2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
39 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
47 STATIC
void xfs_unmountfs_wait(xfs_mount_t
*);
51 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
53 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
55 STATIC
int xfs_icsb_modify_counters(xfs_mount_t
*, xfs_sb_field_t
,
57 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
61 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
62 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
63 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
69 short type
; /* 0 = integer
70 * 1 = binary / string (no translation)
73 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
74 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
75 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
76 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
77 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
78 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
79 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
80 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
81 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
82 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
83 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
84 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
85 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
86 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
87 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
88 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
89 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
90 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
91 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
92 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
93 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
94 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
95 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
96 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
97 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
98 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
99 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
100 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
101 { offsetof(xfs_sb_t
, sb_icount
), 0 },
102 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
103 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
104 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
105 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
106 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
107 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
108 { offsetof(xfs_sb_t
, sb_flags
), 0 },
109 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
110 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
111 { offsetof(xfs_sb_t
, sb_unit
), 0 },
112 { offsetof(xfs_sb_t
, sb_width
), 0 },
113 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
114 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
115 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
116 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
117 { offsetof(xfs_sb_t
, sb_features2
), 0 },
118 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
119 { sizeof(xfs_sb_t
), 0 }
122 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
123 static int xfs_uuid_table_size
;
124 static uuid_t
*xfs_uuid_table
;
127 * See if the UUID is unique among mounted XFS filesystems.
128 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132 struct xfs_mount
*mp
)
134 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
137 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
140 if (uuid_is_nil(uuid
)) {
142 "XFS: Filesystem %s has nil UUID - can't mount",
144 return XFS_ERROR(EINVAL
);
147 mutex_lock(&xfs_uuid_table_mutex
);
148 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
149 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
153 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
158 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
159 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
160 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
162 hole
= xfs_uuid_table_size
++;
164 xfs_uuid_table
[hole
] = *uuid
;
165 mutex_unlock(&xfs_uuid_table_mutex
);
170 mutex_unlock(&xfs_uuid_table_mutex
);
171 cmn_err(CE_WARN
, "XFS: Filesystem %s has duplicate UUID - can't mount",
173 return XFS_ERROR(EINVAL
);
178 struct xfs_mount
*mp
)
180 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
183 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
186 mutex_lock(&xfs_uuid_table_mutex
);
187 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
188 if (uuid_is_nil(&xfs_uuid_table
[i
]))
190 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
192 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
195 ASSERT(i
< xfs_uuid_table_size
);
196 mutex_unlock(&xfs_uuid_table_mutex
);
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
206 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
208 struct xfs_perag
*pag
;
212 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
214 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
215 ref
= atomic_inc_return(&pag
->pag_ref
);
218 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
223 * search from @first to find the next perag with the given tag set.
227 struct xfs_mount
*mp
,
228 xfs_agnumber_t first
,
231 struct xfs_perag
*pag
;
236 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
237 (void **)&pag
, first
, 1, tag
);
242 ref
= atomic_inc_return(&pag
->pag_ref
);
244 trace_xfs_perag_get_tag(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
249 xfs_perag_put(struct xfs_perag
*pag
)
253 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
254 ref
= atomic_dec_return(&pag
->pag_ref
);
255 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
260 struct rcu_head
*head
)
262 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
264 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
269 * Free up the per-ag resources associated with the mount structure.
276 struct xfs_perag
*pag
;
278 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
279 spin_lock(&mp
->m_perag_lock
);
280 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
281 spin_unlock(&mp
->m_perag_lock
);
283 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
288 * Check size of device based on the (data/realtime) block count.
289 * Note: this check is used by the growfs code as well as mount.
292 xfs_sb_validate_fsb_count(
296 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
297 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
299 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
300 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
302 #else /* Limited by UINT_MAX of sectors */
303 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
310 * Check the validity of the SB found.
313 xfs_mount_validate_sb(
319 * If the log device and data device have the
320 * same device number, the log is internal.
321 * Consequently, the sb_logstart should be non-zero. If
322 * we have a zero sb_logstart in this case, we may be trying to mount
323 * a volume filesystem in a non-volume manner.
325 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
326 xfs_fs_mount_cmn_err(flags
, "bad magic number");
327 return XFS_ERROR(EWRONGFS
);
330 if (!xfs_sb_good_version(sbp
)) {
331 xfs_fs_mount_cmn_err(flags
, "bad version");
332 return XFS_ERROR(EWRONGFS
);
336 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
337 xfs_fs_mount_cmn_err(flags
,
338 "filesystem is marked as having an external log; "
339 "specify logdev on the\nmount command line.");
340 return XFS_ERROR(EINVAL
);
344 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
345 xfs_fs_mount_cmn_err(flags
,
346 "filesystem is marked as having an internal log; "
347 "do not specify logdev on\nthe mount command line.");
348 return XFS_ERROR(EINVAL
);
352 * More sanity checking. These were stolen directly from
356 sbp
->sb_agcount
<= 0 ||
357 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
358 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
359 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
360 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
361 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
362 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
363 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
364 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
365 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
366 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
367 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
368 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
369 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
370 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
371 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
372 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
373 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
374 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
375 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */))) {
376 xfs_fs_mount_cmn_err(flags
, "SB sanity check 1 failed");
377 return XFS_ERROR(EFSCORRUPTED
);
381 * Sanity check AG count, size fields against data size field
384 sbp
->sb_dblocks
== 0 ||
386 (xfs_drfsbno_t
)sbp
->sb_agcount
* sbp
->sb_agblocks
||
387 sbp
->sb_dblocks
< (xfs_drfsbno_t
)(sbp
->sb_agcount
- 1) *
388 sbp
->sb_agblocks
+ XFS_MIN_AG_BLOCKS
)) {
389 xfs_fs_mount_cmn_err(flags
, "SB sanity check 2 failed");
390 return XFS_ERROR(EFSCORRUPTED
);
394 * Until this is fixed only page-sized or smaller data blocks work.
396 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
397 xfs_fs_mount_cmn_err(flags
,
398 "file system with blocksize %d bytes",
400 xfs_fs_mount_cmn_err(flags
,
401 "only pagesize (%ld) or less will currently work.",
403 return XFS_ERROR(ENOSYS
);
407 * Currently only very few inode sizes are supported.
409 switch (sbp
->sb_inodesize
) {
416 xfs_fs_mount_cmn_err(flags
,
417 "inode size of %d bytes not supported",
419 return XFS_ERROR(ENOSYS
);
422 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
423 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
424 xfs_fs_mount_cmn_err(flags
,
425 "file system too large to be mounted on this system.");
426 return XFS_ERROR(EFBIG
);
429 if (unlikely(sbp
->sb_inprogress
)) {
430 xfs_fs_mount_cmn_err(flags
, "file system busy");
431 return XFS_ERROR(EFSCORRUPTED
);
435 * Version 1 directory format has never worked on Linux.
437 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
438 xfs_fs_mount_cmn_err(flags
,
439 "file system using version 1 directory format");
440 return XFS_ERROR(ENOSYS
);
447 xfs_initialize_perag(
449 xfs_agnumber_t agcount
,
450 xfs_agnumber_t
*maxagi
)
452 xfs_agnumber_t index
, max_metadata
;
453 xfs_agnumber_t first_initialised
= 0;
457 xfs_sb_t
*sbp
= &mp
->m_sb
;
461 * Walk the current per-ag tree so we don't try to initialise AGs
462 * that already exist (growfs case). Allocate and insert all the
463 * AGs we don't find ready for initialisation.
465 for (index
= 0; index
< agcount
; index
++) {
466 pag
= xfs_perag_get(mp
, index
);
471 if (!first_initialised
)
472 first_initialised
= index
;
474 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
477 pag
->pag_agno
= index
;
479 rwlock_init(&pag
->pag_ici_lock
);
480 mutex_init(&pag
->pag_ici_reclaim_lock
);
481 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
483 if (radix_tree_preload(GFP_NOFS
))
486 spin_lock(&mp
->m_perag_lock
);
487 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
489 spin_unlock(&mp
->m_perag_lock
);
490 radix_tree_preload_end();
494 spin_unlock(&mp
->m_perag_lock
);
495 radix_tree_preload_end();
499 * If we mount with the inode64 option, or no inode overflows
500 * the legacy 32-bit address space clear the inode32 option.
502 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
503 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
505 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
506 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
508 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
510 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
512 * Calculate how much should be reserved for inodes to meet
513 * the max inode percentage.
515 if (mp
->m_maxicount
) {
518 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
520 icount
+= sbp
->sb_agblocks
- 1;
521 do_div(icount
, sbp
->sb_agblocks
);
522 max_metadata
= icount
;
524 max_metadata
= agcount
;
527 for (index
= 0; index
< agcount
; index
++) {
528 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
529 if (ino
> XFS_MAXINUMBER_32
) {
534 pag
= xfs_perag_get(mp
, index
);
535 pag
->pagi_inodeok
= 1;
536 if (index
< max_metadata
)
537 pag
->pagf_metadata
= 1;
541 for (index
= 0; index
< agcount
; index
++) {
542 pag
= xfs_perag_get(mp
, index
);
543 pag
->pagi_inodeok
= 1;
554 for (; index
> first_initialised
; index
--) {
555 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
566 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
567 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
568 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
569 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
570 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
571 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
572 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
573 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
574 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
575 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
576 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
577 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
578 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
579 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
580 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
581 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
582 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
583 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
584 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
585 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
586 to
->sb_blocklog
= from
->sb_blocklog
;
587 to
->sb_sectlog
= from
->sb_sectlog
;
588 to
->sb_inodelog
= from
->sb_inodelog
;
589 to
->sb_inopblog
= from
->sb_inopblog
;
590 to
->sb_agblklog
= from
->sb_agblklog
;
591 to
->sb_rextslog
= from
->sb_rextslog
;
592 to
->sb_inprogress
= from
->sb_inprogress
;
593 to
->sb_imax_pct
= from
->sb_imax_pct
;
594 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
595 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
596 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
597 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
598 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
599 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
600 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
601 to
->sb_flags
= from
->sb_flags
;
602 to
->sb_shared_vn
= from
->sb_shared_vn
;
603 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
604 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
605 to
->sb_width
= be32_to_cpu(from
->sb_width
);
606 to
->sb_dirblklog
= from
->sb_dirblklog
;
607 to
->sb_logsectlog
= from
->sb_logsectlog
;
608 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
609 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
610 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
611 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
615 * Copy in core superblock to ondisk one.
617 * The fields argument is mask of superblock fields to copy.
625 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
626 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
636 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
637 first
= xfs_sb_info
[f
].offset
;
638 size
= xfs_sb_info
[f
+ 1].offset
- first
;
640 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
642 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
643 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
647 *(__be16
*)(to_ptr
+ first
) =
648 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
651 *(__be32
*)(to_ptr
+ first
) =
652 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
655 *(__be64
*)(to_ptr
+ first
) =
656 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
663 fields
&= ~(1LL << f
);
670 * Does the initial read of the superblock.
673 xfs_readsb(xfs_mount_t
*mp
, int flags
)
675 unsigned int sector_size
;
679 ASSERT(mp
->m_sb_bp
== NULL
);
680 ASSERT(mp
->m_ddev_targp
!= NULL
);
683 * Allocate a (locked) buffer to hold the superblock.
684 * This will be kept around at all times to optimize
685 * access to the superblock.
687 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
690 bp
= xfs_buf_read_uncached(mp
, mp
->m_ddev_targp
,
691 XFS_SB_DADDR
, sector_size
, 0);
693 xfs_fs_mount_cmn_err(flags
, "SB buffer read failed");
698 * Initialize the mount structure from the superblock.
699 * But first do some basic consistency checking.
701 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
702 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
704 xfs_fs_mount_cmn_err(flags
, "SB validate failed");
709 * We must be able to do sector-sized and sector-aligned IO.
711 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
712 xfs_fs_mount_cmn_err(flags
,
713 "device supports only %u byte sectors (not %u)",
714 sector_size
, mp
->m_sb
.sb_sectsize
);
720 * If device sector size is smaller than the superblock size,
721 * re-read the superblock so the buffer is correctly sized.
723 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
725 sector_size
= mp
->m_sb
.sb_sectsize
;
729 /* Initialize per-cpu counters */
730 xfs_icsb_reinit_counters(mp
);
745 * Mount initialization code establishing various mount
746 * fields from the superblock associated with the given
750 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
752 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
753 spin_lock_init(&mp
->m_agirotor_lock
);
754 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
755 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
756 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
757 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
758 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
759 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
760 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
761 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
762 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
764 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
765 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
766 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
767 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
769 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
770 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
771 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
772 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
774 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
775 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
776 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
777 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
779 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
780 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
782 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
786 * xfs_initialize_perag_data
788 * Read in each per-ag structure so we can count up the number of
789 * allocated inodes, free inodes and used filesystem blocks as this
790 * information is no longer persistent in the superblock. Once we have
791 * this information, write it into the in-core superblock structure.
794 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
796 xfs_agnumber_t index
;
798 xfs_sb_t
*sbp
= &mp
->m_sb
;
802 uint64_t bfreelst
= 0;
806 for (index
= 0; index
< agcount
; index
++) {
808 * read the agf, then the agi. This gets us
809 * all the information we need and populates the
810 * per-ag structures for us.
812 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
816 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
819 pag
= xfs_perag_get(mp
, index
);
820 ifree
+= pag
->pagi_freecount
;
821 ialloc
+= pag
->pagi_count
;
822 bfree
+= pag
->pagf_freeblks
;
823 bfreelst
+= pag
->pagf_flcount
;
824 btree
+= pag
->pagf_btreeblks
;
828 * Overwrite incore superblock counters with just-read data
830 spin_lock(&mp
->m_sb_lock
);
831 sbp
->sb_ifree
= ifree
;
832 sbp
->sb_icount
= ialloc
;
833 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
834 spin_unlock(&mp
->m_sb_lock
);
836 /* Fixup the per-cpu counters as well. */
837 xfs_icsb_reinit_counters(mp
);
843 * Update alignment values based on mount options and sb values
846 xfs_update_alignment(xfs_mount_t
*mp
)
848 xfs_sb_t
*sbp
= &(mp
->m_sb
);
852 * If stripe unit and stripe width are not multiples
853 * of the fs blocksize turn off alignment.
855 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
856 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
857 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
859 "XFS: alignment check 1 failed");
860 return XFS_ERROR(EINVAL
);
862 mp
->m_dalign
= mp
->m_swidth
= 0;
865 * Convert the stripe unit and width to FSBs.
867 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
868 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
869 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
870 return XFS_ERROR(EINVAL
);
872 xfs_fs_cmn_err(CE_WARN
, mp
,
873 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
874 mp
->m_dalign
, mp
->m_swidth
,
879 } else if (mp
->m_dalign
) {
880 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
882 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
883 xfs_fs_cmn_err(CE_WARN
, mp
,
884 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
887 return XFS_ERROR(EINVAL
);
894 * Update superblock with new values
897 if (xfs_sb_version_hasdalign(sbp
)) {
898 if (sbp
->sb_unit
!= mp
->m_dalign
) {
899 sbp
->sb_unit
= mp
->m_dalign
;
900 mp
->m_update_flags
|= XFS_SB_UNIT
;
902 if (sbp
->sb_width
!= mp
->m_swidth
) {
903 sbp
->sb_width
= mp
->m_swidth
;
904 mp
->m_update_flags
|= XFS_SB_WIDTH
;
907 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
908 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
909 mp
->m_dalign
= sbp
->sb_unit
;
910 mp
->m_swidth
= sbp
->sb_width
;
917 * Set the maximum inode count for this filesystem
920 xfs_set_maxicount(xfs_mount_t
*mp
)
922 xfs_sb_t
*sbp
= &(mp
->m_sb
);
925 if (sbp
->sb_imax_pct
) {
927 * Make sure the maximum inode count is a multiple
928 * of the units we allocate inodes in.
930 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
932 do_div(icount
, mp
->m_ialloc_blks
);
933 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
941 * Set the default minimum read and write sizes unless
942 * already specified in a mount option.
943 * We use smaller I/O sizes when the file system
944 * is being used for NFS service (wsync mount option).
947 xfs_set_rw_sizes(xfs_mount_t
*mp
)
949 xfs_sb_t
*sbp
= &(mp
->m_sb
);
950 int readio_log
, writeio_log
;
952 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
953 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
954 readio_log
= XFS_WSYNC_READIO_LOG
;
955 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
957 readio_log
= XFS_READIO_LOG_LARGE
;
958 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
961 readio_log
= mp
->m_readio_log
;
962 writeio_log
= mp
->m_writeio_log
;
965 if (sbp
->sb_blocklog
> readio_log
) {
966 mp
->m_readio_log
= sbp
->sb_blocklog
;
968 mp
->m_readio_log
= readio_log
;
970 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
971 if (sbp
->sb_blocklog
> writeio_log
) {
972 mp
->m_writeio_log
= sbp
->sb_blocklog
;
974 mp
->m_writeio_log
= writeio_log
;
976 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
980 * Set whether we're using inode alignment.
983 xfs_set_inoalignment(xfs_mount_t
*mp
)
985 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
986 mp
->m_sb
.sb_inoalignmt
>=
987 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
988 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
990 mp
->m_inoalign_mask
= 0;
992 * If we are using stripe alignment, check whether
993 * the stripe unit is a multiple of the inode alignment
995 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
996 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
997 mp
->m_sinoalign
= mp
->m_dalign
;
1003 * Check that the data (and log if separate) are an ok size.
1006 xfs_check_sizes(xfs_mount_t
*mp
)
1011 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1012 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1013 cmn_err(CE_WARN
, "XFS: filesystem size mismatch detected");
1014 return XFS_ERROR(EFBIG
);
1016 bp
= xfs_buf_read_uncached(mp
, mp
->m_ddev_targp
,
1017 d
- XFS_FSS_TO_BB(mp
, 1),
1018 BBTOB(XFS_FSS_TO_BB(mp
, 1)), 0);
1020 cmn_err(CE_WARN
, "XFS: last sector read failed");
1025 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1026 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1027 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1028 cmn_err(CE_WARN
, "XFS: log size mismatch detected");
1029 return XFS_ERROR(EFBIG
);
1031 bp
= xfs_buf_read_uncached(mp
, mp
->m_logdev_targp
,
1032 d
- XFS_FSB_TO_BB(mp
, 1),
1033 XFS_FSB_TO_B(mp
, 1), 0);
1035 cmn_err(CE_WARN
, "XFS: log device read failed");
1044 * Clear the quotaflags in memory and in the superblock.
1047 xfs_mount_reset_sbqflags(
1048 struct xfs_mount
*mp
)
1051 struct xfs_trans
*tp
;
1056 * It is OK to look at sb_qflags here in mount path,
1057 * without m_sb_lock.
1059 if (mp
->m_sb
.sb_qflags
== 0)
1061 spin_lock(&mp
->m_sb_lock
);
1062 mp
->m_sb
.sb_qflags
= 0;
1063 spin_unlock(&mp
->m_sb_lock
);
1066 * If the fs is readonly, let the incore superblock run
1067 * with quotas off but don't flush the update out to disk
1069 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1073 xfs_fs_cmn_err(CE_NOTE
, mp
, "Writing superblock quota changes");
1076 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1077 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1078 XFS_DEFAULT_LOG_COUNT
);
1080 xfs_trans_cancel(tp
, 0);
1081 xfs_fs_cmn_err(CE_ALERT
, mp
,
1082 "xfs_mount_reset_sbqflags: Superblock update failed!");
1086 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1087 return xfs_trans_commit(tp
, 0);
1091 xfs_default_resblks(xfs_mount_t
*mp
)
1096 * We default to 5% or 8192 fsbs of space reserved, whichever is
1097 * smaller. This is intended to cover concurrent allocation
1098 * transactions when we initially hit enospc. These each require a 4
1099 * block reservation. Hence by default we cover roughly 2000 concurrent
1100 * allocation reservations.
1102 resblks
= mp
->m_sb
.sb_dblocks
;
1103 do_div(resblks
, 20);
1104 resblks
= min_t(__uint64_t
, resblks
, 8192);
1109 * This function does the following on an initial mount of a file system:
1110 * - reads the superblock from disk and init the mount struct
1111 * - if we're a 32-bit kernel, do a size check on the superblock
1112 * so we don't mount terabyte filesystems
1113 * - init mount struct realtime fields
1114 * - allocate inode hash table for fs
1115 * - init directory manager
1116 * - perform recovery and init the log manager
1122 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1125 uint quotamount
= 0;
1126 uint quotaflags
= 0;
1129 xfs_mount_common(mp
, sbp
);
1132 * Check for a mismatched features2 values. Older kernels
1133 * read & wrote into the wrong sb offset for sb_features2
1134 * on some platforms due to xfs_sb_t not being 64bit size aligned
1135 * when sb_features2 was added, which made older superblock
1136 * reading/writing routines swap it as a 64-bit value.
1138 * For backwards compatibility, we make both slots equal.
1140 * If we detect a mismatched field, we OR the set bits into the
1141 * existing features2 field in case it has already been modified; we
1142 * don't want to lose any features. We then update the bad location
1143 * with the ORed value so that older kernels will see any features2
1144 * flags, and mark the two fields as needing updates once the
1145 * transaction subsystem is online.
1147 if (xfs_sb_has_mismatched_features2(sbp
)) {
1149 "XFS: correcting sb_features alignment problem");
1150 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1151 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1152 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1155 * Re-check for ATTR2 in case it was found in bad_features2
1158 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1159 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1160 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1163 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1164 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1165 xfs_sb_version_removeattr2(&mp
->m_sb
);
1166 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1168 /* update sb_versionnum for the clearing of the morebits */
1169 if (!sbp
->sb_features2
)
1170 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1174 * Check if sb_agblocks is aligned at stripe boundary
1175 * If sb_agblocks is NOT aligned turn off m_dalign since
1176 * allocator alignment is within an ag, therefore ag has
1177 * to be aligned at stripe boundary.
1179 error
= xfs_update_alignment(mp
);
1183 xfs_alloc_compute_maxlevels(mp
);
1184 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1185 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1186 xfs_ialloc_compute_maxlevels(mp
);
1188 xfs_set_maxicount(mp
);
1190 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
1192 error
= xfs_uuid_mount(mp
);
1197 * Set the minimum read and write sizes
1199 xfs_set_rw_sizes(mp
);
1202 * Set the inode cluster size.
1203 * This may still be overridden by the file system
1204 * block size if it is larger than the chosen cluster size.
1206 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1209 * Set inode alignment fields
1211 xfs_set_inoalignment(mp
);
1214 * Check that the data (and log if separate) are an ok size.
1216 error
= xfs_check_sizes(mp
);
1218 goto out_remove_uuid
;
1221 * Initialize realtime fields in the mount structure
1223 error
= xfs_rtmount_init(mp
);
1225 cmn_err(CE_WARN
, "XFS: RT mount failed");
1226 goto out_remove_uuid
;
1230 * Copies the low order bits of the timestamp and the randomly
1231 * set "sequence" number out of a UUID.
1233 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1235 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1240 * Initialize the attribute manager's entries.
1242 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1245 * Initialize the precomputed transaction reservations values.
1250 * Allocate and initialize the per-ag data.
1252 spin_lock_init(&mp
->m_perag_lock
);
1253 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1254 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1256 cmn_err(CE_WARN
, "XFS: Failed per-ag init: %d", error
);
1257 goto out_remove_uuid
;
1260 if (!sbp
->sb_logblocks
) {
1261 cmn_err(CE_WARN
, "XFS: no log defined");
1262 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1263 error
= XFS_ERROR(EFSCORRUPTED
);
1264 goto out_free_perag
;
1268 * log's mount-time initialization. Perform 1st part recovery if needed
1270 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1271 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1272 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1274 cmn_err(CE_WARN
, "XFS: log mount failed");
1275 goto out_free_perag
;
1279 * Now the log is mounted, we know if it was an unclean shutdown or
1280 * not. If it was, with the first phase of recovery has completed, we
1281 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1282 * but they are recovered transactionally in the second recovery phase
1285 * Hence we can safely re-initialise incore superblock counters from
1286 * the per-ag data. These may not be correct if the filesystem was not
1287 * cleanly unmounted, so we need to wait for recovery to finish before
1290 * If the filesystem was cleanly unmounted, then we can trust the
1291 * values in the superblock to be correct and we don't need to do
1294 * If we are currently making the filesystem, the initialisation will
1295 * fail as the perag data is in an undefined state.
1297 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1298 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1299 !mp
->m_sb
.sb_inprogress
) {
1300 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1302 goto out_free_perag
;
1306 * Get and sanity-check the root inode.
1307 * Save the pointer to it in the mount structure.
1309 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1311 cmn_err(CE_WARN
, "XFS: failed to read root inode");
1312 goto out_log_dealloc
;
1315 ASSERT(rip
!= NULL
);
1317 if (unlikely((rip
->i_d
.di_mode
& S_IFMT
) != S_IFDIR
)) {
1318 cmn_err(CE_WARN
, "XFS: corrupted root inode");
1319 cmn_err(CE_WARN
, "Device %s - root %llu is not a directory",
1320 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
1321 (unsigned long long)rip
->i_ino
);
1322 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1323 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1325 error
= XFS_ERROR(EFSCORRUPTED
);
1328 mp
->m_rootip
= rip
; /* save it */
1330 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1333 * Initialize realtime inode pointers in the mount structure
1335 error
= xfs_rtmount_inodes(mp
);
1338 * Free up the root inode.
1340 cmn_err(CE_WARN
, "XFS: failed to read RT inodes");
1345 * If this is a read-only mount defer the superblock updates until
1346 * the next remount into writeable mode. Otherwise we would never
1347 * perform the update e.g. for the root filesystem.
1349 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1350 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1352 cmn_err(CE_WARN
, "XFS: failed to write sb changes");
1358 * Initialise the XFS quota management subsystem for this mount
1360 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1361 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1365 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1368 * If a file system had quotas running earlier, but decided to
1369 * mount without -o uquota/pquota/gquota options, revoke the
1370 * quotachecked license.
1372 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1374 "XFS: resetting qflags for filesystem %s",
1377 error
= xfs_mount_reset_sbqflags(mp
);
1384 * Finish recovering the file system. This part needed to be
1385 * delayed until after the root and real-time bitmap inodes
1386 * were consistently read in.
1388 error
= xfs_log_mount_finish(mp
);
1390 cmn_err(CE_WARN
, "XFS: log mount finish failed");
1395 * Complete the quota initialisation, post-log-replay component.
1398 ASSERT(mp
->m_qflags
== 0);
1399 mp
->m_qflags
= quotaflags
;
1401 xfs_qm_mount_quotas(mp
);
1405 * Now we are mounted, reserve a small amount of unused space for
1406 * privileged transactions. This is needed so that transaction
1407 * space required for critical operations can dip into this pool
1408 * when at ENOSPC. This is needed for operations like create with
1409 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1410 * are not allowed to use this reserved space.
1412 * This may drive us straight to ENOSPC on mount, but that implies
1413 * we were already there on the last unmount. Warn if this occurs.
1415 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1416 resblks
= xfs_default_resblks(mp
);
1417 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1419 cmn_err(CE_WARN
, "XFS: Unable to allocate reserve "
1420 "blocks. Continuing without a reserve pool.");
1426 xfs_rtunmount_inodes(mp
);
1430 xfs_log_unmount(mp
);
1434 xfs_uuid_unmount(mp
);
1440 * This flushes out the inodes,dquots and the superblock, unmounts the
1441 * log and makes sure that incore structures are freed.
1445 struct xfs_mount
*mp
)
1450 xfs_qm_unmount_quotas(mp
);
1451 xfs_rtunmount_inodes(mp
);
1452 IRELE(mp
->m_rootip
);
1455 * We can potentially deadlock here if we have an inode cluster
1456 * that has been freed has its buffer still pinned in memory because
1457 * the transaction is still sitting in a iclog. The stale inodes
1458 * on that buffer will have their flush locks held until the
1459 * transaction hits the disk and the callbacks run. the inode
1460 * flush takes the flush lock unconditionally and with nothing to
1461 * push out the iclog we will never get that unlocked. hence we
1462 * need to force the log first.
1464 xfs_log_force(mp
, XFS_LOG_SYNC
);
1467 * Do a delwri reclaim pass first so that as many dirty inodes are
1468 * queued up for IO as possible. Then flush the buffers before making
1469 * a synchronous path to catch all the remaining inodes are reclaimed.
1470 * This makes the reclaim process as quick as possible by avoiding
1471 * synchronous writeout and blocking on inodes already in the delwri
1472 * state as much as possible.
1474 xfs_reclaim_inodes(mp
, 0);
1475 XFS_bflush(mp
->m_ddev_targp
);
1476 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1481 * Flush out the log synchronously so that we know for sure
1482 * that nothing is pinned. This is important because bflush()
1483 * will skip pinned buffers.
1485 xfs_log_force(mp
, XFS_LOG_SYNC
);
1487 xfs_binval(mp
->m_ddev_targp
);
1488 if (mp
->m_rtdev_targp
) {
1489 xfs_binval(mp
->m_rtdev_targp
);
1493 * Unreserve any blocks we have so that when we unmount we don't account
1494 * the reserved free space as used. This is really only necessary for
1495 * lazy superblock counting because it trusts the incore superblock
1496 * counters to be absolutely correct on clean unmount.
1498 * We don't bother correcting this elsewhere for lazy superblock
1499 * counting because on mount of an unclean filesystem we reconstruct the
1500 * correct counter value and this is irrelevant.
1502 * For non-lazy counter filesystems, this doesn't matter at all because
1503 * we only every apply deltas to the superblock and hence the incore
1504 * value does not matter....
1507 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1509 cmn_err(CE_WARN
, "XFS: Unable to free reserved block pool. "
1510 "Freespace may not be correct on next mount.");
1512 error
= xfs_log_sbcount(mp
, 1);
1514 cmn_err(CE_WARN
, "XFS: Unable to update superblock counters. "
1515 "Freespace may not be correct on next mount.");
1516 xfs_unmountfs_writesb(mp
);
1517 xfs_unmountfs_wait(mp
); /* wait for async bufs */
1518 xfs_log_unmount_write(mp
);
1519 xfs_log_unmount(mp
);
1520 xfs_uuid_unmount(mp
);
1523 xfs_errortag_clearall(mp
, 0);
1529 xfs_unmountfs_wait(xfs_mount_t
*mp
)
1531 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1532 xfs_wait_buftarg(mp
->m_logdev_targp
);
1533 if (mp
->m_rtdev_targp
)
1534 xfs_wait_buftarg(mp
->m_rtdev_targp
);
1535 xfs_wait_buftarg(mp
->m_ddev_targp
);
1539 xfs_fs_writable(xfs_mount_t
*mp
)
1541 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1542 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1548 * Called either periodically to keep the on disk superblock values
1549 * roughly up to date or from unmount to make sure the values are
1550 * correct on a clean unmount.
1552 * Note this code can be called during the process of freezing, so
1553 * we may need to use the transaction allocator which does not not
1554 * block when the transaction subsystem is in its frozen state.
1564 if (!xfs_fs_writable(mp
))
1567 xfs_icsb_sync_counters(mp
, 0);
1570 * we don't need to do this if we are updating the superblock
1571 * counters on every modification.
1573 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1576 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1577 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1578 XFS_DEFAULT_LOG_COUNT
);
1580 xfs_trans_cancel(tp
, 0);
1584 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1586 xfs_trans_set_sync(tp
);
1587 error
= xfs_trans_commit(tp
, 0);
1592 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1598 * skip superblock write if fs is read-only, or
1599 * if we are doing a forced umount.
1601 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1602 XFS_FORCED_SHUTDOWN(mp
))) {
1604 sbp
= xfs_getsb(mp
, 0);
1606 XFS_BUF_UNDONE(sbp
);
1607 XFS_BUF_UNREAD(sbp
);
1608 XFS_BUF_UNDELAYWRITE(sbp
);
1610 XFS_BUF_UNASYNC(sbp
);
1611 ASSERT(XFS_BUF_TARGET(sbp
) == mp
->m_ddev_targp
);
1612 xfsbdstrat(mp
, sbp
);
1613 error
= xfs_iowait(sbp
);
1615 xfs_ioerror_alert("xfs_unmountfs_writesb",
1616 mp
, sbp
, XFS_BUF_ADDR(sbp
));
1623 * xfs_mod_sb() can be used to copy arbitrary changes to the
1624 * in-core superblock into the superblock buffer to be logged.
1625 * It does not provide the higher level of locking that is
1626 * needed to protect the in-core superblock from concurrent
1630 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1642 bp
= xfs_trans_getsb(tp
, mp
, 0);
1643 first
= sizeof(xfs_sb_t
);
1646 /* translate/copy */
1648 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1650 /* find modified range */
1651 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1652 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1653 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1655 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1656 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1657 first
= xfs_sb_info
[f
].offset
;
1659 xfs_trans_log_buf(tp
, bp
, first
, last
);
1664 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1665 * a delta to a specified field in the in-core superblock. Simply
1666 * switch on the field indicated and apply the delta to that field.
1667 * Fields are not allowed to dip below zero, so if the delta would
1668 * do this do not apply it and return EINVAL.
1670 * The m_sb_lock must be held when this routine is called.
1673 xfs_mod_incore_sb_unlocked(
1675 xfs_sb_field_t field
,
1679 int scounter
; /* short counter for 32 bit fields */
1680 long long lcounter
; /* long counter for 64 bit fields */
1681 long long res_used
, rem
;
1684 * With the in-core superblock spin lock held, switch
1685 * on the indicated field. Apply the delta to the
1686 * proper field. If the fields value would dip below
1687 * 0, then do not apply the delta and return EINVAL.
1690 case XFS_SBS_ICOUNT
:
1691 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1695 return XFS_ERROR(EINVAL
);
1697 mp
->m_sb
.sb_icount
= lcounter
;
1700 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1704 return XFS_ERROR(EINVAL
);
1706 mp
->m_sb
.sb_ifree
= lcounter
;
1708 case XFS_SBS_FDBLOCKS
:
1709 lcounter
= (long long)
1710 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1711 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1713 if (delta
> 0) { /* Putting blocks back */
1714 if (res_used
> delta
) {
1715 mp
->m_resblks_avail
+= delta
;
1717 rem
= delta
- res_used
;
1718 mp
->m_resblks_avail
= mp
->m_resblks
;
1721 } else { /* Taking blocks away */
1723 if (lcounter
>= 0) {
1724 mp
->m_sb
.sb_fdblocks
= lcounter
+
1725 XFS_ALLOC_SET_ASIDE(mp
);
1730 * We are out of blocks, use any available reserved
1731 * blocks if were allowed to.
1734 return XFS_ERROR(ENOSPC
);
1736 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1737 if (lcounter
>= 0) {
1738 mp
->m_resblks_avail
= lcounter
;
1741 printk_once(KERN_WARNING
1742 "Filesystem \"%s\": reserve blocks depleted! "
1743 "Consider increasing reserve pool size.",
1745 return XFS_ERROR(ENOSPC
);
1748 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1750 case XFS_SBS_FREXTENTS
:
1751 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1754 return XFS_ERROR(ENOSPC
);
1756 mp
->m_sb
.sb_frextents
= lcounter
;
1758 case XFS_SBS_DBLOCKS
:
1759 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1763 return XFS_ERROR(EINVAL
);
1765 mp
->m_sb
.sb_dblocks
= lcounter
;
1767 case XFS_SBS_AGCOUNT
:
1768 scounter
= mp
->m_sb
.sb_agcount
;
1772 return XFS_ERROR(EINVAL
);
1774 mp
->m_sb
.sb_agcount
= scounter
;
1776 case XFS_SBS_IMAX_PCT
:
1777 scounter
= mp
->m_sb
.sb_imax_pct
;
1781 return XFS_ERROR(EINVAL
);
1783 mp
->m_sb
.sb_imax_pct
= scounter
;
1785 case XFS_SBS_REXTSIZE
:
1786 scounter
= mp
->m_sb
.sb_rextsize
;
1790 return XFS_ERROR(EINVAL
);
1792 mp
->m_sb
.sb_rextsize
= scounter
;
1794 case XFS_SBS_RBMBLOCKS
:
1795 scounter
= mp
->m_sb
.sb_rbmblocks
;
1799 return XFS_ERROR(EINVAL
);
1801 mp
->m_sb
.sb_rbmblocks
= scounter
;
1803 case XFS_SBS_RBLOCKS
:
1804 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1808 return XFS_ERROR(EINVAL
);
1810 mp
->m_sb
.sb_rblocks
= lcounter
;
1812 case XFS_SBS_REXTENTS
:
1813 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1817 return XFS_ERROR(EINVAL
);
1819 mp
->m_sb
.sb_rextents
= lcounter
;
1821 case XFS_SBS_REXTSLOG
:
1822 scounter
= mp
->m_sb
.sb_rextslog
;
1826 return XFS_ERROR(EINVAL
);
1828 mp
->m_sb
.sb_rextslog
= scounter
;
1832 return XFS_ERROR(EINVAL
);
1837 * xfs_mod_incore_sb() is used to change a field in the in-core
1838 * superblock structure by the specified delta. This modification
1839 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1840 * routine to do the work.
1845 xfs_sb_field_t field
,
1851 /* check for per-cpu counters */
1853 #ifdef HAVE_PERCPU_SB
1854 case XFS_SBS_ICOUNT
:
1856 case XFS_SBS_FDBLOCKS
:
1857 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1858 status
= xfs_icsb_modify_counters(mp
, field
,
1865 spin_lock(&mp
->m_sb_lock
);
1866 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1867 spin_unlock(&mp
->m_sb_lock
);
1875 * xfs_mod_incore_sb_batch() is used to change more than one field
1876 * in the in-core superblock structure at a time. This modification
1877 * is protected by a lock internal to this module. The fields and
1878 * changes to those fields are specified in the array of xfs_mod_sb
1879 * structures passed in.
1881 * Either all of the specified deltas will be applied or none of
1882 * them will. If any modified field dips below 0, then all modifications
1883 * will be backed out and EINVAL will be returned.
1886 xfs_mod_incore_sb_batch(xfs_mount_t
*mp
, xfs_mod_sb_t
*msb
, uint nmsb
, int rsvd
)
1892 * Loop through the array of mod structures and apply each
1893 * individually. If any fail, then back out all those
1894 * which have already been applied. Do all of this within
1895 * the scope of the m_sb_lock so that all of the changes will
1898 spin_lock(&mp
->m_sb_lock
);
1900 for (msbp
= &msbp
[0]; msbp
< (msb
+ nmsb
); msbp
++) {
1902 * Apply the delta at index n. If it fails, break
1903 * from the loop so we'll fall into the undo loop
1906 switch (msbp
->msb_field
) {
1907 #ifdef HAVE_PERCPU_SB
1908 case XFS_SBS_ICOUNT
:
1910 case XFS_SBS_FDBLOCKS
:
1911 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1912 spin_unlock(&mp
->m_sb_lock
);
1913 status
= xfs_icsb_modify_counters(mp
,
1915 msbp
->msb_delta
, rsvd
);
1916 spin_lock(&mp
->m_sb_lock
);
1922 status
= xfs_mod_incore_sb_unlocked(mp
,
1924 msbp
->msb_delta
, rsvd
);
1934 * If we didn't complete the loop above, then back out
1935 * any changes made to the superblock. If you add code
1936 * between the loop above and here, make sure that you
1937 * preserve the value of status. Loop back until
1938 * we step below the beginning of the array. Make sure
1939 * we don't touch anything back there.
1943 while (msbp
>= msb
) {
1944 switch (msbp
->msb_field
) {
1945 #ifdef HAVE_PERCPU_SB
1946 case XFS_SBS_ICOUNT
:
1948 case XFS_SBS_FDBLOCKS
:
1949 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1950 spin_unlock(&mp
->m_sb_lock
);
1951 status
= xfs_icsb_modify_counters(mp
,
1955 spin_lock(&mp
->m_sb_lock
);
1961 status
= xfs_mod_incore_sb_unlocked(mp
,
1967 ASSERT(status
== 0);
1971 spin_unlock(&mp
->m_sb_lock
);
1976 * xfs_getsb() is called to obtain the buffer for the superblock.
1977 * The buffer is returned locked and read in from disk.
1978 * The buffer should be released with a call to xfs_brelse().
1980 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1981 * the superblock buffer if it can be locked without sleeping.
1982 * If it can't then we'll return NULL.
1991 ASSERT(mp
->m_sb_bp
!= NULL
);
1993 if (flags
& XBF_TRYLOCK
) {
1994 if (!XFS_BUF_CPSEMA(bp
)) {
1998 XFS_BUF_PSEMA(bp
, PRIBIO
);
2001 ASSERT(XFS_BUF_ISDONE(bp
));
2006 * Used to free the superblock along various error paths.
2010 struct xfs_mount
*mp
)
2012 struct xfs_buf
*bp
= mp
->m_sb_bp
;
2020 * Used to log changes to the superblock unit and width fields which could
2021 * be altered by the mount options, as well as any potential sb_features2
2022 * fixup. Only the first superblock is updated.
2032 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
2033 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
2034 XFS_SB_VERSIONNUM
));
2036 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
2037 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
2038 XFS_DEFAULT_LOG_COUNT
);
2040 xfs_trans_cancel(tp
, 0);
2043 xfs_mod_sb(tp
, fields
);
2044 error
= xfs_trans_commit(tp
, 0);
2049 * If the underlying (data/log/rt) device is readonly, there are some
2050 * operations that cannot proceed.
2053 xfs_dev_is_read_only(
2054 struct xfs_mount
*mp
,
2057 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
2058 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
2059 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
2061 "XFS: %s required on read-only device.", message
);
2063 "XFS: write access unavailable, cannot proceed.");
2069 #ifdef HAVE_PERCPU_SB
2071 * Per-cpu incore superblock counters
2073 * Simple concept, difficult implementation
2075 * Basically, replace the incore superblock counters with a distributed per cpu
2076 * counter for contended fields (e.g. free block count).
2078 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2079 * hence needs to be accurately read when we are running low on space. Hence
2080 * there is a method to enable and disable the per-cpu counters based on how
2081 * much "stuff" is available in them.
2083 * Basically, a counter is enabled if there is enough free resource to justify
2084 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2085 * ENOSPC), then we disable the counters to synchronise all callers and
2086 * re-distribute the available resources.
2088 * If, once we redistributed the available resources, we still get a failure,
2089 * we disable the per-cpu counter and go through the slow path.
2091 * The slow path is the current xfs_mod_incore_sb() function. This means that
2092 * when we disable a per-cpu counter, we need to drain its resources back to
2093 * the global superblock. We do this after disabling the counter to prevent
2094 * more threads from queueing up on the counter.
2096 * Essentially, this means that we still need a lock in the fast path to enable
2097 * synchronisation between the global counters and the per-cpu counters. This
2098 * is not a problem because the lock will be local to a CPU almost all the time
2099 * and have little contention except when we get to ENOSPC conditions.
2101 * Basically, this lock becomes a barrier that enables us to lock out the fast
2102 * path while we do things like enabling and disabling counters and
2103 * synchronising the counters.
2107 * 1. m_sb_lock before picking up per-cpu locks
2108 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2109 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2110 * 4. modifying per-cpu counters requires holding per-cpu lock
2111 * 5. modifying global counters requires holding m_sb_lock
2112 * 6. enabling or disabling a counter requires holding the m_sb_lock
2113 * and _none_ of the per-cpu locks.
2115 * Disabled counters are only ever re-enabled by a balance operation
2116 * that results in more free resources per CPU than a given threshold.
2117 * To ensure counters don't remain disabled, they are rebalanced when
2118 * the global resource goes above a higher threshold (i.e. some hysteresis
2119 * is present to prevent thrashing).
2122 #ifdef CONFIG_HOTPLUG_CPU
2124 * hot-plug CPU notifier support.
2126 * We need a notifier per filesystem as we need to be able to identify
2127 * the filesystem to balance the counters out. This is achieved by
2128 * having a notifier block embedded in the xfs_mount_t and doing pointer
2129 * magic to get the mount pointer from the notifier block address.
2132 xfs_icsb_cpu_notify(
2133 struct notifier_block
*nfb
,
2134 unsigned long action
,
2137 xfs_icsb_cnts_t
*cntp
;
2140 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2141 cntp
= (xfs_icsb_cnts_t
*)
2142 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2144 case CPU_UP_PREPARE
:
2145 case CPU_UP_PREPARE_FROZEN
:
2146 /* Easy Case - initialize the area and locks, and
2147 * then rebalance when online does everything else for us. */
2148 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2151 case CPU_ONLINE_FROZEN
:
2153 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2154 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2155 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2156 xfs_icsb_unlock(mp
);
2159 case CPU_DEAD_FROZEN
:
2160 /* Disable all the counters, then fold the dead cpu's
2161 * count into the total on the global superblock and
2162 * re-enable the counters. */
2164 spin_lock(&mp
->m_sb_lock
);
2165 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2166 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2167 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2169 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2170 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2171 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2173 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2175 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2176 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2177 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2178 spin_unlock(&mp
->m_sb_lock
);
2179 xfs_icsb_unlock(mp
);
2185 #endif /* CONFIG_HOTPLUG_CPU */
2188 xfs_icsb_init_counters(
2191 xfs_icsb_cnts_t
*cntp
;
2194 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2195 if (mp
->m_sb_cnts
== NULL
)
2198 #ifdef CONFIG_HOTPLUG_CPU
2199 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2200 mp
->m_icsb_notifier
.priority
= 0;
2201 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2202 #endif /* CONFIG_HOTPLUG_CPU */
2204 for_each_online_cpu(i
) {
2205 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2206 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2209 mutex_init(&mp
->m_icsb_mutex
);
2212 * start with all counters disabled so that the
2213 * initial balance kicks us off correctly
2215 mp
->m_icsb_counters
= -1;
2220 xfs_icsb_reinit_counters(
2225 * start with all counters disabled so that the
2226 * initial balance kicks us off correctly
2228 mp
->m_icsb_counters
= -1;
2229 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2230 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2231 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2232 xfs_icsb_unlock(mp
);
2236 xfs_icsb_destroy_counters(
2239 if (mp
->m_sb_cnts
) {
2240 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2241 free_percpu(mp
->m_sb_cnts
);
2243 mutex_destroy(&mp
->m_icsb_mutex
);
2248 xfs_icsb_cnts_t
*icsbp
)
2250 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2256 xfs_icsb_unlock_cntr(
2257 xfs_icsb_cnts_t
*icsbp
)
2259 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2264 xfs_icsb_lock_all_counters(
2267 xfs_icsb_cnts_t
*cntp
;
2270 for_each_online_cpu(i
) {
2271 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2272 xfs_icsb_lock_cntr(cntp
);
2277 xfs_icsb_unlock_all_counters(
2280 xfs_icsb_cnts_t
*cntp
;
2283 for_each_online_cpu(i
) {
2284 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2285 xfs_icsb_unlock_cntr(cntp
);
2292 xfs_icsb_cnts_t
*cnt
,
2295 xfs_icsb_cnts_t
*cntp
;
2298 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2300 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2301 xfs_icsb_lock_all_counters(mp
);
2303 for_each_online_cpu(i
) {
2304 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2305 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2306 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2307 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2310 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2311 xfs_icsb_unlock_all_counters(mp
);
2315 xfs_icsb_counter_disabled(
2317 xfs_sb_field_t field
)
2319 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2320 return test_bit(field
, &mp
->m_icsb_counters
);
2324 xfs_icsb_disable_counter(
2326 xfs_sb_field_t field
)
2328 xfs_icsb_cnts_t cnt
;
2330 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2333 * If we are already disabled, then there is nothing to do
2334 * here. We check before locking all the counters to avoid
2335 * the expensive lock operation when being called in the
2336 * slow path and the counter is already disabled. This is
2337 * safe because the only time we set or clear this state is under
2340 if (xfs_icsb_counter_disabled(mp
, field
))
2343 xfs_icsb_lock_all_counters(mp
);
2344 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2345 /* drain back to superblock */
2347 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2349 case XFS_SBS_ICOUNT
:
2350 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2353 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2355 case XFS_SBS_FDBLOCKS
:
2356 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2363 xfs_icsb_unlock_all_counters(mp
);
2367 xfs_icsb_enable_counter(
2369 xfs_sb_field_t field
,
2373 xfs_icsb_cnts_t
*cntp
;
2376 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2378 xfs_icsb_lock_all_counters(mp
);
2379 for_each_online_cpu(i
) {
2380 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2382 case XFS_SBS_ICOUNT
:
2383 cntp
->icsb_icount
= count
+ resid
;
2386 cntp
->icsb_ifree
= count
+ resid
;
2388 case XFS_SBS_FDBLOCKS
:
2389 cntp
->icsb_fdblocks
= count
+ resid
;
2397 clear_bit(field
, &mp
->m_icsb_counters
);
2398 xfs_icsb_unlock_all_counters(mp
);
2402 xfs_icsb_sync_counters_locked(
2406 xfs_icsb_cnts_t cnt
;
2408 xfs_icsb_count(mp
, &cnt
, flags
);
2410 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2411 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2412 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2413 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2414 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2415 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2419 * Accurate update of per-cpu counters to incore superblock
2422 xfs_icsb_sync_counters(
2426 spin_lock(&mp
->m_sb_lock
);
2427 xfs_icsb_sync_counters_locked(mp
, flags
);
2428 spin_unlock(&mp
->m_sb_lock
);
2432 * Balance and enable/disable counters as necessary.
2434 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2435 * chosen to be the same number as single on disk allocation chunk per CPU, and
2436 * free blocks is something far enough zero that we aren't going thrash when we
2437 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2438 * prevent looping endlessly when xfs_alloc_space asks for more than will
2439 * be distributed to a single CPU but each CPU has enough blocks to be
2442 * Note that we can be called when counters are already disabled.
2443 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2444 * prevent locking every per-cpu counter needlessly.
2447 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2448 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2449 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2451 xfs_icsb_balance_counter_locked(
2453 xfs_sb_field_t field
,
2456 uint64_t count
, resid
;
2457 int weight
= num_online_cpus();
2458 uint64_t min
= (uint64_t)min_per_cpu
;
2460 /* disable counter and sync counter */
2461 xfs_icsb_disable_counter(mp
, field
);
2463 /* update counters - first CPU gets residual*/
2465 case XFS_SBS_ICOUNT
:
2466 count
= mp
->m_sb
.sb_icount
;
2467 resid
= do_div(count
, weight
);
2468 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2472 count
= mp
->m_sb
.sb_ifree
;
2473 resid
= do_div(count
, weight
);
2474 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2477 case XFS_SBS_FDBLOCKS
:
2478 count
= mp
->m_sb
.sb_fdblocks
;
2479 resid
= do_div(count
, weight
);
2480 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2485 count
= resid
= 0; /* quiet, gcc */
2489 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2493 xfs_icsb_balance_counter(
2495 xfs_sb_field_t fields
,
2498 spin_lock(&mp
->m_sb_lock
);
2499 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2500 spin_unlock(&mp
->m_sb_lock
);
2504 xfs_icsb_modify_counters(
2506 xfs_sb_field_t field
,
2510 xfs_icsb_cnts_t
*icsbp
;
2511 long long lcounter
; /* long counter for 64 bit fields */
2517 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2520 * if the counter is disabled, go to slow path
2522 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2524 xfs_icsb_lock_cntr(icsbp
);
2525 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2526 xfs_icsb_unlock_cntr(icsbp
);
2531 case XFS_SBS_ICOUNT
:
2532 lcounter
= icsbp
->icsb_icount
;
2534 if (unlikely(lcounter
< 0))
2535 goto balance_counter
;
2536 icsbp
->icsb_icount
= lcounter
;
2540 lcounter
= icsbp
->icsb_ifree
;
2542 if (unlikely(lcounter
< 0))
2543 goto balance_counter
;
2544 icsbp
->icsb_ifree
= lcounter
;
2547 case XFS_SBS_FDBLOCKS
:
2548 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2550 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2552 if (unlikely(lcounter
< 0))
2553 goto balance_counter
;
2554 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2560 xfs_icsb_unlock_cntr(icsbp
);
2568 * serialise with a mutex so we don't burn lots of cpu on
2569 * the superblock lock. We still need to hold the superblock
2570 * lock, however, when we modify the global structures.
2575 * Now running atomically.
2577 * If the counter is enabled, someone has beaten us to rebalancing.
2578 * Drop the lock and try again in the fast path....
2580 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2581 xfs_icsb_unlock(mp
);
2586 * The counter is currently disabled. Because we are
2587 * running atomically here, we know a rebalance cannot
2588 * be in progress. Hence we can go straight to operating
2589 * on the global superblock. We do not call xfs_mod_incore_sb()
2590 * here even though we need to get the m_sb_lock. Doing so
2591 * will cause us to re-enter this function and deadlock.
2592 * Hence we get the m_sb_lock ourselves and then call
2593 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2594 * directly on the global counters.
2596 spin_lock(&mp
->m_sb_lock
);
2597 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2598 spin_unlock(&mp
->m_sb_lock
);
2601 * Now that we've modified the global superblock, we
2602 * may be able to re-enable the distributed counters
2603 * (e.g. lots of space just got freed). After that
2607 xfs_icsb_balance_counter(mp
, field
, 0);
2608 xfs_icsb_unlock(mp
);
2612 xfs_icsb_unlock_cntr(icsbp
);
2616 * We may have multiple threads here if multiple per-cpu
2617 * counters run dry at the same time. This will mean we can
2618 * do more balances than strictly necessary but it is not
2619 * the common slowpath case.
2624 * running atomically.
2626 * This will leave the counter in the correct state for future
2627 * accesses. After the rebalance, we simply try again and our retry
2628 * will either succeed through the fast path or slow path without
2629 * another balance operation being required.
2631 xfs_icsb_balance_counter(mp
, field
, delta
);
2632 xfs_icsb_unlock(mp
);