[SCSI] arcmsr: fix message allocation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
bloba44b142fb4607baee2d832b1056103b5d157e5a7
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 if (!fmt)
75 return -EINVAL;
76 write_lock(&binfmt_lock);
77 list_add(&fmt->lh, &formats);
78 write_unlock(&binfmt_lock);
79 return 0;
82 EXPORT_SYMBOL(register_binfmt);
84 void unregister_binfmt(struct linux_binfmt * fmt)
86 write_lock(&binfmt_lock);
87 list_del(&fmt->lh);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(unregister_binfmt);
93 static inline void put_binfmt(struct linux_binfmt * fmt)
95 module_put(fmt->module);
99 * Note that a shared library must be both readable and executable due to
100 * security reasons.
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage long sys_uselib(const char __user * library)
106 struct file * file;
107 struct nameidata nd;
108 int error;
110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 if (error)
112 goto out;
114 error = -EINVAL;
115 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
116 goto exit;
118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 if (error)
120 goto exit;
122 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
123 error = PTR_ERR(file);
124 if (IS_ERR(file))
125 goto out;
127 error = -ENOEXEC;
128 if(file->f_op) {
129 struct linux_binfmt * fmt;
131 read_lock(&binfmt_lock);
132 list_for_each_entry(fmt, &formats, lh) {
133 if (!fmt->load_shlib)
134 continue;
135 if (!try_module_get(fmt->module))
136 continue;
137 read_unlock(&binfmt_lock);
138 error = fmt->load_shlib(file);
139 read_lock(&binfmt_lock);
140 put_binfmt(fmt);
141 if (error != -ENOEXEC)
142 break;
144 read_unlock(&binfmt_lock);
146 fput(file);
147 out:
148 return error;
149 exit:
150 release_open_intent(&nd);
151 path_put(&nd.path);
152 goto out;
155 #ifdef CONFIG_MMU
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 int write)
160 struct page *page;
161 int ret;
163 #ifdef CONFIG_STACK_GROWSUP
164 if (write) {
165 ret = expand_stack_downwards(bprm->vma, pos);
166 if (ret < 0)
167 return NULL;
169 #endif
170 ret = get_user_pages(current, bprm->mm, pos,
171 1, write, 1, &page, NULL);
172 if (ret <= 0)
173 return NULL;
175 if (write) {
176 struct rlimit *rlim = current->signal->rlim;
177 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 * Limit to 1/4-th the stack size for the argv+env strings.
181 * This ensures that:
182 * - the remaining binfmt code will not run out of stack space,
183 * - the program will have a reasonable amount of stack left
184 * to work from.
186 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
187 put_page(page);
188 return NULL;
192 return page;
195 static void put_arg_page(struct page *page)
197 put_page(page);
200 static void free_arg_page(struct linux_binprm *bprm, int i)
204 static void free_arg_pages(struct linux_binprm *bprm)
208 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
209 struct page *page)
211 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
214 static int __bprm_mm_init(struct linux_binprm *bprm)
216 int err = -ENOMEM;
217 struct vm_area_struct *vma = NULL;
218 struct mm_struct *mm = bprm->mm;
220 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
221 if (!vma)
222 goto err;
224 down_write(&mm->mmap_sem);
225 vma->vm_mm = mm;
228 * Place the stack at the largest stack address the architecture
229 * supports. Later, we'll move this to an appropriate place. We don't
230 * use STACK_TOP because that can depend on attributes which aren't
231 * configured yet.
233 vma->vm_end = STACK_TOP_MAX;
234 vma->vm_start = vma->vm_end - PAGE_SIZE;
236 vma->vm_flags = VM_STACK_FLAGS;
237 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
238 err = insert_vm_struct(mm, vma);
239 if (err) {
240 up_write(&mm->mmap_sem);
241 goto err;
244 mm->stack_vm = mm->total_vm = 1;
245 up_write(&mm->mmap_sem);
247 bprm->p = vma->vm_end - sizeof(void *);
249 return 0;
251 err:
252 if (vma) {
253 bprm->vma = NULL;
254 kmem_cache_free(vm_area_cachep, vma);
257 return err;
260 static bool valid_arg_len(struct linux_binprm *bprm, long len)
262 return len <= MAX_ARG_STRLEN;
265 #else
267 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
268 int write)
270 struct page *page;
272 page = bprm->page[pos / PAGE_SIZE];
273 if (!page && write) {
274 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
275 if (!page)
276 return NULL;
277 bprm->page[pos / PAGE_SIZE] = page;
280 return page;
283 static void put_arg_page(struct page *page)
287 static void free_arg_page(struct linux_binprm *bprm, int i)
289 if (bprm->page[i]) {
290 __free_page(bprm->page[i]);
291 bprm->page[i] = NULL;
295 static void free_arg_pages(struct linux_binprm *bprm)
297 int i;
299 for (i = 0; i < MAX_ARG_PAGES; i++)
300 free_arg_page(bprm, i);
303 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 struct page *page)
308 static int __bprm_mm_init(struct linux_binprm *bprm)
310 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
311 return 0;
314 static bool valid_arg_len(struct linux_binprm *bprm, long len)
316 return len <= bprm->p;
319 #endif /* CONFIG_MMU */
322 * Create a new mm_struct and populate it with a temporary stack
323 * vm_area_struct. We don't have enough context at this point to set the stack
324 * flags, permissions, and offset, so we use temporary values. We'll update
325 * them later in setup_arg_pages().
327 int bprm_mm_init(struct linux_binprm *bprm)
329 int err;
330 struct mm_struct *mm = NULL;
332 bprm->mm = mm = mm_alloc();
333 err = -ENOMEM;
334 if (!mm)
335 goto err;
337 err = init_new_context(current, mm);
338 if (err)
339 goto err;
341 err = __bprm_mm_init(bprm);
342 if (err)
343 goto err;
345 return 0;
347 err:
348 if (mm) {
349 bprm->mm = NULL;
350 mmdrop(mm);
353 return err;
357 * count() counts the number of strings in array ARGV.
359 static int count(char __user * __user * argv, int max)
361 int i = 0;
363 if (argv != NULL) {
364 for (;;) {
365 char __user * p;
367 if (get_user(p, argv))
368 return -EFAULT;
369 if (!p)
370 break;
371 argv++;
372 if(++i > max)
373 return -E2BIG;
374 cond_resched();
377 return i;
381 * 'copy_strings()' copies argument/environment strings from the old
382 * processes's memory to the new process's stack. The call to get_user_pages()
383 * ensures the destination page is created and not swapped out.
385 static int copy_strings(int argc, char __user * __user * argv,
386 struct linux_binprm *bprm)
388 struct page *kmapped_page = NULL;
389 char *kaddr = NULL;
390 unsigned long kpos = 0;
391 int ret;
393 while (argc-- > 0) {
394 char __user *str;
395 int len;
396 unsigned long pos;
398 if (get_user(str, argv+argc) ||
399 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
400 ret = -EFAULT;
401 goto out;
404 if (!valid_arg_len(bprm, len)) {
405 ret = -E2BIG;
406 goto out;
409 /* We're going to work our way backwords. */
410 pos = bprm->p;
411 str += len;
412 bprm->p -= len;
414 while (len > 0) {
415 int offset, bytes_to_copy;
417 offset = pos % PAGE_SIZE;
418 if (offset == 0)
419 offset = PAGE_SIZE;
421 bytes_to_copy = offset;
422 if (bytes_to_copy > len)
423 bytes_to_copy = len;
425 offset -= bytes_to_copy;
426 pos -= bytes_to_copy;
427 str -= bytes_to_copy;
428 len -= bytes_to_copy;
430 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
431 struct page *page;
433 page = get_arg_page(bprm, pos, 1);
434 if (!page) {
435 ret = -E2BIG;
436 goto out;
439 if (kmapped_page) {
440 flush_kernel_dcache_page(kmapped_page);
441 kunmap(kmapped_page);
442 put_arg_page(kmapped_page);
444 kmapped_page = page;
445 kaddr = kmap(kmapped_page);
446 kpos = pos & PAGE_MASK;
447 flush_arg_page(bprm, kpos, kmapped_page);
449 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
450 ret = -EFAULT;
451 goto out;
455 ret = 0;
456 out:
457 if (kmapped_page) {
458 flush_kernel_dcache_page(kmapped_page);
459 kunmap(kmapped_page);
460 put_arg_page(kmapped_page);
462 return ret;
466 * Like copy_strings, but get argv and its values from kernel memory.
468 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
470 int r;
471 mm_segment_t oldfs = get_fs();
472 set_fs(KERNEL_DS);
473 r = copy_strings(argc, (char __user * __user *)argv, bprm);
474 set_fs(oldfs);
475 return r;
477 EXPORT_SYMBOL(copy_strings_kernel);
479 #ifdef CONFIG_MMU
482 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
483 * the binfmt code determines where the new stack should reside, we shift it to
484 * its final location. The process proceeds as follows:
486 * 1) Use shift to calculate the new vma endpoints.
487 * 2) Extend vma to cover both the old and new ranges. This ensures the
488 * arguments passed to subsequent functions are consistent.
489 * 3) Move vma's page tables to the new range.
490 * 4) Free up any cleared pgd range.
491 * 5) Shrink the vma to cover only the new range.
493 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
495 struct mm_struct *mm = vma->vm_mm;
496 unsigned long old_start = vma->vm_start;
497 unsigned long old_end = vma->vm_end;
498 unsigned long length = old_end - old_start;
499 unsigned long new_start = old_start - shift;
500 unsigned long new_end = old_end - shift;
501 struct mmu_gather *tlb;
503 BUG_ON(new_start > new_end);
506 * ensure there are no vmas between where we want to go
507 * and where we are
509 if (vma != find_vma(mm, new_start))
510 return -EFAULT;
513 * cover the whole range: [new_start, old_end)
515 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
518 * move the page tables downwards, on failure we rely on
519 * process cleanup to remove whatever mess we made.
521 if (length != move_page_tables(vma, old_start,
522 vma, new_start, length))
523 return -ENOMEM;
525 lru_add_drain();
526 tlb = tlb_gather_mmu(mm, 0);
527 if (new_end > old_start) {
529 * when the old and new regions overlap clear from new_end.
531 free_pgd_range(&tlb, new_end, old_end, new_end,
532 vma->vm_next ? vma->vm_next->vm_start : 0);
533 } else {
535 * otherwise, clean from old_start; this is done to not touch
536 * the address space in [new_end, old_start) some architectures
537 * have constraints on va-space that make this illegal (IA64) -
538 * for the others its just a little faster.
540 free_pgd_range(&tlb, old_start, old_end, new_end,
541 vma->vm_next ? vma->vm_next->vm_start : 0);
543 tlb_finish_mmu(tlb, new_end, old_end);
546 * shrink the vma to just the new range.
548 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
550 return 0;
553 #define EXTRA_STACK_VM_PAGES 20 /* random */
556 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
557 * the stack is optionally relocated, and some extra space is added.
559 int setup_arg_pages(struct linux_binprm *bprm,
560 unsigned long stack_top,
561 int executable_stack)
563 unsigned long ret;
564 unsigned long stack_shift;
565 struct mm_struct *mm = current->mm;
566 struct vm_area_struct *vma = bprm->vma;
567 struct vm_area_struct *prev = NULL;
568 unsigned long vm_flags;
569 unsigned long stack_base;
571 #ifdef CONFIG_STACK_GROWSUP
572 /* Limit stack size to 1GB */
573 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
574 if (stack_base > (1 << 30))
575 stack_base = 1 << 30;
577 /* Make sure we didn't let the argument array grow too large. */
578 if (vma->vm_end - vma->vm_start > stack_base)
579 return -ENOMEM;
581 stack_base = PAGE_ALIGN(stack_top - stack_base);
583 stack_shift = vma->vm_start - stack_base;
584 mm->arg_start = bprm->p - stack_shift;
585 bprm->p = vma->vm_end - stack_shift;
586 #else
587 stack_top = arch_align_stack(stack_top);
588 stack_top = PAGE_ALIGN(stack_top);
589 stack_shift = vma->vm_end - stack_top;
591 bprm->p -= stack_shift;
592 mm->arg_start = bprm->p;
593 #endif
595 if (bprm->loader)
596 bprm->loader -= stack_shift;
597 bprm->exec -= stack_shift;
599 down_write(&mm->mmap_sem);
600 vm_flags = vma->vm_flags;
603 * Adjust stack execute permissions; explicitly enable for
604 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
605 * (arch default) otherwise.
607 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
608 vm_flags |= VM_EXEC;
609 else if (executable_stack == EXSTACK_DISABLE_X)
610 vm_flags &= ~VM_EXEC;
611 vm_flags |= mm->def_flags;
613 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
614 vm_flags);
615 if (ret)
616 goto out_unlock;
617 BUG_ON(prev != vma);
619 /* Move stack pages down in memory. */
620 if (stack_shift) {
621 ret = shift_arg_pages(vma, stack_shift);
622 if (ret) {
623 up_write(&mm->mmap_sem);
624 return ret;
628 #ifdef CONFIG_STACK_GROWSUP
629 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
630 #else
631 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
632 #endif
633 ret = expand_stack(vma, stack_base);
634 if (ret)
635 ret = -EFAULT;
637 out_unlock:
638 up_write(&mm->mmap_sem);
639 return 0;
641 EXPORT_SYMBOL(setup_arg_pages);
643 #endif /* CONFIG_MMU */
645 struct file *open_exec(const char *name)
647 struct nameidata nd;
648 int err;
649 struct file *file;
651 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
652 file = ERR_PTR(err);
654 if (!err) {
655 struct inode *inode = nd.path.dentry->d_inode;
656 file = ERR_PTR(-EACCES);
657 if (S_ISREG(inode->i_mode)) {
658 int err = vfs_permission(&nd, MAY_EXEC);
659 file = ERR_PTR(err);
660 if (!err) {
661 file = nameidata_to_filp(&nd,
662 O_RDONLY|O_LARGEFILE);
663 if (!IS_ERR(file)) {
664 err = deny_write_access(file);
665 if (err) {
666 fput(file);
667 file = ERR_PTR(err);
670 out:
671 return file;
674 release_open_intent(&nd);
675 path_put(&nd.path);
677 goto out;
680 EXPORT_SYMBOL(open_exec);
682 int kernel_read(struct file *file, unsigned long offset,
683 char *addr, unsigned long count)
685 mm_segment_t old_fs;
686 loff_t pos = offset;
687 int result;
689 old_fs = get_fs();
690 set_fs(get_ds());
691 /* The cast to a user pointer is valid due to the set_fs() */
692 result = vfs_read(file, (void __user *)addr, count, &pos);
693 set_fs(old_fs);
694 return result;
697 EXPORT_SYMBOL(kernel_read);
699 static int exec_mmap(struct mm_struct *mm)
701 struct task_struct *tsk;
702 struct mm_struct * old_mm, *active_mm;
704 /* Notify parent that we're no longer interested in the old VM */
705 tsk = current;
706 old_mm = current->mm;
707 mm_release(tsk, old_mm);
709 if (old_mm) {
711 * Make sure that if there is a core dump in progress
712 * for the old mm, we get out and die instead of going
713 * through with the exec. We must hold mmap_sem around
714 * checking core_waiters and changing tsk->mm. The
715 * core-inducing thread will increment core_waiters for
716 * each thread whose ->mm == old_mm.
718 down_read(&old_mm->mmap_sem);
719 if (unlikely(old_mm->core_waiters)) {
720 up_read(&old_mm->mmap_sem);
721 return -EINTR;
724 task_lock(tsk);
725 active_mm = tsk->active_mm;
726 tsk->mm = mm;
727 tsk->active_mm = mm;
728 activate_mm(active_mm, mm);
729 task_unlock(tsk);
730 arch_pick_mmap_layout(mm);
731 if (old_mm) {
732 up_read(&old_mm->mmap_sem);
733 BUG_ON(active_mm != old_mm);
734 mmput(old_mm);
735 return 0;
737 mmdrop(active_mm);
738 return 0;
742 * This function makes sure the current process has its own signal table,
743 * so that flush_signal_handlers can later reset the handlers without
744 * disturbing other processes. (Other processes might share the signal
745 * table via the CLONE_SIGHAND option to clone().)
747 static int de_thread(struct task_struct *tsk)
749 struct signal_struct *sig = tsk->signal;
750 struct sighand_struct *oldsighand = tsk->sighand;
751 spinlock_t *lock = &oldsighand->siglock;
752 struct task_struct *leader = NULL;
753 int count;
755 if (thread_group_empty(tsk))
756 goto no_thread_group;
759 * Kill all other threads in the thread group.
760 * We must hold tasklist_lock to call zap_other_threads.
762 read_lock(&tasklist_lock);
763 spin_lock_irq(lock);
764 if (signal_group_exit(sig)) {
766 * Another group action in progress, just
767 * return so that the signal is processed.
769 spin_unlock_irq(lock);
770 read_unlock(&tasklist_lock);
771 return -EAGAIN;
775 * child_reaper ignores SIGKILL, change it now.
776 * Reparenting needs write_lock on tasklist_lock,
777 * so it is safe to do it under read_lock.
779 if (unlikely(tsk->group_leader == task_child_reaper(tsk)))
780 task_active_pid_ns(tsk)->child_reaper = tsk;
782 sig->group_exit_task = tsk;
783 zap_other_threads(tsk);
784 read_unlock(&tasklist_lock);
786 /* Account for the thread group leader hanging around: */
787 count = thread_group_leader(tsk) ? 1 : 2;
788 sig->notify_count = count;
789 while (atomic_read(&sig->count) > count) {
790 __set_current_state(TASK_UNINTERRUPTIBLE);
791 spin_unlock_irq(lock);
792 schedule();
793 spin_lock_irq(lock);
795 spin_unlock_irq(lock);
798 * At this point all other threads have exited, all we have to
799 * do is to wait for the thread group leader to become inactive,
800 * and to assume its PID:
802 if (!thread_group_leader(tsk)) {
803 leader = tsk->group_leader;
805 sig->notify_count = -1;
806 for (;;) {
807 write_lock_irq(&tasklist_lock);
808 if (likely(leader->exit_state))
809 break;
810 __set_current_state(TASK_UNINTERRUPTIBLE);
811 write_unlock_irq(&tasklist_lock);
812 schedule();
816 * The only record we have of the real-time age of a
817 * process, regardless of execs it's done, is start_time.
818 * All the past CPU time is accumulated in signal_struct
819 * from sister threads now dead. But in this non-leader
820 * exec, nothing survives from the original leader thread,
821 * whose birth marks the true age of this process now.
822 * When we take on its identity by switching to its PID, we
823 * also take its birthdate (always earlier than our own).
825 tsk->start_time = leader->start_time;
827 BUG_ON(!same_thread_group(leader, tsk));
828 BUG_ON(has_group_leader_pid(tsk));
830 * An exec() starts a new thread group with the
831 * TGID of the previous thread group. Rehash the
832 * two threads with a switched PID, and release
833 * the former thread group leader:
836 /* Become a process group leader with the old leader's pid.
837 * The old leader becomes a thread of the this thread group.
838 * Note: The old leader also uses this pid until release_task
839 * is called. Odd but simple and correct.
841 detach_pid(tsk, PIDTYPE_PID);
842 tsk->pid = leader->pid;
843 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
844 transfer_pid(leader, tsk, PIDTYPE_PGID);
845 transfer_pid(leader, tsk, PIDTYPE_SID);
846 list_replace_rcu(&leader->tasks, &tsk->tasks);
848 tsk->group_leader = tsk;
849 leader->group_leader = tsk;
851 tsk->exit_signal = SIGCHLD;
853 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
854 leader->exit_state = EXIT_DEAD;
856 write_unlock_irq(&tasklist_lock);
859 sig->group_exit_task = NULL;
860 sig->notify_count = 0;
862 no_thread_group:
863 exit_itimers(sig);
864 if (leader)
865 release_task(leader);
867 if (atomic_read(&oldsighand->count) != 1) {
868 struct sighand_struct *newsighand;
870 * This ->sighand is shared with the CLONE_SIGHAND
871 * but not CLONE_THREAD task, switch to the new one.
873 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874 if (!newsighand)
875 return -ENOMEM;
877 atomic_set(&newsighand->count, 1);
878 memcpy(newsighand->action, oldsighand->action,
879 sizeof(newsighand->action));
881 write_lock_irq(&tasklist_lock);
882 spin_lock(&oldsighand->siglock);
883 rcu_assign_pointer(tsk->sighand, newsighand);
884 spin_unlock(&oldsighand->siglock);
885 write_unlock_irq(&tasklist_lock);
887 __cleanup_sighand(oldsighand);
890 BUG_ON(!thread_group_leader(tsk));
891 return 0;
895 * These functions flushes out all traces of the currently running executable
896 * so that a new one can be started
898 static void flush_old_files(struct files_struct * files)
900 long j = -1;
901 struct fdtable *fdt;
903 spin_lock(&files->file_lock);
904 for (;;) {
905 unsigned long set, i;
907 j++;
908 i = j * __NFDBITS;
909 fdt = files_fdtable(files);
910 if (i >= fdt->max_fds)
911 break;
912 set = fdt->close_on_exec->fds_bits[j];
913 if (!set)
914 continue;
915 fdt->close_on_exec->fds_bits[j] = 0;
916 spin_unlock(&files->file_lock);
917 for ( ; set ; i++,set >>= 1) {
918 if (set & 1) {
919 sys_close(i);
922 spin_lock(&files->file_lock);
925 spin_unlock(&files->file_lock);
928 char *get_task_comm(char *buf, struct task_struct *tsk)
930 /* buf must be at least sizeof(tsk->comm) in size */
931 task_lock(tsk);
932 strncpy(buf, tsk->comm, sizeof(tsk->comm));
933 task_unlock(tsk);
934 return buf;
937 void set_task_comm(struct task_struct *tsk, char *buf)
939 task_lock(tsk);
940 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941 task_unlock(tsk);
944 int flush_old_exec(struct linux_binprm * bprm)
946 char * name;
947 int i, ch, retval;
948 struct files_struct *files;
949 char tcomm[sizeof(current->comm)];
952 * Make sure we have a private signal table and that
953 * we are unassociated from the previous thread group.
955 retval = de_thread(current);
956 if (retval)
957 goto out;
960 * Make sure we have private file handles. Ask the
961 * fork helper to do the work for us and the exit
962 * helper to do the cleanup of the old one.
964 files = current->files; /* refcounted so safe to hold */
965 retval = unshare_files();
966 if (retval)
967 goto out;
969 * Release all of the old mmap stuff
971 retval = exec_mmap(bprm->mm);
972 if (retval)
973 goto mmap_failed;
975 bprm->mm = NULL; /* We're using it now */
977 /* This is the point of no return */
978 put_files_struct(files);
980 current->sas_ss_sp = current->sas_ss_size = 0;
982 if (current->euid == current->uid && current->egid == current->gid)
983 set_dumpable(current->mm, 1);
984 else
985 set_dumpable(current->mm, suid_dumpable);
987 name = bprm->filename;
989 /* Copies the binary name from after last slash */
990 for (i=0; (ch = *(name++)) != '\0';) {
991 if (ch == '/')
992 i = 0; /* overwrite what we wrote */
993 else
994 if (i < (sizeof(tcomm) - 1))
995 tcomm[i++] = ch;
997 tcomm[i] = '\0';
998 set_task_comm(current, tcomm);
1000 current->flags &= ~PF_RANDOMIZE;
1001 flush_thread();
1003 /* Set the new mm task size. We have to do that late because it may
1004 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 * some architectures like powerpc
1007 current->mm->task_size = TASK_SIZE;
1009 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1010 suid_keys(current);
1011 set_dumpable(current->mm, suid_dumpable);
1012 current->pdeath_signal = 0;
1013 } else if (file_permission(bprm->file, MAY_READ) ||
1014 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1015 suid_keys(current);
1016 set_dumpable(current->mm, suid_dumpable);
1019 /* An exec changes our domain. We are no longer part of the thread
1020 group */
1022 current->self_exec_id++;
1024 flush_signal_handlers(current, 0);
1025 flush_old_files(current->files);
1027 return 0;
1029 mmap_failed:
1030 reset_files_struct(current, files);
1031 out:
1032 return retval;
1035 EXPORT_SYMBOL(flush_old_exec);
1038 * Fill the binprm structure from the inode.
1039 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1041 int prepare_binprm(struct linux_binprm *bprm)
1043 int mode;
1044 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1045 int retval;
1047 mode = inode->i_mode;
1048 if (bprm->file->f_op == NULL)
1049 return -EACCES;
1051 bprm->e_uid = current->euid;
1052 bprm->e_gid = current->egid;
1054 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1055 /* Set-uid? */
1056 if (mode & S_ISUID) {
1057 current->personality &= ~PER_CLEAR_ON_SETID;
1058 bprm->e_uid = inode->i_uid;
1061 /* Set-gid? */
1063 * If setgid is set but no group execute bit then this
1064 * is a candidate for mandatory locking, not a setgid
1065 * executable.
1067 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1068 current->personality &= ~PER_CLEAR_ON_SETID;
1069 bprm->e_gid = inode->i_gid;
1073 /* fill in binprm security blob */
1074 retval = security_bprm_set(bprm);
1075 if (retval)
1076 return retval;
1078 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1079 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1082 EXPORT_SYMBOL(prepare_binprm);
1084 static int unsafe_exec(struct task_struct *p)
1086 int unsafe = 0;
1087 if (p->ptrace & PT_PTRACED) {
1088 if (p->ptrace & PT_PTRACE_CAP)
1089 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1090 else
1091 unsafe |= LSM_UNSAFE_PTRACE;
1093 if (atomic_read(&p->fs->count) > 1 ||
1094 atomic_read(&p->files->count) > 1 ||
1095 atomic_read(&p->sighand->count) > 1)
1096 unsafe |= LSM_UNSAFE_SHARE;
1098 return unsafe;
1101 void compute_creds(struct linux_binprm *bprm)
1103 int unsafe;
1105 if (bprm->e_uid != current->uid) {
1106 suid_keys(current);
1107 current->pdeath_signal = 0;
1109 exec_keys(current);
1111 task_lock(current);
1112 unsafe = unsafe_exec(current);
1113 security_bprm_apply_creds(bprm, unsafe);
1114 task_unlock(current);
1115 security_bprm_post_apply_creds(bprm);
1117 EXPORT_SYMBOL(compute_creds);
1120 * Arguments are '\0' separated strings found at the location bprm->p
1121 * points to; chop off the first by relocating brpm->p to right after
1122 * the first '\0' encountered.
1124 int remove_arg_zero(struct linux_binprm *bprm)
1126 int ret = 0;
1127 unsigned long offset;
1128 char *kaddr;
1129 struct page *page;
1131 if (!bprm->argc)
1132 return 0;
1134 do {
1135 offset = bprm->p & ~PAGE_MASK;
1136 page = get_arg_page(bprm, bprm->p, 0);
1137 if (!page) {
1138 ret = -EFAULT;
1139 goto out;
1141 kaddr = kmap_atomic(page, KM_USER0);
1143 for (; offset < PAGE_SIZE && kaddr[offset];
1144 offset++, bprm->p++)
1147 kunmap_atomic(kaddr, KM_USER0);
1148 put_arg_page(page);
1150 if (offset == PAGE_SIZE)
1151 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1152 } while (offset == PAGE_SIZE);
1154 bprm->p++;
1155 bprm->argc--;
1156 ret = 0;
1158 out:
1159 return ret;
1161 EXPORT_SYMBOL(remove_arg_zero);
1164 * cycle the list of binary formats handler, until one recognizes the image
1166 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1168 int try,retval;
1169 struct linux_binfmt *fmt;
1170 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1171 /* handle /sbin/loader.. */
1173 struct exec * eh = (struct exec *) bprm->buf;
1175 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1176 (eh->fh.f_flags & 0x3000) == 0x3000)
1178 struct file * file;
1179 unsigned long loader;
1181 allow_write_access(bprm->file);
1182 fput(bprm->file);
1183 bprm->file = NULL;
1185 loader = bprm->vma->vm_end - sizeof(void *);
1187 file = open_exec("/sbin/loader");
1188 retval = PTR_ERR(file);
1189 if (IS_ERR(file))
1190 return retval;
1192 /* Remember if the application is TASO. */
1193 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1195 bprm->file = file;
1196 bprm->loader = loader;
1197 retval = prepare_binprm(bprm);
1198 if (retval<0)
1199 return retval;
1200 /* should call search_binary_handler recursively here,
1201 but it does not matter */
1204 #endif
1205 retval = security_bprm_check(bprm);
1206 if (retval)
1207 return retval;
1209 /* kernel module loader fixup */
1210 /* so we don't try to load run modprobe in kernel space. */
1211 set_fs(USER_DS);
1213 retval = audit_bprm(bprm);
1214 if (retval)
1215 return retval;
1217 retval = -ENOENT;
1218 for (try=0; try<2; try++) {
1219 read_lock(&binfmt_lock);
1220 list_for_each_entry(fmt, &formats, lh) {
1221 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1222 if (!fn)
1223 continue;
1224 if (!try_module_get(fmt->module))
1225 continue;
1226 read_unlock(&binfmt_lock);
1227 retval = fn(bprm, regs);
1228 if (retval >= 0) {
1229 put_binfmt(fmt);
1230 allow_write_access(bprm->file);
1231 if (bprm->file)
1232 fput(bprm->file);
1233 bprm->file = NULL;
1234 current->did_exec = 1;
1235 proc_exec_connector(current);
1236 return retval;
1238 read_lock(&binfmt_lock);
1239 put_binfmt(fmt);
1240 if (retval != -ENOEXEC || bprm->mm == NULL)
1241 break;
1242 if (!bprm->file) {
1243 read_unlock(&binfmt_lock);
1244 return retval;
1247 read_unlock(&binfmt_lock);
1248 if (retval != -ENOEXEC || bprm->mm == NULL) {
1249 break;
1250 #ifdef CONFIG_KMOD
1251 }else{
1252 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1253 if (printable(bprm->buf[0]) &&
1254 printable(bprm->buf[1]) &&
1255 printable(bprm->buf[2]) &&
1256 printable(bprm->buf[3]))
1257 break; /* -ENOEXEC */
1258 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1259 #endif
1262 return retval;
1265 EXPORT_SYMBOL(search_binary_handler);
1268 * sys_execve() executes a new program.
1270 int do_execve(char * filename,
1271 char __user *__user *argv,
1272 char __user *__user *envp,
1273 struct pt_regs * regs)
1275 struct linux_binprm *bprm;
1276 struct file *file;
1277 unsigned long env_p;
1278 int retval;
1280 retval = -ENOMEM;
1281 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1282 if (!bprm)
1283 goto out_ret;
1285 file = open_exec(filename);
1286 retval = PTR_ERR(file);
1287 if (IS_ERR(file))
1288 goto out_kfree;
1290 sched_exec();
1292 bprm->file = file;
1293 bprm->filename = filename;
1294 bprm->interp = filename;
1296 retval = bprm_mm_init(bprm);
1297 if (retval)
1298 goto out_file;
1300 bprm->argc = count(argv, MAX_ARG_STRINGS);
1301 if ((retval = bprm->argc) < 0)
1302 goto out_mm;
1304 bprm->envc = count(envp, MAX_ARG_STRINGS);
1305 if ((retval = bprm->envc) < 0)
1306 goto out_mm;
1308 retval = security_bprm_alloc(bprm);
1309 if (retval)
1310 goto out;
1312 retval = prepare_binprm(bprm);
1313 if (retval < 0)
1314 goto out;
1316 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1317 if (retval < 0)
1318 goto out;
1320 bprm->exec = bprm->p;
1321 retval = copy_strings(bprm->envc, envp, bprm);
1322 if (retval < 0)
1323 goto out;
1325 env_p = bprm->p;
1326 retval = copy_strings(bprm->argc, argv, bprm);
1327 if (retval < 0)
1328 goto out;
1329 bprm->argv_len = env_p - bprm->p;
1331 retval = search_binary_handler(bprm,regs);
1332 if (retval >= 0) {
1333 /* execve success */
1334 free_arg_pages(bprm);
1335 security_bprm_free(bprm);
1336 acct_update_integrals(current);
1337 kfree(bprm);
1338 return retval;
1341 out:
1342 free_arg_pages(bprm);
1343 if (bprm->security)
1344 security_bprm_free(bprm);
1346 out_mm:
1347 if (bprm->mm)
1348 mmput (bprm->mm);
1350 out_file:
1351 if (bprm->file) {
1352 allow_write_access(bprm->file);
1353 fput(bprm->file);
1355 out_kfree:
1356 kfree(bprm);
1358 out_ret:
1359 return retval;
1362 int set_binfmt(struct linux_binfmt *new)
1364 struct linux_binfmt *old = current->binfmt;
1366 if (new) {
1367 if (!try_module_get(new->module))
1368 return -1;
1370 current->binfmt = new;
1371 if (old)
1372 module_put(old->module);
1373 return 0;
1376 EXPORT_SYMBOL(set_binfmt);
1378 /* format_corename will inspect the pattern parameter, and output a
1379 * name into corename, which must have space for at least
1380 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1382 static int format_corename(char *corename, const char *pattern, long signr)
1384 const char *pat_ptr = pattern;
1385 char *out_ptr = corename;
1386 char *const out_end = corename + CORENAME_MAX_SIZE;
1387 int rc;
1388 int pid_in_pattern = 0;
1389 int ispipe = 0;
1391 if (*pattern == '|')
1392 ispipe = 1;
1394 /* Repeat as long as we have more pattern to process and more output
1395 space */
1396 while (*pat_ptr) {
1397 if (*pat_ptr != '%') {
1398 if (out_ptr == out_end)
1399 goto out;
1400 *out_ptr++ = *pat_ptr++;
1401 } else {
1402 switch (*++pat_ptr) {
1403 case 0:
1404 goto out;
1405 /* Double percent, output one percent */
1406 case '%':
1407 if (out_ptr == out_end)
1408 goto out;
1409 *out_ptr++ = '%';
1410 break;
1411 /* pid */
1412 case 'p':
1413 pid_in_pattern = 1;
1414 rc = snprintf(out_ptr, out_end - out_ptr,
1415 "%d", task_tgid_vnr(current));
1416 if (rc > out_end - out_ptr)
1417 goto out;
1418 out_ptr += rc;
1419 break;
1420 /* uid */
1421 case 'u':
1422 rc = snprintf(out_ptr, out_end - out_ptr,
1423 "%d", current->uid);
1424 if (rc > out_end - out_ptr)
1425 goto out;
1426 out_ptr += rc;
1427 break;
1428 /* gid */
1429 case 'g':
1430 rc = snprintf(out_ptr, out_end - out_ptr,
1431 "%d", current->gid);
1432 if (rc > out_end - out_ptr)
1433 goto out;
1434 out_ptr += rc;
1435 break;
1436 /* signal that caused the coredump */
1437 case 's':
1438 rc = snprintf(out_ptr, out_end - out_ptr,
1439 "%ld", signr);
1440 if (rc > out_end - out_ptr)
1441 goto out;
1442 out_ptr += rc;
1443 break;
1444 /* UNIX time of coredump */
1445 case 't': {
1446 struct timeval tv;
1447 do_gettimeofday(&tv);
1448 rc = snprintf(out_ptr, out_end - out_ptr,
1449 "%lu", tv.tv_sec);
1450 if (rc > out_end - out_ptr)
1451 goto out;
1452 out_ptr += rc;
1453 break;
1455 /* hostname */
1456 case 'h':
1457 down_read(&uts_sem);
1458 rc = snprintf(out_ptr, out_end - out_ptr,
1459 "%s", utsname()->nodename);
1460 up_read(&uts_sem);
1461 if (rc > out_end - out_ptr)
1462 goto out;
1463 out_ptr += rc;
1464 break;
1465 /* executable */
1466 case 'e':
1467 rc = snprintf(out_ptr, out_end - out_ptr,
1468 "%s", current->comm);
1469 if (rc > out_end - out_ptr)
1470 goto out;
1471 out_ptr += rc;
1472 break;
1473 /* core limit size */
1474 case 'c':
1475 rc = snprintf(out_ptr, out_end - out_ptr,
1476 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1477 if (rc > out_end - out_ptr)
1478 goto out;
1479 out_ptr += rc;
1480 break;
1481 default:
1482 break;
1484 ++pat_ptr;
1487 /* Backward compatibility with core_uses_pid:
1489 * If core_pattern does not include a %p (as is the default)
1490 * and core_uses_pid is set, then .%pid will be appended to
1491 * the filename. Do not do this for piped commands. */
1492 if (!ispipe && !pid_in_pattern
1493 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1494 rc = snprintf(out_ptr, out_end - out_ptr,
1495 ".%d", task_tgid_vnr(current));
1496 if (rc > out_end - out_ptr)
1497 goto out;
1498 out_ptr += rc;
1500 out:
1501 *out_ptr = 0;
1502 return ispipe;
1505 static void zap_process(struct task_struct *start)
1507 struct task_struct *t;
1509 start->signal->flags = SIGNAL_GROUP_EXIT;
1510 start->signal->group_stop_count = 0;
1512 t = start;
1513 do {
1514 if (t != current && t->mm) {
1515 t->mm->core_waiters++;
1516 sigaddset(&t->pending.signal, SIGKILL);
1517 signal_wake_up(t, 1);
1519 } while ((t = next_thread(t)) != start);
1522 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1523 int exit_code)
1525 struct task_struct *g, *p;
1526 unsigned long flags;
1527 int err = -EAGAIN;
1529 spin_lock_irq(&tsk->sighand->siglock);
1530 if (!signal_group_exit(tsk->signal)) {
1531 tsk->signal->group_exit_code = exit_code;
1532 zap_process(tsk);
1533 err = 0;
1535 spin_unlock_irq(&tsk->sighand->siglock);
1536 if (err)
1537 return err;
1539 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1540 goto done;
1542 rcu_read_lock();
1543 for_each_process(g) {
1544 if (g == tsk->group_leader)
1545 continue;
1547 p = g;
1548 do {
1549 if (p->mm) {
1550 if (p->mm == mm) {
1552 * p->sighand can't disappear, but
1553 * may be changed by de_thread()
1555 lock_task_sighand(p, &flags);
1556 zap_process(p);
1557 unlock_task_sighand(p, &flags);
1559 break;
1561 } while ((p = next_thread(p)) != g);
1563 rcu_read_unlock();
1564 done:
1565 return mm->core_waiters;
1568 static int coredump_wait(int exit_code)
1570 struct task_struct *tsk = current;
1571 struct mm_struct *mm = tsk->mm;
1572 struct completion startup_done;
1573 struct completion *vfork_done;
1574 int core_waiters;
1576 init_completion(&mm->core_done);
1577 init_completion(&startup_done);
1578 mm->core_startup_done = &startup_done;
1580 core_waiters = zap_threads(tsk, mm, exit_code);
1581 up_write(&mm->mmap_sem);
1583 if (unlikely(core_waiters < 0))
1584 goto fail;
1587 * Make sure nobody is waiting for us to release the VM,
1588 * otherwise we can deadlock when we wait on each other
1590 vfork_done = tsk->vfork_done;
1591 if (vfork_done) {
1592 tsk->vfork_done = NULL;
1593 complete(vfork_done);
1596 if (core_waiters)
1597 wait_for_completion(&startup_done);
1598 fail:
1599 BUG_ON(mm->core_waiters);
1600 return core_waiters;
1604 * set_dumpable converts traditional three-value dumpable to two flags and
1605 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1606 * these bits are not changed atomically. So get_dumpable can observe the
1607 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1608 * return either old dumpable or new one by paying attention to the order of
1609 * modifying the bits.
1611 * dumpable | mm->flags (binary)
1612 * old new | initial interim final
1613 * ---------+-----------------------
1614 * 0 1 | 00 01 01
1615 * 0 2 | 00 10(*) 11
1616 * 1 0 | 01 00 00
1617 * 1 2 | 01 11 11
1618 * 2 0 | 11 10(*) 00
1619 * 2 1 | 11 11 01
1621 * (*) get_dumpable regards interim value of 10 as 11.
1623 void set_dumpable(struct mm_struct *mm, int value)
1625 switch (value) {
1626 case 0:
1627 clear_bit(MMF_DUMPABLE, &mm->flags);
1628 smp_wmb();
1629 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1630 break;
1631 case 1:
1632 set_bit(MMF_DUMPABLE, &mm->flags);
1633 smp_wmb();
1634 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1635 break;
1636 case 2:
1637 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1638 smp_wmb();
1639 set_bit(MMF_DUMPABLE, &mm->flags);
1640 break;
1644 int get_dumpable(struct mm_struct *mm)
1646 int ret;
1648 ret = mm->flags & 0x3;
1649 return (ret >= 2) ? 2 : ret;
1652 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1654 char corename[CORENAME_MAX_SIZE + 1];
1655 struct mm_struct *mm = current->mm;
1656 struct linux_binfmt * binfmt;
1657 struct inode * inode;
1658 struct file * file;
1659 int retval = 0;
1660 int fsuid = current->fsuid;
1661 int flag = 0;
1662 int ispipe = 0;
1663 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1664 char **helper_argv = NULL;
1665 int helper_argc = 0;
1666 char *delimit;
1668 audit_core_dumps(signr);
1670 binfmt = current->binfmt;
1671 if (!binfmt || !binfmt->core_dump)
1672 goto fail;
1673 down_write(&mm->mmap_sem);
1675 * If another thread got here first, or we are not dumpable, bail out.
1677 if (mm->core_waiters || !get_dumpable(mm)) {
1678 up_write(&mm->mmap_sem);
1679 goto fail;
1683 * We cannot trust fsuid as being the "true" uid of the
1684 * process nor do we know its entire history. We only know it
1685 * was tainted so we dump it as root in mode 2.
1687 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1688 flag = O_EXCL; /* Stop rewrite attacks */
1689 current->fsuid = 0; /* Dump root private */
1692 retval = coredump_wait(exit_code);
1693 if (retval < 0)
1694 goto fail;
1697 * Clear any false indication of pending signals that might
1698 * be seen by the filesystem code called to write the core file.
1700 clear_thread_flag(TIF_SIGPENDING);
1703 * lock_kernel() because format_corename() is controlled by sysctl, which
1704 * uses lock_kernel()
1706 lock_kernel();
1707 ispipe = format_corename(corename, core_pattern, signr);
1708 unlock_kernel();
1710 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1711 * to a pipe. Since we're not writing directly to the filesystem
1712 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1713 * created unless the pipe reader choses to write out the core file
1714 * at which point file size limits and permissions will be imposed
1715 * as it does with any other process
1717 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1718 goto fail_unlock;
1720 if (ispipe) {
1721 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1722 /* Terminate the string before the first option */
1723 delimit = strchr(corename, ' ');
1724 if (delimit)
1725 *delimit = '\0';
1726 delimit = strrchr(helper_argv[0], '/');
1727 if (delimit)
1728 delimit++;
1729 else
1730 delimit = helper_argv[0];
1731 if (!strcmp(delimit, current->comm)) {
1732 printk(KERN_NOTICE "Recursive core dump detected, "
1733 "aborting\n");
1734 goto fail_unlock;
1737 core_limit = RLIM_INFINITY;
1739 /* SIGPIPE can happen, but it's just never processed */
1740 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1741 &file)) {
1742 printk(KERN_INFO "Core dump to %s pipe failed\n",
1743 corename);
1744 goto fail_unlock;
1746 } else
1747 file = filp_open(corename,
1748 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1749 0600);
1750 if (IS_ERR(file))
1751 goto fail_unlock;
1752 inode = file->f_path.dentry->d_inode;
1753 if (inode->i_nlink > 1)
1754 goto close_fail; /* multiple links - don't dump */
1755 if (!ispipe && d_unhashed(file->f_path.dentry))
1756 goto close_fail;
1758 /* AK: actually i see no reason to not allow this for named pipes etc.,
1759 but keep the previous behaviour for now. */
1760 if (!ispipe && !S_ISREG(inode->i_mode))
1761 goto close_fail;
1763 * Dont allow local users get cute and trick others to coredump
1764 * into their pre-created files:
1766 if (inode->i_uid != current->fsuid)
1767 goto close_fail;
1768 if (!file->f_op)
1769 goto close_fail;
1770 if (!file->f_op->write)
1771 goto close_fail;
1772 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1773 goto close_fail;
1775 retval = binfmt->core_dump(signr, regs, file, core_limit);
1777 if (retval)
1778 current->signal->group_exit_code |= 0x80;
1779 close_fail:
1780 filp_close(file, NULL);
1781 fail_unlock:
1782 if (helper_argv)
1783 argv_free(helper_argv);
1785 current->fsuid = fsuid;
1786 complete_all(&mm->core_done);
1787 fail:
1788 return retval;