4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/cpu_acct.h>
56 #include <linux/kthread.h>
57 #include <linux/seq_file.h>
58 #include <linux/sysctl.h>
59 #include <linux/syscalls.h>
60 #include <linux/times.h>
61 #include <linux/tsacct_kern.h>
62 #include <linux/kprobes.h>
63 #include <linux/delayacct.h>
64 #include <linux/reciprocal_div.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
69 #include <asm/irq_regs.h>
72 * Scheduler clock - returns current time in nanosec units.
73 * This is default implementation.
74 * Architectures and sub-architectures can override this.
76 unsigned long long __attribute__((weak
)) sched_clock(void)
78 return (unsigned long long)jiffies
* (1000000000 / HZ
);
82 * Convert user-nice values [ -20 ... 0 ... 19 ]
83 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
87 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
88 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91 * 'User priority' is the nice value converted to something we
92 * can work with better when scaling various scheduler parameters,
93 * it's a [ 0 ... 39 ] range.
95 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
96 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
97 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100 * Some helpers for converting nanosecond timing to jiffy resolution
102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
103 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
123 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
132 sg
->__cpu_power
+= val
;
133 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
137 static inline int rt_policy(int policy
)
139 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
144 static inline int task_has_rt_policy(struct task_struct
*p
)
146 return rt_policy(p
->policy
);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array
{
153 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
154 struct list_head queue
[MAX_RT_PRIO
];
157 #ifdef CONFIG_FAIR_GROUP_SCHED
159 #include <linux/cgroup.h>
163 /* task group related information */
165 #ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css
;
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity
**se
;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq
**cfs_rq
;
172 unsigned long shares
;
173 /* spinlock to serialize modification to shares */
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
182 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
183 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group
= {
189 .se
= init_sched_entity_p
,
190 .cfs_rq
= init_cfs_rq_p
,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
199 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
201 /* return group to which a task belongs */
202 static inline struct task_group
*task_group(struct task_struct
*p
)
204 struct task_group
*tg
;
206 #ifdef CONFIG_FAIR_USER_SCHED
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
210 struct task_group
, css
);
212 tg
= &init_task_group
;
218 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219 static inline void set_task_cfs_rq(struct task_struct
*p
)
221 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[task_cpu(p
)];
222 p
->se
.parent
= task_group(p
)->se
[task_cpu(p
)];
227 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
229 #endif /* CONFIG_FAIR_GROUP_SCHED */
231 /* CFS-related fields in a runqueue */
233 struct load_weight load
;
234 unsigned long nr_running
;
239 struct rb_root tasks_timeline
;
240 struct rb_node
*rb_leftmost
;
241 struct rb_node
*rb_load_balance_curr
;
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
245 struct sched_entity
*curr
;
247 unsigned long nr_spread_over
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
260 struct task_group
*tg
; /* group that "owns" this runqueue */
265 /* Real-Time classes' related field in a runqueue: */
267 struct rt_prio_array active
;
268 int rt_load_balance_idx
;
269 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
273 * This is the main, per-CPU runqueue data structure.
275 * Locking rule: those places that want to lock multiple runqueues
276 * (such as the load balancing or the thread migration code), lock
277 * acquire operations must be ordered by ascending &runqueue.
284 * nr_running and cpu_load should be in the same cacheline because
285 * remote CPUs use both these fields when doing load calculation.
287 unsigned long nr_running
;
288 #define CPU_LOAD_IDX_MAX 5
289 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
290 unsigned char idle_at_tick
;
292 unsigned char in_nohz_recently
;
294 /* capture load from *all* tasks on this cpu: */
295 struct load_weight load
;
296 unsigned long nr_load_updates
;
300 #ifdef CONFIG_FAIR_GROUP_SCHED
301 /* list of leaf cfs_rq on this cpu: */
302 struct list_head leaf_cfs_rq_list
;
307 * This is part of a global counter where only the total sum
308 * over all CPUs matters. A task can increase this counter on
309 * one CPU and if it got migrated afterwards it may decrease
310 * it on another CPU. Always updated under the runqueue lock:
312 unsigned long nr_uninterruptible
;
314 struct task_struct
*curr
, *idle
;
315 unsigned long next_balance
;
316 struct mm_struct
*prev_mm
;
318 u64 clock
, prev_clock_raw
;
321 unsigned int clock_warps
, clock_overflows
;
323 unsigned int clock_deep_idle_events
;
329 struct sched_domain
*sd
;
331 /* For active balancing */
334 /* cpu of this runqueue: */
337 struct task_struct
*migration_thread
;
338 struct list_head migration_queue
;
341 #ifdef CONFIG_SCHEDSTATS
343 struct sched_info rq_sched_info
;
345 /* sys_sched_yield() stats */
346 unsigned int yld_exp_empty
;
347 unsigned int yld_act_empty
;
348 unsigned int yld_both_empty
;
349 unsigned int yld_count
;
351 /* schedule() stats */
352 unsigned int sched_switch
;
353 unsigned int sched_count
;
354 unsigned int sched_goidle
;
356 /* try_to_wake_up() stats */
357 unsigned int ttwu_count
;
358 unsigned int ttwu_local
;
361 unsigned int bkl_count
;
363 struct lock_class_key rq_lock_key
;
366 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
367 static DEFINE_MUTEX(sched_hotcpu_mutex
);
369 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
371 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
374 static inline int cpu_of(struct rq
*rq
)
384 * Update the per-runqueue clock, as finegrained as the platform can give
385 * us, but without assuming monotonicity, etc.:
387 static void __update_rq_clock(struct rq
*rq
)
389 u64 prev_raw
= rq
->prev_clock_raw
;
390 u64 now
= sched_clock();
391 s64 delta
= now
- prev_raw
;
392 u64 clock
= rq
->clock
;
394 #ifdef CONFIG_SCHED_DEBUG
395 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
398 * Protect against sched_clock() occasionally going backwards:
400 if (unlikely(delta
< 0)) {
405 * Catch too large forward jumps too:
407 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
408 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
409 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
412 rq
->clock_overflows
++;
414 if (unlikely(delta
> rq
->clock_max_delta
))
415 rq
->clock_max_delta
= delta
;
420 rq
->prev_clock_raw
= now
;
424 static void update_rq_clock(struct rq
*rq
)
426 if (likely(smp_processor_id() == cpu_of(rq
)))
427 __update_rq_clock(rq
);
431 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
432 * See detach_destroy_domains: synchronize_sched for details.
434 * The domain tree of any CPU may only be accessed from within
435 * preempt-disabled sections.
437 #define for_each_domain(cpu, __sd) \
438 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
440 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
441 #define this_rq() (&__get_cpu_var(runqueues))
442 #define task_rq(p) cpu_rq(task_cpu(p))
443 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
448 #ifdef CONFIG_SCHED_DEBUG
449 # define const_debug __read_mostly
451 # define const_debug static const
455 * Debugging: various feature bits
458 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
459 SCHED_FEAT_START_DEBIT
= 2,
460 SCHED_FEAT_TREE_AVG
= 4,
461 SCHED_FEAT_APPROX_AVG
= 8,
462 SCHED_FEAT_WAKEUP_PREEMPT
= 16,
463 SCHED_FEAT_PREEMPT_RESTRICT
= 32,
466 const_debug
unsigned int sysctl_sched_features
=
467 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
468 SCHED_FEAT_START_DEBIT
* 1 |
469 SCHED_FEAT_TREE_AVG
* 0 |
470 SCHED_FEAT_APPROX_AVG
* 0 |
471 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
472 SCHED_FEAT_PREEMPT_RESTRICT
* 1;
474 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
477 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
478 * clock constructed from sched_clock():
480 unsigned long long cpu_clock(int cpu
)
482 unsigned long long now
;
486 local_irq_save(flags
);
490 local_irq_restore(flags
);
494 EXPORT_SYMBOL_GPL(cpu_clock
);
496 #ifndef prepare_arch_switch
497 # define prepare_arch_switch(next) do { } while (0)
499 #ifndef finish_arch_switch
500 # define finish_arch_switch(prev) do { } while (0)
503 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
504 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
506 return rq
->curr
== p
;
509 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
513 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
515 #ifdef CONFIG_DEBUG_SPINLOCK
516 /* this is a valid case when another task releases the spinlock */
517 rq
->lock
.owner
= current
;
520 * If we are tracking spinlock dependencies then we have to
521 * fix up the runqueue lock - which gets 'carried over' from
524 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
526 spin_unlock_irq(&rq
->lock
);
529 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
530 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
535 return rq
->curr
== p
;
539 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
543 * We can optimise this out completely for !SMP, because the
544 * SMP rebalancing from interrupt is the only thing that cares
549 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
550 spin_unlock_irq(&rq
->lock
);
552 spin_unlock(&rq
->lock
);
556 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
560 * After ->oncpu is cleared, the task can be moved to a different CPU.
561 * We must ensure this doesn't happen until the switch is completely
567 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
571 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
574 * __task_rq_lock - lock the runqueue a given task resides on.
575 * Must be called interrupts disabled.
577 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
581 struct rq
*rq
= task_rq(p
);
582 spin_lock(&rq
->lock
);
583 if (likely(rq
== task_rq(p
)))
585 spin_unlock(&rq
->lock
);
590 * task_rq_lock - lock the runqueue a given task resides on and disable
591 * interrupts. Note the ordering: we can safely lookup the task_rq without
592 * explicitly disabling preemption.
594 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
600 local_irq_save(*flags
);
602 spin_lock(&rq
->lock
);
603 if (likely(rq
== task_rq(p
)))
605 spin_unlock_irqrestore(&rq
->lock
, *flags
);
609 static void __task_rq_unlock(struct rq
*rq
)
612 spin_unlock(&rq
->lock
);
615 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
618 spin_unlock_irqrestore(&rq
->lock
, *flags
);
622 * this_rq_lock - lock this runqueue and disable interrupts.
624 static struct rq
*this_rq_lock(void)
631 spin_lock(&rq
->lock
);
637 * We are going deep-idle (irqs are disabled):
639 void sched_clock_idle_sleep_event(void)
641 struct rq
*rq
= cpu_rq(smp_processor_id());
643 spin_lock(&rq
->lock
);
644 __update_rq_clock(rq
);
645 spin_unlock(&rq
->lock
);
646 rq
->clock_deep_idle_events
++;
648 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
651 * We just idled delta nanoseconds (called with irqs disabled):
653 void sched_clock_idle_wakeup_event(u64 delta_ns
)
655 struct rq
*rq
= cpu_rq(smp_processor_id());
656 u64 now
= sched_clock();
658 rq
->idle_clock
+= delta_ns
;
660 * Override the previous timestamp and ignore all
661 * sched_clock() deltas that occured while we idled,
662 * and use the PM-provided delta_ns to advance the
665 spin_lock(&rq
->lock
);
666 rq
->prev_clock_raw
= now
;
667 rq
->clock
+= delta_ns
;
668 spin_unlock(&rq
->lock
);
670 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
673 * resched_task - mark a task 'to be rescheduled now'.
675 * On UP this means the setting of the need_resched flag, on SMP it
676 * might also involve a cross-CPU call to trigger the scheduler on
681 #ifndef tsk_is_polling
682 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685 static void resched_task(struct task_struct
*p
)
689 assert_spin_locked(&task_rq(p
)->lock
);
691 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
694 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
697 if (cpu
== smp_processor_id())
700 /* NEED_RESCHED must be visible before we test polling */
702 if (!tsk_is_polling(p
))
703 smp_send_reschedule(cpu
);
706 static void resched_cpu(int cpu
)
708 struct rq
*rq
= cpu_rq(cpu
);
711 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
713 resched_task(cpu_curr(cpu
));
714 spin_unlock_irqrestore(&rq
->lock
, flags
);
717 static inline void resched_task(struct task_struct
*p
)
719 assert_spin_locked(&task_rq(p
)->lock
);
720 set_tsk_need_resched(p
);
724 #if BITS_PER_LONG == 32
725 # define WMULT_CONST (~0UL)
727 # define WMULT_CONST (1UL << 32)
730 #define WMULT_SHIFT 32
733 * Shift right and round:
735 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
738 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
739 struct load_weight
*lw
)
743 if (unlikely(!lw
->inv_weight
))
744 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
746 tmp
= (u64
)delta_exec
* weight
;
748 * Check whether we'd overflow the 64-bit multiplication:
750 if (unlikely(tmp
> WMULT_CONST
))
751 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
754 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
756 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
759 static inline unsigned long
760 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
762 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
765 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
770 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
776 * To aid in avoiding the subversion of "niceness" due to uneven distribution
777 * of tasks with abnormal "nice" values across CPUs the contribution that
778 * each task makes to its run queue's load is weighted according to its
779 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
780 * scaled version of the new time slice allocation that they receive on time
784 #define WEIGHT_IDLEPRIO 2
785 #define WMULT_IDLEPRIO (1 << 31)
788 * Nice levels are multiplicative, with a gentle 10% change for every
789 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
790 * nice 1, it will get ~10% less CPU time than another CPU-bound task
791 * that remained on nice 0.
793 * The "10% effect" is relative and cumulative: from _any_ nice level,
794 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
795 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
796 * If a task goes up by ~10% and another task goes down by ~10% then
797 * the relative distance between them is ~25%.)
799 static const int prio_to_weight
[40] = {
800 /* -20 */ 88761, 71755, 56483, 46273, 36291,
801 /* -15 */ 29154, 23254, 18705, 14949, 11916,
802 /* -10 */ 9548, 7620, 6100, 4904, 3906,
803 /* -5 */ 3121, 2501, 1991, 1586, 1277,
804 /* 0 */ 1024, 820, 655, 526, 423,
805 /* 5 */ 335, 272, 215, 172, 137,
806 /* 10 */ 110, 87, 70, 56, 45,
807 /* 15 */ 36, 29, 23, 18, 15,
811 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
813 * In cases where the weight does not change often, we can use the
814 * precalculated inverse to speed up arithmetics by turning divisions
815 * into multiplications:
817 static const u32 prio_to_wmult
[40] = {
818 /* -20 */ 48388, 59856, 76040, 92818, 118348,
819 /* -15 */ 147320, 184698, 229616, 287308, 360437,
820 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
821 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
822 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
823 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
824 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
825 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
831 * runqueue iterator, to support SMP load-balancing between different
832 * scheduling classes, without having to expose their internal data
833 * structures to the load-balancing proper:
837 struct task_struct
*(*start
)(void *);
838 struct task_struct
*(*next
)(void *);
843 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
844 unsigned long max_load_move
, struct sched_domain
*sd
,
845 enum cpu_idle_type idle
, int *all_pinned
,
846 int *this_best_prio
, struct rq_iterator
*iterator
);
849 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
850 struct sched_domain
*sd
, enum cpu_idle_type idle
,
851 struct rq_iterator
*iterator
);
854 #include "sched_stats.h"
855 #include "sched_idletask.c"
856 #include "sched_fair.c"
857 #include "sched_rt.c"
858 #ifdef CONFIG_SCHED_DEBUG
859 # include "sched_debug.c"
862 #define sched_class_highest (&rt_sched_class)
865 * Update delta_exec, delta_fair fields for rq.
867 * delta_fair clock advances at a rate inversely proportional to
868 * total load (rq->load.weight) on the runqueue, while
869 * delta_exec advances at the same rate as wall-clock (provided
872 * delta_exec / delta_fair is a measure of the (smoothened) load on this
873 * runqueue over any given interval. This (smoothened) load is used
874 * during load balance.
876 * This function is called /before/ updating rq->load
877 * and when switching tasks.
879 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
881 update_load_add(&rq
->load
, p
->se
.load
.weight
);
884 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
886 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
889 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
895 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
901 static void set_load_weight(struct task_struct
*p
)
903 if (task_has_rt_policy(p
)) {
904 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
905 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
910 * SCHED_IDLE tasks get minimal weight:
912 if (p
->policy
== SCHED_IDLE
) {
913 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
914 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
918 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
919 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
922 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
924 sched_info_queued(p
);
925 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
929 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
931 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
936 * __normal_prio - return the priority that is based on the static prio
938 static inline int __normal_prio(struct task_struct
*p
)
940 return p
->static_prio
;
944 * Calculate the expected normal priority: i.e. priority
945 * without taking RT-inheritance into account. Might be
946 * boosted by interactivity modifiers. Changes upon fork,
947 * setprio syscalls, and whenever the interactivity
948 * estimator recalculates.
950 static inline int normal_prio(struct task_struct
*p
)
954 if (task_has_rt_policy(p
))
955 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
957 prio
= __normal_prio(p
);
962 * Calculate the current priority, i.e. the priority
963 * taken into account by the scheduler. This value might
964 * be boosted by RT tasks, or might be boosted by
965 * interactivity modifiers. Will be RT if the task got
966 * RT-boosted. If not then it returns p->normal_prio.
968 static int effective_prio(struct task_struct
*p
)
970 p
->normal_prio
= normal_prio(p
);
972 * If we are RT tasks or we were boosted to RT priority,
973 * keep the priority unchanged. Otherwise, update priority
974 * to the normal priority:
976 if (!rt_prio(p
->prio
))
977 return p
->normal_prio
;
982 * activate_task - move a task to the runqueue.
984 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
986 if (p
->state
== TASK_UNINTERRUPTIBLE
)
987 rq
->nr_uninterruptible
--;
989 enqueue_task(rq
, p
, wakeup
);
990 inc_nr_running(p
, rq
);
994 * deactivate_task - remove a task from the runqueue.
996 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
998 if (p
->state
== TASK_UNINTERRUPTIBLE
)
999 rq
->nr_uninterruptible
++;
1001 dequeue_task(rq
, p
, sleep
);
1002 dec_nr_running(p
, rq
);
1006 * task_curr - is this task currently executing on a CPU?
1007 * @p: the task in question.
1009 inline int task_curr(const struct task_struct
*p
)
1011 return cpu_curr(task_cpu(p
)) == p
;
1014 /* Used instead of source_load when we know the type == 0 */
1015 unsigned long weighted_cpuload(const int cpu
)
1017 return cpu_rq(cpu
)->load
.weight
;
1020 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1023 task_thread_info(p
)->cpu
= cpu
;
1031 * Is this task likely cache-hot:
1034 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1038 if (p
->sched_class
!= &fair_sched_class
)
1041 if (sysctl_sched_migration_cost
== -1)
1043 if (sysctl_sched_migration_cost
== 0)
1046 delta
= now
- p
->se
.exec_start
;
1048 return delta
< (s64
)sysctl_sched_migration_cost
;
1052 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1054 int old_cpu
= task_cpu(p
);
1055 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1056 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1057 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1060 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1062 #ifdef CONFIG_SCHEDSTATS
1063 if (p
->se
.wait_start
)
1064 p
->se
.wait_start
-= clock_offset
;
1065 if (p
->se
.sleep_start
)
1066 p
->se
.sleep_start
-= clock_offset
;
1067 if (p
->se
.block_start
)
1068 p
->se
.block_start
-= clock_offset
;
1069 if (old_cpu
!= new_cpu
) {
1070 schedstat_inc(p
, se
.nr_migrations
);
1071 if (task_hot(p
, old_rq
->clock
, NULL
))
1072 schedstat_inc(p
, se
.nr_forced2_migrations
);
1075 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1076 new_cfsrq
->min_vruntime
;
1078 __set_task_cpu(p
, new_cpu
);
1081 struct migration_req
{
1082 struct list_head list
;
1084 struct task_struct
*task
;
1087 struct completion done
;
1091 * The task's runqueue lock must be held.
1092 * Returns true if you have to wait for migration thread.
1095 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1097 struct rq
*rq
= task_rq(p
);
1100 * If the task is not on a runqueue (and not running), then
1101 * it is sufficient to simply update the task's cpu field.
1103 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1104 set_task_cpu(p
, dest_cpu
);
1108 init_completion(&req
->done
);
1110 req
->dest_cpu
= dest_cpu
;
1111 list_add(&req
->list
, &rq
->migration_queue
);
1117 * wait_task_inactive - wait for a thread to unschedule.
1119 * The caller must ensure that the task *will* unschedule sometime soon,
1120 * else this function might spin for a *long* time. This function can't
1121 * be called with interrupts off, or it may introduce deadlock with
1122 * smp_call_function() if an IPI is sent by the same process we are
1123 * waiting to become inactive.
1125 void wait_task_inactive(struct task_struct
*p
)
1127 unsigned long flags
;
1133 * We do the initial early heuristics without holding
1134 * any task-queue locks at all. We'll only try to get
1135 * the runqueue lock when things look like they will
1141 * If the task is actively running on another CPU
1142 * still, just relax and busy-wait without holding
1145 * NOTE! Since we don't hold any locks, it's not
1146 * even sure that "rq" stays as the right runqueue!
1147 * But we don't care, since "task_running()" will
1148 * return false if the runqueue has changed and p
1149 * is actually now running somewhere else!
1151 while (task_running(rq
, p
))
1155 * Ok, time to look more closely! We need the rq
1156 * lock now, to be *sure*. If we're wrong, we'll
1157 * just go back and repeat.
1159 rq
= task_rq_lock(p
, &flags
);
1160 running
= task_running(rq
, p
);
1161 on_rq
= p
->se
.on_rq
;
1162 task_rq_unlock(rq
, &flags
);
1165 * Was it really running after all now that we
1166 * checked with the proper locks actually held?
1168 * Oops. Go back and try again..
1170 if (unlikely(running
)) {
1176 * It's not enough that it's not actively running,
1177 * it must be off the runqueue _entirely_, and not
1180 * So if it wa still runnable (but just not actively
1181 * running right now), it's preempted, and we should
1182 * yield - it could be a while.
1184 if (unlikely(on_rq
)) {
1185 schedule_timeout_uninterruptible(1);
1190 * Ahh, all good. It wasn't running, and it wasn't
1191 * runnable, which means that it will never become
1192 * running in the future either. We're all done!
1199 * kick_process - kick a running thread to enter/exit the kernel
1200 * @p: the to-be-kicked thread
1202 * Cause a process which is running on another CPU to enter
1203 * kernel-mode, without any delay. (to get signals handled.)
1205 * NOTE: this function doesnt have to take the runqueue lock,
1206 * because all it wants to ensure is that the remote task enters
1207 * the kernel. If the IPI races and the task has been migrated
1208 * to another CPU then no harm is done and the purpose has been
1211 void kick_process(struct task_struct
*p
)
1217 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1218 smp_send_reschedule(cpu
);
1223 * Return a low guess at the load of a migration-source cpu weighted
1224 * according to the scheduling class and "nice" value.
1226 * We want to under-estimate the load of migration sources, to
1227 * balance conservatively.
1229 static unsigned long source_load(int cpu
, int type
)
1231 struct rq
*rq
= cpu_rq(cpu
);
1232 unsigned long total
= weighted_cpuload(cpu
);
1237 return min(rq
->cpu_load
[type
-1], total
);
1241 * Return a high guess at the load of a migration-target cpu weighted
1242 * according to the scheduling class and "nice" value.
1244 static unsigned long target_load(int cpu
, int type
)
1246 struct rq
*rq
= cpu_rq(cpu
);
1247 unsigned long total
= weighted_cpuload(cpu
);
1252 return max(rq
->cpu_load
[type
-1], total
);
1256 * Return the average load per task on the cpu's run queue
1258 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1260 struct rq
*rq
= cpu_rq(cpu
);
1261 unsigned long total
= weighted_cpuload(cpu
);
1262 unsigned long n
= rq
->nr_running
;
1264 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1268 * find_idlest_group finds and returns the least busy CPU group within the
1271 static struct sched_group
*
1272 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1274 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1275 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1276 int load_idx
= sd
->forkexec_idx
;
1277 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1280 unsigned long load
, avg_load
;
1284 /* Skip over this group if it has no CPUs allowed */
1285 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1288 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1290 /* Tally up the load of all CPUs in the group */
1293 for_each_cpu_mask(i
, group
->cpumask
) {
1294 /* Bias balancing toward cpus of our domain */
1296 load
= source_load(i
, load_idx
);
1298 load
= target_load(i
, load_idx
);
1303 /* Adjust by relative CPU power of the group */
1304 avg_load
= sg_div_cpu_power(group
,
1305 avg_load
* SCHED_LOAD_SCALE
);
1308 this_load
= avg_load
;
1310 } else if (avg_load
< min_load
) {
1311 min_load
= avg_load
;
1314 } while (group
= group
->next
, group
!= sd
->groups
);
1316 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1322 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1325 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1328 unsigned long load
, min_load
= ULONG_MAX
;
1332 /* Traverse only the allowed CPUs */
1333 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1335 for_each_cpu_mask(i
, tmp
) {
1336 load
= weighted_cpuload(i
);
1338 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1348 * sched_balance_self: balance the current task (running on cpu) in domains
1349 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1352 * Balance, ie. select the least loaded group.
1354 * Returns the target CPU number, or the same CPU if no balancing is needed.
1356 * preempt must be disabled.
1358 static int sched_balance_self(int cpu
, int flag
)
1360 struct task_struct
*t
= current
;
1361 struct sched_domain
*tmp
, *sd
= NULL
;
1363 for_each_domain(cpu
, tmp
) {
1365 * If power savings logic is enabled for a domain, stop there.
1367 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1369 if (tmp
->flags
& flag
)
1375 struct sched_group
*group
;
1376 int new_cpu
, weight
;
1378 if (!(sd
->flags
& flag
)) {
1384 group
= find_idlest_group(sd
, t
, cpu
);
1390 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1391 if (new_cpu
== -1 || new_cpu
== cpu
) {
1392 /* Now try balancing at a lower domain level of cpu */
1397 /* Now try balancing at a lower domain level of new_cpu */
1400 weight
= cpus_weight(span
);
1401 for_each_domain(cpu
, tmp
) {
1402 if (weight
<= cpus_weight(tmp
->span
))
1404 if (tmp
->flags
& flag
)
1407 /* while loop will break here if sd == NULL */
1413 #endif /* CONFIG_SMP */
1416 * wake_idle() will wake a task on an idle cpu if task->cpu is
1417 * not idle and an idle cpu is available. The span of cpus to
1418 * search starts with cpus closest then further out as needed,
1419 * so we always favor a closer, idle cpu.
1421 * Returns the CPU we should wake onto.
1423 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1424 static int wake_idle(int cpu
, struct task_struct
*p
)
1427 struct sched_domain
*sd
;
1431 * If it is idle, then it is the best cpu to run this task.
1433 * This cpu is also the best, if it has more than one task already.
1434 * Siblings must be also busy(in most cases) as they didn't already
1435 * pickup the extra load from this cpu and hence we need not check
1436 * sibling runqueue info. This will avoid the checks and cache miss
1437 * penalities associated with that.
1439 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1442 for_each_domain(cpu
, sd
) {
1443 if (sd
->flags
& SD_WAKE_IDLE
) {
1444 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1445 for_each_cpu_mask(i
, tmp
) {
1447 if (i
!= task_cpu(p
)) {
1449 se
.nr_wakeups_idle
);
1461 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1468 * try_to_wake_up - wake up a thread
1469 * @p: the to-be-woken-up thread
1470 * @state: the mask of task states that can be woken
1471 * @sync: do a synchronous wakeup?
1473 * Put it on the run-queue if it's not already there. The "current"
1474 * thread is always on the run-queue (except when the actual
1475 * re-schedule is in progress), and as such you're allowed to do
1476 * the simpler "current->state = TASK_RUNNING" to mark yourself
1477 * runnable without the overhead of this.
1479 * returns failure only if the task is already active.
1481 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1483 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1484 unsigned long flags
;
1488 struct sched_domain
*sd
, *this_sd
= NULL
;
1489 unsigned long load
, this_load
;
1493 rq
= task_rq_lock(p
, &flags
);
1494 old_state
= p
->state
;
1495 if (!(old_state
& state
))
1503 this_cpu
= smp_processor_id();
1506 if (unlikely(task_running(rq
, p
)))
1511 schedstat_inc(rq
, ttwu_count
);
1512 if (cpu
== this_cpu
) {
1513 schedstat_inc(rq
, ttwu_local
);
1517 for_each_domain(this_cpu
, sd
) {
1518 if (cpu_isset(cpu
, sd
->span
)) {
1519 schedstat_inc(sd
, ttwu_wake_remote
);
1525 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1529 * Check for affine wakeup and passive balancing possibilities.
1532 int idx
= this_sd
->wake_idx
;
1533 unsigned int imbalance
;
1535 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1537 load
= source_load(cpu
, idx
);
1538 this_load
= target_load(this_cpu
, idx
);
1540 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1542 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1543 unsigned long tl
= this_load
;
1544 unsigned long tl_per_task
;
1547 * Attract cache-cold tasks on sync wakeups:
1549 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1552 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1553 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1556 * If sync wakeup then subtract the (maximum possible)
1557 * effect of the currently running task from the load
1558 * of the current CPU:
1561 tl
-= current
->se
.load
.weight
;
1564 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1565 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1567 * This domain has SD_WAKE_AFFINE and
1568 * p is cache cold in this domain, and
1569 * there is no bad imbalance.
1571 schedstat_inc(this_sd
, ttwu_move_affine
);
1572 schedstat_inc(p
, se
.nr_wakeups_affine
);
1578 * Start passive balancing when half the imbalance_pct
1581 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1582 if (imbalance
*this_load
<= 100*load
) {
1583 schedstat_inc(this_sd
, ttwu_move_balance
);
1584 schedstat_inc(p
, se
.nr_wakeups_passive
);
1590 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1592 new_cpu
= wake_idle(new_cpu
, p
);
1593 if (new_cpu
!= cpu
) {
1594 set_task_cpu(p
, new_cpu
);
1595 task_rq_unlock(rq
, &flags
);
1596 /* might preempt at this point */
1597 rq
= task_rq_lock(p
, &flags
);
1598 old_state
= p
->state
;
1599 if (!(old_state
& state
))
1604 this_cpu
= smp_processor_id();
1609 #endif /* CONFIG_SMP */
1610 schedstat_inc(p
, se
.nr_wakeups
);
1612 schedstat_inc(p
, se
.nr_wakeups_sync
);
1613 if (orig_cpu
!= cpu
)
1614 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1615 if (cpu
== this_cpu
)
1616 schedstat_inc(p
, se
.nr_wakeups_local
);
1618 schedstat_inc(p
, se
.nr_wakeups_remote
);
1619 update_rq_clock(rq
);
1620 activate_task(rq
, p
, 1);
1621 check_preempt_curr(rq
, p
);
1625 p
->state
= TASK_RUNNING
;
1627 task_rq_unlock(rq
, &flags
);
1632 int fastcall
wake_up_process(struct task_struct
*p
)
1634 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1635 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1637 EXPORT_SYMBOL(wake_up_process
);
1639 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1641 return try_to_wake_up(p
, state
, 0);
1645 * Perform scheduler related setup for a newly forked process p.
1646 * p is forked by current.
1648 * __sched_fork() is basic setup used by init_idle() too:
1650 static void __sched_fork(struct task_struct
*p
)
1652 p
->se
.exec_start
= 0;
1653 p
->se
.sum_exec_runtime
= 0;
1654 p
->se
.prev_sum_exec_runtime
= 0;
1656 #ifdef CONFIG_SCHEDSTATS
1657 p
->se
.wait_start
= 0;
1658 p
->se
.sum_sleep_runtime
= 0;
1659 p
->se
.sleep_start
= 0;
1660 p
->se
.block_start
= 0;
1661 p
->se
.sleep_max
= 0;
1662 p
->se
.block_max
= 0;
1664 p
->se
.slice_max
= 0;
1668 INIT_LIST_HEAD(&p
->run_list
);
1671 #ifdef CONFIG_PREEMPT_NOTIFIERS
1672 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1676 * We mark the process as running here, but have not actually
1677 * inserted it onto the runqueue yet. This guarantees that
1678 * nobody will actually run it, and a signal or other external
1679 * event cannot wake it up and insert it on the runqueue either.
1681 p
->state
= TASK_RUNNING
;
1685 * fork()/clone()-time setup:
1687 void sched_fork(struct task_struct
*p
, int clone_flags
)
1689 int cpu
= get_cpu();
1694 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1696 set_task_cpu(p
, cpu
);
1699 * Make sure we do not leak PI boosting priority to the child:
1701 p
->prio
= current
->normal_prio
;
1702 if (!rt_prio(p
->prio
))
1703 p
->sched_class
= &fair_sched_class
;
1705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1706 if (likely(sched_info_on()))
1707 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1709 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1712 #ifdef CONFIG_PREEMPT
1713 /* Want to start with kernel preemption disabled. */
1714 task_thread_info(p
)->preempt_count
= 1;
1720 * wake_up_new_task - wake up a newly created task for the first time.
1722 * This function will do some initial scheduler statistics housekeeping
1723 * that must be done for every newly created context, then puts the task
1724 * on the runqueue and wakes it.
1726 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1728 unsigned long flags
;
1731 rq
= task_rq_lock(p
, &flags
);
1732 BUG_ON(p
->state
!= TASK_RUNNING
);
1733 update_rq_clock(rq
);
1735 p
->prio
= effective_prio(p
);
1737 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1738 activate_task(rq
, p
, 0);
1741 * Let the scheduling class do new task startup
1742 * management (if any):
1744 p
->sched_class
->task_new(rq
, p
);
1745 inc_nr_running(p
, rq
);
1747 check_preempt_curr(rq
, p
);
1748 task_rq_unlock(rq
, &flags
);
1751 #ifdef CONFIG_PREEMPT_NOTIFIERS
1754 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1755 * @notifier: notifier struct to register
1757 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1759 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1761 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1764 * preempt_notifier_unregister - no longer interested in preemption notifications
1765 * @notifier: notifier struct to unregister
1767 * This is safe to call from within a preemption notifier.
1769 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1771 hlist_del(¬ifier
->link
);
1773 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1775 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1777 struct preempt_notifier
*notifier
;
1778 struct hlist_node
*node
;
1780 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1781 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1785 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1786 struct task_struct
*next
)
1788 struct preempt_notifier
*notifier
;
1789 struct hlist_node
*node
;
1791 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1792 notifier
->ops
->sched_out(notifier
, next
);
1797 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1802 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1803 struct task_struct
*next
)
1810 * prepare_task_switch - prepare to switch tasks
1811 * @rq: the runqueue preparing to switch
1812 * @prev: the current task that is being switched out
1813 * @next: the task we are going to switch to.
1815 * This is called with the rq lock held and interrupts off. It must
1816 * be paired with a subsequent finish_task_switch after the context
1819 * prepare_task_switch sets up locking and calls architecture specific
1823 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1824 struct task_struct
*next
)
1826 fire_sched_out_preempt_notifiers(prev
, next
);
1827 prepare_lock_switch(rq
, next
);
1828 prepare_arch_switch(next
);
1832 * finish_task_switch - clean up after a task-switch
1833 * @rq: runqueue associated with task-switch
1834 * @prev: the thread we just switched away from.
1836 * finish_task_switch must be called after the context switch, paired
1837 * with a prepare_task_switch call before the context switch.
1838 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1839 * and do any other architecture-specific cleanup actions.
1841 * Note that we may have delayed dropping an mm in context_switch(). If
1842 * so, we finish that here outside of the runqueue lock. (Doing it
1843 * with the lock held can cause deadlocks; see schedule() for
1846 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1847 __releases(rq
->lock
)
1849 struct mm_struct
*mm
= rq
->prev_mm
;
1855 * A task struct has one reference for the use as "current".
1856 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1857 * schedule one last time. The schedule call will never return, and
1858 * the scheduled task must drop that reference.
1859 * The test for TASK_DEAD must occur while the runqueue locks are
1860 * still held, otherwise prev could be scheduled on another cpu, die
1861 * there before we look at prev->state, and then the reference would
1863 * Manfred Spraul <manfred@colorfullife.com>
1865 prev_state
= prev
->state
;
1866 finish_arch_switch(prev
);
1867 finish_lock_switch(rq
, prev
);
1868 fire_sched_in_preempt_notifiers(current
);
1871 if (unlikely(prev_state
== TASK_DEAD
)) {
1873 * Remove function-return probe instances associated with this
1874 * task and put them back on the free list.
1876 kprobe_flush_task(prev
);
1877 put_task_struct(prev
);
1882 * schedule_tail - first thing a freshly forked thread must call.
1883 * @prev: the thread we just switched away from.
1885 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1886 __releases(rq
->lock
)
1888 struct rq
*rq
= this_rq();
1890 finish_task_switch(rq
, prev
);
1891 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1892 /* In this case, finish_task_switch does not reenable preemption */
1895 if (current
->set_child_tid
)
1896 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1900 * context_switch - switch to the new MM and the new
1901 * thread's register state.
1904 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1905 struct task_struct
*next
)
1907 struct mm_struct
*mm
, *oldmm
;
1909 prepare_task_switch(rq
, prev
, next
);
1911 oldmm
= prev
->active_mm
;
1913 * For paravirt, this is coupled with an exit in switch_to to
1914 * combine the page table reload and the switch backend into
1917 arch_enter_lazy_cpu_mode();
1919 if (unlikely(!mm
)) {
1920 next
->active_mm
= oldmm
;
1921 atomic_inc(&oldmm
->mm_count
);
1922 enter_lazy_tlb(oldmm
, next
);
1924 switch_mm(oldmm
, mm
, next
);
1926 if (unlikely(!prev
->mm
)) {
1927 prev
->active_mm
= NULL
;
1928 rq
->prev_mm
= oldmm
;
1931 * Since the runqueue lock will be released by the next
1932 * task (which is an invalid locking op but in the case
1933 * of the scheduler it's an obvious special-case), so we
1934 * do an early lockdep release here:
1936 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1937 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1940 /* Here we just switch the register state and the stack. */
1941 switch_to(prev
, next
, prev
);
1945 * this_rq must be evaluated again because prev may have moved
1946 * CPUs since it called schedule(), thus the 'rq' on its stack
1947 * frame will be invalid.
1949 finish_task_switch(this_rq(), prev
);
1953 * nr_running, nr_uninterruptible and nr_context_switches:
1955 * externally visible scheduler statistics: current number of runnable
1956 * threads, current number of uninterruptible-sleeping threads, total
1957 * number of context switches performed since bootup.
1959 unsigned long nr_running(void)
1961 unsigned long i
, sum
= 0;
1963 for_each_online_cpu(i
)
1964 sum
+= cpu_rq(i
)->nr_running
;
1969 unsigned long nr_uninterruptible(void)
1971 unsigned long i
, sum
= 0;
1973 for_each_possible_cpu(i
)
1974 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1977 * Since we read the counters lockless, it might be slightly
1978 * inaccurate. Do not allow it to go below zero though:
1980 if (unlikely((long)sum
< 0))
1986 unsigned long long nr_context_switches(void)
1989 unsigned long long sum
= 0;
1991 for_each_possible_cpu(i
)
1992 sum
+= cpu_rq(i
)->nr_switches
;
1997 unsigned long nr_iowait(void)
1999 unsigned long i
, sum
= 0;
2001 for_each_possible_cpu(i
)
2002 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2007 unsigned long nr_active(void)
2009 unsigned long i
, running
= 0, uninterruptible
= 0;
2011 for_each_online_cpu(i
) {
2012 running
+= cpu_rq(i
)->nr_running
;
2013 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2016 if (unlikely((long)uninterruptible
< 0))
2017 uninterruptible
= 0;
2019 return running
+ uninterruptible
;
2023 * Update rq->cpu_load[] statistics. This function is usually called every
2024 * scheduler tick (TICK_NSEC).
2026 static void update_cpu_load(struct rq
*this_rq
)
2028 unsigned long this_load
= this_rq
->load
.weight
;
2031 this_rq
->nr_load_updates
++;
2033 /* Update our load: */
2034 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2035 unsigned long old_load
, new_load
;
2037 /* scale is effectively 1 << i now, and >> i divides by scale */
2039 old_load
= this_rq
->cpu_load
[i
];
2040 new_load
= this_load
;
2042 * Round up the averaging division if load is increasing. This
2043 * prevents us from getting stuck on 9 if the load is 10, for
2046 if (new_load
> old_load
)
2047 new_load
+= scale
-1;
2048 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2055 * double_rq_lock - safely lock two runqueues
2057 * Note this does not disable interrupts like task_rq_lock,
2058 * you need to do so manually before calling.
2060 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2061 __acquires(rq1
->lock
)
2062 __acquires(rq2
->lock
)
2064 BUG_ON(!irqs_disabled());
2066 spin_lock(&rq1
->lock
);
2067 __acquire(rq2
->lock
); /* Fake it out ;) */
2070 spin_lock(&rq1
->lock
);
2071 spin_lock(&rq2
->lock
);
2073 spin_lock(&rq2
->lock
);
2074 spin_lock(&rq1
->lock
);
2077 update_rq_clock(rq1
);
2078 update_rq_clock(rq2
);
2082 * double_rq_unlock - safely unlock two runqueues
2084 * Note this does not restore interrupts like task_rq_unlock,
2085 * you need to do so manually after calling.
2087 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2088 __releases(rq1
->lock
)
2089 __releases(rq2
->lock
)
2091 spin_unlock(&rq1
->lock
);
2093 spin_unlock(&rq2
->lock
);
2095 __release(rq2
->lock
);
2099 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2101 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2102 __releases(this_rq
->lock
)
2103 __acquires(busiest
->lock
)
2104 __acquires(this_rq
->lock
)
2106 if (unlikely(!irqs_disabled())) {
2107 /* printk() doesn't work good under rq->lock */
2108 spin_unlock(&this_rq
->lock
);
2111 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2112 if (busiest
< this_rq
) {
2113 spin_unlock(&this_rq
->lock
);
2114 spin_lock(&busiest
->lock
);
2115 spin_lock(&this_rq
->lock
);
2117 spin_lock(&busiest
->lock
);
2122 * If dest_cpu is allowed for this process, migrate the task to it.
2123 * This is accomplished by forcing the cpu_allowed mask to only
2124 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2125 * the cpu_allowed mask is restored.
2127 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2129 struct migration_req req
;
2130 unsigned long flags
;
2133 rq
= task_rq_lock(p
, &flags
);
2134 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2135 || unlikely(cpu_is_offline(dest_cpu
)))
2138 /* force the process onto the specified CPU */
2139 if (migrate_task(p
, dest_cpu
, &req
)) {
2140 /* Need to wait for migration thread (might exit: take ref). */
2141 struct task_struct
*mt
= rq
->migration_thread
;
2143 get_task_struct(mt
);
2144 task_rq_unlock(rq
, &flags
);
2145 wake_up_process(mt
);
2146 put_task_struct(mt
);
2147 wait_for_completion(&req
.done
);
2152 task_rq_unlock(rq
, &flags
);
2156 * sched_exec - execve() is a valuable balancing opportunity, because at
2157 * this point the task has the smallest effective memory and cache footprint.
2159 void sched_exec(void)
2161 int new_cpu
, this_cpu
= get_cpu();
2162 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2164 if (new_cpu
!= this_cpu
)
2165 sched_migrate_task(current
, new_cpu
);
2169 * pull_task - move a task from a remote runqueue to the local runqueue.
2170 * Both runqueues must be locked.
2172 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2173 struct rq
*this_rq
, int this_cpu
)
2175 deactivate_task(src_rq
, p
, 0);
2176 set_task_cpu(p
, this_cpu
);
2177 activate_task(this_rq
, p
, 0);
2179 * Note that idle threads have a prio of MAX_PRIO, for this test
2180 * to be always true for them.
2182 check_preempt_curr(this_rq
, p
);
2186 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2189 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2190 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2194 * We do not migrate tasks that are:
2195 * 1) running (obviously), or
2196 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2197 * 3) are cache-hot on their current CPU.
2199 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2200 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2205 if (task_running(rq
, p
)) {
2206 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2211 * Aggressive migration if:
2212 * 1) task is cache cold, or
2213 * 2) too many balance attempts have failed.
2216 if (!task_hot(p
, rq
->clock
, sd
) ||
2217 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2218 #ifdef CONFIG_SCHEDSTATS
2219 if (task_hot(p
, rq
->clock
, sd
)) {
2220 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2221 schedstat_inc(p
, se
.nr_forced_migrations
);
2227 if (task_hot(p
, rq
->clock
, sd
)) {
2228 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2234 static unsigned long
2235 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2236 unsigned long max_load_move
, struct sched_domain
*sd
,
2237 enum cpu_idle_type idle
, int *all_pinned
,
2238 int *this_best_prio
, struct rq_iterator
*iterator
)
2240 int pulled
= 0, pinned
= 0, skip_for_load
;
2241 struct task_struct
*p
;
2242 long rem_load_move
= max_load_move
;
2244 if (max_load_move
== 0)
2250 * Start the load-balancing iterator:
2252 p
= iterator
->start(iterator
->arg
);
2257 * To help distribute high priority tasks accross CPUs we don't
2258 * skip a task if it will be the highest priority task (i.e. smallest
2259 * prio value) on its new queue regardless of its load weight
2261 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2262 SCHED_LOAD_SCALE_FUZZ
;
2263 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2264 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2265 p
= iterator
->next(iterator
->arg
);
2269 pull_task(busiest
, p
, this_rq
, this_cpu
);
2271 rem_load_move
-= p
->se
.load
.weight
;
2274 * We only want to steal up to the prescribed number of tasks
2275 * and the prescribed amount of weighted load.
2277 if (rem_load_move
> 0) {
2278 if (p
->prio
< *this_best_prio
)
2279 *this_best_prio
= p
->prio
;
2280 p
= iterator
->next(iterator
->arg
);
2285 * Right now, this is one of only two places pull_task() is called,
2286 * so we can safely collect pull_task() stats here rather than
2287 * inside pull_task().
2289 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2292 *all_pinned
= pinned
;
2294 return max_load_move
- rem_load_move
;
2298 * move_tasks tries to move up to max_load_move weighted load from busiest to
2299 * this_rq, as part of a balancing operation within domain "sd".
2300 * Returns 1 if successful and 0 otherwise.
2302 * Called with both runqueues locked.
2304 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2305 unsigned long max_load_move
,
2306 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2309 const struct sched_class
*class = sched_class_highest
;
2310 unsigned long total_load_moved
= 0;
2311 int this_best_prio
= this_rq
->curr
->prio
;
2315 class->load_balance(this_rq
, this_cpu
, busiest
,
2316 max_load_move
- total_load_moved
,
2317 sd
, idle
, all_pinned
, &this_best_prio
);
2318 class = class->next
;
2319 } while (class && max_load_move
> total_load_moved
);
2321 return total_load_moved
> 0;
2325 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2326 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2327 struct rq_iterator
*iterator
)
2329 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2333 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2334 pull_task(busiest
, p
, this_rq
, this_cpu
);
2336 * Right now, this is only the second place pull_task()
2337 * is called, so we can safely collect pull_task()
2338 * stats here rather than inside pull_task().
2340 schedstat_inc(sd
, lb_gained
[idle
]);
2344 p
= iterator
->next(iterator
->arg
);
2351 * move_one_task tries to move exactly one task from busiest to this_rq, as
2352 * part of active balancing operations within "domain".
2353 * Returns 1 if successful and 0 otherwise.
2355 * Called with both runqueues locked.
2357 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2358 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2360 const struct sched_class
*class;
2362 for (class = sched_class_highest
; class; class = class->next
)
2363 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2370 * find_busiest_group finds and returns the busiest CPU group within the
2371 * domain. It calculates and returns the amount of weighted load which
2372 * should be moved to restore balance via the imbalance parameter.
2374 static struct sched_group
*
2375 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2376 unsigned long *imbalance
, enum cpu_idle_type idle
,
2377 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2379 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2380 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2381 unsigned long max_pull
;
2382 unsigned long busiest_load_per_task
, busiest_nr_running
;
2383 unsigned long this_load_per_task
, this_nr_running
;
2384 int load_idx
, group_imb
= 0;
2385 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2386 int power_savings_balance
= 1;
2387 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2388 unsigned long min_nr_running
= ULONG_MAX
;
2389 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2392 max_load
= this_load
= total_load
= total_pwr
= 0;
2393 busiest_load_per_task
= busiest_nr_running
= 0;
2394 this_load_per_task
= this_nr_running
= 0;
2395 if (idle
== CPU_NOT_IDLE
)
2396 load_idx
= sd
->busy_idx
;
2397 else if (idle
== CPU_NEWLY_IDLE
)
2398 load_idx
= sd
->newidle_idx
;
2400 load_idx
= sd
->idle_idx
;
2403 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2406 int __group_imb
= 0;
2407 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2408 unsigned long sum_nr_running
, sum_weighted_load
;
2410 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2413 balance_cpu
= first_cpu(group
->cpumask
);
2415 /* Tally up the load of all CPUs in the group */
2416 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2418 min_cpu_load
= ~0UL;
2420 for_each_cpu_mask(i
, group
->cpumask
) {
2423 if (!cpu_isset(i
, *cpus
))
2428 if (*sd_idle
&& rq
->nr_running
)
2431 /* Bias balancing toward cpus of our domain */
2433 if (idle_cpu(i
) && !first_idle_cpu
) {
2438 load
= target_load(i
, load_idx
);
2440 load
= source_load(i
, load_idx
);
2441 if (load
> max_cpu_load
)
2442 max_cpu_load
= load
;
2443 if (min_cpu_load
> load
)
2444 min_cpu_load
= load
;
2448 sum_nr_running
+= rq
->nr_running
;
2449 sum_weighted_load
+= weighted_cpuload(i
);
2453 * First idle cpu or the first cpu(busiest) in this sched group
2454 * is eligible for doing load balancing at this and above
2455 * domains. In the newly idle case, we will allow all the cpu's
2456 * to do the newly idle load balance.
2458 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2459 balance_cpu
!= this_cpu
&& balance
) {
2464 total_load
+= avg_load
;
2465 total_pwr
+= group
->__cpu_power
;
2467 /* Adjust by relative CPU power of the group */
2468 avg_load
= sg_div_cpu_power(group
,
2469 avg_load
* SCHED_LOAD_SCALE
);
2471 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2474 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2477 this_load
= avg_load
;
2479 this_nr_running
= sum_nr_running
;
2480 this_load_per_task
= sum_weighted_load
;
2481 } else if (avg_load
> max_load
&&
2482 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2483 max_load
= avg_load
;
2485 busiest_nr_running
= sum_nr_running
;
2486 busiest_load_per_task
= sum_weighted_load
;
2487 group_imb
= __group_imb
;
2490 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2492 * Busy processors will not participate in power savings
2495 if (idle
== CPU_NOT_IDLE
||
2496 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2500 * If the local group is idle or completely loaded
2501 * no need to do power savings balance at this domain
2503 if (local_group
&& (this_nr_running
>= group_capacity
||
2505 power_savings_balance
= 0;
2508 * If a group is already running at full capacity or idle,
2509 * don't include that group in power savings calculations
2511 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2516 * Calculate the group which has the least non-idle load.
2517 * This is the group from where we need to pick up the load
2520 if ((sum_nr_running
< min_nr_running
) ||
2521 (sum_nr_running
== min_nr_running
&&
2522 first_cpu(group
->cpumask
) <
2523 first_cpu(group_min
->cpumask
))) {
2525 min_nr_running
= sum_nr_running
;
2526 min_load_per_task
= sum_weighted_load
/
2531 * Calculate the group which is almost near its
2532 * capacity but still has some space to pick up some load
2533 * from other group and save more power
2535 if (sum_nr_running
<= group_capacity
- 1) {
2536 if (sum_nr_running
> leader_nr_running
||
2537 (sum_nr_running
== leader_nr_running
&&
2538 first_cpu(group
->cpumask
) >
2539 first_cpu(group_leader
->cpumask
))) {
2540 group_leader
= group
;
2541 leader_nr_running
= sum_nr_running
;
2546 group
= group
->next
;
2547 } while (group
!= sd
->groups
);
2549 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2552 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2554 if (this_load
>= avg_load
||
2555 100*max_load
<= sd
->imbalance_pct
*this_load
)
2558 busiest_load_per_task
/= busiest_nr_running
;
2560 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2563 * We're trying to get all the cpus to the average_load, so we don't
2564 * want to push ourselves above the average load, nor do we wish to
2565 * reduce the max loaded cpu below the average load, as either of these
2566 * actions would just result in more rebalancing later, and ping-pong
2567 * tasks around. Thus we look for the minimum possible imbalance.
2568 * Negative imbalances (*we* are more loaded than anyone else) will
2569 * be counted as no imbalance for these purposes -- we can't fix that
2570 * by pulling tasks to us. Be careful of negative numbers as they'll
2571 * appear as very large values with unsigned longs.
2573 if (max_load
<= busiest_load_per_task
)
2577 * In the presence of smp nice balancing, certain scenarios can have
2578 * max load less than avg load(as we skip the groups at or below
2579 * its cpu_power, while calculating max_load..)
2581 if (max_load
< avg_load
) {
2583 goto small_imbalance
;
2586 /* Don't want to pull so many tasks that a group would go idle */
2587 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2589 /* How much load to actually move to equalise the imbalance */
2590 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2591 (avg_load
- this_load
) * this->__cpu_power
)
2595 * if *imbalance is less than the average load per runnable task
2596 * there is no gaurantee that any tasks will be moved so we'll have
2597 * a think about bumping its value to force at least one task to be
2600 if (*imbalance
< busiest_load_per_task
) {
2601 unsigned long tmp
, pwr_now
, pwr_move
;
2605 pwr_move
= pwr_now
= 0;
2607 if (this_nr_running
) {
2608 this_load_per_task
/= this_nr_running
;
2609 if (busiest_load_per_task
> this_load_per_task
)
2612 this_load_per_task
= SCHED_LOAD_SCALE
;
2614 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2615 busiest_load_per_task
* imbn
) {
2616 *imbalance
= busiest_load_per_task
;
2621 * OK, we don't have enough imbalance to justify moving tasks,
2622 * however we may be able to increase total CPU power used by
2626 pwr_now
+= busiest
->__cpu_power
*
2627 min(busiest_load_per_task
, max_load
);
2628 pwr_now
+= this->__cpu_power
*
2629 min(this_load_per_task
, this_load
);
2630 pwr_now
/= SCHED_LOAD_SCALE
;
2632 /* Amount of load we'd subtract */
2633 tmp
= sg_div_cpu_power(busiest
,
2634 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2636 pwr_move
+= busiest
->__cpu_power
*
2637 min(busiest_load_per_task
, max_load
- tmp
);
2639 /* Amount of load we'd add */
2640 if (max_load
* busiest
->__cpu_power
<
2641 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2642 tmp
= sg_div_cpu_power(this,
2643 max_load
* busiest
->__cpu_power
);
2645 tmp
= sg_div_cpu_power(this,
2646 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2647 pwr_move
+= this->__cpu_power
*
2648 min(this_load_per_task
, this_load
+ tmp
);
2649 pwr_move
/= SCHED_LOAD_SCALE
;
2651 /* Move if we gain throughput */
2652 if (pwr_move
> pwr_now
)
2653 *imbalance
= busiest_load_per_task
;
2659 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2660 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2663 if (this == group_leader
&& group_leader
!= group_min
) {
2664 *imbalance
= min_load_per_task
;
2674 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2677 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2678 unsigned long imbalance
, cpumask_t
*cpus
)
2680 struct rq
*busiest
= NULL
, *rq
;
2681 unsigned long max_load
= 0;
2684 for_each_cpu_mask(i
, group
->cpumask
) {
2687 if (!cpu_isset(i
, *cpus
))
2691 wl
= weighted_cpuload(i
);
2693 if (rq
->nr_running
== 1 && wl
> imbalance
)
2696 if (wl
> max_load
) {
2706 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2707 * so long as it is large enough.
2709 #define MAX_PINNED_INTERVAL 512
2712 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2713 * tasks if there is an imbalance.
2715 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2716 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2719 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2720 struct sched_group
*group
;
2721 unsigned long imbalance
;
2723 cpumask_t cpus
= CPU_MASK_ALL
;
2724 unsigned long flags
;
2727 * When power savings policy is enabled for the parent domain, idle
2728 * sibling can pick up load irrespective of busy siblings. In this case,
2729 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2730 * portraying it as CPU_NOT_IDLE.
2732 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2733 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2736 schedstat_inc(sd
, lb_count
[idle
]);
2739 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2746 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2750 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2752 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2756 BUG_ON(busiest
== this_rq
);
2758 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2761 if (busiest
->nr_running
> 1) {
2763 * Attempt to move tasks. If find_busiest_group has found
2764 * an imbalance but busiest->nr_running <= 1, the group is
2765 * still unbalanced. ld_moved simply stays zero, so it is
2766 * correctly treated as an imbalance.
2768 local_irq_save(flags
);
2769 double_rq_lock(this_rq
, busiest
);
2770 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2771 imbalance
, sd
, idle
, &all_pinned
);
2772 double_rq_unlock(this_rq
, busiest
);
2773 local_irq_restore(flags
);
2776 * some other cpu did the load balance for us.
2778 if (ld_moved
&& this_cpu
!= smp_processor_id())
2779 resched_cpu(this_cpu
);
2781 /* All tasks on this runqueue were pinned by CPU affinity */
2782 if (unlikely(all_pinned
)) {
2783 cpu_clear(cpu_of(busiest
), cpus
);
2784 if (!cpus_empty(cpus
))
2791 schedstat_inc(sd
, lb_failed
[idle
]);
2792 sd
->nr_balance_failed
++;
2794 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2796 spin_lock_irqsave(&busiest
->lock
, flags
);
2798 /* don't kick the migration_thread, if the curr
2799 * task on busiest cpu can't be moved to this_cpu
2801 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2802 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2804 goto out_one_pinned
;
2807 if (!busiest
->active_balance
) {
2808 busiest
->active_balance
= 1;
2809 busiest
->push_cpu
= this_cpu
;
2812 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2814 wake_up_process(busiest
->migration_thread
);
2817 * We've kicked active balancing, reset the failure
2820 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2823 sd
->nr_balance_failed
= 0;
2825 if (likely(!active_balance
)) {
2826 /* We were unbalanced, so reset the balancing interval */
2827 sd
->balance_interval
= sd
->min_interval
;
2830 * If we've begun active balancing, start to back off. This
2831 * case may not be covered by the all_pinned logic if there
2832 * is only 1 task on the busy runqueue (because we don't call
2835 if (sd
->balance_interval
< sd
->max_interval
)
2836 sd
->balance_interval
*= 2;
2839 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2840 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2845 schedstat_inc(sd
, lb_balanced
[idle
]);
2847 sd
->nr_balance_failed
= 0;
2850 /* tune up the balancing interval */
2851 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2852 (sd
->balance_interval
< sd
->max_interval
))
2853 sd
->balance_interval
*= 2;
2855 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2856 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2862 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2863 * tasks if there is an imbalance.
2865 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2866 * this_rq is locked.
2869 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2871 struct sched_group
*group
;
2872 struct rq
*busiest
= NULL
;
2873 unsigned long imbalance
;
2877 cpumask_t cpus
= CPU_MASK_ALL
;
2880 * When power savings policy is enabled for the parent domain, idle
2881 * sibling can pick up load irrespective of busy siblings. In this case,
2882 * let the state of idle sibling percolate up as IDLE, instead of
2883 * portraying it as CPU_NOT_IDLE.
2885 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2886 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2889 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2891 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2892 &sd_idle
, &cpus
, NULL
);
2894 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2898 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2901 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2905 BUG_ON(busiest
== this_rq
);
2907 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2910 if (busiest
->nr_running
> 1) {
2911 /* Attempt to move tasks */
2912 double_lock_balance(this_rq
, busiest
);
2913 /* this_rq->clock is already updated */
2914 update_rq_clock(busiest
);
2915 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2916 imbalance
, sd
, CPU_NEWLY_IDLE
,
2918 spin_unlock(&busiest
->lock
);
2920 if (unlikely(all_pinned
)) {
2921 cpu_clear(cpu_of(busiest
), cpus
);
2922 if (!cpus_empty(cpus
))
2928 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2929 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2930 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2933 sd
->nr_balance_failed
= 0;
2938 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2939 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2940 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2942 sd
->nr_balance_failed
= 0;
2948 * idle_balance is called by schedule() if this_cpu is about to become
2949 * idle. Attempts to pull tasks from other CPUs.
2951 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2953 struct sched_domain
*sd
;
2954 int pulled_task
= -1;
2955 unsigned long next_balance
= jiffies
+ HZ
;
2957 for_each_domain(this_cpu
, sd
) {
2958 unsigned long interval
;
2960 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2963 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2964 /* If we've pulled tasks over stop searching: */
2965 pulled_task
= load_balance_newidle(this_cpu
,
2968 interval
= msecs_to_jiffies(sd
->balance_interval
);
2969 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2970 next_balance
= sd
->last_balance
+ interval
;
2974 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2976 * We are going idle. next_balance may be set based on
2977 * a busy processor. So reset next_balance.
2979 this_rq
->next_balance
= next_balance
;
2984 * active_load_balance is run by migration threads. It pushes running tasks
2985 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2986 * running on each physical CPU where possible, and avoids physical /
2987 * logical imbalances.
2989 * Called with busiest_rq locked.
2991 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2993 int target_cpu
= busiest_rq
->push_cpu
;
2994 struct sched_domain
*sd
;
2995 struct rq
*target_rq
;
2997 /* Is there any task to move? */
2998 if (busiest_rq
->nr_running
<= 1)
3001 target_rq
= cpu_rq(target_cpu
);
3004 * This condition is "impossible", if it occurs
3005 * we need to fix it. Originally reported by
3006 * Bjorn Helgaas on a 128-cpu setup.
3008 BUG_ON(busiest_rq
== target_rq
);
3010 /* move a task from busiest_rq to target_rq */
3011 double_lock_balance(busiest_rq
, target_rq
);
3012 update_rq_clock(busiest_rq
);
3013 update_rq_clock(target_rq
);
3015 /* Search for an sd spanning us and the target CPU. */
3016 for_each_domain(target_cpu
, sd
) {
3017 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3018 cpu_isset(busiest_cpu
, sd
->span
))
3023 schedstat_inc(sd
, alb_count
);
3025 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3027 schedstat_inc(sd
, alb_pushed
);
3029 schedstat_inc(sd
, alb_failed
);
3031 spin_unlock(&target_rq
->lock
);
3036 atomic_t load_balancer
;
3038 } nohz ____cacheline_aligned
= {
3039 .load_balancer
= ATOMIC_INIT(-1),
3040 .cpu_mask
= CPU_MASK_NONE
,
3044 * This routine will try to nominate the ilb (idle load balancing)
3045 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3046 * load balancing on behalf of all those cpus. If all the cpus in the system
3047 * go into this tickless mode, then there will be no ilb owner (as there is
3048 * no need for one) and all the cpus will sleep till the next wakeup event
3051 * For the ilb owner, tick is not stopped. And this tick will be used
3052 * for idle load balancing. ilb owner will still be part of
3055 * While stopping the tick, this cpu will become the ilb owner if there
3056 * is no other owner. And will be the owner till that cpu becomes busy
3057 * or if all cpus in the system stop their ticks at which point
3058 * there is no need for ilb owner.
3060 * When the ilb owner becomes busy, it nominates another owner, during the
3061 * next busy scheduler_tick()
3063 int select_nohz_load_balancer(int stop_tick
)
3065 int cpu
= smp_processor_id();
3068 cpu_set(cpu
, nohz
.cpu_mask
);
3069 cpu_rq(cpu
)->in_nohz_recently
= 1;
3072 * If we are going offline and still the leader, give up!
3074 if (cpu_is_offline(cpu
) &&
3075 atomic_read(&nohz
.load_balancer
) == cpu
) {
3076 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3081 /* time for ilb owner also to sleep */
3082 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3083 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3084 atomic_set(&nohz
.load_balancer
, -1);
3088 if (atomic_read(&nohz
.load_balancer
) == -1) {
3089 /* make me the ilb owner */
3090 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3092 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3095 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3098 cpu_clear(cpu
, nohz
.cpu_mask
);
3100 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3101 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3108 static DEFINE_SPINLOCK(balancing
);
3111 * It checks each scheduling domain to see if it is due to be balanced,
3112 * and initiates a balancing operation if so.
3114 * Balancing parameters are set up in arch_init_sched_domains.
3116 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3119 struct rq
*rq
= cpu_rq(cpu
);
3120 unsigned long interval
;
3121 struct sched_domain
*sd
;
3122 /* Earliest time when we have to do rebalance again */
3123 unsigned long next_balance
= jiffies
+ 60*HZ
;
3124 int update_next_balance
= 0;
3126 for_each_domain(cpu
, sd
) {
3127 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3130 interval
= sd
->balance_interval
;
3131 if (idle
!= CPU_IDLE
)
3132 interval
*= sd
->busy_factor
;
3134 /* scale ms to jiffies */
3135 interval
= msecs_to_jiffies(interval
);
3136 if (unlikely(!interval
))
3138 if (interval
> HZ
*NR_CPUS
/10)
3139 interval
= HZ
*NR_CPUS
/10;
3142 if (sd
->flags
& SD_SERIALIZE
) {
3143 if (!spin_trylock(&balancing
))
3147 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3148 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3150 * We've pulled tasks over so either we're no
3151 * longer idle, or one of our SMT siblings is
3154 idle
= CPU_NOT_IDLE
;
3156 sd
->last_balance
= jiffies
;
3158 if (sd
->flags
& SD_SERIALIZE
)
3159 spin_unlock(&balancing
);
3161 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3162 next_balance
= sd
->last_balance
+ interval
;
3163 update_next_balance
= 1;
3167 * Stop the load balance at this level. There is another
3168 * CPU in our sched group which is doing load balancing more
3176 * next_balance will be updated only when there is a need.
3177 * When the cpu is attached to null domain for ex, it will not be
3180 if (likely(update_next_balance
))
3181 rq
->next_balance
= next_balance
;
3185 * run_rebalance_domains is triggered when needed from the scheduler tick.
3186 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3187 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3189 static void run_rebalance_domains(struct softirq_action
*h
)
3191 int this_cpu
= smp_processor_id();
3192 struct rq
*this_rq
= cpu_rq(this_cpu
);
3193 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3194 CPU_IDLE
: CPU_NOT_IDLE
;
3196 rebalance_domains(this_cpu
, idle
);
3200 * If this cpu is the owner for idle load balancing, then do the
3201 * balancing on behalf of the other idle cpus whose ticks are
3204 if (this_rq
->idle_at_tick
&&
3205 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3206 cpumask_t cpus
= nohz
.cpu_mask
;
3210 cpu_clear(this_cpu
, cpus
);
3211 for_each_cpu_mask(balance_cpu
, cpus
) {
3213 * If this cpu gets work to do, stop the load balancing
3214 * work being done for other cpus. Next load
3215 * balancing owner will pick it up.
3220 rebalance_domains(balance_cpu
, CPU_IDLE
);
3222 rq
= cpu_rq(balance_cpu
);
3223 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3224 this_rq
->next_balance
= rq
->next_balance
;
3231 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3233 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3234 * idle load balancing owner or decide to stop the periodic load balancing,
3235 * if the whole system is idle.
3237 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3241 * If we were in the nohz mode recently and busy at the current
3242 * scheduler tick, then check if we need to nominate new idle
3245 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3246 rq
->in_nohz_recently
= 0;
3248 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3249 cpu_clear(cpu
, nohz
.cpu_mask
);
3250 atomic_set(&nohz
.load_balancer
, -1);
3253 if (atomic_read(&nohz
.load_balancer
) == -1) {
3255 * simple selection for now: Nominate the
3256 * first cpu in the nohz list to be the next
3259 * TBD: Traverse the sched domains and nominate
3260 * the nearest cpu in the nohz.cpu_mask.
3262 int ilb
= first_cpu(nohz
.cpu_mask
);
3270 * If this cpu is idle and doing idle load balancing for all the
3271 * cpus with ticks stopped, is it time for that to stop?
3273 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3274 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3280 * If this cpu is idle and the idle load balancing is done by
3281 * someone else, then no need raise the SCHED_SOFTIRQ
3283 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3284 cpu_isset(cpu
, nohz
.cpu_mask
))
3287 if (time_after_eq(jiffies
, rq
->next_balance
))
3288 raise_softirq(SCHED_SOFTIRQ
);
3291 #else /* CONFIG_SMP */
3294 * on UP we do not need to balance between CPUs:
3296 static inline void idle_balance(int cpu
, struct rq
*rq
)
3302 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3304 EXPORT_PER_CPU_SYMBOL(kstat
);
3307 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3308 * that have not yet been banked in case the task is currently running.
3310 unsigned long long task_sched_runtime(struct task_struct
*p
)
3312 unsigned long flags
;
3316 rq
= task_rq_lock(p
, &flags
);
3317 ns
= p
->se
.sum_exec_runtime
;
3318 if (rq
->curr
== p
) {
3319 update_rq_clock(rq
);
3320 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3321 if ((s64
)delta_exec
> 0)
3324 task_rq_unlock(rq
, &flags
);
3330 * Account user cpu time to a process.
3331 * @p: the process that the cpu time gets accounted to
3332 * @cputime: the cpu time spent in user space since the last update
3334 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3336 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3338 struct rq
*rq
= this_rq();
3340 p
->utime
= cputime_add(p
->utime
, cputime
);
3343 cpuacct_charge(p
, cputime
);
3345 /* Add user time to cpustat. */
3346 tmp
= cputime_to_cputime64(cputime
);
3347 if (TASK_NICE(p
) > 0)
3348 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3350 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3354 * Account guest cpu time to a process.
3355 * @p: the process that the cpu time gets accounted to
3356 * @cputime: the cpu time spent in virtual machine since the last update
3358 void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3361 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3363 tmp
= cputime_to_cputime64(cputime
);
3365 p
->utime
= cputime_add(p
->utime
, cputime
);
3366 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3368 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3369 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3373 * Account scaled user cpu time to a process.
3374 * @p: the process that the cpu time gets accounted to
3375 * @cputime: the cpu time spent in user space since the last update
3377 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3379 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3383 * Account system cpu time to a process.
3384 * @p: the process that the cpu time gets accounted to
3385 * @hardirq_offset: the offset to subtract from hardirq_count()
3386 * @cputime: the cpu time spent in kernel space since the last update
3388 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3391 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3392 struct rq
*rq
= this_rq();
3395 if (p
->flags
& PF_VCPU
) {
3396 account_guest_time(p
, cputime
);
3400 p
->stime
= cputime_add(p
->stime
, cputime
);
3402 /* Add system time to cpustat. */
3403 tmp
= cputime_to_cputime64(cputime
);
3404 if (hardirq_count() - hardirq_offset
)
3405 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3406 else if (softirq_count())
3407 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3408 else if (p
!= rq
->idle
) {
3409 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3410 cpuacct_charge(p
, cputime
);
3411 } else if (atomic_read(&rq
->nr_iowait
) > 0)
3412 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3414 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3415 /* Account for system time used */
3416 acct_update_integrals(p
);
3420 * Account scaled system cpu time to a process.
3421 * @p: the process that the cpu time gets accounted to
3422 * @hardirq_offset: the offset to subtract from hardirq_count()
3423 * @cputime: the cpu time spent in kernel space since the last update
3425 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3427 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3431 * Account for involuntary wait time.
3432 * @p: the process from which the cpu time has been stolen
3433 * @steal: the cpu time spent in involuntary wait
3435 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3437 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3438 cputime64_t tmp
= cputime_to_cputime64(steal
);
3439 struct rq
*rq
= this_rq();
3441 if (p
== rq
->idle
) {
3442 p
->stime
= cputime_add(p
->stime
, steal
);
3443 if (atomic_read(&rq
->nr_iowait
) > 0)
3444 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3446 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3448 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3449 cpuacct_charge(p
, -tmp
);
3454 * This function gets called by the timer code, with HZ frequency.
3455 * We call it with interrupts disabled.
3457 * It also gets called by the fork code, when changing the parent's
3460 void scheduler_tick(void)
3462 int cpu
= smp_processor_id();
3463 struct rq
*rq
= cpu_rq(cpu
);
3464 struct task_struct
*curr
= rq
->curr
;
3465 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3467 spin_lock(&rq
->lock
);
3468 __update_rq_clock(rq
);
3470 * Let rq->clock advance by at least TICK_NSEC:
3472 if (unlikely(rq
->clock
< next_tick
))
3473 rq
->clock
= next_tick
;
3474 rq
->tick_timestamp
= rq
->clock
;
3475 update_cpu_load(rq
);
3476 if (curr
!= rq
->idle
) /* FIXME: needed? */
3477 curr
->sched_class
->task_tick(rq
, curr
);
3478 spin_unlock(&rq
->lock
);
3481 rq
->idle_at_tick
= idle_cpu(cpu
);
3482 trigger_load_balance(rq
, cpu
);
3486 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3488 void fastcall
add_preempt_count(int val
)
3493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3495 preempt_count() += val
;
3497 * Spinlock count overflowing soon?
3499 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3502 EXPORT_SYMBOL(add_preempt_count
);
3504 void fastcall
sub_preempt_count(int val
)
3509 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3512 * Is the spinlock portion underflowing?
3514 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3515 !(preempt_count() & PREEMPT_MASK
)))
3518 preempt_count() -= val
;
3520 EXPORT_SYMBOL(sub_preempt_count
);
3525 * Print scheduling while atomic bug:
3527 static noinline
void __schedule_bug(struct task_struct
*prev
)
3529 struct pt_regs
*regs
= get_irq_regs();
3531 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3532 prev
->comm
, prev
->pid
, preempt_count());
3534 debug_show_held_locks(prev
);
3535 if (irqs_disabled())
3536 print_irqtrace_events(prev
);
3545 * Various schedule()-time debugging checks and statistics:
3547 static inline void schedule_debug(struct task_struct
*prev
)
3550 * Test if we are atomic. Since do_exit() needs to call into
3551 * schedule() atomically, we ignore that path for now.
3552 * Otherwise, whine if we are scheduling when we should not be.
3554 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3555 __schedule_bug(prev
);
3557 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3559 schedstat_inc(this_rq(), sched_count
);
3560 #ifdef CONFIG_SCHEDSTATS
3561 if (unlikely(prev
->lock_depth
>= 0)) {
3562 schedstat_inc(this_rq(), bkl_count
);
3563 schedstat_inc(prev
, sched_info
.bkl_count
);
3569 * Pick up the highest-prio task:
3571 static inline struct task_struct
*
3572 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3574 const struct sched_class
*class;
3575 struct task_struct
*p
;
3578 * Optimization: we know that if all tasks are in
3579 * the fair class we can call that function directly:
3581 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3582 p
= fair_sched_class
.pick_next_task(rq
);
3587 class = sched_class_highest
;
3589 p
= class->pick_next_task(rq
);
3593 * Will never be NULL as the idle class always
3594 * returns a non-NULL p:
3596 class = class->next
;
3601 * schedule() is the main scheduler function.
3603 asmlinkage
void __sched
schedule(void)
3605 struct task_struct
*prev
, *next
;
3612 cpu
= smp_processor_id();
3616 switch_count
= &prev
->nivcsw
;
3618 release_kernel_lock(prev
);
3619 need_resched_nonpreemptible
:
3621 schedule_debug(prev
);
3624 * Do the rq-clock update outside the rq lock:
3626 local_irq_disable();
3627 __update_rq_clock(rq
);
3628 spin_lock(&rq
->lock
);
3629 clear_tsk_need_resched(prev
);
3631 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3632 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3633 unlikely(signal_pending(prev
)))) {
3634 prev
->state
= TASK_RUNNING
;
3636 deactivate_task(rq
, prev
, 1);
3638 switch_count
= &prev
->nvcsw
;
3641 if (unlikely(!rq
->nr_running
))
3642 idle_balance(cpu
, rq
);
3644 prev
->sched_class
->put_prev_task(rq
, prev
);
3645 next
= pick_next_task(rq
, prev
);
3647 sched_info_switch(prev
, next
);
3649 if (likely(prev
!= next
)) {
3654 context_switch(rq
, prev
, next
); /* unlocks the rq */
3656 spin_unlock_irq(&rq
->lock
);
3658 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3659 cpu
= smp_processor_id();
3661 goto need_resched_nonpreemptible
;
3663 preempt_enable_no_resched();
3664 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3667 EXPORT_SYMBOL(schedule
);
3669 #ifdef CONFIG_PREEMPT
3671 * this is the entry point to schedule() from in-kernel preemption
3672 * off of preempt_enable. Kernel preemptions off return from interrupt
3673 * occur there and call schedule directly.
3675 asmlinkage
void __sched
preempt_schedule(void)
3677 struct thread_info
*ti
= current_thread_info();
3678 #ifdef CONFIG_PREEMPT_BKL
3679 struct task_struct
*task
= current
;
3680 int saved_lock_depth
;
3683 * If there is a non-zero preempt_count or interrupts are disabled,
3684 * we do not want to preempt the current task. Just return..
3686 if (likely(ti
->preempt_count
|| irqs_disabled()))
3690 add_preempt_count(PREEMPT_ACTIVE
);
3693 * We keep the big kernel semaphore locked, but we
3694 * clear ->lock_depth so that schedule() doesnt
3695 * auto-release the semaphore:
3697 #ifdef CONFIG_PREEMPT_BKL
3698 saved_lock_depth
= task
->lock_depth
;
3699 task
->lock_depth
= -1;
3702 #ifdef CONFIG_PREEMPT_BKL
3703 task
->lock_depth
= saved_lock_depth
;
3705 sub_preempt_count(PREEMPT_ACTIVE
);
3708 * Check again in case we missed a preemption opportunity
3709 * between schedule and now.
3712 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3714 EXPORT_SYMBOL(preempt_schedule
);
3717 * this is the entry point to schedule() from kernel preemption
3718 * off of irq context.
3719 * Note, that this is called and return with irqs disabled. This will
3720 * protect us against recursive calling from irq.
3722 asmlinkage
void __sched
preempt_schedule_irq(void)
3724 struct thread_info
*ti
= current_thread_info();
3725 #ifdef CONFIG_PREEMPT_BKL
3726 struct task_struct
*task
= current
;
3727 int saved_lock_depth
;
3729 /* Catch callers which need to be fixed */
3730 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3733 add_preempt_count(PREEMPT_ACTIVE
);
3736 * We keep the big kernel semaphore locked, but we
3737 * clear ->lock_depth so that schedule() doesnt
3738 * auto-release the semaphore:
3740 #ifdef CONFIG_PREEMPT_BKL
3741 saved_lock_depth
= task
->lock_depth
;
3742 task
->lock_depth
= -1;
3746 local_irq_disable();
3747 #ifdef CONFIG_PREEMPT_BKL
3748 task
->lock_depth
= saved_lock_depth
;
3750 sub_preempt_count(PREEMPT_ACTIVE
);
3753 * Check again in case we missed a preemption opportunity
3754 * between schedule and now.
3757 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3760 #endif /* CONFIG_PREEMPT */
3762 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3765 return try_to_wake_up(curr
->private, mode
, sync
);
3767 EXPORT_SYMBOL(default_wake_function
);
3770 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3771 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3772 * number) then we wake all the non-exclusive tasks and one exclusive task.
3774 * There are circumstances in which we can try to wake a task which has already
3775 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3776 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3778 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3779 int nr_exclusive
, int sync
, void *key
)
3781 wait_queue_t
*curr
, *next
;
3783 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3784 unsigned flags
= curr
->flags
;
3786 if (curr
->func(curr
, mode
, sync
, key
) &&
3787 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3793 * __wake_up - wake up threads blocked on a waitqueue.
3795 * @mode: which threads
3796 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3797 * @key: is directly passed to the wakeup function
3799 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3800 int nr_exclusive
, void *key
)
3802 unsigned long flags
;
3804 spin_lock_irqsave(&q
->lock
, flags
);
3805 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3806 spin_unlock_irqrestore(&q
->lock
, flags
);
3808 EXPORT_SYMBOL(__wake_up
);
3811 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3813 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3815 __wake_up_common(q
, mode
, 1, 0, NULL
);
3819 * __wake_up_sync - wake up threads blocked on a waitqueue.
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3824 * The sync wakeup differs that the waker knows that it will schedule
3825 * away soon, so while the target thread will be woken up, it will not
3826 * be migrated to another CPU - ie. the two threads are 'synchronized'
3827 * with each other. This can prevent needless bouncing between CPUs.
3829 * On UP it can prevent extra preemption.
3832 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3834 unsigned long flags
;
3840 if (unlikely(!nr_exclusive
))
3843 spin_lock_irqsave(&q
->lock
, flags
);
3844 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3845 spin_unlock_irqrestore(&q
->lock
, flags
);
3847 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3849 void complete(struct completion
*x
)
3851 unsigned long flags
;
3853 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3855 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3857 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3859 EXPORT_SYMBOL(complete
);
3861 void complete_all(struct completion
*x
)
3863 unsigned long flags
;
3865 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3866 x
->done
+= UINT_MAX
/2;
3867 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3869 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3871 EXPORT_SYMBOL(complete_all
);
3873 static inline long __sched
3874 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3877 DECLARE_WAITQUEUE(wait
, current
);
3879 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3880 __add_wait_queue_tail(&x
->wait
, &wait
);
3882 if (state
== TASK_INTERRUPTIBLE
&&
3883 signal_pending(current
)) {
3884 __remove_wait_queue(&x
->wait
, &wait
);
3885 return -ERESTARTSYS
;
3887 __set_current_state(state
);
3888 spin_unlock_irq(&x
->wait
.lock
);
3889 timeout
= schedule_timeout(timeout
);
3890 spin_lock_irq(&x
->wait
.lock
);
3892 __remove_wait_queue(&x
->wait
, &wait
);
3896 __remove_wait_queue(&x
->wait
, &wait
);
3903 wait_for_common(struct completion
*x
, long timeout
, int state
)
3907 spin_lock_irq(&x
->wait
.lock
);
3908 timeout
= do_wait_for_common(x
, timeout
, state
);
3909 spin_unlock_irq(&x
->wait
.lock
);
3913 void __sched
wait_for_completion(struct completion
*x
)
3915 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3917 EXPORT_SYMBOL(wait_for_completion
);
3919 unsigned long __sched
3920 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3922 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3924 EXPORT_SYMBOL(wait_for_completion_timeout
);
3926 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3928 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3929 if (t
== -ERESTARTSYS
)
3933 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3935 unsigned long __sched
3936 wait_for_completion_interruptible_timeout(struct completion
*x
,
3937 unsigned long timeout
)
3939 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3941 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3944 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3946 unsigned long flags
;
3949 init_waitqueue_entry(&wait
, current
);
3951 __set_current_state(state
);
3953 spin_lock_irqsave(&q
->lock
, flags
);
3954 __add_wait_queue(q
, &wait
);
3955 spin_unlock(&q
->lock
);
3956 timeout
= schedule_timeout(timeout
);
3957 spin_lock_irq(&q
->lock
);
3958 __remove_wait_queue(q
, &wait
);
3959 spin_unlock_irqrestore(&q
->lock
, flags
);
3964 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3966 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3968 EXPORT_SYMBOL(interruptible_sleep_on
);
3971 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3973 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3975 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3977 void __sched
sleep_on(wait_queue_head_t
*q
)
3979 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3981 EXPORT_SYMBOL(sleep_on
);
3983 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3985 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3987 EXPORT_SYMBOL(sleep_on_timeout
);
3989 #ifdef CONFIG_RT_MUTEXES
3992 * rt_mutex_setprio - set the current priority of a task
3994 * @prio: prio value (kernel-internal form)
3996 * This function changes the 'effective' priority of a task. It does
3997 * not touch ->normal_prio like __setscheduler().
3999 * Used by the rt_mutex code to implement priority inheritance logic.
4001 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4003 unsigned long flags
;
4004 int oldprio
, on_rq
, running
;
4007 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4009 rq
= task_rq_lock(p
, &flags
);
4010 update_rq_clock(rq
);
4013 on_rq
= p
->se
.on_rq
;
4014 running
= task_running(rq
, p
);
4016 dequeue_task(rq
, p
, 0);
4018 p
->sched_class
->put_prev_task(rq
, p
);
4022 p
->sched_class
= &rt_sched_class
;
4024 p
->sched_class
= &fair_sched_class
;
4030 p
->sched_class
->set_curr_task(rq
);
4031 enqueue_task(rq
, p
, 0);
4033 * Reschedule if we are currently running on this runqueue and
4034 * our priority decreased, or if we are not currently running on
4035 * this runqueue and our priority is higher than the current's
4038 if (p
->prio
> oldprio
)
4039 resched_task(rq
->curr
);
4041 check_preempt_curr(rq
, p
);
4044 task_rq_unlock(rq
, &flags
);
4049 void set_user_nice(struct task_struct
*p
, long nice
)
4051 int old_prio
, delta
, on_rq
;
4052 unsigned long flags
;
4055 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4058 * We have to be careful, if called from sys_setpriority(),
4059 * the task might be in the middle of scheduling on another CPU.
4061 rq
= task_rq_lock(p
, &flags
);
4062 update_rq_clock(rq
);
4064 * The RT priorities are set via sched_setscheduler(), but we still
4065 * allow the 'normal' nice value to be set - but as expected
4066 * it wont have any effect on scheduling until the task is
4067 * SCHED_FIFO/SCHED_RR:
4069 if (task_has_rt_policy(p
)) {
4070 p
->static_prio
= NICE_TO_PRIO(nice
);
4073 on_rq
= p
->se
.on_rq
;
4075 dequeue_task(rq
, p
, 0);
4079 p
->static_prio
= NICE_TO_PRIO(nice
);
4082 p
->prio
= effective_prio(p
);
4083 delta
= p
->prio
- old_prio
;
4086 enqueue_task(rq
, p
, 0);
4089 * If the task increased its priority or is running and
4090 * lowered its priority, then reschedule its CPU:
4092 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4093 resched_task(rq
->curr
);
4096 task_rq_unlock(rq
, &flags
);
4098 EXPORT_SYMBOL(set_user_nice
);
4101 * can_nice - check if a task can reduce its nice value
4105 int can_nice(const struct task_struct
*p
, const int nice
)
4107 /* convert nice value [19,-20] to rlimit style value [1,40] */
4108 int nice_rlim
= 20 - nice
;
4110 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4111 capable(CAP_SYS_NICE
));
4114 #ifdef __ARCH_WANT_SYS_NICE
4117 * sys_nice - change the priority of the current process.
4118 * @increment: priority increment
4120 * sys_setpriority is a more generic, but much slower function that
4121 * does similar things.
4123 asmlinkage
long sys_nice(int increment
)
4128 * Setpriority might change our priority at the same moment.
4129 * We don't have to worry. Conceptually one call occurs first
4130 * and we have a single winner.
4132 if (increment
< -40)
4137 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4143 if (increment
< 0 && !can_nice(current
, nice
))
4146 retval
= security_task_setnice(current
, nice
);
4150 set_user_nice(current
, nice
);
4157 * task_prio - return the priority value of a given task.
4158 * @p: the task in question.
4160 * This is the priority value as seen by users in /proc.
4161 * RT tasks are offset by -200. Normal tasks are centered
4162 * around 0, value goes from -16 to +15.
4164 int task_prio(const struct task_struct
*p
)
4166 return p
->prio
- MAX_RT_PRIO
;
4170 * task_nice - return the nice value of a given task.
4171 * @p: the task in question.
4173 int task_nice(const struct task_struct
*p
)
4175 return TASK_NICE(p
);
4177 EXPORT_SYMBOL_GPL(task_nice
);
4180 * idle_cpu - is a given cpu idle currently?
4181 * @cpu: the processor in question.
4183 int idle_cpu(int cpu
)
4185 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4189 * idle_task - return the idle task for a given cpu.
4190 * @cpu: the processor in question.
4192 struct task_struct
*idle_task(int cpu
)
4194 return cpu_rq(cpu
)->idle
;
4198 * find_process_by_pid - find a process with a matching PID value.
4199 * @pid: the pid in question.
4201 static struct task_struct
*find_process_by_pid(pid_t pid
)
4203 return pid
? find_task_by_vpid(pid
) : current
;
4206 /* Actually do priority change: must hold rq lock. */
4208 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4210 BUG_ON(p
->se
.on_rq
);
4213 switch (p
->policy
) {
4217 p
->sched_class
= &fair_sched_class
;
4221 p
->sched_class
= &rt_sched_class
;
4225 p
->rt_priority
= prio
;
4226 p
->normal_prio
= normal_prio(p
);
4227 /* we are holding p->pi_lock already */
4228 p
->prio
= rt_mutex_getprio(p
);
4233 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4234 * @p: the task in question.
4235 * @policy: new policy.
4236 * @param: structure containing the new RT priority.
4238 * NOTE that the task may be already dead.
4240 int sched_setscheduler(struct task_struct
*p
, int policy
,
4241 struct sched_param
*param
)
4243 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4244 unsigned long flags
;
4247 /* may grab non-irq protected spin_locks */
4248 BUG_ON(in_interrupt());
4250 /* double check policy once rq lock held */
4252 policy
= oldpolicy
= p
->policy
;
4253 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4254 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4255 policy
!= SCHED_IDLE
)
4258 * Valid priorities for SCHED_FIFO and SCHED_RR are
4259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4260 * SCHED_BATCH and SCHED_IDLE is 0.
4262 if (param
->sched_priority
< 0 ||
4263 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4264 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4266 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4270 * Allow unprivileged RT tasks to decrease priority:
4272 if (!capable(CAP_SYS_NICE
)) {
4273 if (rt_policy(policy
)) {
4274 unsigned long rlim_rtprio
;
4276 if (!lock_task_sighand(p
, &flags
))
4278 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4279 unlock_task_sighand(p
, &flags
);
4281 /* can't set/change the rt policy */
4282 if (policy
!= p
->policy
&& !rlim_rtprio
)
4285 /* can't increase priority */
4286 if (param
->sched_priority
> p
->rt_priority
&&
4287 param
->sched_priority
> rlim_rtprio
)
4291 * Like positive nice levels, dont allow tasks to
4292 * move out of SCHED_IDLE either:
4294 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4297 /* can't change other user's priorities */
4298 if ((current
->euid
!= p
->euid
) &&
4299 (current
->euid
!= p
->uid
))
4303 retval
= security_task_setscheduler(p
, policy
, param
);
4307 * make sure no PI-waiters arrive (or leave) while we are
4308 * changing the priority of the task:
4310 spin_lock_irqsave(&p
->pi_lock
, flags
);
4312 * To be able to change p->policy safely, the apropriate
4313 * runqueue lock must be held.
4315 rq
= __task_rq_lock(p
);
4316 /* recheck policy now with rq lock held */
4317 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4318 policy
= oldpolicy
= -1;
4319 __task_rq_unlock(rq
);
4320 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4323 update_rq_clock(rq
);
4324 on_rq
= p
->se
.on_rq
;
4325 running
= task_running(rq
, p
);
4327 deactivate_task(rq
, p
, 0);
4329 p
->sched_class
->put_prev_task(rq
, p
);
4333 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4337 p
->sched_class
->set_curr_task(rq
);
4338 activate_task(rq
, p
, 0);
4340 * Reschedule if we are currently running on this runqueue and
4341 * our priority decreased, or if we are not currently running on
4342 * this runqueue and our priority is higher than the current's
4345 if (p
->prio
> oldprio
)
4346 resched_task(rq
->curr
);
4348 check_preempt_curr(rq
, p
);
4351 __task_rq_unlock(rq
);
4352 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4354 rt_mutex_adjust_pi(p
);
4358 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4361 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4363 struct sched_param lparam
;
4364 struct task_struct
*p
;
4367 if (!param
|| pid
< 0)
4369 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4374 p
= find_process_by_pid(pid
);
4376 retval
= sched_setscheduler(p
, policy
, &lparam
);
4383 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4384 * @pid: the pid in question.
4385 * @policy: new policy.
4386 * @param: structure containing the new RT priority.
4388 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4389 struct sched_param __user
*param
)
4391 /* negative values for policy are not valid */
4395 return do_sched_setscheduler(pid
, policy
, param
);
4399 * sys_sched_setparam - set/change the RT priority of a thread
4400 * @pid: the pid in question.
4401 * @param: structure containing the new RT priority.
4403 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4405 return do_sched_setscheduler(pid
, -1, param
);
4409 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4410 * @pid: the pid in question.
4412 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4414 struct task_struct
*p
;
4421 read_lock(&tasklist_lock
);
4422 p
= find_process_by_pid(pid
);
4424 retval
= security_task_getscheduler(p
);
4428 read_unlock(&tasklist_lock
);
4433 * sys_sched_getscheduler - get the RT priority of a thread
4434 * @pid: the pid in question.
4435 * @param: structure containing the RT priority.
4437 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4439 struct sched_param lp
;
4440 struct task_struct
*p
;
4443 if (!param
|| pid
< 0)
4446 read_lock(&tasklist_lock
);
4447 p
= find_process_by_pid(pid
);
4452 retval
= security_task_getscheduler(p
);
4456 lp
.sched_priority
= p
->rt_priority
;
4457 read_unlock(&tasklist_lock
);
4460 * This one might sleep, we cannot do it with a spinlock held ...
4462 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4467 read_unlock(&tasklist_lock
);
4471 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4473 cpumask_t cpus_allowed
;
4474 struct task_struct
*p
;
4477 mutex_lock(&sched_hotcpu_mutex
);
4478 read_lock(&tasklist_lock
);
4480 p
= find_process_by_pid(pid
);
4482 read_unlock(&tasklist_lock
);
4483 mutex_unlock(&sched_hotcpu_mutex
);
4488 * It is not safe to call set_cpus_allowed with the
4489 * tasklist_lock held. We will bump the task_struct's
4490 * usage count and then drop tasklist_lock.
4493 read_unlock(&tasklist_lock
);
4496 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4497 !capable(CAP_SYS_NICE
))
4500 retval
= security_task_setscheduler(p
, 0, NULL
);
4504 cpus_allowed
= cpuset_cpus_allowed(p
);
4505 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4507 retval
= set_cpus_allowed(p
, new_mask
);
4510 cpus_allowed
= cpuset_cpus_allowed(p
);
4511 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4513 * We must have raced with a concurrent cpuset
4514 * update. Just reset the cpus_allowed to the
4515 * cpuset's cpus_allowed
4517 new_mask
= cpus_allowed
;
4523 mutex_unlock(&sched_hotcpu_mutex
);
4527 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4528 cpumask_t
*new_mask
)
4530 if (len
< sizeof(cpumask_t
)) {
4531 memset(new_mask
, 0, sizeof(cpumask_t
));
4532 } else if (len
> sizeof(cpumask_t
)) {
4533 len
= sizeof(cpumask_t
);
4535 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4539 * sys_sched_setaffinity - set the cpu affinity of a process
4540 * @pid: pid of the process
4541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4542 * @user_mask_ptr: user-space pointer to the new cpu mask
4544 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4545 unsigned long __user
*user_mask_ptr
)
4550 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4554 return sched_setaffinity(pid
, new_mask
);
4558 * Represents all cpu's present in the system
4559 * In systems capable of hotplug, this map could dynamically grow
4560 * as new cpu's are detected in the system via any platform specific
4561 * method, such as ACPI for e.g.
4564 cpumask_t cpu_present_map __read_mostly
;
4565 EXPORT_SYMBOL(cpu_present_map
);
4568 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4569 EXPORT_SYMBOL(cpu_online_map
);
4571 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4572 EXPORT_SYMBOL(cpu_possible_map
);
4575 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4577 struct task_struct
*p
;
4580 mutex_lock(&sched_hotcpu_mutex
);
4581 read_lock(&tasklist_lock
);
4584 p
= find_process_by_pid(pid
);
4588 retval
= security_task_getscheduler(p
);
4592 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4595 read_unlock(&tasklist_lock
);
4596 mutex_unlock(&sched_hotcpu_mutex
);
4602 * sys_sched_getaffinity - get the cpu affinity of a process
4603 * @pid: pid of the process
4604 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4605 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4607 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4608 unsigned long __user
*user_mask_ptr
)
4613 if (len
< sizeof(cpumask_t
))
4616 ret
= sched_getaffinity(pid
, &mask
);
4620 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4623 return sizeof(cpumask_t
);
4627 * sys_sched_yield - yield the current processor to other threads.
4629 * This function yields the current CPU to other tasks. If there are no
4630 * other threads running on this CPU then this function will return.
4632 asmlinkage
long sys_sched_yield(void)
4634 struct rq
*rq
= this_rq_lock();
4636 schedstat_inc(rq
, yld_count
);
4637 current
->sched_class
->yield_task(rq
);
4640 * Since we are going to call schedule() anyway, there's
4641 * no need to preempt or enable interrupts:
4643 __release(rq
->lock
);
4644 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4645 _raw_spin_unlock(&rq
->lock
);
4646 preempt_enable_no_resched();
4653 static void __cond_resched(void)
4655 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4656 __might_sleep(__FILE__
, __LINE__
);
4659 * The BKS might be reacquired before we have dropped
4660 * PREEMPT_ACTIVE, which could trigger a second
4661 * cond_resched() call.
4664 add_preempt_count(PREEMPT_ACTIVE
);
4666 sub_preempt_count(PREEMPT_ACTIVE
);
4667 } while (need_resched());
4670 int __sched
cond_resched(void)
4672 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4673 system_state
== SYSTEM_RUNNING
) {
4679 EXPORT_SYMBOL(cond_resched
);
4682 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4683 * call schedule, and on return reacquire the lock.
4685 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4686 * operations here to prevent schedule() from being called twice (once via
4687 * spin_unlock(), once by hand).
4689 int cond_resched_lock(spinlock_t
*lock
)
4693 if (need_lockbreak(lock
)) {
4699 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4700 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4701 _raw_spin_unlock(lock
);
4702 preempt_enable_no_resched();
4709 EXPORT_SYMBOL(cond_resched_lock
);
4711 int __sched
cond_resched_softirq(void)
4713 BUG_ON(!in_softirq());
4715 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4723 EXPORT_SYMBOL(cond_resched_softirq
);
4726 * yield - yield the current processor to other threads.
4728 * This is a shortcut for kernel-space yielding - it marks the
4729 * thread runnable and calls sys_sched_yield().
4731 void __sched
yield(void)
4733 set_current_state(TASK_RUNNING
);
4736 EXPORT_SYMBOL(yield
);
4739 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4740 * that process accounting knows that this is a task in IO wait state.
4742 * But don't do that if it is a deliberate, throttling IO wait (this task
4743 * has set its backing_dev_info: the queue against which it should throttle)
4745 void __sched
io_schedule(void)
4747 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4749 delayacct_blkio_start();
4750 atomic_inc(&rq
->nr_iowait
);
4752 atomic_dec(&rq
->nr_iowait
);
4753 delayacct_blkio_end();
4755 EXPORT_SYMBOL(io_schedule
);
4757 long __sched
io_schedule_timeout(long timeout
)
4759 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4762 delayacct_blkio_start();
4763 atomic_inc(&rq
->nr_iowait
);
4764 ret
= schedule_timeout(timeout
);
4765 atomic_dec(&rq
->nr_iowait
);
4766 delayacct_blkio_end();
4771 * sys_sched_get_priority_max - return maximum RT priority.
4772 * @policy: scheduling class.
4774 * this syscall returns the maximum rt_priority that can be used
4775 * by a given scheduling class.
4777 asmlinkage
long sys_sched_get_priority_max(int policy
)
4784 ret
= MAX_USER_RT_PRIO
-1;
4796 * sys_sched_get_priority_min - return minimum RT priority.
4797 * @policy: scheduling class.
4799 * this syscall returns the minimum rt_priority that can be used
4800 * by a given scheduling class.
4802 asmlinkage
long sys_sched_get_priority_min(int policy
)
4820 * sys_sched_rr_get_interval - return the default timeslice of a process.
4821 * @pid: pid of the process.
4822 * @interval: userspace pointer to the timeslice value.
4824 * this syscall writes the default timeslice value of a given process
4825 * into the user-space timespec buffer. A value of '0' means infinity.
4828 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4830 struct task_struct
*p
;
4831 unsigned int time_slice
;
4839 read_lock(&tasklist_lock
);
4840 p
= find_process_by_pid(pid
);
4844 retval
= security_task_getscheduler(p
);
4848 if (p
->policy
== SCHED_FIFO
)
4850 else if (p
->policy
== SCHED_RR
)
4851 time_slice
= DEF_TIMESLICE
;
4853 struct sched_entity
*se
= &p
->se
;
4854 unsigned long flags
;
4857 rq
= task_rq_lock(p
, &flags
);
4858 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4859 task_rq_unlock(rq
, &flags
);
4861 read_unlock(&tasklist_lock
);
4862 jiffies_to_timespec(time_slice
, &t
);
4863 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4867 read_unlock(&tasklist_lock
);
4871 static const char stat_nam
[] = "RSDTtZX";
4873 static void show_task(struct task_struct
*p
)
4875 unsigned long free
= 0;
4878 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4879 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4880 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4881 #if BITS_PER_LONG == 32
4882 if (state
== TASK_RUNNING
)
4883 printk(KERN_CONT
" running ");
4885 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4887 if (state
== TASK_RUNNING
)
4888 printk(KERN_CONT
" running task ");
4890 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4892 #ifdef CONFIG_DEBUG_STACK_USAGE
4894 unsigned long *n
= end_of_stack(p
);
4897 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4900 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4901 task_pid_nr(p
), task_pid_nr(p
->parent
));
4903 if (state
!= TASK_RUNNING
)
4904 show_stack(p
, NULL
);
4907 void show_state_filter(unsigned long state_filter
)
4909 struct task_struct
*g
, *p
;
4911 #if BITS_PER_LONG == 32
4913 " task PC stack pid father\n");
4916 " task PC stack pid father\n");
4918 read_lock(&tasklist_lock
);
4919 do_each_thread(g
, p
) {
4921 * reset the NMI-timeout, listing all files on a slow
4922 * console might take alot of time:
4924 touch_nmi_watchdog();
4925 if (!state_filter
|| (p
->state
& state_filter
))
4927 } while_each_thread(g
, p
);
4929 touch_all_softlockup_watchdogs();
4931 #ifdef CONFIG_SCHED_DEBUG
4932 sysrq_sched_debug_show();
4934 read_unlock(&tasklist_lock
);
4936 * Only show locks if all tasks are dumped:
4938 if (state_filter
== -1)
4939 debug_show_all_locks();
4942 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4944 idle
->sched_class
= &idle_sched_class
;
4948 * init_idle - set up an idle thread for a given CPU
4949 * @idle: task in question
4950 * @cpu: cpu the idle task belongs to
4952 * NOTE: this function does not set the idle thread's NEED_RESCHED
4953 * flag, to make booting more robust.
4955 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4957 struct rq
*rq
= cpu_rq(cpu
);
4958 unsigned long flags
;
4961 idle
->se
.exec_start
= sched_clock();
4963 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4964 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4965 __set_task_cpu(idle
, cpu
);
4967 spin_lock_irqsave(&rq
->lock
, flags
);
4968 rq
->curr
= rq
->idle
= idle
;
4969 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4972 spin_unlock_irqrestore(&rq
->lock
, flags
);
4974 /* Set the preempt count _outside_ the spinlocks! */
4975 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4976 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4978 task_thread_info(idle
)->preempt_count
= 0;
4981 * The idle tasks have their own, simple scheduling class:
4983 idle
->sched_class
= &idle_sched_class
;
4987 * In a system that switches off the HZ timer nohz_cpu_mask
4988 * indicates which cpus entered this state. This is used
4989 * in the rcu update to wait only for active cpus. For system
4990 * which do not switch off the HZ timer nohz_cpu_mask should
4991 * always be CPU_MASK_NONE.
4993 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4997 * This is how migration works:
4999 * 1) we queue a struct migration_req structure in the source CPU's
5000 * runqueue and wake up that CPU's migration thread.
5001 * 2) we down() the locked semaphore => thread blocks.
5002 * 3) migration thread wakes up (implicitly it forces the migrated
5003 * thread off the CPU)
5004 * 4) it gets the migration request and checks whether the migrated
5005 * task is still in the wrong runqueue.
5006 * 5) if it's in the wrong runqueue then the migration thread removes
5007 * it and puts it into the right queue.
5008 * 6) migration thread up()s the semaphore.
5009 * 7) we wake up and the migration is done.
5013 * Change a given task's CPU affinity. Migrate the thread to a
5014 * proper CPU and schedule it away if the CPU it's executing on
5015 * is removed from the allowed bitmask.
5017 * NOTE: the caller must have a valid reference to the task, the
5018 * task must not exit() & deallocate itself prematurely. The
5019 * call is not atomic; no spinlocks may be held.
5021 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5023 struct migration_req req
;
5024 unsigned long flags
;
5028 rq
= task_rq_lock(p
, &flags
);
5029 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5034 p
->cpus_allowed
= new_mask
;
5035 /* Can the task run on the task's current CPU? If so, we're done */
5036 if (cpu_isset(task_cpu(p
), new_mask
))
5039 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5040 /* Need help from migration thread: drop lock and wait. */
5041 task_rq_unlock(rq
, &flags
);
5042 wake_up_process(rq
->migration_thread
);
5043 wait_for_completion(&req
.done
);
5044 tlb_migrate_finish(p
->mm
);
5048 task_rq_unlock(rq
, &flags
);
5052 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5055 * Move (not current) task off this cpu, onto dest cpu. We're doing
5056 * this because either it can't run here any more (set_cpus_allowed()
5057 * away from this CPU, or CPU going down), or because we're
5058 * attempting to rebalance this task on exec (sched_exec).
5060 * So we race with normal scheduler movements, but that's OK, as long
5061 * as the task is no longer on this CPU.
5063 * Returns non-zero if task was successfully migrated.
5065 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5067 struct rq
*rq_dest
, *rq_src
;
5070 if (unlikely(cpu_is_offline(dest_cpu
)))
5073 rq_src
= cpu_rq(src_cpu
);
5074 rq_dest
= cpu_rq(dest_cpu
);
5076 double_rq_lock(rq_src
, rq_dest
);
5077 /* Already moved. */
5078 if (task_cpu(p
) != src_cpu
)
5080 /* Affinity changed (again). */
5081 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5084 on_rq
= p
->se
.on_rq
;
5086 deactivate_task(rq_src
, p
, 0);
5088 set_task_cpu(p
, dest_cpu
);
5090 activate_task(rq_dest
, p
, 0);
5091 check_preempt_curr(rq_dest
, p
);
5095 double_rq_unlock(rq_src
, rq_dest
);
5100 * migration_thread - this is a highprio system thread that performs
5101 * thread migration by bumping thread off CPU then 'pushing' onto
5104 static int migration_thread(void *data
)
5106 int cpu
= (long)data
;
5110 BUG_ON(rq
->migration_thread
!= current
);
5112 set_current_state(TASK_INTERRUPTIBLE
);
5113 while (!kthread_should_stop()) {
5114 struct migration_req
*req
;
5115 struct list_head
*head
;
5117 spin_lock_irq(&rq
->lock
);
5119 if (cpu_is_offline(cpu
)) {
5120 spin_unlock_irq(&rq
->lock
);
5124 if (rq
->active_balance
) {
5125 active_load_balance(rq
, cpu
);
5126 rq
->active_balance
= 0;
5129 head
= &rq
->migration_queue
;
5131 if (list_empty(head
)) {
5132 spin_unlock_irq(&rq
->lock
);
5134 set_current_state(TASK_INTERRUPTIBLE
);
5137 req
= list_entry(head
->next
, struct migration_req
, list
);
5138 list_del_init(head
->next
);
5140 spin_unlock(&rq
->lock
);
5141 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5144 complete(&req
->done
);
5146 __set_current_state(TASK_RUNNING
);
5150 /* Wait for kthread_stop */
5151 set_current_state(TASK_INTERRUPTIBLE
);
5152 while (!kthread_should_stop()) {
5154 set_current_state(TASK_INTERRUPTIBLE
);
5156 __set_current_state(TASK_RUNNING
);
5160 #ifdef CONFIG_HOTPLUG_CPU
5162 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5166 local_irq_disable();
5167 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5173 * Figure out where task on dead CPU should go, use force if necessary.
5174 * NOTE: interrupts should be disabled by the caller
5176 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5178 unsigned long flags
;
5185 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5186 cpus_and(mask
, mask
, p
->cpus_allowed
);
5187 dest_cpu
= any_online_cpu(mask
);
5189 /* On any allowed CPU? */
5190 if (dest_cpu
== NR_CPUS
)
5191 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5193 /* No more Mr. Nice Guy. */
5194 if (dest_cpu
== NR_CPUS
) {
5195 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5197 * Try to stay on the same cpuset, where the
5198 * current cpuset may be a subset of all cpus.
5199 * The cpuset_cpus_allowed_locked() variant of
5200 * cpuset_cpus_allowed() will not block. It must be
5201 * called within calls to cpuset_lock/cpuset_unlock.
5203 rq
= task_rq_lock(p
, &flags
);
5204 p
->cpus_allowed
= cpus_allowed
;
5205 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5206 task_rq_unlock(rq
, &flags
);
5209 * Don't tell them about moving exiting tasks or
5210 * kernel threads (both mm NULL), since they never
5213 if (p
->mm
&& printk_ratelimit())
5214 printk(KERN_INFO
"process %d (%s) no "
5215 "longer affine to cpu%d\n",
5216 task_pid_nr(p
), p
->comm
, dead_cpu
);
5218 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5222 * While a dead CPU has no uninterruptible tasks queued at this point,
5223 * it might still have a nonzero ->nr_uninterruptible counter, because
5224 * for performance reasons the counter is not stricly tracking tasks to
5225 * their home CPUs. So we just add the counter to another CPU's counter,
5226 * to keep the global sum constant after CPU-down:
5228 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5230 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5231 unsigned long flags
;
5233 local_irq_save(flags
);
5234 double_rq_lock(rq_src
, rq_dest
);
5235 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5236 rq_src
->nr_uninterruptible
= 0;
5237 double_rq_unlock(rq_src
, rq_dest
);
5238 local_irq_restore(flags
);
5241 /* Run through task list and migrate tasks from the dead cpu. */
5242 static void migrate_live_tasks(int src_cpu
)
5244 struct task_struct
*p
, *t
;
5246 read_lock(&tasklist_lock
);
5248 do_each_thread(t
, p
) {
5252 if (task_cpu(p
) == src_cpu
)
5253 move_task_off_dead_cpu(src_cpu
, p
);
5254 } while_each_thread(t
, p
);
5256 read_unlock(&tasklist_lock
);
5260 * activate_idle_task - move idle task to the _front_ of runqueue.
5262 static void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
5264 update_rq_clock(rq
);
5266 if (p
->state
== TASK_UNINTERRUPTIBLE
)
5267 rq
->nr_uninterruptible
--;
5269 enqueue_task(rq
, p
, 0);
5270 inc_nr_running(p
, rq
);
5274 * Schedules idle task to be the next runnable task on current CPU.
5275 * It does so by boosting its priority to highest possible and adding it to
5276 * the _front_ of the runqueue. Used by CPU offline code.
5278 void sched_idle_next(void)
5280 int this_cpu
= smp_processor_id();
5281 struct rq
*rq
= cpu_rq(this_cpu
);
5282 struct task_struct
*p
= rq
->idle
;
5283 unsigned long flags
;
5285 /* cpu has to be offline */
5286 BUG_ON(cpu_online(this_cpu
));
5289 * Strictly not necessary since rest of the CPUs are stopped by now
5290 * and interrupts disabled on the current cpu.
5292 spin_lock_irqsave(&rq
->lock
, flags
);
5294 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5296 /* Add idle task to the _front_ of its priority queue: */
5297 activate_idle_task(p
, rq
);
5299 spin_unlock_irqrestore(&rq
->lock
, flags
);
5303 * Ensures that the idle task is using init_mm right before its cpu goes
5306 void idle_task_exit(void)
5308 struct mm_struct
*mm
= current
->active_mm
;
5310 BUG_ON(cpu_online(smp_processor_id()));
5313 switch_mm(mm
, &init_mm
, current
);
5317 /* called under rq->lock with disabled interrupts */
5318 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5320 struct rq
*rq
= cpu_rq(dead_cpu
);
5322 /* Must be exiting, otherwise would be on tasklist. */
5323 BUG_ON(!p
->exit_state
);
5325 /* Cannot have done final schedule yet: would have vanished. */
5326 BUG_ON(p
->state
== TASK_DEAD
);
5331 * Drop lock around migration; if someone else moves it,
5332 * that's OK. No task can be added to this CPU, so iteration is
5335 spin_unlock_irq(&rq
->lock
);
5336 move_task_off_dead_cpu(dead_cpu
, p
);
5337 spin_lock_irq(&rq
->lock
);
5342 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5343 static void migrate_dead_tasks(unsigned int dead_cpu
)
5345 struct rq
*rq
= cpu_rq(dead_cpu
);
5346 struct task_struct
*next
;
5349 if (!rq
->nr_running
)
5351 update_rq_clock(rq
);
5352 next
= pick_next_task(rq
, rq
->curr
);
5355 migrate_dead(dead_cpu
, next
);
5359 #endif /* CONFIG_HOTPLUG_CPU */
5361 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5363 static struct ctl_table sd_ctl_dir
[] = {
5365 .procname
= "sched_domain",
5371 static struct ctl_table sd_ctl_root
[] = {
5373 .ctl_name
= CTL_KERN
,
5374 .procname
= "kernel",
5376 .child
= sd_ctl_dir
,
5381 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5383 struct ctl_table
*entry
=
5384 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5389 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5391 struct ctl_table
*entry
;
5394 * In the intermediate directories, both the child directory and
5395 * procname are dynamically allocated and could fail but the mode
5396 * will always be set. In the lowest directory the names are
5397 * static strings and all have proc handlers.
5399 for (entry
= *tablep
; entry
->mode
; entry
++) {
5401 sd_free_ctl_entry(&entry
->child
);
5402 if (entry
->proc_handler
== NULL
)
5403 kfree(entry
->procname
);
5411 set_table_entry(struct ctl_table
*entry
,
5412 const char *procname
, void *data
, int maxlen
,
5413 mode_t mode
, proc_handler
*proc_handler
)
5415 entry
->procname
= procname
;
5417 entry
->maxlen
= maxlen
;
5419 entry
->proc_handler
= proc_handler
;
5422 static struct ctl_table
*
5423 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5425 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5430 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5431 sizeof(long), 0644, proc_doulongvec_minmax
);
5432 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5433 sizeof(long), 0644, proc_doulongvec_minmax
);
5434 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5435 sizeof(int), 0644, proc_dointvec_minmax
);
5436 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5437 sizeof(int), 0644, proc_dointvec_minmax
);
5438 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5439 sizeof(int), 0644, proc_dointvec_minmax
);
5440 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5441 sizeof(int), 0644, proc_dointvec_minmax
);
5442 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5443 sizeof(int), 0644, proc_dointvec_minmax
);
5444 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5445 sizeof(int), 0644, proc_dointvec_minmax
);
5446 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5447 sizeof(int), 0644, proc_dointvec_minmax
);
5448 set_table_entry(&table
[9], "cache_nice_tries",
5449 &sd
->cache_nice_tries
,
5450 sizeof(int), 0644, proc_dointvec_minmax
);
5451 set_table_entry(&table
[10], "flags", &sd
->flags
,
5452 sizeof(int), 0644, proc_dointvec_minmax
);
5453 /* &table[11] is terminator */
5458 static ctl_table
* sd_alloc_ctl_cpu_table(int cpu
)
5460 struct ctl_table
*entry
, *table
;
5461 struct sched_domain
*sd
;
5462 int domain_num
= 0, i
;
5465 for_each_domain(cpu
, sd
)
5467 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5472 for_each_domain(cpu
, sd
) {
5473 snprintf(buf
, 32, "domain%d", i
);
5474 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5476 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5483 static struct ctl_table_header
*sd_sysctl_header
;
5484 static void register_sched_domain_sysctl(void)
5486 int i
, cpu_num
= num_online_cpus();
5487 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5490 WARN_ON(sd_ctl_dir
[0].child
);
5491 sd_ctl_dir
[0].child
= entry
;
5496 for_each_online_cpu(i
) {
5497 snprintf(buf
, 32, "cpu%d", i
);
5498 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5500 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5504 WARN_ON(sd_sysctl_header
);
5505 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5508 /* may be called multiple times per register */
5509 static void unregister_sched_domain_sysctl(void)
5511 if (sd_sysctl_header
)
5512 unregister_sysctl_table(sd_sysctl_header
);
5513 sd_sysctl_header
= NULL
;
5514 if (sd_ctl_dir
[0].child
)
5515 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5518 static void register_sched_domain_sysctl(void)
5521 static void unregister_sched_domain_sysctl(void)
5527 * migration_call - callback that gets triggered when a CPU is added.
5528 * Here we can start up the necessary migration thread for the new CPU.
5530 static int __cpuinit
5531 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5533 struct task_struct
*p
;
5534 int cpu
= (long)hcpu
;
5535 unsigned long flags
;
5539 case CPU_LOCK_ACQUIRE
:
5540 mutex_lock(&sched_hotcpu_mutex
);
5543 case CPU_UP_PREPARE
:
5544 case CPU_UP_PREPARE_FROZEN
:
5545 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5548 kthread_bind(p
, cpu
);
5549 /* Must be high prio: stop_machine expects to yield to it. */
5550 rq
= task_rq_lock(p
, &flags
);
5551 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5552 task_rq_unlock(rq
, &flags
);
5553 cpu_rq(cpu
)->migration_thread
= p
;
5557 case CPU_ONLINE_FROZEN
:
5558 /* Strictly unnecessary, as first user will wake it. */
5559 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5562 #ifdef CONFIG_HOTPLUG_CPU
5563 case CPU_UP_CANCELED
:
5564 case CPU_UP_CANCELED_FROZEN
:
5565 if (!cpu_rq(cpu
)->migration_thread
)
5567 /* Unbind it from offline cpu so it can run. Fall thru. */
5568 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5569 any_online_cpu(cpu_online_map
));
5570 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5571 cpu_rq(cpu
)->migration_thread
= NULL
;
5575 case CPU_DEAD_FROZEN
:
5576 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5577 migrate_live_tasks(cpu
);
5579 kthread_stop(rq
->migration_thread
);
5580 rq
->migration_thread
= NULL
;
5581 /* Idle task back to normal (off runqueue, low prio) */
5582 spin_lock_irq(&rq
->lock
);
5583 update_rq_clock(rq
);
5584 deactivate_task(rq
, rq
->idle
, 0);
5585 rq
->idle
->static_prio
= MAX_PRIO
;
5586 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5587 rq
->idle
->sched_class
= &idle_sched_class
;
5588 migrate_dead_tasks(cpu
);
5589 spin_unlock_irq(&rq
->lock
);
5591 migrate_nr_uninterruptible(rq
);
5592 BUG_ON(rq
->nr_running
!= 0);
5594 /* No need to migrate the tasks: it was best-effort if
5595 * they didn't take sched_hotcpu_mutex. Just wake up
5596 * the requestors. */
5597 spin_lock_irq(&rq
->lock
);
5598 while (!list_empty(&rq
->migration_queue
)) {
5599 struct migration_req
*req
;
5601 req
= list_entry(rq
->migration_queue
.next
,
5602 struct migration_req
, list
);
5603 list_del_init(&req
->list
);
5604 complete(&req
->done
);
5606 spin_unlock_irq(&rq
->lock
);
5609 case CPU_LOCK_RELEASE
:
5610 mutex_unlock(&sched_hotcpu_mutex
);
5616 /* Register at highest priority so that task migration (migrate_all_tasks)
5617 * happens before everything else.
5619 static struct notifier_block __cpuinitdata migration_notifier
= {
5620 .notifier_call
= migration_call
,
5624 int __init
migration_init(void)
5626 void *cpu
= (void *)(long)smp_processor_id();
5629 /* Start one for the boot CPU: */
5630 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5631 BUG_ON(err
== NOTIFY_BAD
);
5632 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5633 register_cpu_notifier(&migration_notifier
);
5641 /* Number of possible processor ids */
5642 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5643 EXPORT_SYMBOL(nr_cpu_ids
);
5645 #ifdef CONFIG_SCHED_DEBUG
5647 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5649 struct sched_group
*group
= sd
->groups
;
5650 cpumask_t groupmask
;
5653 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5654 cpus_clear(groupmask
);
5656 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5658 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5659 printk("does not load-balance\n");
5661 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5666 printk(KERN_CONT
"span %s\n", str
);
5668 if (!cpu_isset(cpu
, sd
->span
)) {
5669 printk(KERN_ERR
"ERROR: domain->span does not contain "
5672 if (!cpu_isset(cpu
, group
->cpumask
)) {
5673 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5677 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5681 printk(KERN_ERR
"ERROR: group is NULL\n");
5685 if (!group
->__cpu_power
) {
5686 printk(KERN_CONT
"\n");
5687 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5692 if (!cpus_weight(group
->cpumask
)) {
5693 printk(KERN_CONT
"\n");
5694 printk(KERN_ERR
"ERROR: empty group\n");
5698 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5699 printk(KERN_CONT
"\n");
5700 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5704 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5706 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5707 printk(KERN_CONT
" %s", str
);
5709 group
= group
->next
;
5710 } while (group
!= sd
->groups
);
5711 printk(KERN_CONT
"\n");
5713 if (!cpus_equal(sd
->span
, groupmask
))
5714 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5716 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
5717 printk(KERN_ERR
"ERROR: parent span is not a superset "
5718 "of domain->span\n");
5722 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5727 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5731 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5734 if (sched_domain_debug_one(sd
, cpu
, level
))
5743 # define sched_domain_debug(sd, cpu) do { } while (0)
5746 static int sd_degenerate(struct sched_domain
*sd
)
5748 if (cpus_weight(sd
->span
) == 1)
5751 /* Following flags need at least 2 groups */
5752 if (sd
->flags
& (SD_LOAD_BALANCE
|
5753 SD_BALANCE_NEWIDLE
|
5757 SD_SHARE_PKG_RESOURCES
)) {
5758 if (sd
->groups
!= sd
->groups
->next
)
5762 /* Following flags don't use groups */
5763 if (sd
->flags
& (SD_WAKE_IDLE
|
5772 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5774 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5776 if (sd_degenerate(parent
))
5779 if (!cpus_equal(sd
->span
, parent
->span
))
5782 /* Does parent contain flags not in child? */
5783 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5784 if (cflags
& SD_WAKE_AFFINE
)
5785 pflags
&= ~SD_WAKE_BALANCE
;
5786 /* Flags needing groups don't count if only 1 group in parent */
5787 if (parent
->groups
== parent
->groups
->next
) {
5788 pflags
&= ~(SD_LOAD_BALANCE
|
5789 SD_BALANCE_NEWIDLE
|
5793 SD_SHARE_PKG_RESOURCES
);
5795 if (~cflags
& pflags
)
5802 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5803 * hold the hotplug lock.
5805 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5807 struct rq
*rq
= cpu_rq(cpu
);
5808 struct sched_domain
*tmp
;
5810 /* Remove the sched domains which do not contribute to scheduling. */
5811 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5812 struct sched_domain
*parent
= tmp
->parent
;
5815 if (sd_parent_degenerate(tmp
, parent
)) {
5816 tmp
->parent
= parent
->parent
;
5818 parent
->parent
->child
= tmp
;
5822 if (sd
&& sd_degenerate(sd
)) {
5828 sched_domain_debug(sd
, cpu
);
5830 rcu_assign_pointer(rq
->sd
, sd
);
5833 /* cpus with isolated domains */
5834 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5836 /* Setup the mask of cpus configured for isolated domains */
5837 static int __init
isolated_cpu_setup(char *str
)
5839 int ints
[NR_CPUS
], i
;
5841 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5842 cpus_clear(cpu_isolated_map
);
5843 for (i
= 1; i
<= ints
[0]; i
++)
5844 if (ints
[i
] < NR_CPUS
)
5845 cpu_set(ints
[i
], cpu_isolated_map
);
5849 __setup("isolcpus=", isolated_cpu_setup
);
5852 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5853 * to a function which identifies what group(along with sched group) a CPU
5854 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5855 * (due to the fact that we keep track of groups covered with a cpumask_t).
5857 * init_sched_build_groups will build a circular linked list of the groups
5858 * covered by the given span, and will set each group's ->cpumask correctly,
5859 * and ->cpu_power to 0.
5862 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5863 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5864 struct sched_group
**sg
))
5866 struct sched_group
*first
= NULL
, *last
= NULL
;
5867 cpumask_t covered
= CPU_MASK_NONE
;
5870 for_each_cpu_mask(i
, span
) {
5871 struct sched_group
*sg
;
5872 int group
= group_fn(i
, cpu_map
, &sg
);
5875 if (cpu_isset(i
, covered
))
5878 sg
->cpumask
= CPU_MASK_NONE
;
5879 sg
->__cpu_power
= 0;
5881 for_each_cpu_mask(j
, span
) {
5882 if (group_fn(j
, cpu_map
, NULL
) != group
)
5885 cpu_set(j
, covered
);
5886 cpu_set(j
, sg
->cpumask
);
5897 #define SD_NODES_PER_DOMAIN 16
5902 * find_next_best_node - find the next node to include in a sched_domain
5903 * @node: node whose sched_domain we're building
5904 * @used_nodes: nodes already in the sched_domain
5906 * Find the next node to include in a given scheduling domain. Simply
5907 * finds the closest node not already in the @used_nodes map.
5909 * Should use nodemask_t.
5911 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5913 int i
, n
, val
, min_val
, best_node
= 0;
5917 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5918 /* Start at @node */
5919 n
= (node
+ i
) % MAX_NUMNODES
;
5921 if (!nr_cpus_node(n
))
5924 /* Skip already used nodes */
5925 if (test_bit(n
, used_nodes
))
5928 /* Simple min distance search */
5929 val
= node_distance(node
, n
);
5931 if (val
< min_val
) {
5937 set_bit(best_node
, used_nodes
);
5942 * sched_domain_node_span - get a cpumask for a node's sched_domain
5943 * @node: node whose cpumask we're constructing
5944 * @size: number of nodes to include in this span
5946 * Given a node, construct a good cpumask for its sched_domain to span. It
5947 * should be one that prevents unnecessary balancing, but also spreads tasks
5950 static cpumask_t
sched_domain_node_span(int node
)
5952 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5953 cpumask_t span
, nodemask
;
5957 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5959 nodemask
= node_to_cpumask(node
);
5960 cpus_or(span
, span
, nodemask
);
5961 set_bit(node
, used_nodes
);
5963 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5964 int next_node
= find_next_best_node(node
, used_nodes
);
5966 nodemask
= node_to_cpumask(next_node
);
5967 cpus_or(span
, span
, nodemask
);
5974 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5977 * SMT sched-domains:
5979 #ifdef CONFIG_SCHED_SMT
5980 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5981 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5983 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5984 struct sched_group
**sg
)
5987 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5993 * multi-core sched-domains:
5995 #ifdef CONFIG_SCHED_MC
5996 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5997 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6000 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6001 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
6002 struct sched_group
**sg
)
6005 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6006 cpus_and(mask
, mask
, *cpu_map
);
6007 group
= first_cpu(mask
);
6009 *sg
= &per_cpu(sched_group_core
, group
);
6012 #elif defined(CONFIG_SCHED_MC)
6013 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
6014 struct sched_group
**sg
)
6017 *sg
= &per_cpu(sched_group_core
, cpu
);
6022 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6023 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6025 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
6026 struct sched_group
**sg
)
6029 #ifdef CONFIG_SCHED_MC
6030 cpumask_t mask
= cpu_coregroup_map(cpu
);
6031 cpus_and(mask
, mask
, *cpu_map
);
6032 group
= first_cpu(mask
);
6033 #elif defined(CONFIG_SCHED_SMT)
6034 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6035 cpus_and(mask
, mask
, *cpu_map
);
6036 group
= first_cpu(mask
);
6041 *sg
= &per_cpu(sched_group_phys
, group
);
6047 * The init_sched_build_groups can't handle what we want to do with node
6048 * groups, so roll our own. Now each node has its own list of groups which
6049 * gets dynamically allocated.
6051 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6052 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6054 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6055 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6057 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6058 struct sched_group
**sg
)
6060 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6063 cpus_and(nodemask
, nodemask
, *cpu_map
);
6064 group
= first_cpu(nodemask
);
6067 *sg
= &per_cpu(sched_group_allnodes
, group
);
6071 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6073 struct sched_group
*sg
= group_head
;
6079 for_each_cpu_mask(j
, sg
->cpumask
) {
6080 struct sched_domain
*sd
;
6082 sd
= &per_cpu(phys_domains
, j
);
6083 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6085 * Only add "power" once for each
6091 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6094 } while (sg
!= group_head
);
6099 /* Free memory allocated for various sched_group structures */
6100 static void free_sched_groups(const cpumask_t
*cpu_map
)
6104 for_each_cpu_mask(cpu
, *cpu_map
) {
6105 struct sched_group
**sched_group_nodes
6106 = sched_group_nodes_bycpu
[cpu
];
6108 if (!sched_group_nodes
)
6111 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6112 cpumask_t nodemask
= node_to_cpumask(i
);
6113 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6115 cpus_and(nodemask
, nodemask
, *cpu_map
);
6116 if (cpus_empty(nodemask
))
6126 if (oldsg
!= sched_group_nodes
[i
])
6129 kfree(sched_group_nodes
);
6130 sched_group_nodes_bycpu
[cpu
] = NULL
;
6134 static void free_sched_groups(const cpumask_t
*cpu_map
)
6140 * Initialize sched groups cpu_power.
6142 * cpu_power indicates the capacity of sched group, which is used while
6143 * distributing the load between different sched groups in a sched domain.
6144 * Typically cpu_power for all the groups in a sched domain will be same unless
6145 * there are asymmetries in the topology. If there are asymmetries, group
6146 * having more cpu_power will pickup more load compared to the group having
6149 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6150 * the maximum number of tasks a group can handle in the presence of other idle
6151 * or lightly loaded groups in the same sched domain.
6153 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6155 struct sched_domain
*child
;
6156 struct sched_group
*group
;
6158 WARN_ON(!sd
|| !sd
->groups
);
6160 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6165 sd
->groups
->__cpu_power
= 0;
6168 * For perf policy, if the groups in child domain share resources
6169 * (for example cores sharing some portions of the cache hierarchy
6170 * or SMT), then set this domain groups cpu_power such that each group
6171 * can handle only one task, when there are other idle groups in the
6172 * same sched domain.
6174 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6176 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6177 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6182 * add cpu_power of each child group to this groups cpu_power
6184 group
= child
->groups
;
6186 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6187 group
= group
->next
;
6188 } while (group
!= child
->groups
);
6192 * Build sched domains for a given set of cpus and attach the sched domains
6193 * to the individual cpus
6195 static int build_sched_domains(const cpumask_t
*cpu_map
)
6199 struct sched_group
**sched_group_nodes
= NULL
;
6200 int sd_allnodes
= 0;
6203 * Allocate the per-node list of sched groups
6205 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6207 if (!sched_group_nodes
) {
6208 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6211 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6215 * Set up domains for cpus specified by the cpu_map.
6217 for_each_cpu_mask(i
, *cpu_map
) {
6218 struct sched_domain
*sd
= NULL
, *p
;
6219 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6221 cpus_and(nodemask
, nodemask
, *cpu_map
);
6224 if (cpus_weight(*cpu_map
) >
6225 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6226 sd
= &per_cpu(allnodes_domains
, i
);
6227 *sd
= SD_ALLNODES_INIT
;
6228 sd
->span
= *cpu_map
;
6229 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6235 sd
= &per_cpu(node_domains
, i
);
6237 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6241 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6245 sd
= &per_cpu(phys_domains
, i
);
6247 sd
->span
= nodemask
;
6251 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6253 #ifdef CONFIG_SCHED_MC
6255 sd
= &per_cpu(core_domains
, i
);
6257 sd
->span
= cpu_coregroup_map(i
);
6258 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6261 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6264 #ifdef CONFIG_SCHED_SMT
6266 sd
= &per_cpu(cpu_domains
, i
);
6267 *sd
= SD_SIBLING_INIT
;
6268 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6269 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6272 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6276 #ifdef CONFIG_SCHED_SMT
6277 /* Set up CPU (sibling) groups */
6278 for_each_cpu_mask(i
, *cpu_map
) {
6279 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6280 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6281 if (i
!= first_cpu(this_sibling_map
))
6284 init_sched_build_groups(this_sibling_map
, cpu_map
,
6289 #ifdef CONFIG_SCHED_MC
6290 /* Set up multi-core groups */
6291 for_each_cpu_mask(i
, *cpu_map
) {
6292 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6293 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6294 if (i
!= first_cpu(this_core_map
))
6296 init_sched_build_groups(this_core_map
, cpu_map
,
6297 &cpu_to_core_group
);
6301 /* Set up physical groups */
6302 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6303 cpumask_t nodemask
= node_to_cpumask(i
);
6305 cpus_and(nodemask
, nodemask
, *cpu_map
);
6306 if (cpus_empty(nodemask
))
6309 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6313 /* Set up node groups */
6315 init_sched_build_groups(*cpu_map
, cpu_map
,
6316 &cpu_to_allnodes_group
);
6318 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6319 /* Set up node groups */
6320 struct sched_group
*sg
, *prev
;
6321 cpumask_t nodemask
= node_to_cpumask(i
);
6322 cpumask_t domainspan
;
6323 cpumask_t covered
= CPU_MASK_NONE
;
6326 cpus_and(nodemask
, nodemask
, *cpu_map
);
6327 if (cpus_empty(nodemask
)) {
6328 sched_group_nodes
[i
] = NULL
;
6332 domainspan
= sched_domain_node_span(i
);
6333 cpus_and(domainspan
, domainspan
, *cpu_map
);
6335 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6337 printk(KERN_WARNING
"Can not alloc domain group for "
6341 sched_group_nodes
[i
] = sg
;
6342 for_each_cpu_mask(j
, nodemask
) {
6343 struct sched_domain
*sd
;
6345 sd
= &per_cpu(node_domains
, j
);
6348 sg
->__cpu_power
= 0;
6349 sg
->cpumask
= nodemask
;
6351 cpus_or(covered
, covered
, nodemask
);
6354 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6355 cpumask_t tmp
, notcovered
;
6356 int n
= (i
+ j
) % MAX_NUMNODES
;
6358 cpus_complement(notcovered
, covered
);
6359 cpus_and(tmp
, notcovered
, *cpu_map
);
6360 cpus_and(tmp
, tmp
, domainspan
);
6361 if (cpus_empty(tmp
))
6364 nodemask
= node_to_cpumask(n
);
6365 cpus_and(tmp
, tmp
, nodemask
);
6366 if (cpus_empty(tmp
))
6369 sg
= kmalloc_node(sizeof(struct sched_group
),
6373 "Can not alloc domain group for node %d\n", j
);
6376 sg
->__cpu_power
= 0;
6378 sg
->next
= prev
->next
;
6379 cpus_or(covered
, covered
, tmp
);
6386 /* Calculate CPU power for physical packages and nodes */
6387 #ifdef CONFIG_SCHED_SMT
6388 for_each_cpu_mask(i
, *cpu_map
) {
6389 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6391 init_sched_groups_power(i
, sd
);
6394 #ifdef CONFIG_SCHED_MC
6395 for_each_cpu_mask(i
, *cpu_map
) {
6396 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6398 init_sched_groups_power(i
, sd
);
6402 for_each_cpu_mask(i
, *cpu_map
) {
6403 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6405 init_sched_groups_power(i
, sd
);
6409 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6410 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6413 struct sched_group
*sg
;
6415 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6416 init_numa_sched_groups_power(sg
);
6420 /* Attach the domains */
6421 for_each_cpu_mask(i
, *cpu_map
) {
6422 struct sched_domain
*sd
;
6423 #ifdef CONFIG_SCHED_SMT
6424 sd
= &per_cpu(cpu_domains
, i
);
6425 #elif defined(CONFIG_SCHED_MC)
6426 sd
= &per_cpu(core_domains
, i
);
6428 sd
= &per_cpu(phys_domains
, i
);
6430 cpu_attach_domain(sd
, i
);
6437 free_sched_groups(cpu_map
);
6442 static cpumask_t
*doms_cur
; /* current sched domains */
6443 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6446 * Special case: If a kmalloc of a doms_cur partition (array of
6447 * cpumask_t) fails, then fallback to a single sched domain,
6448 * as determined by the single cpumask_t fallback_doms.
6450 static cpumask_t fallback_doms
;
6453 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6454 * For now this just excludes isolated cpus, but could be used to
6455 * exclude other special cases in the future.
6457 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6462 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6464 doms_cur
= &fallback_doms
;
6465 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6466 err
= build_sched_domains(doms_cur
);
6467 register_sched_domain_sysctl();
6472 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6474 free_sched_groups(cpu_map
);
6478 * Detach sched domains from a group of cpus specified in cpu_map
6479 * These cpus will now be attached to the NULL domain
6481 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6485 unregister_sched_domain_sysctl();
6487 for_each_cpu_mask(i
, *cpu_map
)
6488 cpu_attach_domain(NULL
, i
);
6489 synchronize_sched();
6490 arch_destroy_sched_domains(cpu_map
);
6494 * Partition sched domains as specified by the 'ndoms_new'
6495 * cpumasks in the array doms_new[] of cpumasks. This compares
6496 * doms_new[] to the current sched domain partitioning, doms_cur[].
6497 * It destroys each deleted domain and builds each new domain.
6499 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6500 * The masks don't intersect (don't overlap.) We should setup one
6501 * sched domain for each mask. CPUs not in any of the cpumasks will
6502 * not be load balanced. If the same cpumask appears both in the
6503 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6506 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6507 * ownership of it and will kfree it when done with it. If the caller
6508 * failed the kmalloc call, then it can pass in doms_new == NULL,
6509 * and partition_sched_domains() will fallback to the single partition
6512 * Call with hotplug lock held
6514 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6518 /* always unregister in case we don't destroy any domains */
6519 unregister_sched_domain_sysctl();
6521 if (doms_new
== NULL
) {
6523 doms_new
= &fallback_doms
;
6524 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6527 /* Destroy deleted domains */
6528 for (i
= 0; i
< ndoms_cur
; i
++) {
6529 for (j
= 0; j
< ndoms_new
; j
++) {
6530 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6533 /* no match - a current sched domain not in new doms_new[] */
6534 detach_destroy_domains(doms_cur
+ i
);
6539 /* Build new domains */
6540 for (i
= 0; i
< ndoms_new
; i
++) {
6541 for (j
= 0; j
< ndoms_cur
; j
++) {
6542 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6545 /* no match - add a new doms_new */
6546 build_sched_domains(doms_new
+ i
);
6551 /* Remember the new sched domains */
6552 if (doms_cur
!= &fallback_doms
)
6554 doms_cur
= doms_new
;
6555 ndoms_cur
= ndoms_new
;
6557 register_sched_domain_sysctl();
6560 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6561 static int arch_reinit_sched_domains(void)
6565 mutex_lock(&sched_hotcpu_mutex
);
6566 detach_destroy_domains(&cpu_online_map
);
6567 err
= arch_init_sched_domains(&cpu_online_map
);
6568 mutex_unlock(&sched_hotcpu_mutex
);
6573 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6577 if (buf
[0] != '0' && buf
[0] != '1')
6581 sched_smt_power_savings
= (buf
[0] == '1');
6583 sched_mc_power_savings
= (buf
[0] == '1');
6585 ret
= arch_reinit_sched_domains();
6587 return ret
? ret
: count
;
6590 #ifdef CONFIG_SCHED_MC
6591 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6593 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6595 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6596 const char *buf
, size_t count
)
6598 return sched_power_savings_store(buf
, count
, 0);
6600 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6601 sched_mc_power_savings_store
);
6604 #ifdef CONFIG_SCHED_SMT
6605 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6607 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6609 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6610 const char *buf
, size_t count
)
6612 return sched_power_savings_store(buf
, count
, 1);
6614 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6615 sched_smt_power_savings_store
);
6618 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6622 #ifdef CONFIG_SCHED_SMT
6624 err
= sysfs_create_file(&cls
->kset
.kobj
,
6625 &attr_sched_smt_power_savings
.attr
);
6627 #ifdef CONFIG_SCHED_MC
6628 if (!err
&& mc_capable())
6629 err
= sysfs_create_file(&cls
->kset
.kobj
,
6630 &attr_sched_mc_power_savings
.attr
);
6637 * Force a reinitialization of the sched domains hierarchy. The domains
6638 * and groups cannot be updated in place without racing with the balancing
6639 * code, so we temporarily attach all running cpus to the NULL domain
6640 * which will prevent rebalancing while the sched domains are recalculated.
6642 static int update_sched_domains(struct notifier_block
*nfb
,
6643 unsigned long action
, void *hcpu
)
6646 case CPU_UP_PREPARE
:
6647 case CPU_UP_PREPARE_FROZEN
:
6648 case CPU_DOWN_PREPARE
:
6649 case CPU_DOWN_PREPARE_FROZEN
:
6650 detach_destroy_domains(&cpu_online_map
);
6653 case CPU_UP_CANCELED
:
6654 case CPU_UP_CANCELED_FROZEN
:
6655 case CPU_DOWN_FAILED
:
6656 case CPU_DOWN_FAILED_FROZEN
:
6658 case CPU_ONLINE_FROZEN
:
6660 case CPU_DEAD_FROZEN
:
6662 * Fall through and re-initialise the domains.
6669 /* The hotplug lock is already held by cpu_up/cpu_down */
6670 arch_init_sched_domains(&cpu_online_map
);
6675 void __init
sched_init_smp(void)
6677 cpumask_t non_isolated_cpus
;
6679 mutex_lock(&sched_hotcpu_mutex
);
6680 arch_init_sched_domains(&cpu_online_map
);
6681 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6682 if (cpus_empty(non_isolated_cpus
))
6683 cpu_set(smp_processor_id(), non_isolated_cpus
);
6684 mutex_unlock(&sched_hotcpu_mutex
);
6685 /* XXX: Theoretical race here - CPU may be hotplugged now */
6686 hotcpu_notifier(update_sched_domains
, 0);
6688 /* Move init over to a non-isolated CPU */
6689 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6693 void __init
sched_init_smp(void)
6696 #endif /* CONFIG_SMP */
6698 int in_sched_functions(unsigned long addr
)
6700 /* Linker adds these: start and end of __sched functions */
6701 extern char __sched_text_start
[], __sched_text_end
[];
6703 return in_lock_functions(addr
) ||
6704 (addr
>= (unsigned long)__sched_text_start
6705 && addr
< (unsigned long)__sched_text_end
);
6708 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6710 cfs_rq
->tasks_timeline
= RB_ROOT
;
6711 #ifdef CONFIG_FAIR_GROUP_SCHED
6714 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6717 void __init
sched_init(void)
6719 int highest_cpu
= 0;
6722 for_each_possible_cpu(i
) {
6723 struct rt_prio_array
*array
;
6727 spin_lock_init(&rq
->lock
);
6728 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6731 init_cfs_rq(&rq
->cfs
, rq
);
6732 #ifdef CONFIG_FAIR_GROUP_SCHED
6733 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6735 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6736 struct sched_entity
*se
=
6737 &per_cpu(init_sched_entity
, i
);
6739 init_cfs_rq_p
[i
] = cfs_rq
;
6740 init_cfs_rq(cfs_rq
, rq
);
6741 cfs_rq
->tg
= &init_task_group
;
6742 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6743 &rq
->leaf_cfs_rq_list
);
6745 init_sched_entity_p
[i
] = se
;
6746 se
->cfs_rq
= &rq
->cfs
;
6748 se
->load
.weight
= init_task_group_load
;
6749 se
->load
.inv_weight
=
6750 div64_64(1ULL<<32, init_task_group_load
);
6753 init_task_group
.shares
= init_task_group_load
;
6754 spin_lock_init(&init_task_group
.lock
);
6757 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6758 rq
->cpu_load
[j
] = 0;
6761 rq
->active_balance
= 0;
6762 rq
->next_balance
= jiffies
;
6765 rq
->migration_thread
= NULL
;
6766 INIT_LIST_HEAD(&rq
->migration_queue
);
6768 atomic_set(&rq
->nr_iowait
, 0);
6770 array
= &rq
->rt
.active
;
6771 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6772 INIT_LIST_HEAD(array
->queue
+ j
);
6773 __clear_bit(j
, array
->bitmap
);
6776 /* delimiter for bitsearch: */
6777 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6780 set_load_weight(&init_task
);
6782 #ifdef CONFIG_PREEMPT_NOTIFIERS
6783 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6787 nr_cpu_ids
= highest_cpu
+ 1;
6788 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6791 #ifdef CONFIG_RT_MUTEXES
6792 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6796 * The boot idle thread does lazy MMU switching as well:
6798 atomic_inc(&init_mm
.mm_count
);
6799 enter_lazy_tlb(&init_mm
, current
);
6802 * Make us the idle thread. Technically, schedule() should not be
6803 * called from this thread, however somewhere below it might be,
6804 * but because we are the idle thread, we just pick up running again
6805 * when this runqueue becomes "idle".
6807 init_idle(current
, smp_processor_id());
6809 * During early bootup we pretend to be a normal task:
6811 current
->sched_class
= &fair_sched_class
;
6814 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6815 void __might_sleep(char *file
, int line
)
6818 static unsigned long prev_jiffy
; /* ratelimiting */
6820 if ((in_atomic() || irqs_disabled()) &&
6821 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6822 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6824 prev_jiffy
= jiffies
;
6825 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6826 " context at %s:%d\n", file
, line
);
6827 printk("in_atomic():%d, irqs_disabled():%d\n",
6828 in_atomic(), irqs_disabled());
6829 debug_show_held_locks(current
);
6830 if (irqs_disabled())
6831 print_irqtrace_events(current
);
6836 EXPORT_SYMBOL(__might_sleep
);
6839 #ifdef CONFIG_MAGIC_SYSRQ
6840 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6843 update_rq_clock(rq
);
6844 on_rq
= p
->se
.on_rq
;
6846 deactivate_task(rq
, p
, 0);
6847 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6849 activate_task(rq
, p
, 0);
6850 resched_task(rq
->curr
);
6854 void normalize_rt_tasks(void)
6856 struct task_struct
*g
, *p
;
6857 unsigned long flags
;
6860 read_lock_irq(&tasklist_lock
);
6861 do_each_thread(g
, p
) {
6863 * Only normalize user tasks:
6868 p
->se
.exec_start
= 0;
6869 #ifdef CONFIG_SCHEDSTATS
6870 p
->se
.wait_start
= 0;
6871 p
->se
.sleep_start
= 0;
6872 p
->se
.block_start
= 0;
6874 task_rq(p
)->clock
= 0;
6878 * Renice negative nice level userspace
6881 if (TASK_NICE(p
) < 0 && p
->mm
)
6882 set_user_nice(p
, 0);
6886 spin_lock_irqsave(&p
->pi_lock
, flags
);
6887 rq
= __task_rq_lock(p
);
6889 normalize_task(rq
, p
);
6891 __task_rq_unlock(rq
);
6892 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6893 } while_each_thread(g
, p
);
6895 read_unlock_irq(&tasklist_lock
);
6898 #endif /* CONFIG_MAGIC_SYSRQ */
6902 * These functions are only useful for the IA64 MCA handling.
6904 * They can only be called when the whole system has been
6905 * stopped - every CPU needs to be quiescent, and no scheduling
6906 * activity can take place. Using them for anything else would
6907 * be a serious bug, and as a result, they aren't even visible
6908 * under any other configuration.
6912 * curr_task - return the current task for a given cpu.
6913 * @cpu: the processor in question.
6915 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6917 struct task_struct
*curr_task(int cpu
)
6919 return cpu_curr(cpu
);
6923 * set_curr_task - set the current task for a given cpu.
6924 * @cpu: the processor in question.
6925 * @p: the task pointer to set.
6927 * Description: This function must only be used when non-maskable interrupts
6928 * are serviced on a separate stack. It allows the architecture to switch the
6929 * notion of the current task on a cpu in a non-blocking manner. This function
6930 * must be called with all CPU's synchronized, and interrupts disabled, the
6931 * and caller must save the original value of the current task (see
6932 * curr_task() above) and restore that value before reenabling interrupts and
6933 * re-starting the system.
6935 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6937 void set_curr_task(int cpu
, struct task_struct
*p
)
6944 #ifdef CONFIG_FAIR_GROUP_SCHED
6946 /* allocate runqueue etc for a new task group */
6947 struct task_group
*sched_create_group(void)
6949 struct task_group
*tg
;
6950 struct cfs_rq
*cfs_rq
;
6951 struct sched_entity
*se
;
6955 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6957 return ERR_PTR(-ENOMEM
);
6959 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6962 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6966 for_each_possible_cpu(i
) {
6969 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6974 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6979 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6980 memset(se
, 0, sizeof(struct sched_entity
));
6982 tg
->cfs_rq
[i
] = cfs_rq
;
6983 init_cfs_rq(cfs_rq
, rq
);
6987 se
->cfs_rq
= &rq
->cfs
;
6989 se
->load
.weight
= NICE_0_LOAD
;
6990 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6994 for_each_possible_cpu(i
) {
6996 cfs_rq
= tg
->cfs_rq
[i
];
6997 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7000 tg
->shares
= NICE_0_LOAD
;
7001 spin_lock_init(&tg
->lock
);
7006 for_each_possible_cpu(i
) {
7008 kfree(tg
->cfs_rq
[i
]);
7016 return ERR_PTR(-ENOMEM
);
7019 /* rcu callback to free various structures associated with a task group */
7020 static void free_sched_group(struct rcu_head
*rhp
)
7022 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
7023 struct task_group
*tg
= cfs_rq
->tg
;
7024 struct sched_entity
*se
;
7027 /* now it should be safe to free those cfs_rqs */
7028 for_each_possible_cpu(i
) {
7029 cfs_rq
= tg
->cfs_rq
[i
];
7041 /* Destroy runqueue etc associated with a task group */
7042 void sched_destroy_group(struct task_group
*tg
)
7044 struct cfs_rq
*cfs_rq
;
7047 for_each_possible_cpu(i
) {
7048 cfs_rq
= tg
->cfs_rq
[i
];
7049 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7052 cfs_rq
= tg
->cfs_rq
[0];
7054 /* wait for possible concurrent references to cfs_rqs complete */
7055 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
7058 /* change task's runqueue when it moves between groups.
7059 * The caller of this function should have put the task in its new group
7060 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7061 * reflect its new group.
7063 void sched_move_task(struct task_struct
*tsk
)
7066 unsigned long flags
;
7069 rq
= task_rq_lock(tsk
, &flags
);
7071 if (tsk
->sched_class
!= &fair_sched_class
)
7074 update_rq_clock(rq
);
7076 running
= task_running(rq
, tsk
);
7077 on_rq
= tsk
->se
.on_rq
;
7080 dequeue_task(rq
, tsk
, 0);
7081 if (unlikely(running
))
7082 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7085 set_task_cfs_rq(tsk
);
7088 if (unlikely(running
))
7089 tsk
->sched_class
->set_curr_task(rq
);
7090 enqueue_task(rq
, tsk
, 0);
7094 task_rq_unlock(rq
, &flags
);
7097 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7099 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7100 struct rq
*rq
= cfs_rq
->rq
;
7103 spin_lock_irq(&rq
->lock
);
7107 dequeue_entity(cfs_rq
, se
, 0);
7109 se
->load
.weight
= shares
;
7110 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7113 enqueue_entity(cfs_rq
, se
, 0);
7115 spin_unlock_irq(&rq
->lock
);
7118 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7122 spin_lock(&tg
->lock
);
7123 if (tg
->shares
== shares
)
7126 tg
->shares
= shares
;
7127 for_each_possible_cpu(i
)
7128 set_se_shares(tg
->se
[i
], shares
);
7131 spin_unlock(&tg
->lock
);
7135 unsigned long sched_group_shares(struct task_group
*tg
)
7140 #endif /* CONFIG_FAIR_GROUP_SCHED */
7142 #ifdef CONFIG_FAIR_CGROUP_SCHED
7144 /* return corresponding task_group object of a cgroup */
7145 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7147 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7148 struct task_group
, css
);
7151 static struct cgroup_subsys_state
*
7152 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7154 struct task_group
*tg
;
7156 if (!cgrp
->parent
) {
7157 /* This is early initialization for the top cgroup */
7158 init_task_group
.css
.cgroup
= cgrp
;
7159 return &init_task_group
.css
;
7162 /* we support only 1-level deep hierarchical scheduler atm */
7163 if (cgrp
->parent
->parent
)
7164 return ERR_PTR(-EINVAL
);
7166 tg
= sched_create_group();
7168 return ERR_PTR(-ENOMEM
);
7170 /* Bind the cgroup to task_group object we just created */
7171 tg
->css
.cgroup
= cgrp
;
7176 static void cpu_cgroup_destroy(struct cgroup_subsys
*ss
,
7177 struct cgroup
*cgrp
)
7179 struct task_group
*tg
= cgroup_tg(cgrp
);
7181 sched_destroy_group(tg
);
7184 static int cpu_cgroup_can_attach(struct cgroup_subsys
*ss
,
7185 struct cgroup
*cgrp
, struct task_struct
*tsk
)
7187 /* We don't support RT-tasks being in separate groups */
7188 if (tsk
->sched_class
!= &fair_sched_class
)
7195 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7196 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7198 sched_move_task(tsk
);
7201 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7204 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7207 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7209 struct task_group
*tg
= cgroup_tg(cgrp
);
7211 return (u64
) tg
->shares
;
7214 static struct cftype cpu_shares
= {
7216 .read_uint
= cpu_shares_read_uint
,
7217 .write_uint
= cpu_shares_write_uint
,
7220 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7222 return cgroup_add_file(cont
, ss
, &cpu_shares
);
7225 struct cgroup_subsys cpu_cgroup_subsys
= {
7227 .create
= cpu_cgroup_create
,
7228 .destroy
= cpu_cgroup_destroy
,
7229 .can_attach
= cpu_cgroup_can_attach
,
7230 .attach
= cpu_cgroup_attach
,
7231 .populate
= cpu_cgroup_populate
,
7232 .subsys_id
= cpu_cgroup_subsys_id
,
7236 #endif /* CONFIG_FAIR_CGROUP_SCHED */