xfs: serialise inode reclaim within an AG
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_mount.c
blob59859c343e04b6407600bea4d33d3e7e18fc9766
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
47 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
50 #ifdef HAVE_PERCPU_SB
51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
55 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
56 int64_t, int);
57 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
59 #else
61 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
62 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
63 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
65 #endif
67 static const struct {
68 short offset;
69 short type; /* 0 = integer
70 * 1 = binary / string (no translation)
72 } xfs_sb_info[] = {
73 { offsetof(xfs_sb_t, sb_magicnum), 0 },
74 { offsetof(xfs_sb_t, sb_blocksize), 0 },
75 { offsetof(xfs_sb_t, sb_dblocks), 0 },
76 { offsetof(xfs_sb_t, sb_rblocks), 0 },
77 { offsetof(xfs_sb_t, sb_rextents), 0 },
78 { offsetof(xfs_sb_t, sb_uuid), 1 },
79 { offsetof(xfs_sb_t, sb_logstart), 0 },
80 { offsetof(xfs_sb_t, sb_rootino), 0 },
81 { offsetof(xfs_sb_t, sb_rbmino), 0 },
82 { offsetof(xfs_sb_t, sb_rsumino), 0 },
83 { offsetof(xfs_sb_t, sb_rextsize), 0 },
84 { offsetof(xfs_sb_t, sb_agblocks), 0 },
85 { offsetof(xfs_sb_t, sb_agcount), 0 },
86 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
87 { offsetof(xfs_sb_t, sb_logblocks), 0 },
88 { offsetof(xfs_sb_t, sb_versionnum), 0 },
89 { offsetof(xfs_sb_t, sb_sectsize), 0 },
90 { offsetof(xfs_sb_t, sb_inodesize), 0 },
91 { offsetof(xfs_sb_t, sb_inopblock), 0 },
92 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
93 { offsetof(xfs_sb_t, sb_blocklog), 0 },
94 { offsetof(xfs_sb_t, sb_sectlog), 0 },
95 { offsetof(xfs_sb_t, sb_inodelog), 0 },
96 { offsetof(xfs_sb_t, sb_inopblog), 0 },
97 { offsetof(xfs_sb_t, sb_agblklog), 0 },
98 { offsetof(xfs_sb_t, sb_rextslog), 0 },
99 { offsetof(xfs_sb_t, sb_inprogress), 0 },
100 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
101 { offsetof(xfs_sb_t, sb_icount), 0 },
102 { offsetof(xfs_sb_t, sb_ifree), 0 },
103 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
104 { offsetof(xfs_sb_t, sb_frextents), 0 },
105 { offsetof(xfs_sb_t, sb_uquotino), 0 },
106 { offsetof(xfs_sb_t, sb_gquotino), 0 },
107 { offsetof(xfs_sb_t, sb_qflags), 0 },
108 { offsetof(xfs_sb_t, sb_flags), 0 },
109 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
110 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
111 { offsetof(xfs_sb_t, sb_unit), 0 },
112 { offsetof(xfs_sb_t, sb_width), 0 },
113 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
114 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
115 { offsetof(xfs_sb_t, sb_logsectsize),0 },
116 { offsetof(xfs_sb_t, sb_logsunit), 0 },
117 { offsetof(xfs_sb_t, sb_features2), 0 },
118 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
119 { sizeof(xfs_sb_t), 0 }
122 static DEFINE_MUTEX(xfs_uuid_table_mutex);
123 static int xfs_uuid_table_size;
124 static uuid_t *xfs_uuid_table;
127 * See if the UUID is unique among mounted XFS filesystems.
128 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
130 STATIC int
131 xfs_uuid_mount(
132 struct xfs_mount *mp)
134 uuid_t *uuid = &mp->m_sb.sb_uuid;
135 int hole, i;
137 if (mp->m_flags & XFS_MOUNT_NOUUID)
138 return 0;
140 if (uuid_is_nil(uuid)) {
141 cmn_err(CE_WARN,
142 "XFS: Filesystem %s has nil UUID - can't mount",
143 mp->m_fsname);
144 return XFS_ERROR(EINVAL);
147 mutex_lock(&xfs_uuid_table_mutex);
148 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
149 if (uuid_is_nil(&xfs_uuid_table[i])) {
150 hole = i;
151 continue;
153 if (uuid_equal(uuid, &xfs_uuid_table[i]))
154 goto out_duplicate;
157 if (hole < 0) {
158 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
159 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
160 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
161 KM_SLEEP);
162 hole = xfs_uuid_table_size++;
164 xfs_uuid_table[hole] = *uuid;
165 mutex_unlock(&xfs_uuid_table_mutex);
167 return 0;
169 out_duplicate:
170 mutex_unlock(&xfs_uuid_table_mutex);
171 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
172 mp->m_fsname);
173 return XFS_ERROR(EINVAL);
176 STATIC void
177 xfs_uuid_unmount(
178 struct xfs_mount *mp)
180 uuid_t *uuid = &mp->m_sb.sb_uuid;
181 int i;
183 if (mp->m_flags & XFS_MOUNT_NOUUID)
184 return;
186 mutex_lock(&xfs_uuid_table_mutex);
187 for (i = 0; i < xfs_uuid_table_size; i++) {
188 if (uuid_is_nil(&xfs_uuid_table[i]))
189 continue;
190 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 continue;
192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 break;
195 ASSERT(i < xfs_uuid_table_size);
196 mutex_unlock(&xfs_uuid_table_mutex);
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
205 struct xfs_perag *
206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
208 struct xfs_perag *pag;
209 int ref = 0;
211 rcu_read_lock();
212 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 if (pag) {
214 ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 ref = atomic_inc_return(&pag->pag_ref);
217 rcu_read_unlock();
218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 return pag;
223 * search from @first to find the next perag with the given tag set.
225 struct xfs_perag *
226 xfs_perag_get_tag(
227 struct xfs_mount *mp,
228 xfs_agnumber_t first,
229 int tag)
231 struct xfs_perag *pag;
232 int found;
233 int ref;
235 rcu_read_lock();
236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 (void **)&pag, first, 1, tag);
238 if (found <= 0) {
239 rcu_read_unlock();
240 return NULL;
242 ref = atomic_inc_return(&pag->pag_ref);
243 rcu_read_unlock();
244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 return pag;
248 void
249 xfs_perag_put(struct xfs_perag *pag)
251 int ref;
253 ASSERT(atomic_read(&pag->pag_ref) > 0);
254 ref = atomic_dec_return(&pag->pag_ref);
255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
258 STATIC void
259 __xfs_free_perag(
260 struct rcu_head *head)
262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
264 ASSERT(atomic_read(&pag->pag_ref) == 0);
265 kmem_free(pag);
269 * Free up the per-ag resources associated with the mount structure.
271 STATIC void
272 xfs_free_perag(
273 xfs_mount_t *mp)
275 xfs_agnumber_t agno;
276 struct xfs_perag *pag;
278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 spin_lock(&mp->m_perag_lock);
280 pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 spin_unlock(&mp->m_perag_lock);
282 ASSERT(pag);
283 call_rcu(&pag->rcu_head, __xfs_free_perag);
288 * Check size of device based on the (data/realtime) block count.
289 * Note: this check is used by the growfs code as well as mount.
292 xfs_sb_validate_fsb_count(
293 xfs_sb_t *sbp,
294 __uint64_t nblocks)
296 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
297 ASSERT(sbp->sb_blocklog >= BBSHIFT);
299 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
300 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
301 return EFBIG;
302 #else /* Limited by UINT_MAX of sectors */
303 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
304 return EFBIG;
305 #endif
306 return 0;
310 * Check the validity of the SB found.
312 STATIC int
313 xfs_mount_validate_sb(
314 xfs_mount_t *mp,
315 xfs_sb_t *sbp,
316 int flags)
319 * If the log device and data device have the
320 * same device number, the log is internal.
321 * Consequently, the sb_logstart should be non-zero. If
322 * we have a zero sb_logstart in this case, we may be trying to mount
323 * a volume filesystem in a non-volume manner.
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 xfs_fs_mount_cmn_err(flags, "bad magic number");
327 return XFS_ERROR(EWRONGFS);
330 if (!xfs_sb_good_version(sbp)) {
331 xfs_fs_mount_cmn_err(flags, "bad version");
332 return XFS_ERROR(EWRONGFS);
335 if (unlikely(
336 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
337 xfs_fs_mount_cmn_err(flags,
338 "filesystem is marked as having an external log; "
339 "specify logdev on the\nmount command line.");
340 return XFS_ERROR(EINVAL);
343 if (unlikely(
344 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
345 xfs_fs_mount_cmn_err(flags,
346 "filesystem is marked as having an internal log; "
347 "do not specify logdev on\nthe mount command line.");
348 return XFS_ERROR(EINVAL);
352 * More sanity checking. These were stolen directly from
353 * xfs_repair.
355 if (unlikely(
356 sbp->sb_agcount <= 0 ||
357 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
358 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
359 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
360 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
361 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
362 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
363 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
364 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
365 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
366 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
367 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
368 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
369 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
370 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
371 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
372 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
373 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
374 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
375 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
376 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
377 return XFS_ERROR(EFSCORRUPTED);
381 * Sanity check AG count, size fields against data size field
383 if (unlikely(
384 sbp->sb_dblocks == 0 ||
385 sbp->sb_dblocks >
386 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
387 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
388 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
389 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
390 return XFS_ERROR(EFSCORRUPTED);
394 * Until this is fixed only page-sized or smaller data blocks work.
396 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
397 xfs_fs_mount_cmn_err(flags,
398 "file system with blocksize %d bytes",
399 sbp->sb_blocksize);
400 xfs_fs_mount_cmn_err(flags,
401 "only pagesize (%ld) or less will currently work.",
402 PAGE_SIZE);
403 return XFS_ERROR(ENOSYS);
407 * Currently only very few inode sizes are supported.
409 switch (sbp->sb_inodesize) {
410 case 256:
411 case 512:
412 case 1024:
413 case 2048:
414 break;
415 default:
416 xfs_fs_mount_cmn_err(flags,
417 "inode size of %d bytes not supported",
418 sbp->sb_inodesize);
419 return XFS_ERROR(ENOSYS);
422 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
423 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
424 xfs_fs_mount_cmn_err(flags,
425 "file system too large to be mounted on this system.");
426 return XFS_ERROR(EFBIG);
429 if (unlikely(sbp->sb_inprogress)) {
430 xfs_fs_mount_cmn_err(flags, "file system busy");
431 return XFS_ERROR(EFSCORRUPTED);
435 * Version 1 directory format has never worked on Linux.
437 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
438 xfs_fs_mount_cmn_err(flags,
439 "file system using version 1 directory format");
440 return XFS_ERROR(ENOSYS);
443 return 0;
447 xfs_initialize_perag(
448 xfs_mount_t *mp,
449 xfs_agnumber_t agcount,
450 xfs_agnumber_t *maxagi)
452 xfs_agnumber_t index, max_metadata;
453 xfs_agnumber_t first_initialised = 0;
454 xfs_perag_t *pag;
455 xfs_agino_t agino;
456 xfs_ino_t ino;
457 xfs_sb_t *sbp = &mp->m_sb;
458 int error = -ENOMEM;
461 * Walk the current per-ag tree so we don't try to initialise AGs
462 * that already exist (growfs case). Allocate and insert all the
463 * AGs we don't find ready for initialisation.
465 for (index = 0; index < agcount; index++) {
466 pag = xfs_perag_get(mp, index);
467 if (pag) {
468 xfs_perag_put(pag);
469 continue;
471 if (!first_initialised)
472 first_initialised = index;
474 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
475 if (!pag)
476 goto out_unwind;
477 pag->pag_agno = index;
478 pag->pag_mount = mp;
479 rwlock_init(&pag->pag_ici_lock);
480 mutex_init(&pag->pag_ici_reclaim_lock);
481 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
483 if (radix_tree_preload(GFP_NOFS))
484 goto out_unwind;
486 spin_lock(&mp->m_perag_lock);
487 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
488 BUG();
489 spin_unlock(&mp->m_perag_lock);
490 radix_tree_preload_end();
491 error = -EEXIST;
492 goto out_unwind;
494 spin_unlock(&mp->m_perag_lock);
495 radix_tree_preload_end();
499 * If we mount with the inode64 option, or no inode overflows
500 * the legacy 32-bit address space clear the inode32 option.
502 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
503 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
505 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
506 mp->m_flags |= XFS_MOUNT_32BITINODES;
507 else
508 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
510 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
512 * Calculate how much should be reserved for inodes to meet
513 * the max inode percentage.
515 if (mp->m_maxicount) {
516 __uint64_t icount;
518 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
519 do_div(icount, 100);
520 icount += sbp->sb_agblocks - 1;
521 do_div(icount, sbp->sb_agblocks);
522 max_metadata = icount;
523 } else {
524 max_metadata = agcount;
527 for (index = 0; index < agcount; index++) {
528 ino = XFS_AGINO_TO_INO(mp, index, agino);
529 if (ino > XFS_MAXINUMBER_32) {
530 index++;
531 break;
534 pag = xfs_perag_get(mp, index);
535 pag->pagi_inodeok = 1;
536 if (index < max_metadata)
537 pag->pagf_metadata = 1;
538 xfs_perag_put(pag);
540 } else {
541 for (index = 0; index < agcount; index++) {
542 pag = xfs_perag_get(mp, index);
543 pag->pagi_inodeok = 1;
544 xfs_perag_put(pag);
548 if (maxagi)
549 *maxagi = index;
550 return 0;
552 out_unwind:
553 kmem_free(pag);
554 for (; index > first_initialised; index--) {
555 pag = radix_tree_delete(&mp->m_perag_tree, index);
556 kmem_free(pag);
558 return error;
561 void
562 xfs_sb_from_disk(
563 xfs_sb_t *to,
564 xfs_dsb_t *from)
566 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
567 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
568 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
569 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
570 to->sb_rextents = be64_to_cpu(from->sb_rextents);
571 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
572 to->sb_logstart = be64_to_cpu(from->sb_logstart);
573 to->sb_rootino = be64_to_cpu(from->sb_rootino);
574 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
575 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
576 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
577 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
578 to->sb_agcount = be32_to_cpu(from->sb_agcount);
579 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
580 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
581 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
582 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
583 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
584 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
585 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
586 to->sb_blocklog = from->sb_blocklog;
587 to->sb_sectlog = from->sb_sectlog;
588 to->sb_inodelog = from->sb_inodelog;
589 to->sb_inopblog = from->sb_inopblog;
590 to->sb_agblklog = from->sb_agblklog;
591 to->sb_rextslog = from->sb_rextslog;
592 to->sb_inprogress = from->sb_inprogress;
593 to->sb_imax_pct = from->sb_imax_pct;
594 to->sb_icount = be64_to_cpu(from->sb_icount);
595 to->sb_ifree = be64_to_cpu(from->sb_ifree);
596 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
597 to->sb_frextents = be64_to_cpu(from->sb_frextents);
598 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
599 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
600 to->sb_qflags = be16_to_cpu(from->sb_qflags);
601 to->sb_flags = from->sb_flags;
602 to->sb_shared_vn = from->sb_shared_vn;
603 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
604 to->sb_unit = be32_to_cpu(from->sb_unit);
605 to->sb_width = be32_to_cpu(from->sb_width);
606 to->sb_dirblklog = from->sb_dirblklog;
607 to->sb_logsectlog = from->sb_logsectlog;
608 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
609 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
610 to->sb_features2 = be32_to_cpu(from->sb_features2);
611 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
615 * Copy in core superblock to ondisk one.
617 * The fields argument is mask of superblock fields to copy.
619 void
620 xfs_sb_to_disk(
621 xfs_dsb_t *to,
622 xfs_sb_t *from,
623 __int64_t fields)
625 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
626 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
627 xfs_sb_field_t f;
628 int first;
629 int size;
631 ASSERT(fields);
632 if (!fields)
633 return;
635 while (fields) {
636 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
637 first = xfs_sb_info[f].offset;
638 size = xfs_sb_info[f + 1].offset - first;
640 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
642 if (size == 1 || xfs_sb_info[f].type == 1) {
643 memcpy(to_ptr + first, from_ptr + first, size);
644 } else {
645 switch (size) {
646 case 2:
647 *(__be16 *)(to_ptr + first) =
648 cpu_to_be16(*(__u16 *)(from_ptr + first));
649 break;
650 case 4:
651 *(__be32 *)(to_ptr + first) =
652 cpu_to_be32(*(__u32 *)(from_ptr + first));
653 break;
654 case 8:
655 *(__be64 *)(to_ptr + first) =
656 cpu_to_be64(*(__u64 *)(from_ptr + first));
657 break;
658 default:
659 ASSERT(0);
663 fields &= ~(1LL << f);
668 * xfs_readsb
670 * Does the initial read of the superblock.
673 xfs_readsb(xfs_mount_t *mp, int flags)
675 unsigned int sector_size;
676 xfs_buf_t *bp;
677 int error;
679 ASSERT(mp->m_sb_bp == NULL);
680 ASSERT(mp->m_ddev_targp != NULL);
683 * Allocate a (locked) buffer to hold the superblock.
684 * This will be kept around at all times to optimize
685 * access to the superblock.
687 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
689 reread:
690 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
691 XFS_SB_DADDR, sector_size, 0);
692 if (!bp) {
693 xfs_fs_mount_cmn_err(flags, "SB buffer read failed");
694 return EIO;
698 * Initialize the mount structure from the superblock.
699 * But first do some basic consistency checking.
701 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
702 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
703 if (error) {
704 xfs_fs_mount_cmn_err(flags, "SB validate failed");
705 goto release_buf;
709 * We must be able to do sector-sized and sector-aligned IO.
711 if (sector_size > mp->m_sb.sb_sectsize) {
712 xfs_fs_mount_cmn_err(flags,
713 "device supports only %u byte sectors (not %u)",
714 sector_size, mp->m_sb.sb_sectsize);
715 error = ENOSYS;
716 goto release_buf;
720 * If device sector size is smaller than the superblock size,
721 * re-read the superblock so the buffer is correctly sized.
723 if (sector_size < mp->m_sb.sb_sectsize) {
724 xfs_buf_relse(bp);
725 sector_size = mp->m_sb.sb_sectsize;
726 goto reread;
729 /* Initialize per-cpu counters */
730 xfs_icsb_reinit_counters(mp);
732 mp->m_sb_bp = bp;
733 xfs_buf_unlock(bp);
734 return 0;
736 release_buf:
737 xfs_buf_relse(bp);
738 return error;
743 * xfs_mount_common
745 * Mount initialization code establishing various mount
746 * fields from the superblock associated with the given
747 * mount structure
749 STATIC void
750 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
752 mp->m_agfrotor = mp->m_agirotor = 0;
753 spin_lock_init(&mp->m_agirotor_lock);
754 mp->m_maxagi = mp->m_sb.sb_agcount;
755 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
756 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
757 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
758 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
759 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
760 mp->m_blockmask = sbp->sb_blocksize - 1;
761 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
762 mp->m_blockwmask = mp->m_blockwsize - 1;
764 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
765 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
766 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
767 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
769 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
770 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
771 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
772 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
774 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
775 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
776 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
777 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
779 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
780 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
781 sbp->sb_inopblock);
782 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
786 * xfs_initialize_perag_data
788 * Read in each per-ag structure so we can count up the number of
789 * allocated inodes, free inodes and used filesystem blocks as this
790 * information is no longer persistent in the superblock. Once we have
791 * this information, write it into the in-core superblock structure.
793 STATIC int
794 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
796 xfs_agnumber_t index;
797 xfs_perag_t *pag;
798 xfs_sb_t *sbp = &mp->m_sb;
799 uint64_t ifree = 0;
800 uint64_t ialloc = 0;
801 uint64_t bfree = 0;
802 uint64_t bfreelst = 0;
803 uint64_t btree = 0;
804 int error;
806 for (index = 0; index < agcount; index++) {
808 * read the agf, then the agi. This gets us
809 * all the information we need and populates the
810 * per-ag structures for us.
812 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
813 if (error)
814 return error;
816 error = xfs_ialloc_pagi_init(mp, NULL, index);
817 if (error)
818 return error;
819 pag = xfs_perag_get(mp, index);
820 ifree += pag->pagi_freecount;
821 ialloc += pag->pagi_count;
822 bfree += pag->pagf_freeblks;
823 bfreelst += pag->pagf_flcount;
824 btree += pag->pagf_btreeblks;
825 xfs_perag_put(pag);
828 * Overwrite incore superblock counters with just-read data
830 spin_lock(&mp->m_sb_lock);
831 sbp->sb_ifree = ifree;
832 sbp->sb_icount = ialloc;
833 sbp->sb_fdblocks = bfree + bfreelst + btree;
834 spin_unlock(&mp->m_sb_lock);
836 /* Fixup the per-cpu counters as well. */
837 xfs_icsb_reinit_counters(mp);
839 return 0;
843 * Update alignment values based on mount options and sb values
845 STATIC int
846 xfs_update_alignment(xfs_mount_t *mp)
848 xfs_sb_t *sbp = &(mp->m_sb);
850 if (mp->m_dalign) {
852 * If stripe unit and stripe width are not multiples
853 * of the fs blocksize turn off alignment.
855 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
856 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
857 if (mp->m_flags & XFS_MOUNT_RETERR) {
858 cmn_err(CE_WARN,
859 "XFS: alignment check 1 failed");
860 return XFS_ERROR(EINVAL);
862 mp->m_dalign = mp->m_swidth = 0;
863 } else {
865 * Convert the stripe unit and width to FSBs.
867 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
868 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
869 if (mp->m_flags & XFS_MOUNT_RETERR) {
870 return XFS_ERROR(EINVAL);
872 xfs_fs_cmn_err(CE_WARN, mp,
873 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
874 mp->m_dalign, mp->m_swidth,
875 sbp->sb_agblocks);
877 mp->m_dalign = 0;
878 mp->m_swidth = 0;
879 } else if (mp->m_dalign) {
880 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
881 } else {
882 if (mp->m_flags & XFS_MOUNT_RETERR) {
883 xfs_fs_cmn_err(CE_WARN, mp,
884 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
885 mp->m_dalign,
886 mp->m_blockmask +1);
887 return XFS_ERROR(EINVAL);
889 mp->m_swidth = 0;
894 * Update superblock with new values
895 * and log changes
897 if (xfs_sb_version_hasdalign(sbp)) {
898 if (sbp->sb_unit != mp->m_dalign) {
899 sbp->sb_unit = mp->m_dalign;
900 mp->m_update_flags |= XFS_SB_UNIT;
902 if (sbp->sb_width != mp->m_swidth) {
903 sbp->sb_width = mp->m_swidth;
904 mp->m_update_flags |= XFS_SB_WIDTH;
907 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
908 xfs_sb_version_hasdalign(&mp->m_sb)) {
909 mp->m_dalign = sbp->sb_unit;
910 mp->m_swidth = sbp->sb_width;
913 return 0;
917 * Set the maximum inode count for this filesystem
919 STATIC void
920 xfs_set_maxicount(xfs_mount_t *mp)
922 xfs_sb_t *sbp = &(mp->m_sb);
923 __uint64_t icount;
925 if (sbp->sb_imax_pct) {
927 * Make sure the maximum inode count is a multiple
928 * of the units we allocate inodes in.
930 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
931 do_div(icount, 100);
932 do_div(icount, mp->m_ialloc_blks);
933 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
934 sbp->sb_inopblog;
935 } else {
936 mp->m_maxicount = 0;
941 * Set the default minimum read and write sizes unless
942 * already specified in a mount option.
943 * We use smaller I/O sizes when the file system
944 * is being used for NFS service (wsync mount option).
946 STATIC void
947 xfs_set_rw_sizes(xfs_mount_t *mp)
949 xfs_sb_t *sbp = &(mp->m_sb);
950 int readio_log, writeio_log;
952 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
953 if (mp->m_flags & XFS_MOUNT_WSYNC) {
954 readio_log = XFS_WSYNC_READIO_LOG;
955 writeio_log = XFS_WSYNC_WRITEIO_LOG;
956 } else {
957 readio_log = XFS_READIO_LOG_LARGE;
958 writeio_log = XFS_WRITEIO_LOG_LARGE;
960 } else {
961 readio_log = mp->m_readio_log;
962 writeio_log = mp->m_writeio_log;
965 if (sbp->sb_blocklog > readio_log) {
966 mp->m_readio_log = sbp->sb_blocklog;
967 } else {
968 mp->m_readio_log = readio_log;
970 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
971 if (sbp->sb_blocklog > writeio_log) {
972 mp->m_writeio_log = sbp->sb_blocklog;
973 } else {
974 mp->m_writeio_log = writeio_log;
976 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
980 * Set whether we're using inode alignment.
982 STATIC void
983 xfs_set_inoalignment(xfs_mount_t *mp)
985 if (xfs_sb_version_hasalign(&mp->m_sb) &&
986 mp->m_sb.sb_inoalignmt >=
987 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
988 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
989 else
990 mp->m_inoalign_mask = 0;
992 * If we are using stripe alignment, check whether
993 * the stripe unit is a multiple of the inode alignment
995 if (mp->m_dalign && mp->m_inoalign_mask &&
996 !(mp->m_dalign & mp->m_inoalign_mask))
997 mp->m_sinoalign = mp->m_dalign;
998 else
999 mp->m_sinoalign = 0;
1003 * Check that the data (and log if separate) are an ok size.
1005 STATIC int
1006 xfs_check_sizes(xfs_mount_t *mp)
1008 xfs_buf_t *bp;
1009 xfs_daddr_t d;
1011 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1012 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1013 cmn_err(CE_WARN, "XFS: filesystem size mismatch detected");
1014 return XFS_ERROR(EFBIG);
1016 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1017 d - XFS_FSS_TO_BB(mp, 1),
1018 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1019 if (!bp) {
1020 cmn_err(CE_WARN, "XFS: last sector read failed");
1021 return EIO;
1023 xfs_buf_relse(bp);
1025 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1026 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1027 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1028 cmn_err(CE_WARN, "XFS: log size mismatch detected");
1029 return XFS_ERROR(EFBIG);
1031 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1032 d - XFS_FSB_TO_BB(mp, 1),
1033 XFS_FSB_TO_B(mp, 1), 0);
1034 if (!bp) {
1035 cmn_err(CE_WARN, "XFS: log device read failed");
1036 return EIO;
1038 xfs_buf_relse(bp);
1040 return 0;
1044 * Clear the quotaflags in memory and in the superblock.
1047 xfs_mount_reset_sbqflags(
1048 struct xfs_mount *mp)
1050 int error;
1051 struct xfs_trans *tp;
1053 mp->m_qflags = 0;
1056 * It is OK to look at sb_qflags here in mount path,
1057 * without m_sb_lock.
1059 if (mp->m_sb.sb_qflags == 0)
1060 return 0;
1061 spin_lock(&mp->m_sb_lock);
1062 mp->m_sb.sb_qflags = 0;
1063 spin_unlock(&mp->m_sb_lock);
1066 * If the fs is readonly, let the incore superblock run
1067 * with quotas off but don't flush the update out to disk
1069 if (mp->m_flags & XFS_MOUNT_RDONLY)
1070 return 0;
1072 #ifdef QUOTADEBUG
1073 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1074 #endif
1076 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1077 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1078 XFS_DEFAULT_LOG_COUNT);
1079 if (error) {
1080 xfs_trans_cancel(tp, 0);
1081 xfs_fs_cmn_err(CE_ALERT, mp,
1082 "xfs_mount_reset_sbqflags: Superblock update failed!");
1083 return error;
1086 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1087 return xfs_trans_commit(tp, 0);
1090 __uint64_t
1091 xfs_default_resblks(xfs_mount_t *mp)
1093 __uint64_t resblks;
1096 * We default to 5% or 8192 fsbs of space reserved, whichever is
1097 * smaller. This is intended to cover concurrent allocation
1098 * transactions when we initially hit enospc. These each require a 4
1099 * block reservation. Hence by default we cover roughly 2000 concurrent
1100 * allocation reservations.
1102 resblks = mp->m_sb.sb_dblocks;
1103 do_div(resblks, 20);
1104 resblks = min_t(__uint64_t, resblks, 8192);
1105 return resblks;
1109 * This function does the following on an initial mount of a file system:
1110 * - reads the superblock from disk and init the mount struct
1111 * - if we're a 32-bit kernel, do a size check on the superblock
1112 * so we don't mount terabyte filesystems
1113 * - init mount struct realtime fields
1114 * - allocate inode hash table for fs
1115 * - init directory manager
1116 * - perform recovery and init the log manager
1119 xfs_mountfs(
1120 xfs_mount_t *mp)
1122 xfs_sb_t *sbp = &(mp->m_sb);
1123 xfs_inode_t *rip;
1124 __uint64_t resblks;
1125 uint quotamount = 0;
1126 uint quotaflags = 0;
1127 int error = 0;
1129 xfs_mount_common(mp, sbp);
1132 * Check for a mismatched features2 values. Older kernels
1133 * read & wrote into the wrong sb offset for sb_features2
1134 * on some platforms due to xfs_sb_t not being 64bit size aligned
1135 * when sb_features2 was added, which made older superblock
1136 * reading/writing routines swap it as a 64-bit value.
1138 * For backwards compatibility, we make both slots equal.
1140 * If we detect a mismatched field, we OR the set bits into the
1141 * existing features2 field in case it has already been modified; we
1142 * don't want to lose any features. We then update the bad location
1143 * with the ORed value so that older kernels will see any features2
1144 * flags, and mark the two fields as needing updates once the
1145 * transaction subsystem is online.
1147 if (xfs_sb_has_mismatched_features2(sbp)) {
1148 cmn_err(CE_WARN,
1149 "XFS: correcting sb_features alignment problem");
1150 sbp->sb_features2 |= sbp->sb_bad_features2;
1151 sbp->sb_bad_features2 = sbp->sb_features2;
1152 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1155 * Re-check for ATTR2 in case it was found in bad_features2
1156 * slot.
1158 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1159 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1160 mp->m_flags |= XFS_MOUNT_ATTR2;
1163 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1164 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1165 xfs_sb_version_removeattr2(&mp->m_sb);
1166 mp->m_update_flags |= XFS_SB_FEATURES2;
1168 /* update sb_versionnum for the clearing of the morebits */
1169 if (!sbp->sb_features2)
1170 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1174 * Check if sb_agblocks is aligned at stripe boundary
1175 * If sb_agblocks is NOT aligned turn off m_dalign since
1176 * allocator alignment is within an ag, therefore ag has
1177 * to be aligned at stripe boundary.
1179 error = xfs_update_alignment(mp);
1180 if (error)
1181 goto out;
1183 xfs_alloc_compute_maxlevels(mp);
1184 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1185 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1186 xfs_ialloc_compute_maxlevels(mp);
1188 xfs_set_maxicount(mp);
1190 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1192 error = xfs_uuid_mount(mp);
1193 if (error)
1194 goto out;
1197 * Set the minimum read and write sizes
1199 xfs_set_rw_sizes(mp);
1202 * Set the inode cluster size.
1203 * This may still be overridden by the file system
1204 * block size if it is larger than the chosen cluster size.
1206 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1209 * Set inode alignment fields
1211 xfs_set_inoalignment(mp);
1214 * Check that the data (and log if separate) are an ok size.
1216 error = xfs_check_sizes(mp);
1217 if (error)
1218 goto out_remove_uuid;
1221 * Initialize realtime fields in the mount structure
1223 error = xfs_rtmount_init(mp);
1224 if (error) {
1225 cmn_err(CE_WARN, "XFS: RT mount failed");
1226 goto out_remove_uuid;
1230 * Copies the low order bits of the timestamp and the randomly
1231 * set "sequence" number out of a UUID.
1233 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1235 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1237 xfs_dir_mount(mp);
1240 * Initialize the attribute manager's entries.
1242 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1245 * Initialize the precomputed transaction reservations values.
1247 xfs_trans_init(mp);
1250 * Allocate and initialize the per-ag data.
1252 spin_lock_init(&mp->m_perag_lock);
1253 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1254 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1255 if (error) {
1256 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1257 goto out_remove_uuid;
1260 if (!sbp->sb_logblocks) {
1261 cmn_err(CE_WARN, "XFS: no log defined");
1262 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1263 error = XFS_ERROR(EFSCORRUPTED);
1264 goto out_free_perag;
1268 * log's mount-time initialization. Perform 1st part recovery if needed
1270 error = xfs_log_mount(mp, mp->m_logdev_targp,
1271 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1272 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1273 if (error) {
1274 cmn_err(CE_WARN, "XFS: log mount failed");
1275 goto out_free_perag;
1279 * Now the log is mounted, we know if it was an unclean shutdown or
1280 * not. If it was, with the first phase of recovery has completed, we
1281 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1282 * but they are recovered transactionally in the second recovery phase
1283 * later.
1285 * Hence we can safely re-initialise incore superblock counters from
1286 * the per-ag data. These may not be correct if the filesystem was not
1287 * cleanly unmounted, so we need to wait for recovery to finish before
1288 * doing this.
1290 * If the filesystem was cleanly unmounted, then we can trust the
1291 * values in the superblock to be correct and we don't need to do
1292 * anything here.
1294 * If we are currently making the filesystem, the initialisation will
1295 * fail as the perag data is in an undefined state.
1297 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1298 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1299 !mp->m_sb.sb_inprogress) {
1300 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1301 if (error)
1302 goto out_free_perag;
1306 * Get and sanity-check the root inode.
1307 * Save the pointer to it in the mount structure.
1309 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1310 if (error) {
1311 cmn_err(CE_WARN, "XFS: failed to read root inode");
1312 goto out_log_dealloc;
1315 ASSERT(rip != NULL);
1317 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1318 cmn_err(CE_WARN, "XFS: corrupted root inode");
1319 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1320 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1321 (unsigned long long)rip->i_ino);
1322 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1323 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1324 mp);
1325 error = XFS_ERROR(EFSCORRUPTED);
1326 goto out_rele_rip;
1328 mp->m_rootip = rip; /* save it */
1330 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1333 * Initialize realtime inode pointers in the mount structure
1335 error = xfs_rtmount_inodes(mp);
1336 if (error) {
1338 * Free up the root inode.
1340 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1341 goto out_rele_rip;
1345 * If this is a read-only mount defer the superblock updates until
1346 * the next remount into writeable mode. Otherwise we would never
1347 * perform the update e.g. for the root filesystem.
1349 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1350 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1351 if (error) {
1352 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1353 goto out_rtunmount;
1358 * Initialise the XFS quota management subsystem for this mount
1360 if (XFS_IS_QUOTA_RUNNING(mp)) {
1361 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1362 if (error)
1363 goto out_rtunmount;
1364 } else {
1365 ASSERT(!XFS_IS_QUOTA_ON(mp));
1368 * If a file system had quotas running earlier, but decided to
1369 * mount without -o uquota/pquota/gquota options, revoke the
1370 * quotachecked license.
1372 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1373 cmn_err(CE_NOTE,
1374 "XFS: resetting qflags for filesystem %s",
1375 mp->m_fsname);
1377 error = xfs_mount_reset_sbqflags(mp);
1378 if (error)
1379 return error;
1384 * Finish recovering the file system. This part needed to be
1385 * delayed until after the root and real-time bitmap inodes
1386 * were consistently read in.
1388 error = xfs_log_mount_finish(mp);
1389 if (error) {
1390 cmn_err(CE_WARN, "XFS: log mount finish failed");
1391 goto out_rtunmount;
1395 * Complete the quota initialisation, post-log-replay component.
1397 if (quotamount) {
1398 ASSERT(mp->m_qflags == 0);
1399 mp->m_qflags = quotaflags;
1401 xfs_qm_mount_quotas(mp);
1405 * Now we are mounted, reserve a small amount of unused space for
1406 * privileged transactions. This is needed so that transaction
1407 * space required for critical operations can dip into this pool
1408 * when at ENOSPC. This is needed for operations like create with
1409 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1410 * are not allowed to use this reserved space.
1412 * This may drive us straight to ENOSPC on mount, but that implies
1413 * we were already there on the last unmount. Warn if this occurs.
1415 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1416 resblks = xfs_default_resblks(mp);
1417 error = xfs_reserve_blocks(mp, &resblks, NULL);
1418 if (error)
1419 cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1420 "blocks. Continuing without a reserve pool.");
1423 return 0;
1425 out_rtunmount:
1426 xfs_rtunmount_inodes(mp);
1427 out_rele_rip:
1428 IRELE(rip);
1429 out_log_dealloc:
1430 xfs_log_unmount(mp);
1431 out_free_perag:
1432 xfs_free_perag(mp);
1433 out_remove_uuid:
1434 xfs_uuid_unmount(mp);
1435 out:
1436 return error;
1440 * This flushes out the inodes,dquots and the superblock, unmounts the
1441 * log and makes sure that incore structures are freed.
1443 void
1444 xfs_unmountfs(
1445 struct xfs_mount *mp)
1447 __uint64_t resblks;
1448 int error;
1450 xfs_qm_unmount_quotas(mp);
1451 xfs_rtunmount_inodes(mp);
1452 IRELE(mp->m_rootip);
1455 * We can potentially deadlock here if we have an inode cluster
1456 * that has been freed has its buffer still pinned in memory because
1457 * the transaction is still sitting in a iclog. The stale inodes
1458 * on that buffer will have their flush locks held until the
1459 * transaction hits the disk and the callbacks run. the inode
1460 * flush takes the flush lock unconditionally and with nothing to
1461 * push out the iclog we will never get that unlocked. hence we
1462 * need to force the log first.
1464 xfs_log_force(mp, XFS_LOG_SYNC);
1467 * Do a delwri reclaim pass first so that as many dirty inodes are
1468 * queued up for IO as possible. Then flush the buffers before making
1469 * a synchronous path to catch all the remaining inodes are reclaimed.
1470 * This makes the reclaim process as quick as possible by avoiding
1471 * synchronous writeout and blocking on inodes already in the delwri
1472 * state as much as possible.
1474 xfs_reclaim_inodes(mp, 0);
1475 XFS_bflush(mp->m_ddev_targp);
1476 xfs_reclaim_inodes(mp, SYNC_WAIT);
1478 xfs_qm_unmount(mp);
1481 * Flush out the log synchronously so that we know for sure
1482 * that nothing is pinned. This is important because bflush()
1483 * will skip pinned buffers.
1485 xfs_log_force(mp, XFS_LOG_SYNC);
1487 xfs_binval(mp->m_ddev_targp);
1488 if (mp->m_rtdev_targp) {
1489 xfs_binval(mp->m_rtdev_targp);
1493 * Unreserve any blocks we have so that when we unmount we don't account
1494 * the reserved free space as used. This is really only necessary for
1495 * lazy superblock counting because it trusts the incore superblock
1496 * counters to be absolutely correct on clean unmount.
1498 * We don't bother correcting this elsewhere for lazy superblock
1499 * counting because on mount of an unclean filesystem we reconstruct the
1500 * correct counter value and this is irrelevant.
1502 * For non-lazy counter filesystems, this doesn't matter at all because
1503 * we only every apply deltas to the superblock and hence the incore
1504 * value does not matter....
1506 resblks = 0;
1507 error = xfs_reserve_blocks(mp, &resblks, NULL);
1508 if (error)
1509 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1510 "Freespace may not be correct on next mount.");
1512 error = xfs_log_sbcount(mp, 1);
1513 if (error)
1514 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1515 "Freespace may not be correct on next mount.");
1516 xfs_unmountfs_writesb(mp);
1517 xfs_unmountfs_wait(mp); /* wait for async bufs */
1518 xfs_log_unmount_write(mp);
1519 xfs_log_unmount(mp);
1520 xfs_uuid_unmount(mp);
1522 #if defined(DEBUG)
1523 xfs_errortag_clearall(mp, 0);
1524 #endif
1525 xfs_free_perag(mp);
1528 STATIC void
1529 xfs_unmountfs_wait(xfs_mount_t *mp)
1531 if (mp->m_logdev_targp != mp->m_ddev_targp)
1532 xfs_wait_buftarg(mp->m_logdev_targp);
1533 if (mp->m_rtdev_targp)
1534 xfs_wait_buftarg(mp->m_rtdev_targp);
1535 xfs_wait_buftarg(mp->m_ddev_targp);
1539 xfs_fs_writable(xfs_mount_t *mp)
1541 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1542 (mp->m_flags & XFS_MOUNT_RDONLY));
1546 * xfs_log_sbcount
1548 * Called either periodically to keep the on disk superblock values
1549 * roughly up to date or from unmount to make sure the values are
1550 * correct on a clean unmount.
1552 * Note this code can be called during the process of freezing, so
1553 * we may need to use the transaction allocator which does not not
1554 * block when the transaction subsystem is in its frozen state.
1557 xfs_log_sbcount(
1558 xfs_mount_t *mp,
1559 uint sync)
1561 xfs_trans_t *tp;
1562 int error;
1564 if (!xfs_fs_writable(mp))
1565 return 0;
1567 xfs_icsb_sync_counters(mp, 0);
1570 * we don't need to do this if we are updating the superblock
1571 * counters on every modification.
1573 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1574 return 0;
1576 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1577 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1578 XFS_DEFAULT_LOG_COUNT);
1579 if (error) {
1580 xfs_trans_cancel(tp, 0);
1581 return error;
1584 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1585 if (sync)
1586 xfs_trans_set_sync(tp);
1587 error = xfs_trans_commit(tp, 0);
1588 return error;
1592 xfs_unmountfs_writesb(xfs_mount_t *mp)
1594 xfs_buf_t *sbp;
1595 int error = 0;
1598 * skip superblock write if fs is read-only, or
1599 * if we are doing a forced umount.
1601 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1602 XFS_FORCED_SHUTDOWN(mp))) {
1604 sbp = xfs_getsb(mp, 0);
1606 XFS_BUF_UNDONE(sbp);
1607 XFS_BUF_UNREAD(sbp);
1608 XFS_BUF_UNDELAYWRITE(sbp);
1609 XFS_BUF_WRITE(sbp);
1610 XFS_BUF_UNASYNC(sbp);
1611 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1612 xfsbdstrat(mp, sbp);
1613 error = xfs_iowait(sbp);
1614 if (error)
1615 xfs_ioerror_alert("xfs_unmountfs_writesb",
1616 mp, sbp, XFS_BUF_ADDR(sbp));
1617 xfs_buf_relse(sbp);
1619 return error;
1623 * xfs_mod_sb() can be used to copy arbitrary changes to the
1624 * in-core superblock into the superblock buffer to be logged.
1625 * It does not provide the higher level of locking that is
1626 * needed to protect the in-core superblock from concurrent
1627 * access.
1629 void
1630 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1632 xfs_buf_t *bp;
1633 int first;
1634 int last;
1635 xfs_mount_t *mp;
1636 xfs_sb_field_t f;
1638 ASSERT(fields);
1639 if (!fields)
1640 return;
1641 mp = tp->t_mountp;
1642 bp = xfs_trans_getsb(tp, mp, 0);
1643 first = sizeof(xfs_sb_t);
1644 last = 0;
1646 /* translate/copy */
1648 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1650 /* find modified range */
1651 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1652 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1653 last = xfs_sb_info[f + 1].offset - 1;
1655 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1656 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1657 first = xfs_sb_info[f].offset;
1659 xfs_trans_log_buf(tp, bp, first, last);
1664 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1665 * a delta to a specified field in the in-core superblock. Simply
1666 * switch on the field indicated and apply the delta to that field.
1667 * Fields are not allowed to dip below zero, so if the delta would
1668 * do this do not apply it and return EINVAL.
1670 * The m_sb_lock must be held when this routine is called.
1672 STATIC int
1673 xfs_mod_incore_sb_unlocked(
1674 xfs_mount_t *mp,
1675 xfs_sb_field_t field,
1676 int64_t delta,
1677 int rsvd)
1679 int scounter; /* short counter for 32 bit fields */
1680 long long lcounter; /* long counter for 64 bit fields */
1681 long long res_used, rem;
1684 * With the in-core superblock spin lock held, switch
1685 * on the indicated field. Apply the delta to the
1686 * proper field. If the fields value would dip below
1687 * 0, then do not apply the delta and return EINVAL.
1689 switch (field) {
1690 case XFS_SBS_ICOUNT:
1691 lcounter = (long long)mp->m_sb.sb_icount;
1692 lcounter += delta;
1693 if (lcounter < 0) {
1694 ASSERT(0);
1695 return XFS_ERROR(EINVAL);
1697 mp->m_sb.sb_icount = lcounter;
1698 return 0;
1699 case XFS_SBS_IFREE:
1700 lcounter = (long long)mp->m_sb.sb_ifree;
1701 lcounter += delta;
1702 if (lcounter < 0) {
1703 ASSERT(0);
1704 return XFS_ERROR(EINVAL);
1706 mp->m_sb.sb_ifree = lcounter;
1707 return 0;
1708 case XFS_SBS_FDBLOCKS:
1709 lcounter = (long long)
1710 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1711 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1713 if (delta > 0) { /* Putting blocks back */
1714 if (res_used > delta) {
1715 mp->m_resblks_avail += delta;
1716 } else {
1717 rem = delta - res_used;
1718 mp->m_resblks_avail = mp->m_resblks;
1719 lcounter += rem;
1721 } else { /* Taking blocks away */
1722 lcounter += delta;
1723 if (lcounter >= 0) {
1724 mp->m_sb.sb_fdblocks = lcounter +
1725 XFS_ALLOC_SET_ASIDE(mp);
1726 return 0;
1730 * We are out of blocks, use any available reserved
1731 * blocks if were allowed to.
1733 if (!rsvd)
1734 return XFS_ERROR(ENOSPC);
1736 lcounter = (long long)mp->m_resblks_avail + delta;
1737 if (lcounter >= 0) {
1738 mp->m_resblks_avail = lcounter;
1739 return 0;
1741 printk_once(KERN_WARNING
1742 "Filesystem \"%s\": reserve blocks depleted! "
1743 "Consider increasing reserve pool size.",
1744 mp->m_fsname);
1745 return XFS_ERROR(ENOSPC);
1748 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1749 return 0;
1750 case XFS_SBS_FREXTENTS:
1751 lcounter = (long long)mp->m_sb.sb_frextents;
1752 lcounter += delta;
1753 if (lcounter < 0) {
1754 return XFS_ERROR(ENOSPC);
1756 mp->m_sb.sb_frextents = lcounter;
1757 return 0;
1758 case XFS_SBS_DBLOCKS:
1759 lcounter = (long long)mp->m_sb.sb_dblocks;
1760 lcounter += delta;
1761 if (lcounter < 0) {
1762 ASSERT(0);
1763 return XFS_ERROR(EINVAL);
1765 mp->m_sb.sb_dblocks = lcounter;
1766 return 0;
1767 case XFS_SBS_AGCOUNT:
1768 scounter = mp->m_sb.sb_agcount;
1769 scounter += delta;
1770 if (scounter < 0) {
1771 ASSERT(0);
1772 return XFS_ERROR(EINVAL);
1774 mp->m_sb.sb_agcount = scounter;
1775 return 0;
1776 case XFS_SBS_IMAX_PCT:
1777 scounter = mp->m_sb.sb_imax_pct;
1778 scounter += delta;
1779 if (scounter < 0) {
1780 ASSERT(0);
1781 return XFS_ERROR(EINVAL);
1783 mp->m_sb.sb_imax_pct = scounter;
1784 return 0;
1785 case XFS_SBS_REXTSIZE:
1786 scounter = mp->m_sb.sb_rextsize;
1787 scounter += delta;
1788 if (scounter < 0) {
1789 ASSERT(0);
1790 return XFS_ERROR(EINVAL);
1792 mp->m_sb.sb_rextsize = scounter;
1793 return 0;
1794 case XFS_SBS_RBMBLOCKS:
1795 scounter = mp->m_sb.sb_rbmblocks;
1796 scounter += delta;
1797 if (scounter < 0) {
1798 ASSERT(0);
1799 return XFS_ERROR(EINVAL);
1801 mp->m_sb.sb_rbmblocks = scounter;
1802 return 0;
1803 case XFS_SBS_RBLOCKS:
1804 lcounter = (long long)mp->m_sb.sb_rblocks;
1805 lcounter += delta;
1806 if (lcounter < 0) {
1807 ASSERT(0);
1808 return XFS_ERROR(EINVAL);
1810 mp->m_sb.sb_rblocks = lcounter;
1811 return 0;
1812 case XFS_SBS_REXTENTS:
1813 lcounter = (long long)mp->m_sb.sb_rextents;
1814 lcounter += delta;
1815 if (lcounter < 0) {
1816 ASSERT(0);
1817 return XFS_ERROR(EINVAL);
1819 mp->m_sb.sb_rextents = lcounter;
1820 return 0;
1821 case XFS_SBS_REXTSLOG:
1822 scounter = mp->m_sb.sb_rextslog;
1823 scounter += delta;
1824 if (scounter < 0) {
1825 ASSERT(0);
1826 return XFS_ERROR(EINVAL);
1828 mp->m_sb.sb_rextslog = scounter;
1829 return 0;
1830 default:
1831 ASSERT(0);
1832 return XFS_ERROR(EINVAL);
1837 * xfs_mod_incore_sb() is used to change a field in the in-core
1838 * superblock structure by the specified delta. This modification
1839 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1840 * routine to do the work.
1843 xfs_mod_incore_sb(
1844 xfs_mount_t *mp,
1845 xfs_sb_field_t field,
1846 int64_t delta,
1847 int rsvd)
1849 int status;
1851 /* check for per-cpu counters */
1852 switch (field) {
1853 #ifdef HAVE_PERCPU_SB
1854 case XFS_SBS_ICOUNT:
1855 case XFS_SBS_IFREE:
1856 case XFS_SBS_FDBLOCKS:
1857 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1858 status = xfs_icsb_modify_counters(mp, field,
1859 delta, rsvd);
1860 break;
1862 /* FALLTHROUGH */
1863 #endif
1864 default:
1865 spin_lock(&mp->m_sb_lock);
1866 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1867 spin_unlock(&mp->m_sb_lock);
1868 break;
1871 return status;
1875 * xfs_mod_incore_sb_batch() is used to change more than one field
1876 * in the in-core superblock structure at a time. This modification
1877 * is protected by a lock internal to this module. The fields and
1878 * changes to those fields are specified in the array of xfs_mod_sb
1879 * structures passed in.
1881 * Either all of the specified deltas will be applied or none of
1882 * them will. If any modified field dips below 0, then all modifications
1883 * will be backed out and EINVAL will be returned.
1886 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1888 int status=0;
1889 xfs_mod_sb_t *msbp;
1892 * Loop through the array of mod structures and apply each
1893 * individually. If any fail, then back out all those
1894 * which have already been applied. Do all of this within
1895 * the scope of the m_sb_lock so that all of the changes will
1896 * be atomic.
1898 spin_lock(&mp->m_sb_lock);
1899 msbp = &msb[0];
1900 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1902 * Apply the delta at index n. If it fails, break
1903 * from the loop so we'll fall into the undo loop
1904 * below.
1906 switch (msbp->msb_field) {
1907 #ifdef HAVE_PERCPU_SB
1908 case XFS_SBS_ICOUNT:
1909 case XFS_SBS_IFREE:
1910 case XFS_SBS_FDBLOCKS:
1911 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1912 spin_unlock(&mp->m_sb_lock);
1913 status = xfs_icsb_modify_counters(mp,
1914 msbp->msb_field,
1915 msbp->msb_delta, rsvd);
1916 spin_lock(&mp->m_sb_lock);
1917 break;
1919 /* FALLTHROUGH */
1920 #endif
1921 default:
1922 status = xfs_mod_incore_sb_unlocked(mp,
1923 msbp->msb_field,
1924 msbp->msb_delta, rsvd);
1925 break;
1928 if (status != 0) {
1929 break;
1934 * If we didn't complete the loop above, then back out
1935 * any changes made to the superblock. If you add code
1936 * between the loop above and here, make sure that you
1937 * preserve the value of status. Loop back until
1938 * we step below the beginning of the array. Make sure
1939 * we don't touch anything back there.
1941 if (status != 0) {
1942 msbp--;
1943 while (msbp >= msb) {
1944 switch (msbp->msb_field) {
1945 #ifdef HAVE_PERCPU_SB
1946 case XFS_SBS_ICOUNT:
1947 case XFS_SBS_IFREE:
1948 case XFS_SBS_FDBLOCKS:
1949 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1950 spin_unlock(&mp->m_sb_lock);
1951 status = xfs_icsb_modify_counters(mp,
1952 msbp->msb_field,
1953 -(msbp->msb_delta),
1954 rsvd);
1955 spin_lock(&mp->m_sb_lock);
1956 break;
1958 /* FALLTHROUGH */
1959 #endif
1960 default:
1961 status = xfs_mod_incore_sb_unlocked(mp,
1962 msbp->msb_field,
1963 -(msbp->msb_delta),
1964 rsvd);
1965 break;
1967 ASSERT(status == 0);
1968 msbp--;
1971 spin_unlock(&mp->m_sb_lock);
1972 return status;
1976 * xfs_getsb() is called to obtain the buffer for the superblock.
1977 * The buffer is returned locked and read in from disk.
1978 * The buffer should be released with a call to xfs_brelse().
1980 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1981 * the superblock buffer if it can be locked without sleeping.
1982 * If it can't then we'll return NULL.
1984 xfs_buf_t *
1985 xfs_getsb(
1986 xfs_mount_t *mp,
1987 int flags)
1989 xfs_buf_t *bp;
1991 ASSERT(mp->m_sb_bp != NULL);
1992 bp = mp->m_sb_bp;
1993 if (flags & XBF_TRYLOCK) {
1994 if (!XFS_BUF_CPSEMA(bp)) {
1995 return NULL;
1997 } else {
1998 XFS_BUF_PSEMA(bp, PRIBIO);
2000 XFS_BUF_HOLD(bp);
2001 ASSERT(XFS_BUF_ISDONE(bp));
2002 return bp;
2006 * Used to free the superblock along various error paths.
2008 void
2009 xfs_freesb(
2010 struct xfs_mount *mp)
2012 struct xfs_buf *bp = mp->m_sb_bp;
2014 xfs_buf_lock(bp);
2015 mp->m_sb_bp = NULL;
2016 xfs_buf_relse(bp);
2020 * Used to log changes to the superblock unit and width fields which could
2021 * be altered by the mount options, as well as any potential sb_features2
2022 * fixup. Only the first superblock is updated.
2025 xfs_mount_log_sb(
2026 xfs_mount_t *mp,
2027 __int64_t fields)
2029 xfs_trans_t *tp;
2030 int error;
2032 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2033 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2034 XFS_SB_VERSIONNUM));
2036 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2037 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2038 XFS_DEFAULT_LOG_COUNT);
2039 if (error) {
2040 xfs_trans_cancel(tp, 0);
2041 return error;
2043 xfs_mod_sb(tp, fields);
2044 error = xfs_trans_commit(tp, 0);
2045 return error;
2049 * If the underlying (data/log/rt) device is readonly, there are some
2050 * operations that cannot proceed.
2053 xfs_dev_is_read_only(
2054 struct xfs_mount *mp,
2055 char *message)
2057 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2058 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2059 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2060 cmn_err(CE_NOTE,
2061 "XFS: %s required on read-only device.", message);
2062 cmn_err(CE_NOTE,
2063 "XFS: write access unavailable, cannot proceed.");
2064 return EROFS;
2066 return 0;
2069 #ifdef HAVE_PERCPU_SB
2071 * Per-cpu incore superblock counters
2073 * Simple concept, difficult implementation
2075 * Basically, replace the incore superblock counters with a distributed per cpu
2076 * counter for contended fields (e.g. free block count).
2078 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2079 * hence needs to be accurately read when we are running low on space. Hence
2080 * there is a method to enable and disable the per-cpu counters based on how
2081 * much "stuff" is available in them.
2083 * Basically, a counter is enabled if there is enough free resource to justify
2084 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2085 * ENOSPC), then we disable the counters to synchronise all callers and
2086 * re-distribute the available resources.
2088 * If, once we redistributed the available resources, we still get a failure,
2089 * we disable the per-cpu counter and go through the slow path.
2091 * The slow path is the current xfs_mod_incore_sb() function. This means that
2092 * when we disable a per-cpu counter, we need to drain its resources back to
2093 * the global superblock. We do this after disabling the counter to prevent
2094 * more threads from queueing up on the counter.
2096 * Essentially, this means that we still need a lock in the fast path to enable
2097 * synchronisation between the global counters and the per-cpu counters. This
2098 * is not a problem because the lock will be local to a CPU almost all the time
2099 * and have little contention except when we get to ENOSPC conditions.
2101 * Basically, this lock becomes a barrier that enables us to lock out the fast
2102 * path while we do things like enabling and disabling counters and
2103 * synchronising the counters.
2105 * Locking rules:
2107 * 1. m_sb_lock before picking up per-cpu locks
2108 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2109 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2110 * 4. modifying per-cpu counters requires holding per-cpu lock
2111 * 5. modifying global counters requires holding m_sb_lock
2112 * 6. enabling or disabling a counter requires holding the m_sb_lock
2113 * and _none_ of the per-cpu locks.
2115 * Disabled counters are only ever re-enabled by a balance operation
2116 * that results in more free resources per CPU than a given threshold.
2117 * To ensure counters don't remain disabled, they are rebalanced when
2118 * the global resource goes above a higher threshold (i.e. some hysteresis
2119 * is present to prevent thrashing).
2122 #ifdef CONFIG_HOTPLUG_CPU
2124 * hot-plug CPU notifier support.
2126 * We need a notifier per filesystem as we need to be able to identify
2127 * the filesystem to balance the counters out. This is achieved by
2128 * having a notifier block embedded in the xfs_mount_t and doing pointer
2129 * magic to get the mount pointer from the notifier block address.
2131 STATIC int
2132 xfs_icsb_cpu_notify(
2133 struct notifier_block *nfb,
2134 unsigned long action,
2135 void *hcpu)
2137 xfs_icsb_cnts_t *cntp;
2138 xfs_mount_t *mp;
2140 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2141 cntp = (xfs_icsb_cnts_t *)
2142 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2143 switch (action) {
2144 case CPU_UP_PREPARE:
2145 case CPU_UP_PREPARE_FROZEN:
2146 /* Easy Case - initialize the area and locks, and
2147 * then rebalance when online does everything else for us. */
2148 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2149 break;
2150 case CPU_ONLINE:
2151 case CPU_ONLINE_FROZEN:
2152 xfs_icsb_lock(mp);
2153 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2154 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2155 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2156 xfs_icsb_unlock(mp);
2157 break;
2158 case CPU_DEAD:
2159 case CPU_DEAD_FROZEN:
2160 /* Disable all the counters, then fold the dead cpu's
2161 * count into the total on the global superblock and
2162 * re-enable the counters. */
2163 xfs_icsb_lock(mp);
2164 spin_lock(&mp->m_sb_lock);
2165 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2166 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2167 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2169 mp->m_sb.sb_icount += cntp->icsb_icount;
2170 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2171 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2173 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2175 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2176 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2177 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2178 spin_unlock(&mp->m_sb_lock);
2179 xfs_icsb_unlock(mp);
2180 break;
2183 return NOTIFY_OK;
2185 #endif /* CONFIG_HOTPLUG_CPU */
2188 xfs_icsb_init_counters(
2189 xfs_mount_t *mp)
2191 xfs_icsb_cnts_t *cntp;
2192 int i;
2194 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2195 if (mp->m_sb_cnts == NULL)
2196 return -ENOMEM;
2198 #ifdef CONFIG_HOTPLUG_CPU
2199 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2200 mp->m_icsb_notifier.priority = 0;
2201 register_hotcpu_notifier(&mp->m_icsb_notifier);
2202 #endif /* CONFIG_HOTPLUG_CPU */
2204 for_each_online_cpu(i) {
2205 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2206 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2209 mutex_init(&mp->m_icsb_mutex);
2212 * start with all counters disabled so that the
2213 * initial balance kicks us off correctly
2215 mp->m_icsb_counters = -1;
2216 return 0;
2219 void
2220 xfs_icsb_reinit_counters(
2221 xfs_mount_t *mp)
2223 xfs_icsb_lock(mp);
2225 * start with all counters disabled so that the
2226 * initial balance kicks us off correctly
2228 mp->m_icsb_counters = -1;
2229 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2230 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2231 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2232 xfs_icsb_unlock(mp);
2235 void
2236 xfs_icsb_destroy_counters(
2237 xfs_mount_t *mp)
2239 if (mp->m_sb_cnts) {
2240 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2241 free_percpu(mp->m_sb_cnts);
2243 mutex_destroy(&mp->m_icsb_mutex);
2246 STATIC void
2247 xfs_icsb_lock_cntr(
2248 xfs_icsb_cnts_t *icsbp)
2250 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2251 ndelay(1000);
2255 STATIC void
2256 xfs_icsb_unlock_cntr(
2257 xfs_icsb_cnts_t *icsbp)
2259 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2263 STATIC void
2264 xfs_icsb_lock_all_counters(
2265 xfs_mount_t *mp)
2267 xfs_icsb_cnts_t *cntp;
2268 int i;
2270 for_each_online_cpu(i) {
2271 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2272 xfs_icsb_lock_cntr(cntp);
2276 STATIC void
2277 xfs_icsb_unlock_all_counters(
2278 xfs_mount_t *mp)
2280 xfs_icsb_cnts_t *cntp;
2281 int i;
2283 for_each_online_cpu(i) {
2284 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2285 xfs_icsb_unlock_cntr(cntp);
2289 STATIC void
2290 xfs_icsb_count(
2291 xfs_mount_t *mp,
2292 xfs_icsb_cnts_t *cnt,
2293 int flags)
2295 xfs_icsb_cnts_t *cntp;
2296 int i;
2298 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2300 if (!(flags & XFS_ICSB_LAZY_COUNT))
2301 xfs_icsb_lock_all_counters(mp);
2303 for_each_online_cpu(i) {
2304 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2305 cnt->icsb_icount += cntp->icsb_icount;
2306 cnt->icsb_ifree += cntp->icsb_ifree;
2307 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2310 if (!(flags & XFS_ICSB_LAZY_COUNT))
2311 xfs_icsb_unlock_all_counters(mp);
2314 STATIC int
2315 xfs_icsb_counter_disabled(
2316 xfs_mount_t *mp,
2317 xfs_sb_field_t field)
2319 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2320 return test_bit(field, &mp->m_icsb_counters);
2323 STATIC void
2324 xfs_icsb_disable_counter(
2325 xfs_mount_t *mp,
2326 xfs_sb_field_t field)
2328 xfs_icsb_cnts_t cnt;
2330 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2333 * If we are already disabled, then there is nothing to do
2334 * here. We check before locking all the counters to avoid
2335 * the expensive lock operation when being called in the
2336 * slow path and the counter is already disabled. This is
2337 * safe because the only time we set or clear this state is under
2338 * the m_icsb_mutex.
2340 if (xfs_icsb_counter_disabled(mp, field))
2341 return;
2343 xfs_icsb_lock_all_counters(mp);
2344 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2345 /* drain back to superblock */
2347 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2348 switch(field) {
2349 case XFS_SBS_ICOUNT:
2350 mp->m_sb.sb_icount = cnt.icsb_icount;
2351 break;
2352 case XFS_SBS_IFREE:
2353 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2354 break;
2355 case XFS_SBS_FDBLOCKS:
2356 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2357 break;
2358 default:
2359 BUG();
2363 xfs_icsb_unlock_all_counters(mp);
2366 STATIC void
2367 xfs_icsb_enable_counter(
2368 xfs_mount_t *mp,
2369 xfs_sb_field_t field,
2370 uint64_t count,
2371 uint64_t resid)
2373 xfs_icsb_cnts_t *cntp;
2374 int i;
2376 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2378 xfs_icsb_lock_all_counters(mp);
2379 for_each_online_cpu(i) {
2380 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2381 switch (field) {
2382 case XFS_SBS_ICOUNT:
2383 cntp->icsb_icount = count + resid;
2384 break;
2385 case XFS_SBS_IFREE:
2386 cntp->icsb_ifree = count + resid;
2387 break;
2388 case XFS_SBS_FDBLOCKS:
2389 cntp->icsb_fdblocks = count + resid;
2390 break;
2391 default:
2392 BUG();
2393 break;
2395 resid = 0;
2397 clear_bit(field, &mp->m_icsb_counters);
2398 xfs_icsb_unlock_all_counters(mp);
2401 void
2402 xfs_icsb_sync_counters_locked(
2403 xfs_mount_t *mp,
2404 int flags)
2406 xfs_icsb_cnts_t cnt;
2408 xfs_icsb_count(mp, &cnt, flags);
2410 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2411 mp->m_sb.sb_icount = cnt.icsb_icount;
2412 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2413 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2414 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2415 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2419 * Accurate update of per-cpu counters to incore superblock
2421 void
2422 xfs_icsb_sync_counters(
2423 xfs_mount_t *mp,
2424 int flags)
2426 spin_lock(&mp->m_sb_lock);
2427 xfs_icsb_sync_counters_locked(mp, flags);
2428 spin_unlock(&mp->m_sb_lock);
2432 * Balance and enable/disable counters as necessary.
2434 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2435 * chosen to be the same number as single on disk allocation chunk per CPU, and
2436 * free blocks is something far enough zero that we aren't going thrash when we
2437 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2438 * prevent looping endlessly when xfs_alloc_space asks for more than will
2439 * be distributed to a single CPU but each CPU has enough blocks to be
2440 * reenabled.
2442 * Note that we can be called when counters are already disabled.
2443 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2444 * prevent locking every per-cpu counter needlessly.
2447 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2448 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2449 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2450 STATIC void
2451 xfs_icsb_balance_counter_locked(
2452 xfs_mount_t *mp,
2453 xfs_sb_field_t field,
2454 int min_per_cpu)
2456 uint64_t count, resid;
2457 int weight = num_online_cpus();
2458 uint64_t min = (uint64_t)min_per_cpu;
2460 /* disable counter and sync counter */
2461 xfs_icsb_disable_counter(mp, field);
2463 /* update counters - first CPU gets residual*/
2464 switch (field) {
2465 case XFS_SBS_ICOUNT:
2466 count = mp->m_sb.sb_icount;
2467 resid = do_div(count, weight);
2468 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2469 return;
2470 break;
2471 case XFS_SBS_IFREE:
2472 count = mp->m_sb.sb_ifree;
2473 resid = do_div(count, weight);
2474 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2475 return;
2476 break;
2477 case XFS_SBS_FDBLOCKS:
2478 count = mp->m_sb.sb_fdblocks;
2479 resid = do_div(count, weight);
2480 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2481 return;
2482 break;
2483 default:
2484 BUG();
2485 count = resid = 0; /* quiet, gcc */
2486 break;
2489 xfs_icsb_enable_counter(mp, field, count, resid);
2492 STATIC void
2493 xfs_icsb_balance_counter(
2494 xfs_mount_t *mp,
2495 xfs_sb_field_t fields,
2496 int min_per_cpu)
2498 spin_lock(&mp->m_sb_lock);
2499 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2500 spin_unlock(&mp->m_sb_lock);
2503 STATIC int
2504 xfs_icsb_modify_counters(
2505 xfs_mount_t *mp,
2506 xfs_sb_field_t field,
2507 int64_t delta,
2508 int rsvd)
2510 xfs_icsb_cnts_t *icsbp;
2511 long long lcounter; /* long counter for 64 bit fields */
2512 int ret = 0;
2514 might_sleep();
2515 again:
2516 preempt_disable();
2517 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2520 * if the counter is disabled, go to slow path
2522 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2523 goto slow_path;
2524 xfs_icsb_lock_cntr(icsbp);
2525 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2526 xfs_icsb_unlock_cntr(icsbp);
2527 goto slow_path;
2530 switch (field) {
2531 case XFS_SBS_ICOUNT:
2532 lcounter = icsbp->icsb_icount;
2533 lcounter += delta;
2534 if (unlikely(lcounter < 0))
2535 goto balance_counter;
2536 icsbp->icsb_icount = lcounter;
2537 break;
2539 case XFS_SBS_IFREE:
2540 lcounter = icsbp->icsb_ifree;
2541 lcounter += delta;
2542 if (unlikely(lcounter < 0))
2543 goto balance_counter;
2544 icsbp->icsb_ifree = lcounter;
2545 break;
2547 case XFS_SBS_FDBLOCKS:
2548 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2550 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2551 lcounter += delta;
2552 if (unlikely(lcounter < 0))
2553 goto balance_counter;
2554 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2555 break;
2556 default:
2557 BUG();
2558 break;
2560 xfs_icsb_unlock_cntr(icsbp);
2561 preempt_enable();
2562 return 0;
2564 slow_path:
2565 preempt_enable();
2568 * serialise with a mutex so we don't burn lots of cpu on
2569 * the superblock lock. We still need to hold the superblock
2570 * lock, however, when we modify the global structures.
2572 xfs_icsb_lock(mp);
2575 * Now running atomically.
2577 * If the counter is enabled, someone has beaten us to rebalancing.
2578 * Drop the lock and try again in the fast path....
2580 if (!(xfs_icsb_counter_disabled(mp, field))) {
2581 xfs_icsb_unlock(mp);
2582 goto again;
2586 * The counter is currently disabled. Because we are
2587 * running atomically here, we know a rebalance cannot
2588 * be in progress. Hence we can go straight to operating
2589 * on the global superblock. We do not call xfs_mod_incore_sb()
2590 * here even though we need to get the m_sb_lock. Doing so
2591 * will cause us to re-enter this function and deadlock.
2592 * Hence we get the m_sb_lock ourselves and then call
2593 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2594 * directly on the global counters.
2596 spin_lock(&mp->m_sb_lock);
2597 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2598 spin_unlock(&mp->m_sb_lock);
2601 * Now that we've modified the global superblock, we
2602 * may be able to re-enable the distributed counters
2603 * (e.g. lots of space just got freed). After that
2604 * we are done.
2606 if (ret != ENOSPC)
2607 xfs_icsb_balance_counter(mp, field, 0);
2608 xfs_icsb_unlock(mp);
2609 return ret;
2611 balance_counter:
2612 xfs_icsb_unlock_cntr(icsbp);
2613 preempt_enable();
2616 * We may have multiple threads here if multiple per-cpu
2617 * counters run dry at the same time. This will mean we can
2618 * do more balances than strictly necessary but it is not
2619 * the common slowpath case.
2621 xfs_icsb_lock(mp);
2624 * running atomically.
2626 * This will leave the counter in the correct state for future
2627 * accesses. After the rebalance, we simply try again and our retry
2628 * will either succeed through the fast path or slow path without
2629 * another balance operation being required.
2631 xfs_icsb_balance_counter(mp, field, delta);
2632 xfs_icsb_unlock(mp);
2633 goto again;
2636 #endif