IS_GEN_IIE(hpriv
)) {
1490 int want_fbs
= sata_pmp_attached(ap
);
1492 * Possible future enhancement:
1494 * The chip can use FBS with non-NCQ, if we allow it,
1495 * But first we need to have the error handling in place
1496 * for this mode (datasheet section 7.3.15.4.2.3).
1497 * So disallow non-NCQ FBS for now.
1499 want_fbs
&= want_ncq
;
1501 mv_config_fbs(ap
, want_ncq
, want_fbs
);
1504 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1505 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1508 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1510 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1512 cfg
|= (1 << 18); /* enab early completion */
1514 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1515 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1516 mv_bmdma_enable_iie(ap
, !want_edma
);
1518 if (IS_SOC(hpriv
)) {
1520 mv_soc_led_blink_enable(ap
);
1522 mv_soc_led_blink_disable(ap
);
1527 cfg
|= EDMA_CFG_NCQ
;
1528 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1531 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
1534 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1536 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1537 struct mv_port_priv
*pp
= ap
->private_data
;
1541 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1545 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1549 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1550 * For later hardware, we have one unique sg_tbl per NCQ tag.
1552 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1553 if (pp
->sg_tbl
[tag
]) {
1554 if (tag
== 0 || !IS_GEN_I(hpriv
))
1555 dma_pool_free(hpriv
->sg_tbl_pool
,
1557 pp
->sg_tbl_dma
[tag
]);
1558 pp
->sg_tbl
[tag
] = NULL
;
1564 * mv_port_start - Port specific init/start routine.
1565 * @ap: ATA channel to manipulate
1567 * Allocate and point to DMA memory, init port private memory,
1571 * Inherited from caller.
1573 static int mv_port_start(struct ata_port
*ap
)
1575 struct device
*dev
= ap
->host
->dev
;
1576 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1577 struct mv_port_priv
*pp
;
1580 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1583 ap
->private_data
= pp
;
1585 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1588 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1590 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1592 goto out_port_free_dma_mem
;
1593 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1595 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1596 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1597 ap
->flags
|= ATA_FLAG_AN
;
1599 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1600 * For later hardware, we need one unique sg_tbl per NCQ tag.
1602 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1603 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1604 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1605 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1606 if (!pp
->sg_tbl
[tag
])
1607 goto out_port_free_dma_mem
;
1609 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1610 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1613 mv_save_cached_regs(ap
);
1614 mv_edma_cfg(ap
, 0, 0);
1617 out_port_free_dma_mem
:
1618 mv_port_free_dma_mem(ap
);
1623 * mv_port_stop - Port specific cleanup/stop routine.
1624 * @ap: ATA channel to manipulate
1626 * Stop DMA, cleanup port memory.
1629 * This routine uses the host lock to protect the DMA stop.
1631 static void mv_port_stop(struct ata_port
*ap
)
1634 mv_enable_port_irqs(ap
, 0);
1635 mv_port_free_dma_mem(ap
);
1639 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1640 * @qc: queued command whose SG list to source from
1642 * Populate the SG list and mark the last entry.
1645 * Inherited from caller.
1647 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1649 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1650 struct scatterlist
*sg
;
1651 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1654 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1655 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1656 dma_addr_t addr
= sg_dma_address(sg
);
1657 u32 sg_len
= sg_dma_len(sg
);
1660 u32 offset
= addr
& 0xffff;
1663 if (offset
+ len
> 0x10000)
1664 len
= 0x10000 - offset
;
1666 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1667 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1668 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1669 mv_sg
->reserved
= 0;
1679 if (likely(last_sg
))
1680 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1681 mb(); /* ensure data structure is visible to the chipset */
1684 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1686 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1687 (last
? CRQB_CMD_LAST
: 0);
1688 *cmdw
= cpu_to_le16(tmp
);
1692 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1693 * @ap: Port associated with this ATA transaction.
1695 * We need this only for ATAPI bmdma transactions,
1696 * as otherwise we experience spurious interrupts
1697 * after libata-sff handles the bmdma interrupts.
1699 static void mv_sff_irq_clear(struct ata_port
*ap
)
1701 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), ERR_IRQ
);
1705 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1706 * @qc: queued command to check for chipset/DMA compatibility.
1708 * The bmdma engines cannot handle speculative data sizes
1709 * (bytecount under/over flow). So only allow DMA for
1710 * data transfer commands with known data sizes.
1713 * Inherited from caller.
1715 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
)
1717 struct scsi_cmnd
*scmd
= qc
->scsicmd
;
1720 switch (scmd
->cmnd
[0]) {
1728 case GPCMD_SEND_DVD_STRUCTURE
:
1729 case GPCMD_SEND_CUE_SHEET
:
1730 return 0; /* DMA is safe */
1733 return -EOPNOTSUPP
; /* use PIO instead */
1737 * mv_bmdma_setup - Set up BMDMA transaction
1738 * @qc: queued command to prepare DMA for.
1741 * Inherited from caller.
1743 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
)
1745 struct ata_port
*ap
= qc
->ap
;
1746 void __iomem
*port_mmio
= mv_ap_base(ap
);
1747 struct mv_port_priv
*pp
= ap
->private_data
;
1751 /* clear all DMA cmd bits */
1752 writel(0, port_mmio
+ BMDMA_CMD_OFS
);
1754 /* load PRD table addr. */
1755 writel((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16,
1756 port_mmio
+ BMDMA_PRD_HIGH_OFS
);
1757 writelfl(pp
->sg_tbl_dma
[qc
->tag
],
1758 port_mmio
+ BMDMA_PRD_LOW_OFS
);
1760 /* issue r/w command */
1761 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
1765 * mv_bmdma_start - Start a BMDMA transaction
1766 * @qc: queued command to start DMA on.
1769 * Inherited from caller.
1771 static void mv_bmdma_start(struct ata_queued_cmd
*qc
)
1773 struct ata_port
*ap
= qc
->ap
;
1774 void __iomem
*port_mmio
= mv_ap_base(ap
);
1775 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
1776 u32 cmd
= (rw
? 0 : ATA_DMA_WR
) | ATA_DMA_START
;
1778 /* start host DMA transaction */
1779 writelfl(cmd
, port_mmio
+ BMDMA_CMD_OFS
);
1783 * mv_bmdma_stop - Stop BMDMA transfer
1784 * @qc: queued command to stop DMA on.
1786 * Clears the ATA_DMA_START flag in the bmdma control register
1789 * Inherited from caller.
1791 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
)
1793 struct ata_port
*ap
= qc
->ap
;
1794 void __iomem
*port_mmio
= mv_ap_base(ap
);
1797 /* clear start/stop bit */
1798 cmd
= readl(port_mmio
+ BMDMA_CMD_OFS
);
1799 cmd
&= ~ATA_DMA_START
;
1800 writelfl(cmd
, port_mmio
+ BMDMA_CMD_OFS
);
1802 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1803 ata_sff_dma_pause(ap
);
1807 * mv_bmdma_status - Read BMDMA status
1808 * @ap: port for which to retrieve DMA status.
1810 * Read and return equivalent of the sff BMDMA status register.
1813 * Inherited from caller.
1815 static u8
mv_bmdma_status(struct ata_port
*ap
)
1817 void __iomem
*port_mmio
= mv_ap_base(ap
);
1821 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1822 * and the ATA_DMA_INTR bit doesn't exist.
1824 reg
= readl(port_mmio
+ BMDMA_STATUS_OFS
);
1825 if (reg
& ATA_DMA_ACTIVE
)
1826 status
= ATA_DMA_ACTIVE
;
1828 status
= (reg
& ATA_DMA_ERR
) | ATA_DMA_INTR
;
1833 * mv_qc_prep - Host specific command preparation.
1834 * @qc: queued command to prepare
1836 * This routine simply redirects to the general purpose routine
1837 * if command is not DMA. Else, it handles prep of the CRQB
1838 * (command request block), does some sanity checking, and calls
1839 * the SG load routine.
1842 * Inherited from caller.
1844 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1846 struct ata_port
*ap
= qc
->ap
;
1847 struct mv_port_priv
*pp
= ap
->private_data
;
1849 struct ata_taskfile
*tf
;
1853 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1854 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1857 /* Fill in command request block
1859 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1860 flags
|= CRQB_FLAG_READ
;
1861 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1862 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1863 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1865 /* get current queue index from software */
1866 in_index
= pp
->req_idx
;
1868 pp
->crqb
[in_index
].sg_addr
=
1869 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1870 pp
->crqb
[in_index
].sg_addr_hi
=
1871 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1872 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1874 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1877 /* Sadly, the CRQB cannot accomodate all registers--there are
1878 * only 11 bytes...so we must pick and choose required
1879 * registers based on the command. So, we drop feature and
1880 * hob_feature for [RW] DMA commands, but they are needed for
1881 * NCQ. NCQ will drop hob_nsect, which is not needed there
1882 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1884 switch (tf
->command
) {
1886 case ATA_CMD_READ_EXT
:
1888 case ATA_CMD_WRITE_EXT
:
1889 case ATA_CMD_WRITE_FUA_EXT
:
1890 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1892 case ATA_CMD_FPDMA_READ
:
1893 case ATA_CMD_FPDMA_WRITE
:
1894 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1895 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1898 /* The only other commands EDMA supports in non-queued and
1899 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1900 * of which are defined/used by Linux. If we get here, this
1901 * driver needs work.
1903 * FIXME: modify libata to give qc_prep a return value and
1904 * return error here.
1906 BUG_ON(tf
->command
);
1909 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1910 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1911 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1912 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1913 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1914 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1915 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1916 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1917 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1919 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1925 * mv_qc_prep_iie - Host specific command preparation.
1926 * @qc: queued command to prepare
1928 * This routine simply redirects to the general purpose routine
1929 * if command is not DMA. Else, it handles prep of the CRQB
1930 * (command request block), does some sanity checking, and calls
1931 * the SG load routine.
1934 * Inherited from caller.
1936 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1938 struct ata_port
*ap
= qc
->ap
;
1939 struct mv_port_priv
*pp
= ap
->private_data
;
1940 struct mv_crqb_iie
*crqb
;
1941 struct ata_taskfile
*tf
;
1945 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1946 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1949 /* Fill in Gen IIE command request block */
1950 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1951 flags
|= CRQB_FLAG_READ
;
1953 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1954 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1955 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
1956 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1958 /* get current queue index from software */
1959 in_index
= pp
->req_idx
;
1961 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1962 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1963 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1964 crqb
->flags
= cpu_to_le32(flags
);
1967 crqb
->ata_cmd
[0] = cpu_to_le32(
1968 (tf
->command
<< 16) |
1971 crqb
->ata_cmd
[1] = cpu_to_le32(
1977 crqb
->ata_cmd
[2] = cpu_to_le32(
1978 (tf
->hob_lbal
<< 0) |
1979 (tf
->hob_lbam
<< 8) |
1980 (tf
->hob_lbah
<< 16) |
1981 (tf
->hob_feature
<< 24)
1983 crqb
->ata_cmd
[3] = cpu_to_le32(
1985 (tf
->hob_nsect
<< 8)
1988 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1994 * mv_sff_check_status - fetch device status, if valid
1995 * @ap: ATA port to fetch status from
1997 * When using command issue via mv_qc_issue_fis(),
1998 * the initial ATA_BUSY state does not show up in the
1999 * ATA status (shadow) register. This can confuse libata!
2001 * So we have a hook here to fake ATA_BUSY for that situation,
2002 * until the first time a BUSY, DRQ, or ERR bit is seen.
2004 * The rest of the time, it simply returns the ATA status register.
2006 static u8
mv_sff_check_status(struct ata_port
*ap
)
2008 u8 stat
= ioread8(ap
->ioaddr
.status_addr
);
2009 struct mv_port_priv
*pp
= ap
->private_data
;
2011 if (pp
->pp_flags
& MV_PP_FLAG_FAKE_ATA_BUSY
) {
2012 if (stat
& (ATA_BUSY
| ATA_DRQ
| ATA_ERR
))
2013 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
;
2021 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2022 * @fis: fis to be sent
2023 * @nwords: number of 32-bit words in the fis
2025 static unsigned int mv_send_fis(struct ata_port
*ap
, u32
*fis
, int nwords
)
2027 void __iomem
*port_mmio
= mv_ap_base(ap
);
2028 u32 ifctl
, old_ifctl
, ifstat
;
2029 int i
, timeout
= 200, final_word
= nwords
- 1;
2031 /* Initiate FIS transmission mode */
2032 old_ifctl
= readl(port_mmio
+ SATA_IFCTL_OFS
);
2033 ifctl
= 0x100 | (old_ifctl
& 0xf);
2034 writelfl(ifctl
, port_mmio
+ SATA_IFCTL_OFS
);
2036 /* Send all words of the FIS except for the final word */
2037 for (i
= 0; i
< final_word
; ++i
)
2038 writel(fis
[i
], port_mmio
+ VENDOR_UNIQUE_FIS_OFS
);
2040 /* Flag end-of-transmission, and then send the final word */
2041 writelfl(ifctl
| 0x200, port_mmio
+ SATA_IFCTL_OFS
);
2042 writelfl(fis
[final_word
], port_mmio
+ VENDOR_UNIQUE_FIS_OFS
);
2045 * Wait for FIS transmission to complete.
2046 * This typically takes just a single iteration.
2049 ifstat
= readl(port_mmio
+ SATA_IFSTAT_OFS
);
2050 } while (!(ifstat
& 0x1000) && --timeout
);
2052 /* Restore original port configuration */
2053 writelfl(old_ifctl
, port_mmio
+ SATA_IFCTL_OFS
);
2055 /* See if it worked */
2056 if ((ifstat
& 0x3000) != 0x1000) {
2057 ata_port_printk(ap
, KERN_WARNING
,
2058 "%s transmission error, ifstat=%08x\n",
2060 return AC_ERR_OTHER
;
2066 * mv_qc_issue_fis - Issue a command directly as a FIS
2067 * @qc: queued command to start
2069 * Note that the ATA shadow registers are not updated
2070 * after command issue, so the device will appear "READY"
2071 * if polled, even while it is BUSY processing the command.
2073 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2075 * Note: we don't get updated shadow regs on *completion*
2076 * of non-data commands. So avoid sending them via this function,
2077 * as they will appear to have completed immediately.
2079 * GEN_IIE has special registers that we could get the result tf from,
2080 * but earlier chipsets do not. For now, we ignore those registers.
2082 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd
*qc
)
2084 struct ata_port
*ap
= qc
->ap
;
2085 struct mv_port_priv
*pp
= ap
->private_data
;
2086 struct ata_link
*link
= qc
->dev
->link
;
2090 ata_tf_to_fis(&qc
->tf
, link
->pmp
, 1, (void *)fis
);
2091 err
= mv_send_fis(ap
, fis
, sizeof(fis
) / sizeof(fis
[0]));
2095 switch (qc
->tf
.protocol
) {
2096 case ATAPI_PROT_PIO
:
2097 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2099 case ATAPI_PROT_NODATA
:
2100 ap
->hsm_task_state
= HSM_ST_FIRST
;
2103 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2104 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2105 ap
->hsm_task_state
= HSM_ST_FIRST
;
2107 ap
->hsm_task_state
= HSM_ST
;
2110 ap
->hsm_task_state
= HSM_ST_LAST
;
2114 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2115 ata_pio_queue_task(ap
, qc
, 0);
2120 * mv_qc_issue - Initiate a command to the host
2121 * @qc: queued command to start
2123 * This routine simply redirects to the general purpose routine
2124 * if command is not DMA. Else, it sanity checks our local
2125 * caches of the request producer/consumer indices then enables
2126 * DMA and bumps the request producer index.
2129 * Inherited from caller.
2131 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
2133 static int limit_warnings
= 10;
2134 struct ata_port
*ap
= qc
->ap
;
2135 void __iomem
*port_mmio
= mv_ap_base(ap
);
2136 struct mv_port_priv
*pp
= ap
->private_data
;
2138 unsigned int port_irqs
;
2140 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
; /* paranoia */
2142 switch (qc
->tf
.protocol
) {
2145 mv_start_edma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
2146 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2147 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
2149 /* Write the request in pointer to kick the EDMA to life */
2150 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
2151 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
2156 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2158 * Someday, we might implement special polling workarounds
2159 * for these, but it all seems rather unnecessary since we
2160 * normally use only DMA for commands which transfer more
2161 * than a single block of data.
2163 * Much of the time, this could just work regardless.
2164 * So for now, just log the incident, and allow the attempt.
2166 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
2168 ata_link_printk(qc
->dev
->link
, KERN_WARNING
, DRV_NAME
2169 ": attempting PIO w/multiple DRQ: "
2170 "this may fail due to h/w errata\n");
2173 case ATA_PROT_NODATA
:
2174 case ATAPI_PROT_PIO
:
2175 case ATAPI_PROT_NODATA
:
2176 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
2177 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
2181 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2182 port_irqs
= ERR_IRQ
; /* mask device interrupt when polling */
2184 port_irqs
= ERR_IRQ
| DONE_IRQ
; /* unmask all interrupts */
2187 * We're about to send a non-EDMA capable command to the
2188 * port. Turn off EDMA so there won't be problems accessing
2189 * shadow block, etc registers.
2192 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), port_irqs
);
2193 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
2195 if (qc
->tf
.command
== ATA_CMD_READ_LOG_EXT
) {
2196 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2198 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2200 * After any NCQ error, the READ_LOG_EXT command
2201 * from libata-eh *must* use mv_qc_issue_fis().
2202 * Otherwise it might fail, due to chip errata.
2204 * Rather than special-case it, we'll just *always*
2205 * use this method here for READ_LOG_EXT, making for
2208 if (IS_GEN_II(hpriv
))
2209 return mv_qc_issue_fis(qc
);
2211 return ata_sff_qc_issue(qc
);
2214 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
2216 struct mv_port_priv
*pp
= ap
->private_data
;
2217 struct ata_queued_cmd
*qc
;
2219 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
2221 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2223 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2225 else if (!(qc
->flags
& ATA_QCFLAG_ACTIVE
))
2231 static void mv_pmp_error_handler(struct ata_port
*ap
)
2233 unsigned int pmp
, pmp_map
;
2234 struct mv_port_priv
*pp
= ap
->private_data
;
2236 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
2238 * Perform NCQ error analysis on failed PMPs
2239 * before we freeze the port entirely.
2241 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2243 pmp_map
= pp
->delayed_eh_pmp_map
;
2244 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
2245 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2246 unsigned int this_pmp
= (1 << pmp
);
2247 if (pmp_map
& this_pmp
) {
2248 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2249 pmp_map
&= ~this_pmp
;
2250 ata_eh_analyze_ncq_error(link
);
2253 ata_port_freeze(ap
);
2255 sata_pmp_error_handler(ap
);
2258 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
2260 void __iomem
*port_mmio
= mv_ap_base(ap
);
2262 return readl(port_mmio
+ SATA_TESTCTL_OFS
) >> 16;
2265 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
2267 struct ata_eh_info
*ehi
;
2271 * Initialize EH info for PMPs which saw device errors
2273 ehi
= &ap
->link
.eh_info
;
2274 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2275 unsigned int this_pmp
= (1 << pmp
);
2276 if (pmp_map
& this_pmp
) {
2277 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2279 pmp_map
&= ~this_pmp
;
2280 ehi
= &link
->eh_info
;
2281 ata_ehi_clear_desc(ehi
);
2282 ata_ehi_push_desc(ehi
, "dev err");
2283 ehi
->err_mask
|= AC_ERR_DEV
;
2284 ehi
->action
|= ATA_EH_RESET
;
2285 ata_link_abort(link
);
2290 static int mv_req_q_empty(struct ata_port
*ap
)
2292 void __iomem
*port_mmio
= mv_ap_base(ap
);
2293 u32 in_ptr
, out_ptr
;
2295 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
)
2296 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2297 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
)
2298 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2299 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
2302 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
2304 struct mv_port_priv
*pp
= ap
->private_data
;
2306 unsigned int old_map
, new_map
;
2309 * Device error during FBS+NCQ operation:
2311 * Set a port flag to prevent further I/O being enqueued.
2312 * Leave the EDMA running to drain outstanding commands from this port.
2313 * Perform the post-mortem/EH only when all responses are complete.
2314 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2316 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
2317 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
2318 pp
->delayed_eh_pmp_map
= 0;
2320 old_map
= pp
->delayed_eh_pmp_map
;
2321 new_map
= old_map
| mv_get_err_pmp_map(ap
);
2323 if (old_map
!= new_map
) {
2324 pp
->delayed_eh_pmp_map
= new_map
;
2325 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
2327 failed_links
= hweight16(new_map
);
2329 ata_port_printk(ap
, KERN_INFO
, "%s: pmp_map=%04x qc_map=%04x "
2330 "failed_links=%d nr_active_links=%d\n",
2331 __func__
, pp
->delayed_eh_pmp_map
,
2332 ap
->qc_active
, failed_links
,
2333 ap
->nr_active_links
);
2335 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
2336 mv_process_crpb_entries(ap
, pp
);
2339 ata_port_printk(ap
, KERN_INFO
, "%s: done\n", __func__
);
2340 return 1; /* handled */
2342 ata_port_printk(ap
, KERN_INFO
, "%s: waiting\n", __func__
);
2343 return 1; /* handled */
2346 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
2349 * Possible future enhancement:
2351 * FBS+non-NCQ operation is not yet implemented.
2352 * See related notes in mv_edma_cfg().
2354 * Device error during FBS+non-NCQ operation:
2356 * We need to snapshot the shadow registers for each failed command.
2357 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2359 return 0; /* not handled */
2362 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
2364 struct mv_port_priv
*pp
= ap
->private_data
;
2366 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
2367 return 0; /* EDMA was not active: not handled */
2368 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
2369 return 0; /* FBS was not active: not handled */
2371 if (!(edma_err_cause
& EDMA_ERR_DEV
))
2372 return 0; /* non DEV error: not handled */
2373 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
2374 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
2375 return 0; /* other problems: not handled */
2377 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
2379 * EDMA should NOT have self-disabled for this case.
2380 * If it did, then something is wrong elsewhere,
2381 * and we cannot handle it here.
2383 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2384 ata_port_printk(ap
, KERN_WARNING
,
2385 "%s: err_cause=0x%x pp_flags=0x%x\n",
2386 __func__
, edma_err_cause
, pp
->pp_flags
);
2387 return 0; /* not handled */
2389 return mv_handle_fbs_ncq_dev_err(ap
);
2392 * EDMA should have self-disabled for this case.
2393 * If it did not, then something is wrong elsewhere,
2394 * and we cannot handle it here.
2396 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
2397 ata_port_printk(ap
, KERN_WARNING
,
2398 "%s: err_cause=0x%x pp_flags=0x%x\n",
2399 __func__
, edma_err_cause
, pp
->pp_flags
);
2400 return 0; /* not handled */
2402 return mv_handle_fbs_non_ncq_dev_err(ap
);
2404 return 0; /* not handled */
2407 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
2409 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2410 char *when
= "idle";
2412 ata_ehi_clear_desc(ehi
);
2413 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2415 } else if (edma_was_enabled
) {
2416 when
= "EDMA enabled";
2418 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2419 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2422 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
2423 ehi
->err_mask
|= AC_ERR_OTHER
;
2424 ehi
->action
|= ATA_EH_RESET
;
2425 ata_port_freeze(ap
);
2429 * mv_err_intr - Handle error interrupts on the port
2430 * @ap: ATA channel to manipulate
2432 * Most cases require a full reset of the chip's state machine,
2433 * which also performs a COMRESET.
2434 * Also, if the port disabled DMA, update our cached copy to match.
2437 * Inherited from caller.
2439 static void mv_err_intr(struct ata_port
*ap
)
2441 void __iomem
*port_mmio
= mv_ap_base(ap
);
2442 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
2444 struct mv_port_priv
*pp
= ap
->private_data
;
2445 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2446 unsigned int action
= 0, err_mask
= 0;
2447 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2448 struct ata_queued_cmd
*qc
;
2452 * Read and clear the SError and err_cause bits.
2453 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2454 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2456 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
2457 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
2459 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2460 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2461 fis_cause
= readl(port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
2462 writelfl(~fis_cause
, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
2464 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2466 if (edma_err_cause
& EDMA_ERR_DEV
) {
2468 * Device errors during FIS-based switching operation
2469 * require special handling.
2471 if (mv_handle_dev_err(ap
, edma_err_cause
))
2475 qc
= mv_get_active_qc(ap
);
2476 ata_ehi_clear_desc(ehi
);
2477 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
2478 edma_err_cause
, pp
->pp_flags
);
2480 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2481 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
2482 if (fis_cause
& SATA_FIS_IRQ_AN
) {
2483 u32 ec
= edma_err_cause
&
2484 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
2485 sata_async_notification(ap
);
2487 return; /* Just an AN; no need for the nukes */
2488 ata_ehi_push_desc(ehi
, "SDB notify");
2492 * All generations share these EDMA error cause bits:
2494 if (edma_err_cause
& EDMA_ERR_DEV
) {
2495 err_mask
|= AC_ERR_DEV
;
2496 action
|= ATA_EH_RESET
;
2497 ata_ehi_push_desc(ehi
, "dev error");
2499 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
2500 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
2501 EDMA_ERR_INTRL_PAR
)) {
2502 err_mask
|= AC_ERR_ATA_BUS
;
2503 action
|= ATA_EH_RESET
;
2504 ata_ehi_push_desc(ehi
, "parity error");
2506 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
2507 ata_ehi_hotplugged(ehi
);
2508 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
2509 "dev disconnect" : "dev connect");
2510 action
|= ATA_EH_RESET
;
2514 * Gen-I has a different SELF_DIS bit,
2515 * different FREEZE bits, and no SERR bit:
2517 if (IS_GEN_I(hpriv
)) {
2518 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
2519 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
2520 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2521 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2524 eh_freeze_mask
= EDMA_EH_FREEZE
;
2525 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2526 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2527 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2529 if (edma_err_cause
& EDMA_ERR_SERR
) {
2530 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
2531 err_mask
|= AC_ERR_ATA_BUS
;
2532 action
|= ATA_EH_RESET
;
2537 err_mask
= AC_ERR_OTHER
;
2538 action
|= ATA_EH_RESET
;
2541 ehi
->serror
|= serr
;
2542 ehi
->action
|= action
;
2545 qc
->err_mask
|= err_mask
;
2547 ehi
->err_mask
|= err_mask
;
2549 if (err_mask
== AC_ERR_DEV
) {
2551 * Cannot do ata_port_freeze() here,
2552 * because it would kill PIO access,
2553 * which is needed for further diagnosis.
2557 } else if (edma_err_cause
& eh_freeze_mask
) {
2559 * Note to self: ata_port_freeze() calls ata_port_abort()
2561 ata_port_freeze(ap
);
2568 ata_link_abort(qc
->dev
->link
);
2574 static void mv_process_crpb_response(struct ata_port
*ap
,
2575 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
2577 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
2581 u16 edma_status
= le16_to_cpu(response
->flags
);
2583 * edma_status from a response queue entry:
2584 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
2585 * MSB is saved ATA status from command completion.
2588 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2591 * Error will be seen/handled by mv_err_intr().
2592 * So do nothing at all here.
2597 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2598 if (!ac_err_mask(ata_status
))
2599 ata_qc_complete(qc
);
2600 /* else: leave it for mv_err_intr() */
2602 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
2607 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2609 void __iomem
*port_mmio
= mv_ap_base(ap
);
2610 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2612 bool work_done
= false;
2613 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2615 /* Get the hardware queue position index */
2616 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
2617 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2619 /* Process new responses from since the last time we looked */
2620 while (in_index
!= pp
->resp_idx
) {
2622 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2624 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2626 if (IS_GEN_I(hpriv
)) {
2627 /* 50xx: no NCQ, only one command active at a time */
2628 tag
= ap
->link
.active_tag
;
2630 /* Gen II/IIE: get command tag from CRPB entry */
2631 tag
= le16_to_cpu(response
->id
) & 0x1f;
2633 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
2637 /* Update the software queue position index in hardware */
2639 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2640 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2641 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
2644 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2646 struct mv_port_priv
*pp
;
2647 int edma_was_enabled
;
2649 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2650 mv_unexpected_intr(ap
, 0);
2654 * Grab a snapshot of the EDMA_EN flag setting,
2655 * so that we have a consistent view for this port,
2656 * even if something we call of our routines changes it.
2658 pp
= ap
->private_data
;
2659 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2661 * Process completed CRPB response(s) before other events.
2663 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2664 mv_process_crpb_entries(ap
, pp
);
2665 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2666 mv_handle_fbs_ncq_dev_err(ap
);
2669 * Handle chip-reported errors, or continue on to handle PIO.
2671 if (unlikely(port_cause
& ERR_IRQ
)) {
2673 } else if (!edma_was_enabled
) {
2674 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2676 ata_sff_host_intr(ap
, qc
);
2678 mv_unexpected_intr(ap
, edma_was_enabled
);
2683 * mv_host_intr - Handle all interrupts on the given host controller
2684 * @host: host specific structure
2685 * @main_irq_cause: Main interrupt cause register for the chip.
2688 * Inherited from caller.
2690 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2692 struct mv_host_priv
*hpriv
= host
->private_data
;
2693 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2694 unsigned int handled
= 0, port
;
2696 /* If asserted, clear the "all ports" IRQ coalescing bit */
2697 if (main_irq_cause
& ALL_PORTS_COAL_DONE
)
2698 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ MV_IRQ_COAL_CAUSE
);
2700 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2701 struct ata_port
*ap
= host
->ports
[port
];
2702 unsigned int p
, shift
, hardport
, port_cause
;
2704 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2706 * Each hc within the host has its own hc_irq_cause register,
2707 * where the interrupting ports bits get ack'd.
2709 if (hardport
== 0) { /* first port on this hc ? */
2710 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2711 u32 port_mask
, ack_irqs
;
2713 * Skip this entire hc if nothing pending for any ports
2716 port
+= MV_PORTS_PER_HC
- 1;
2720 * We don't need/want to read the hc_irq_cause register,
2721 * because doing so hurts performance, and
2722 * main_irq_cause already gives us everything we need.
2724 * But we do have to *write* to the hc_irq_cause to ack
2725 * the ports that we are handling this time through.
2727 * This requires that we create a bitmap for those
2728 * ports which interrupted us, and use that bitmap
2729 * to ack (only) those ports via hc_irq_cause.
2732 if (hc_cause
& PORTS_0_3_COAL_DONE
)
2733 ack_irqs
= HC_COAL_IRQ
;
2734 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2735 if ((port
+ p
) >= hpriv
->n_ports
)
2737 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2738 if (hc_cause
& port_mask
)
2739 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2741 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2742 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2746 * Handle interrupts signalled for this port:
2748 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2750 mv_port_intr(ap
, port_cause
);
2755 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2757 struct mv_host_priv
*hpriv
= host
->private_data
;
2758 struct ata_port
*ap
;
2759 struct ata_queued_cmd
*qc
;
2760 struct ata_eh_info
*ehi
;
2761 unsigned int i
, err_mask
, printed
= 0;
2764 err_cause
= readl(mmio
+ hpriv
->irq_cause_ofs
);
2766 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2769 DPRINTK("All regs @ PCI error\n");
2770 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2772 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
2774 for (i
= 0; i
< host
->n_ports
; i
++) {
2775 ap
= host
->ports
[i
];
2776 if (!ata_link_offline(&ap
->link
)) {
2777 ehi
= &ap
->link
.eh_info
;
2778 ata_ehi_clear_desc(ehi
);
2780 ata_ehi_push_desc(ehi
,
2781 "PCI err cause 0x%08x", err_cause
);
2782 err_mask
= AC_ERR_HOST_BUS
;
2783 ehi
->action
= ATA_EH_RESET
;
2784 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2786 qc
->err_mask
|= err_mask
;
2788 ehi
->err_mask
|= err_mask
;
2790 ata_port_freeze(ap
);
2793 return 1; /* handled */
2797 * mv_interrupt - Main interrupt event handler
2799 * @dev_instance: private data; in this case the host structure
2801 * Read the read only register to determine if any host
2802 * controllers have pending interrupts. If so, call lower level
2803 * routine to handle. Also check for PCI errors which are only
2807 * This routine holds the host lock while processing pending
2810 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2812 struct ata_host
*host
= dev_instance
;
2813 struct mv_host_priv
*hpriv
= host
->private_data
;
2814 unsigned int handled
= 0;
2815 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
2816 u32 main_irq_cause
, pending_irqs
;
2818 spin_lock(&host
->lock
);
2820 /* for MSI: block new interrupts while in here */
2822 mv_write_main_irq_mask(0, hpriv
);
2824 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2825 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
2827 * Deal with cases where we either have nothing pending, or have read
2828 * a bogus register value which can indicate HW removal or PCI fault.
2830 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
2831 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
2832 handled
= mv_pci_error(host
, hpriv
->base
);
2834 handled
= mv_host_intr(host
, pending_irqs
);
2837 /* for MSI: unmask; interrupt cause bits will retrigger now */
2839 mv_write_main_irq_mask(hpriv
->main_irq_mask
, hpriv
);
2841 spin_unlock(&host
->lock
);
2843 return IRQ_RETVAL(handled
);
2846 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
2850 switch (sc_reg_in
) {
2854 ofs
= sc_reg_in
* sizeof(u32
);
2863 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
2865 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2866 void __iomem
*mmio
= hpriv
->base
;
2867 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2868 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2870 if (ofs
!= 0xffffffffU
) {
2871 *val
= readl(addr
+ ofs
);
2877 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
2879 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2880 void __iomem
*mmio
= hpriv
->base
;
2881 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2882 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2884 if (ofs
!= 0xffffffffU
) {
2885 writelfl(val
, addr
+ ofs
);
2891 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2893 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2896 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
2899 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2901 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2904 mv_reset_pci_bus(host
, mmio
);
2907 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2909 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL_OFS
);
2912 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2915 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
2918 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2920 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
2921 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
2924 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2928 writel(0, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2930 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2932 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2934 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2937 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2940 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
2941 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2943 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
2946 tmp
= readl(phy_mmio
+ MV5_LTMODE_OFS
);
2948 writel(tmp
, phy_mmio
+ MV5_LTMODE_OFS
);
2950 tmp
= readl(phy_mmio
+ MV5_PHY_CTL_OFS
);
2953 writel(tmp
, phy_mmio
+ MV5_PHY_CTL_OFS
);
2956 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2958 tmp
|= hpriv
->signal
[port
].pre
;
2959 tmp
|= hpriv
->signal
[port
].amps
;
2960 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
2965 #define ZERO(reg) writel(0, port_mmio + (reg))
2966 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2969 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2971 mv_reset_channel(hpriv
, mmio
, port
);
2973 ZERO(0x028); /* command */
2974 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
2975 ZERO(0x004); /* timer */
2976 ZERO(0x008); /* irq err cause */
2977 ZERO(0x00c); /* irq err mask */
2978 ZERO(0x010); /* rq bah */
2979 ZERO(0x014); /* rq inp */
2980 ZERO(0x018); /* rq outp */
2981 ZERO(0x01c); /* respq bah */
2982 ZERO(0x024); /* respq outp */
2983 ZERO(0x020); /* respq inp */
2984 ZERO(0x02c); /* test control */
2985 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2989 #define ZERO(reg) writel(0, hc_mmio + (reg))
2990 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2993 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3001 tmp
= readl(hc_mmio
+ 0x20);
3004 writel(tmp
, hc_mmio
+ 0x20);
3008 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3011 unsigned int hc
, port
;
3013 for (hc
= 0; hc
< n_hc
; hc
++) {
3014 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
3015 mv5_reset_hc_port(hpriv
, mmio
,
3016 (hc
* MV_PORTS_PER_HC
) + port
);
3018 mv5_reset_one_hc(hpriv
, mmio
, hc
);
3025 #define ZERO(reg) writel(0, mmio + (reg))
3026 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
3028 struct mv_host_priv
*hpriv
= host
->private_data
;
3031 tmp
= readl(mmio
+ MV_PCI_MODE_OFS
);
3033 writel(tmp
, mmio
+ MV_PCI_MODE_OFS
);
3035 ZERO(MV_PCI_DISC_TIMER
);
3036 ZERO(MV_PCI_MSI_TRIGGER
);
3037 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT_OFS
);
3038 ZERO(MV_PCI_SERR_MASK
);
3039 ZERO(hpriv
->irq_cause_ofs
);
3040 ZERO(hpriv
->irq_mask_ofs
);
3041 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
3042 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
3043 ZERO(MV_PCI_ERR_ATTRIBUTE
);
3044 ZERO(MV_PCI_ERR_COMMAND
);
3048 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3052 mv5_reset_flash(hpriv
, mmio
);
3054 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL_OFS
);
3056 tmp
|= (1 << 5) | (1 << 6);
3057 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL_OFS
);
3061 * mv6_reset_hc - Perform the 6xxx global soft reset
3062 * @mmio: base address of the HBA
3064 * This routine only applies to 6xxx parts.
3067 * Inherited from caller.
3069 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3072 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
3076 /* Following procedure defined in PCI "main command and status
3080 writel(t
| STOP_PCI_MASTER
, reg
);
3082 for (i
= 0; i
< 1000; i
++) {
3085 if (PCI_MASTER_EMPTY
& t
)
3088 if (!(PCI_MASTER_EMPTY
& t
)) {
3089 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
3097 writel(t
| GLOB_SFT_RST
, reg
);
3100 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
3102 if (!(GLOB_SFT_RST
& t
)) {
3103 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
3108 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3111 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
3114 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
3116 if (GLOB_SFT_RST
& t
) {
3117 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
3124 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3127 void __iomem
*port_mmio
;
3130 tmp
= readl(mmio
+ MV_RESET_CFG_OFS
);
3131 if ((tmp
& (1 << 0)) == 0) {
3132 hpriv
->signal
[idx
].amps
= 0x7 << 8;
3133 hpriv
->signal
[idx
].pre
= 0x1 << 5;
3137 port_mmio
= mv_port_base(mmio
, idx
);
3138 tmp
= readl(port_mmio
+ PHY_MODE2
);
3140 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3141 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3144 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3146 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL_OFS
);
3149 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3152 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3154 u32 hp_flags
= hpriv
->hp_flags
;
3156 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3158 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3161 if (fix_phy_mode2
) {
3162 m2
= readl(port_mmio
+ PHY_MODE2
);
3165 writel(m2
, port_mmio
+ PHY_MODE2
);
3169 m2
= readl(port_mmio
+ PHY_MODE2
);
3170 m2
&= ~((1 << 16) | (1 << 31));
3171 writel(m2
, port_mmio
+ PHY_MODE2
);
3177 * Gen-II/IIe PHY_MODE3 errata RM#2:
3178 * Achieves better receiver noise performance than the h/w default:
3180 m3
= readl(port_mmio
+ PHY_MODE3
);
3181 m3
= (m3
& 0x1f) | (0x5555601 << 5);
3183 /* Guideline 88F5182 (GL# SATA-S11) */
3187 if (fix_phy_mode4
) {
3188 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
3190 * Enforce reserved-bit restrictions on GenIIe devices only.
3191 * For earlier chipsets, force only the internal config field
3192 * (workaround for errata FEr SATA#10 part 1).
3194 if (IS_GEN_IIE(hpriv
))
3195 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
3197 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
3198 writel(m4
, port_mmio
+ PHY_MODE4
);
3201 * Workaround for 60x1-B2 errata SATA#13:
3202 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3203 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3205 writel(m3
, port_mmio
+ PHY_MODE3
);
3207 /* Revert values of pre-emphasis and signal amps to the saved ones */
3208 m2
= readl(port_mmio
+ PHY_MODE2
);
3210 m2
&= ~MV_M2_PREAMP_MASK
;
3211 m2
|= hpriv
->signal
[port
].amps
;
3212 m2
|= hpriv
->signal
[port
].pre
;
3215 /* according to mvSata 3.6.1, some IIE values are fixed */
3216 if (IS_GEN_IIE(hpriv
)) {
3221 writel(m2
, port_mmio
+ PHY_MODE2
);
3224 /* TODO: use the generic LED interface to configure the SATA Presence */
3225 /* & Acitivy LEDs on the board */
3226 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
3232 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3235 void __iomem
*port_mmio
;
3238 port_mmio
= mv_port_base(mmio
, idx
);
3239 tmp
= readl(port_mmio
+ PHY_MODE2
);
3241 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3242 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3246 #define ZERO(reg) writel(0, port_mmio + (reg))
3247 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
3248 void __iomem
*mmio
, unsigned int port
)
3250 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3252 mv_reset_channel(hpriv
, mmio
, port
);
3254 ZERO(0x028); /* command */
3255 writel(0x101f, port_mmio
+ EDMA_CFG_OFS
);
3256 ZERO(0x004); /* timer */
3257 ZERO(0x008); /* irq err cause */
3258 ZERO(0x00c); /* irq err mask */
3259 ZERO(0x010); /* rq bah */
3260 ZERO(0x014); /* rq inp */
3261 ZERO(0x018); /* rq outp */
3262 ZERO(0x01c); /* respq bah */
3263 ZERO(0x024); /* respq outp */
3264 ZERO(0x020); /* respq inp */
3265 ZERO(0x02c); /* test control */
3266 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
3271 #define ZERO(reg) writel(0, hc_mmio + (reg))
3272 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
3275 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
3285 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
3286 void __iomem
*mmio
, unsigned int n_hc
)
3290 for (port
= 0; port
< hpriv
->n_ports
; port
++)
3291 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
3293 mv_soc_reset_one_hc(hpriv
, mmio
);
3298 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
3304 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3309 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
3311 u32 ifcfg
= readl(port_mmio
+ SATA_INTERFACE_CFG_OFS
);
3313 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
3315 ifcfg
|= (1 << 7); /* enable gen2i speed */
3316 writelfl(ifcfg
, port_mmio
+ SATA_INTERFACE_CFG_OFS
);
3319 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3320 unsigned int port_no
)
3322 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
3325 * The datasheet warns against setting EDMA_RESET when EDMA is active
3326 * (but doesn't say what the problem might be). So we first try
3327 * to disable the EDMA engine before doing the EDMA_RESET operation.
3329 mv_stop_edma_engine(port_mmio
);
3330 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
3332 if (!IS_GEN_I(hpriv
)) {
3333 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3334 mv_setup_ifcfg(port_mmio
, 1);
3337 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3338 * link, and physical layers. It resets all SATA interface registers
3339 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
3341 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
3342 udelay(25); /* allow reset propagation */
3343 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
3345 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
3347 if (IS_GEN_I(hpriv
))
3351 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
3353 if (sata_pmp_supported(ap
)) {
3354 void __iomem
*port_mmio
= mv_ap_base(ap
);
3355 u32 reg
= readl(port_mmio
+ SATA_IFCTL_OFS
);
3356 int old
= reg
& 0xf;
3359 reg
= (reg
& ~0xf) | pmp
;
3360 writelfl(reg
, port_mmio
+ SATA_IFCTL_OFS
);
3365 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
3366 unsigned long deadline
)
3368 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3369 return sata_std_hardreset(link
, class, deadline
);
3372 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
3373 unsigned long deadline
)
3375 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3376 return ata_sff_softreset(link
, class, deadline
);
3379 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
3380 unsigned long deadline
)
3382 struct ata_port
*ap
= link
->ap
;
3383 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3384 struct mv_port_priv
*pp
= ap
->private_data
;
3385 void __iomem
*mmio
= hpriv
->base
;
3386 int rc
, attempts
= 0, extra
= 0;
3390 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
3391 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
3393 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
3395 /* Workaround for errata FEr SATA#10 (part 2) */
3397 const unsigned long *timing
=
3398 sata_ehc_deb_timing(&link
->eh_context
);
3400 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
3402 rc
= online
? -EAGAIN
: rc
;
3405 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3406 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
3407 /* Force 1.5gb/s link speed and try again */
3408 mv_setup_ifcfg(mv_ap_base(ap
), 0);
3409 if (time_after(jiffies
+ HZ
, deadline
))
3410 extra
= HZ
; /* only extend it once, max */
3412 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
3413 mv_save_cached_regs(ap
);
3414 mv_edma_cfg(ap
, 0, 0);
3419 static void mv_eh_freeze(struct ata_port
*ap
)
3422 mv_enable_port_irqs(ap
, 0);
3425 static void mv_eh_thaw(struct ata_port
*ap
)
3427 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3428 unsigned int port
= ap
->port_no
;
3429 unsigned int hardport
= mv_hardport_from_port(port
);
3430 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
3431 void __iomem
*port_mmio
= mv_ap_base(ap
);
3434 /* clear EDMA errors on this port */
3435 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
3437 /* clear pending irq events */
3438 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
3439 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
3441 mv_enable_port_irqs(ap
, ERR_IRQ
);
3445 * mv_port_init - Perform some early initialization on a single port.
3446 * @port: libata data structure storing shadow register addresses
3447 * @port_mmio: base address of the port
3449 * Initialize shadow register mmio addresses, clear outstanding
3450 * interrupts on the port, and unmask interrupts for the future
3451 * start of the port.
3454 * Inherited from caller.
3456 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
3458 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
3461 /* PIO related setup
3463 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
3465 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
3466 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
3467 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
3468 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
3469 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
3470 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
3472 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
3473 /* special case: control/altstatus doesn't have ATA_REG_ address */
3474 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
3477 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
3479 /* Clear any currently outstanding port interrupt conditions */
3480 serr_ofs
= mv_scr_offset(SCR_ERROR
);
3481 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
3482 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
3484 /* unmask all non-transient EDMA error interrupts */
3485 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
3487 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3488 readl(port_mmio
+ EDMA_CFG_OFS
),
3489 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
3490 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
3493 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
3495 struct mv_host_priv
*hpriv
= host
->private_data
;
3496 void __iomem
*mmio
= hpriv
->base
;
3499 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
3500 return 0; /* not PCI-X capable */
3501 reg
= readl(mmio
+ MV_PCI_MODE_OFS
);
3502 if ((reg
& MV_PCI_MODE_MASK
) == 0)
3503 return 0; /* conventional PCI mode */
3504 return 1; /* chip is in PCI-X mode */
3507 static int mv_pci_cut_through_okay(struct ata_host
*host
)
3509 struct mv_host_priv
*hpriv
= host
->private_data
;
3510 void __iomem
*mmio
= hpriv
->base
;
3513 if (!mv_in_pcix_mode(host
)) {
3514 reg
= readl(mmio
+ PCI_COMMAND_OFS
);
3515 if (reg
& PCI_COMMAND_MRDTRIG
)
3516 return 0; /* not okay */
3518 return 1; /* okay */
3521 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
3523 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3524 struct mv_host_priv
*hpriv
= host
->private_data
;
3525 u32 hp_flags
= hpriv
->hp_flags
;
3527 switch (board_idx
) {
3529 hpriv
->ops
= &mv5xxx_ops
;
3530 hp_flags
|= MV_HP_GEN_I
;
3532 switch (pdev
->revision
) {
3534 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3537 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3540 dev_printk(KERN_WARNING
, &pdev
->dev
,
3541 "Applying 50XXB2 workarounds to unknown rev\n");
3542 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3549 hpriv
->ops
= &mv5xxx_ops
;
3550 hp_flags
|= MV_HP_GEN_I
;
3552 switch (pdev
->revision
) {
3554 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3557 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3560 dev_printk(KERN_WARNING
, &pdev
->dev
,
3561 "Applying B2 workarounds to unknown rev\n");
3562 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3569 hpriv
->ops
= &mv6xxx_ops
;
3570 hp_flags
|= MV_HP_GEN_II
;
3572 switch (pdev
->revision
) {
3574 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3577 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3580 dev_printk(KERN_WARNING
, &pdev
->dev
,
3581 "Applying B2 workarounds to unknown rev\n");
3582 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3588 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
3589 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
3590 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
3593 * Highpoint RocketRAID PCIe 23xx series cards:
3595 * Unconfigured drives are treated as "Legacy"
3596 * by the BIOS, and it overwrites sector 8 with
3597 * a "Lgcy" metadata block prior to Linux boot.
3599 * Configured drives (RAID or JBOD) leave sector 8
3600 * alone, but instead overwrite a high numbered
3601 * sector for the RAID metadata. This sector can
3602 * be determined exactly, by truncating the physical
3603 * drive capacity to a nice even GB value.
3605 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3607 * Warn the user, lest they think we're just buggy.
3609 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3610 " BIOS CORRUPTS DATA on all attached drives,"
3611 " regardless of if/how they are configured."
3613 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3614 " use sectors 8-9 on \"Legacy\" drives,"
3615 " and avoid the final two gigabytes on"
3616 " all RocketRAID BIOS initialized drives.\n");
3620 hpriv
->ops
= &mv6xxx_ops
;
3621 hp_flags
|= MV_HP_GEN_IIE
;
3622 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3623 hp_flags
|= MV_HP_CUT_THROUGH
;
3625 switch (pdev
->revision
) {
3626 case 0x2: /* Rev.B0: the first/only public release */
3627 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3630 dev_printk(KERN_WARNING
, &pdev
->dev
,
3631 "Applying 60X1C0 workarounds to unknown rev\n");
3632 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3637 hpriv
->ops
= &mv_soc_ops
;
3638 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3639 MV_HP_ERRATA_60X1C0
;
3643 dev_printk(KERN_ERR
, host
->dev
,
3644 "BUG: invalid board index %u\n", board_idx
);
3648 hpriv
->hp_flags
= hp_flags
;
3649 if (hp_flags
& MV_HP_PCIE
) {
3650 hpriv
->irq_cause_ofs
= PCIE_IRQ_CAUSE_OFS
;
3651 hpriv
->irq_mask_ofs
= PCIE_IRQ_MASK_OFS
;
3652 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3654 hpriv
->irq_cause_ofs
= PCI_IRQ_CAUSE_OFS
;
3655 hpriv
->irq_mask_ofs
= PCI_IRQ_MASK_OFS
;
3656 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3663 * mv_init_host - Perform some early initialization of the host.
3664 * @host: ATA host to initialize
3665 * @board_idx: controller index
3667 * If possible, do an early global reset of the host. Then do
3668 * our port init and clear/unmask all/relevant host interrupts.
3671 * Inherited from caller.
3673 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
3675 int rc
= 0, n_hc
, port
, hc
;
3676 struct mv_host_priv
*hpriv
= host
->private_data
;
3677 void __iomem
*mmio
= hpriv
->base
;
3679 rc
= mv_chip_id(host
, board_idx
);
3683 if (IS_SOC(hpriv
)) {
3684 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE_OFS
;
3685 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK_OFS
;
3687 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE_OFS
;
3688 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK_OFS
;
3691 /* initialize shadow irq mask with register's value */
3692 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3694 /* global interrupt mask: 0 == mask everything */
3695 mv_set_main_irq_mask(host
, ~0, 0);
3697 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3699 for (port
= 0; port
< host
->n_ports
; port
++)
3700 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3702 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3706 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3707 hpriv
->ops
->reset_bus(host
, mmio
);
3708 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3710 for (port
= 0; port
< host
->n_ports
; port
++) {
3711 struct ata_port
*ap
= host
->ports
[port
];
3712 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3714 mv_port_init(&ap
->ioaddr
, port_mmio
);
3717 if (!IS_SOC(hpriv
)) {
3718 unsigned int offset
= port_mmio
- mmio
;
3719 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
3720 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
3725 for (hc
= 0; hc
< n_hc
; hc
++) {
3726 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3728 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3729 "(before clear)=0x%08x\n", hc
,
3730 readl(hc_mmio
+ HC_CFG_OFS
),
3731 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
3733 /* Clear any currently outstanding hc interrupt conditions */
3734 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
3737 /* Clear any currently outstanding host interrupt conditions */
3738 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
3740 /* and unmask interrupt generation for host regs */
3741 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_ofs
);
3744 * enable only global host interrupts for now.
3745 * The per-port interrupts get done later as ports are set up.
3747 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3748 mv_set_irq_coalescing(host
, irq_coalescing_io_count
,
3749 irq_coalescing_usecs
);
3754 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3756 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3758 if (!hpriv
->crqb_pool
)
3761 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3763 if (!hpriv
->crpb_pool
)
3766 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3768 if (!hpriv
->sg_tbl_pool
)
3774 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3775 struct mbus_dram_target_info
*dram
)
3779 for (i
= 0; i
< 4; i
++) {
3780 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3781 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
3784 for (i
= 0; i
< dram
->num_cs
; i
++) {
3785 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3787 writel(((cs
->size
- 1) & 0xffff0000) |
3788 (cs
->mbus_attr
<< 8) |
3789 (dram
->mbus_dram_target_id
<< 4) | 1,
3790 hpriv
->base
+ WINDOW_CTRL(i
));
3791 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
3796 * mv_platform_probe - handle a positive probe of an soc Marvell
3798 * @pdev: platform device found
3801 * Inherited from caller.
3803 static int mv_platform_probe(struct platform_device
*pdev
)
3805 static int printed_version
;
3806 const struct mv_sata_platform_data
*mv_platform_data
;
3807 const struct ata_port_info
*ppi
[] =
3808 { &mv_port_info
[chip_soc
], NULL
};
3809 struct ata_host
*host
;
3810 struct mv_host_priv
*hpriv
;
3811 struct resource
*res
;
3814 if (!printed_version
++)
3815 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3818 * Simple resource validation ..
3820 if (unlikely(pdev
->num_resources
!= 2)) {
3821 dev_err(&pdev
->dev
, "invalid number of resources\n");
3826 * Get the register base first
3828 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3833 mv_platform_data
= pdev
->dev
.platform_data
;
3834 n_ports
= mv_platform_data
->n_ports
;
3836 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3837 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3839 if (!host
|| !hpriv
)
3841 host
->private_data
= hpriv
;
3842 hpriv
->n_ports
= n_ports
;
3845 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
3846 res
->end
- res
->start
+ 1);
3847 hpriv
->base
-= MV_SATAHC0_REG_BASE
;
3850 * (Re-)program MBUS remapping windows if we are asked to.
3852 if (mv_platform_data
->dram
!= NULL
)
3853 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
3855 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3859 /* initialize adapter */
3860 rc
= mv_init_host(host
, chip_soc
);
3864 dev_printk(KERN_INFO
, &pdev
->dev
,
3865 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
3868 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
3869 IRQF_SHARED
, &mv6_sht
);
3874 * mv_platform_remove - unplug a platform interface
3875 * @pdev: platform device
3877 * A platform bus SATA device has been unplugged. Perform the needed
3878 * cleanup. Also called on module unload for any active devices.
3880 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
3882 struct device
*dev
= &pdev
->dev
;
3883 struct ata_host
*host
= dev_get_drvdata(dev
);
3885 ata_host_detach(host
);
3889 static struct platform_driver mv_platform_driver
= {
3890 .probe
= mv_platform_probe
,
3891 .remove
= __devexit_p(mv_platform_remove
),
3894 .owner
= THIS_MODULE
,
3900 static int mv_pci_init_one(struct pci_dev
*pdev
,
3901 const struct pci_device_id
*ent
);
3904 static struct pci_driver mv_pci_driver
= {
3906 .id_table
= mv_pci_tbl
,
3907 .probe
= mv_pci_init_one
,
3908 .remove
= ata_pci_remove_one
,
3911 /* move to PCI layer or libata core? */
3912 static int pci_go_64(struct pci_dev
*pdev
)
3916 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3917 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3919 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3921 dev_printk(KERN_ERR
, &pdev
->dev
,
3922 "64-bit DMA enable failed\n");
3927 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3929 dev_printk(KERN_ERR
, &pdev
->dev
,
3930 "32-bit DMA enable failed\n");
3933 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3935 dev_printk(KERN_ERR
, &pdev
->dev
,
3936 "32-bit consistent DMA enable failed\n");
3945 * mv_print_info - Dump key info to kernel log for perusal.
3946 * @host: ATA host to print info about
3948 * FIXME: complete this.
3951 * Inherited from caller.
3953 static void mv_print_info(struct ata_host
*host
)
3955 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3956 struct mv_host_priv
*hpriv
= host
->private_data
;
3958 const char *scc_s
, *gen
;
3960 /* Use this to determine the HW stepping of the chip so we know
3961 * what errata to workaround
3963 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
3966 else if (scc
== 0x01)
3971 if (IS_GEN_I(hpriv
))
3973 else if (IS_GEN_II(hpriv
))
3975 else if (IS_GEN_IIE(hpriv
))
3980 dev_printk(KERN_INFO
, &pdev
->dev
,
3981 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3982 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
3983 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
3987 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3988 * @pdev: PCI device found
3989 * @ent: PCI device ID entry for the matched host
3992 * Inherited from caller.
3994 static int mv_pci_init_one(struct pci_dev
*pdev
,
3995 const struct pci_device_id
*ent
)
3997 static int printed_version
;
3998 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
3999 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
4000 struct ata_host
*host
;
4001 struct mv_host_priv
*hpriv
;
4004 if (!printed_version
++)
4005 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
4008 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
4010 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4011 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4012 if (!host
|| !hpriv
)
4014 host
->private_data
= hpriv
;
4015 hpriv
->n_ports
= n_ports
;
4017 /* acquire resources */
4018 rc
= pcim_enable_device(pdev
);
4022 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
4024 pcim_pin_device(pdev
);
4027 host
->iomap
= pcim_iomap_table(pdev
);
4028 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
4030 rc
= pci_go_64(pdev
);
4034 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4038 /* initialize adapter */
4039 rc
= mv_init_host(host
, board_idx
);
4043 /* Enable message-switched interrupts, if requested */
4044 if (msi
&& pci_enable_msi(pdev
) == 0)
4045 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
4047 mv_dump_pci_cfg(pdev
, 0x68);
4048 mv_print_info(host
);
4050 pci_set_master(pdev
);
4051 pci_try_set_mwi(pdev
);
4052 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
4053 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
4057 static int mv_platform_probe(struct platform_device
*pdev
);
4058 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
4060 static int __init
mv_init(void)
4064 rc
= pci_register_driver(&mv_pci_driver
);
4068 rc
= platform_driver_register(&mv_platform_driver
);
4072 pci_unregister_driver(&mv_pci_driver
);
4077 static void __exit
mv_exit(void)
4080 pci_unregister_driver(&mv_pci_driver
);
4082 platform_driver_unregister(&mv_platform_driver
);
4085 MODULE_AUTHOR("Brett Russ");
4086 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4087 MODULE_LICENSE("GPL");
4088 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
4089 MODULE_VERSION(DRV_VERSION
);
4090 MODULE_ALIAS("platform:" DRV_NAME
);
4092 module_init(mv_init
);
4093 module_exit(mv_exit
);