ext3: propagate umode_t
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blob0413f51a9f0f98ca2962f38f346b2cb4595eefc3
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include "internal.h"
38 LIST_HEAD(super_blocks);
39 DEFINE_SPINLOCK(sb_lock);
42 * One thing we have to be careful of with a per-sb shrinker is that we don't
43 * drop the last active reference to the superblock from within the shrinker.
44 * If that happens we could trigger unregistering the shrinker from within the
45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
46 * take a passive reference to the superblock to avoid this from occurring.
48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
50 struct super_block *sb;
51 int fs_objects = 0;
52 int total_objects;
54 sb = container_of(shrink, struct super_block, s_shrink);
57 * Deadlock avoidance. We may hold various FS locks, and we don't want
58 * to recurse into the FS that called us in clear_inode() and friends..
60 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
61 return -1;
63 if (!grab_super_passive(sb))
64 return !sc->nr_to_scan ? 0 : -1;
66 if (sb->s_op && sb->s_op->nr_cached_objects)
67 fs_objects = sb->s_op->nr_cached_objects(sb);
69 total_objects = sb->s_nr_dentry_unused +
70 sb->s_nr_inodes_unused + fs_objects + 1;
72 if (sc->nr_to_scan) {
73 int dentries;
74 int inodes;
76 /* proportion the scan between the caches */
77 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
78 total_objects;
79 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
80 total_objects;
81 if (fs_objects)
82 fs_objects = (sc->nr_to_scan * fs_objects) /
83 total_objects;
85 * prune the dcache first as the icache is pinned by it, then
86 * prune the icache, followed by the filesystem specific caches
88 prune_dcache_sb(sb, dentries);
89 prune_icache_sb(sb, inodes);
91 if (fs_objects && sb->s_op->free_cached_objects) {
92 sb->s_op->free_cached_objects(sb, fs_objects);
93 fs_objects = sb->s_op->nr_cached_objects(sb);
95 total_objects = sb->s_nr_dentry_unused +
96 sb->s_nr_inodes_unused + fs_objects;
99 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
100 drop_super(sb);
101 return total_objects;
105 * alloc_super - create new superblock
106 * @type: filesystem type superblock should belong to
108 * Allocates and initializes a new &struct super_block. alloc_super()
109 * returns a pointer new superblock or %NULL if allocation had failed.
111 static struct super_block *alloc_super(struct file_system_type *type)
113 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
114 static const struct super_operations default_op;
116 if (s) {
117 if (security_sb_alloc(s)) {
118 kfree(s);
119 s = NULL;
120 goto out;
122 #ifdef CONFIG_SMP
123 s->s_files = alloc_percpu(struct list_head);
124 if (!s->s_files) {
125 security_sb_free(s);
126 kfree(s);
127 s = NULL;
128 goto out;
129 } else {
130 int i;
132 for_each_possible_cpu(i)
133 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
135 #else
136 INIT_LIST_HEAD(&s->s_files);
137 #endif
138 s->s_bdi = &default_backing_dev_info;
139 INIT_HLIST_NODE(&s->s_instances);
140 INIT_HLIST_BL_HEAD(&s->s_anon);
141 INIT_LIST_HEAD(&s->s_inodes);
142 INIT_LIST_HEAD(&s->s_dentry_lru);
143 INIT_LIST_HEAD(&s->s_inode_lru);
144 spin_lock_init(&s->s_inode_lru_lock);
145 init_rwsem(&s->s_umount);
146 mutex_init(&s->s_lock);
147 lockdep_set_class(&s->s_umount, &type->s_umount_key);
149 * The locking rules for s_lock are up to the
150 * filesystem. For example ext3fs has different
151 * lock ordering than usbfs:
153 lockdep_set_class(&s->s_lock, &type->s_lock_key);
155 * sget() can have s_umount recursion.
157 * When it cannot find a suitable sb, it allocates a new
158 * one (this one), and tries again to find a suitable old
159 * one.
161 * In case that succeeds, it will acquire the s_umount
162 * lock of the old one. Since these are clearly distrinct
163 * locks, and this object isn't exposed yet, there's no
164 * risk of deadlocks.
166 * Annotate this by putting this lock in a different
167 * subclass.
169 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
170 s->s_count = 1;
171 atomic_set(&s->s_active, 1);
172 mutex_init(&s->s_vfs_rename_mutex);
173 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
174 mutex_init(&s->s_dquot.dqio_mutex);
175 mutex_init(&s->s_dquot.dqonoff_mutex);
176 init_rwsem(&s->s_dquot.dqptr_sem);
177 init_waitqueue_head(&s->s_wait_unfrozen);
178 s->s_maxbytes = MAX_NON_LFS;
179 s->s_op = &default_op;
180 s->s_time_gran = 1000000000;
181 s->cleancache_poolid = -1;
183 s->s_shrink.seeks = DEFAULT_SEEKS;
184 s->s_shrink.shrink = prune_super;
185 s->s_shrink.batch = 1024;
187 out:
188 return s;
192 * destroy_super - frees a superblock
193 * @s: superblock to free
195 * Frees a superblock.
197 static inline void destroy_super(struct super_block *s)
199 #ifdef CONFIG_SMP
200 free_percpu(s->s_files);
201 #endif
202 security_sb_free(s);
203 kfree(s->s_subtype);
204 kfree(s->s_options);
205 kfree(s);
208 /* Superblock refcounting */
211 * Drop a superblock's refcount. The caller must hold sb_lock.
213 static void __put_super(struct super_block *sb)
215 if (!--sb->s_count) {
216 list_del_init(&sb->s_list);
217 destroy_super(sb);
222 * put_super - drop a temporary reference to superblock
223 * @sb: superblock in question
225 * Drops a temporary reference, frees superblock if there's no
226 * references left.
228 static void put_super(struct super_block *sb)
230 spin_lock(&sb_lock);
231 __put_super(sb);
232 spin_unlock(&sb_lock);
237 * deactivate_locked_super - drop an active reference to superblock
238 * @s: superblock to deactivate
240 * Drops an active reference to superblock, converting it into a temprory
241 * one if there is no other active references left. In that case we
242 * tell fs driver to shut it down and drop the temporary reference we
243 * had just acquired.
245 * Caller holds exclusive lock on superblock; that lock is released.
247 void deactivate_locked_super(struct super_block *s)
249 struct file_system_type *fs = s->s_type;
250 if (atomic_dec_and_test(&s->s_active)) {
251 cleancache_flush_fs(s);
252 fs->kill_sb(s);
254 /* caches are now gone, we can safely kill the shrinker now */
255 unregister_shrinker(&s->s_shrink);
258 * We need to call rcu_barrier so all the delayed rcu free
259 * inodes are flushed before we release the fs module.
261 rcu_barrier();
262 put_filesystem(fs);
263 put_super(s);
264 } else {
265 up_write(&s->s_umount);
269 EXPORT_SYMBOL(deactivate_locked_super);
272 * deactivate_super - drop an active reference to superblock
273 * @s: superblock to deactivate
275 * Variant of deactivate_locked_super(), except that superblock is *not*
276 * locked by caller. If we are going to drop the final active reference,
277 * lock will be acquired prior to that.
279 void deactivate_super(struct super_block *s)
281 if (!atomic_add_unless(&s->s_active, -1, 1)) {
282 down_write(&s->s_umount);
283 deactivate_locked_super(s);
287 EXPORT_SYMBOL(deactivate_super);
290 * grab_super - acquire an active reference
291 * @s: reference we are trying to make active
293 * Tries to acquire an active reference. grab_super() is used when we
294 * had just found a superblock in super_blocks or fs_type->fs_supers
295 * and want to turn it into a full-blown active reference. grab_super()
296 * is called with sb_lock held and drops it. Returns 1 in case of
297 * success, 0 if we had failed (superblock contents was already dead or
298 * dying when grab_super() had been called).
300 static int grab_super(struct super_block *s) __releases(sb_lock)
302 if (atomic_inc_not_zero(&s->s_active)) {
303 spin_unlock(&sb_lock);
304 return 1;
306 /* it's going away */
307 s->s_count++;
308 spin_unlock(&sb_lock);
309 /* wait for it to die */
310 down_write(&s->s_umount);
311 up_write(&s->s_umount);
312 put_super(s);
313 return 0;
317 * grab_super_passive - acquire a passive reference
318 * @s: reference we are trying to grab
320 * Tries to acquire a passive reference. This is used in places where we
321 * cannot take an active reference but we need to ensure that the
322 * superblock does not go away while we are working on it. It returns
323 * false if a reference was not gained, and returns true with the s_umount
324 * lock held in read mode if a reference is gained. On successful return,
325 * the caller must drop the s_umount lock and the passive reference when
326 * done.
328 bool grab_super_passive(struct super_block *sb)
330 spin_lock(&sb_lock);
331 if (hlist_unhashed(&sb->s_instances)) {
332 spin_unlock(&sb_lock);
333 return false;
336 sb->s_count++;
337 spin_unlock(&sb_lock);
339 if (down_read_trylock(&sb->s_umount)) {
340 if (sb->s_root && (sb->s_flags & MS_BORN))
341 return true;
342 up_read(&sb->s_umount);
345 put_super(sb);
346 return false;
350 * Superblock locking. We really ought to get rid of these two.
352 void lock_super(struct super_block * sb)
354 mutex_lock(&sb->s_lock);
357 void unlock_super(struct super_block * sb)
359 mutex_unlock(&sb->s_lock);
362 EXPORT_SYMBOL(lock_super);
363 EXPORT_SYMBOL(unlock_super);
366 * generic_shutdown_super - common helper for ->kill_sb()
367 * @sb: superblock to kill
369 * generic_shutdown_super() does all fs-independent work on superblock
370 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
371 * that need destruction out of superblock, call generic_shutdown_super()
372 * and release aforementioned objects. Note: dentries and inodes _are_
373 * taken care of and do not need specific handling.
375 * Upon calling this function, the filesystem may no longer alter or
376 * rearrange the set of dentries belonging to this super_block, nor may it
377 * change the attachments of dentries to inodes.
379 void generic_shutdown_super(struct super_block *sb)
381 const struct super_operations *sop = sb->s_op;
383 if (sb->s_root) {
384 shrink_dcache_for_umount(sb);
385 sync_filesystem(sb);
386 sb->s_flags &= ~MS_ACTIVE;
388 fsnotify_unmount_inodes(&sb->s_inodes);
390 evict_inodes(sb);
392 if (sop->put_super)
393 sop->put_super(sb);
395 if (!list_empty(&sb->s_inodes)) {
396 printk("VFS: Busy inodes after unmount of %s. "
397 "Self-destruct in 5 seconds. Have a nice day...\n",
398 sb->s_id);
401 spin_lock(&sb_lock);
402 /* should be initialized for __put_super_and_need_restart() */
403 hlist_del_init(&sb->s_instances);
404 spin_unlock(&sb_lock);
405 up_write(&sb->s_umount);
408 EXPORT_SYMBOL(generic_shutdown_super);
411 * sget - find or create a superblock
412 * @type: filesystem type superblock should belong to
413 * @test: comparison callback
414 * @set: setup callback
415 * @data: argument to each of them
417 struct super_block *sget(struct file_system_type *type,
418 int (*test)(struct super_block *,void *),
419 int (*set)(struct super_block *,void *),
420 void *data)
422 struct super_block *s = NULL;
423 struct hlist_node *node;
424 struct super_block *old;
425 int err;
427 retry:
428 spin_lock(&sb_lock);
429 if (test) {
430 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
431 if (!test(old, data))
432 continue;
433 if (!grab_super(old))
434 goto retry;
435 if (s) {
436 up_write(&s->s_umount);
437 destroy_super(s);
438 s = NULL;
440 down_write(&old->s_umount);
441 if (unlikely(!(old->s_flags & MS_BORN))) {
442 deactivate_locked_super(old);
443 goto retry;
445 return old;
448 if (!s) {
449 spin_unlock(&sb_lock);
450 s = alloc_super(type);
451 if (!s)
452 return ERR_PTR(-ENOMEM);
453 goto retry;
456 err = set(s, data);
457 if (err) {
458 spin_unlock(&sb_lock);
459 up_write(&s->s_umount);
460 destroy_super(s);
461 return ERR_PTR(err);
463 s->s_type = type;
464 strlcpy(s->s_id, type->name, sizeof(s->s_id));
465 list_add_tail(&s->s_list, &super_blocks);
466 hlist_add_head(&s->s_instances, &type->fs_supers);
467 spin_unlock(&sb_lock);
468 get_filesystem(type);
469 register_shrinker(&s->s_shrink);
470 return s;
473 EXPORT_SYMBOL(sget);
475 void drop_super(struct super_block *sb)
477 up_read(&sb->s_umount);
478 put_super(sb);
481 EXPORT_SYMBOL(drop_super);
484 * sync_supers - helper for periodic superblock writeback
486 * Call the write_super method if present on all dirty superblocks in
487 * the system. This is for the periodic writeback used by most older
488 * filesystems. For data integrity superblock writeback use
489 * sync_filesystems() instead.
491 * Note: check the dirty flag before waiting, so we don't
492 * hold up the sync while mounting a device. (The newly
493 * mounted device won't need syncing.)
495 void sync_supers(void)
497 struct super_block *sb, *p = NULL;
499 spin_lock(&sb_lock);
500 list_for_each_entry(sb, &super_blocks, s_list) {
501 if (hlist_unhashed(&sb->s_instances))
502 continue;
503 if (sb->s_op->write_super && sb->s_dirt) {
504 sb->s_count++;
505 spin_unlock(&sb_lock);
507 down_read(&sb->s_umount);
508 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
509 sb->s_op->write_super(sb);
510 up_read(&sb->s_umount);
512 spin_lock(&sb_lock);
513 if (p)
514 __put_super(p);
515 p = sb;
518 if (p)
519 __put_super(p);
520 spin_unlock(&sb_lock);
524 * iterate_supers - call function for all active superblocks
525 * @f: function to call
526 * @arg: argument to pass to it
528 * Scans the superblock list and calls given function, passing it
529 * locked superblock and given argument.
531 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
533 struct super_block *sb, *p = NULL;
535 spin_lock(&sb_lock);
536 list_for_each_entry(sb, &super_blocks, s_list) {
537 if (hlist_unhashed(&sb->s_instances))
538 continue;
539 sb->s_count++;
540 spin_unlock(&sb_lock);
542 down_read(&sb->s_umount);
543 if (sb->s_root && (sb->s_flags & MS_BORN))
544 f(sb, arg);
545 up_read(&sb->s_umount);
547 spin_lock(&sb_lock);
548 if (p)
549 __put_super(p);
550 p = sb;
552 if (p)
553 __put_super(p);
554 spin_unlock(&sb_lock);
558 * iterate_supers_type - call function for superblocks of given type
559 * @type: fs type
560 * @f: function to call
561 * @arg: argument to pass to it
563 * Scans the superblock list and calls given function, passing it
564 * locked superblock and given argument.
566 void iterate_supers_type(struct file_system_type *type,
567 void (*f)(struct super_block *, void *), void *arg)
569 struct super_block *sb, *p = NULL;
570 struct hlist_node *node;
572 spin_lock(&sb_lock);
573 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
574 sb->s_count++;
575 spin_unlock(&sb_lock);
577 down_read(&sb->s_umount);
578 if (sb->s_root && (sb->s_flags & MS_BORN))
579 f(sb, arg);
580 up_read(&sb->s_umount);
582 spin_lock(&sb_lock);
583 if (p)
584 __put_super(p);
585 p = sb;
587 if (p)
588 __put_super(p);
589 spin_unlock(&sb_lock);
592 EXPORT_SYMBOL(iterate_supers_type);
595 * get_super - get the superblock of a device
596 * @bdev: device to get the superblock for
598 * Scans the superblock list and finds the superblock of the file system
599 * mounted on the device given. %NULL is returned if no match is found.
602 struct super_block *get_super(struct block_device *bdev)
604 struct super_block *sb;
606 if (!bdev)
607 return NULL;
609 spin_lock(&sb_lock);
610 rescan:
611 list_for_each_entry(sb, &super_blocks, s_list) {
612 if (hlist_unhashed(&sb->s_instances))
613 continue;
614 if (sb->s_bdev == bdev) {
615 sb->s_count++;
616 spin_unlock(&sb_lock);
617 down_read(&sb->s_umount);
618 /* still alive? */
619 if (sb->s_root && (sb->s_flags & MS_BORN))
620 return sb;
621 up_read(&sb->s_umount);
622 /* nope, got unmounted */
623 spin_lock(&sb_lock);
624 __put_super(sb);
625 goto rescan;
628 spin_unlock(&sb_lock);
629 return NULL;
632 EXPORT_SYMBOL(get_super);
635 * get_active_super - get an active reference to the superblock of a device
636 * @bdev: device to get the superblock for
638 * Scans the superblock list and finds the superblock of the file system
639 * mounted on the device given. Returns the superblock with an active
640 * reference or %NULL if none was found.
642 struct super_block *get_active_super(struct block_device *bdev)
644 struct super_block *sb;
646 if (!bdev)
647 return NULL;
649 restart:
650 spin_lock(&sb_lock);
651 list_for_each_entry(sb, &super_blocks, s_list) {
652 if (hlist_unhashed(&sb->s_instances))
653 continue;
654 if (sb->s_bdev == bdev) {
655 if (grab_super(sb)) /* drops sb_lock */
656 return sb;
657 else
658 goto restart;
661 spin_unlock(&sb_lock);
662 return NULL;
665 struct super_block *user_get_super(dev_t dev)
667 struct super_block *sb;
669 spin_lock(&sb_lock);
670 rescan:
671 list_for_each_entry(sb, &super_blocks, s_list) {
672 if (hlist_unhashed(&sb->s_instances))
673 continue;
674 if (sb->s_dev == dev) {
675 sb->s_count++;
676 spin_unlock(&sb_lock);
677 down_read(&sb->s_umount);
678 /* still alive? */
679 if (sb->s_root && (sb->s_flags & MS_BORN))
680 return sb;
681 up_read(&sb->s_umount);
682 /* nope, got unmounted */
683 spin_lock(&sb_lock);
684 __put_super(sb);
685 goto rescan;
688 spin_unlock(&sb_lock);
689 return NULL;
693 * do_remount_sb - asks filesystem to change mount options.
694 * @sb: superblock in question
695 * @flags: numeric part of options
696 * @data: the rest of options
697 * @force: whether or not to force the change
699 * Alters the mount options of a mounted file system.
701 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
703 int retval;
704 int remount_ro;
706 if (sb->s_frozen != SB_UNFROZEN)
707 return -EBUSY;
709 #ifdef CONFIG_BLOCK
710 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
711 return -EACCES;
712 #endif
714 if (flags & MS_RDONLY)
715 acct_auto_close(sb);
716 shrink_dcache_sb(sb);
717 sync_filesystem(sb);
719 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
721 /* If we are remounting RDONLY and current sb is read/write,
722 make sure there are no rw files opened */
723 if (remount_ro) {
724 if (force)
725 mark_files_ro(sb);
726 else if (!fs_may_remount_ro(sb))
727 return -EBUSY;
730 if (sb->s_op->remount_fs) {
731 retval = sb->s_op->remount_fs(sb, &flags, data);
732 if (retval) {
733 if (!force)
734 return retval;
735 /* If forced remount, go ahead despite any errors */
736 WARN(1, "forced remount of a %s fs returned %i\n",
737 sb->s_type->name, retval);
740 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
743 * Some filesystems modify their metadata via some other path than the
744 * bdev buffer cache (eg. use a private mapping, or directories in
745 * pagecache, etc). Also file data modifications go via their own
746 * mappings. So If we try to mount readonly then copy the filesystem
747 * from bdev, we could get stale data, so invalidate it to give a best
748 * effort at coherency.
750 if (remount_ro && sb->s_bdev)
751 invalidate_bdev(sb->s_bdev);
752 return 0;
755 static void do_emergency_remount(struct work_struct *work)
757 struct super_block *sb, *p = NULL;
759 spin_lock(&sb_lock);
760 list_for_each_entry(sb, &super_blocks, s_list) {
761 if (hlist_unhashed(&sb->s_instances))
762 continue;
763 sb->s_count++;
764 spin_unlock(&sb_lock);
765 down_write(&sb->s_umount);
766 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
767 !(sb->s_flags & MS_RDONLY)) {
769 * What lock protects sb->s_flags??
771 do_remount_sb(sb, MS_RDONLY, NULL, 1);
773 up_write(&sb->s_umount);
774 spin_lock(&sb_lock);
775 if (p)
776 __put_super(p);
777 p = sb;
779 if (p)
780 __put_super(p);
781 spin_unlock(&sb_lock);
782 kfree(work);
783 printk("Emergency Remount complete\n");
786 void emergency_remount(void)
788 struct work_struct *work;
790 work = kmalloc(sizeof(*work), GFP_ATOMIC);
791 if (work) {
792 INIT_WORK(work, do_emergency_remount);
793 schedule_work(work);
798 * Unnamed block devices are dummy devices used by virtual
799 * filesystems which don't use real block-devices. -- jrs
802 static DEFINE_IDA(unnamed_dev_ida);
803 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
804 static int unnamed_dev_start = 0; /* don't bother trying below it */
806 int get_anon_bdev(dev_t *p)
808 int dev;
809 int error;
811 retry:
812 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
813 return -ENOMEM;
814 spin_lock(&unnamed_dev_lock);
815 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
816 if (!error)
817 unnamed_dev_start = dev + 1;
818 spin_unlock(&unnamed_dev_lock);
819 if (error == -EAGAIN)
820 /* We raced and lost with another CPU. */
821 goto retry;
822 else if (error)
823 return -EAGAIN;
825 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
826 spin_lock(&unnamed_dev_lock);
827 ida_remove(&unnamed_dev_ida, dev);
828 if (unnamed_dev_start > dev)
829 unnamed_dev_start = dev;
830 spin_unlock(&unnamed_dev_lock);
831 return -EMFILE;
833 *p = MKDEV(0, dev & MINORMASK);
834 return 0;
836 EXPORT_SYMBOL(get_anon_bdev);
838 void free_anon_bdev(dev_t dev)
840 int slot = MINOR(dev);
841 spin_lock(&unnamed_dev_lock);
842 ida_remove(&unnamed_dev_ida, slot);
843 if (slot < unnamed_dev_start)
844 unnamed_dev_start = slot;
845 spin_unlock(&unnamed_dev_lock);
847 EXPORT_SYMBOL(free_anon_bdev);
849 int set_anon_super(struct super_block *s, void *data)
851 int error = get_anon_bdev(&s->s_dev);
852 if (!error)
853 s->s_bdi = &noop_backing_dev_info;
854 return error;
857 EXPORT_SYMBOL(set_anon_super);
859 void kill_anon_super(struct super_block *sb)
861 dev_t dev = sb->s_dev;
862 generic_shutdown_super(sb);
863 free_anon_bdev(dev);
866 EXPORT_SYMBOL(kill_anon_super);
868 void kill_litter_super(struct super_block *sb)
870 if (sb->s_root)
871 d_genocide(sb->s_root);
872 kill_anon_super(sb);
875 EXPORT_SYMBOL(kill_litter_super);
877 static int ns_test_super(struct super_block *sb, void *data)
879 return sb->s_fs_info == data;
882 static int ns_set_super(struct super_block *sb, void *data)
884 sb->s_fs_info = data;
885 return set_anon_super(sb, NULL);
888 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
889 void *data, int (*fill_super)(struct super_block *, void *, int))
891 struct super_block *sb;
893 sb = sget(fs_type, ns_test_super, ns_set_super, data);
894 if (IS_ERR(sb))
895 return ERR_CAST(sb);
897 if (!sb->s_root) {
898 int err;
899 sb->s_flags = flags;
900 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
901 if (err) {
902 deactivate_locked_super(sb);
903 return ERR_PTR(err);
906 sb->s_flags |= MS_ACTIVE;
909 return dget(sb->s_root);
912 EXPORT_SYMBOL(mount_ns);
914 #ifdef CONFIG_BLOCK
915 static int set_bdev_super(struct super_block *s, void *data)
917 s->s_bdev = data;
918 s->s_dev = s->s_bdev->bd_dev;
921 * We set the bdi here to the queue backing, file systems can
922 * overwrite this in ->fill_super()
924 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
925 return 0;
928 static int test_bdev_super(struct super_block *s, void *data)
930 return (void *)s->s_bdev == data;
933 struct dentry *mount_bdev(struct file_system_type *fs_type,
934 int flags, const char *dev_name, void *data,
935 int (*fill_super)(struct super_block *, void *, int))
937 struct block_device *bdev;
938 struct super_block *s;
939 fmode_t mode = FMODE_READ | FMODE_EXCL;
940 int error = 0;
942 if (!(flags & MS_RDONLY))
943 mode |= FMODE_WRITE;
945 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
946 if (IS_ERR(bdev))
947 return ERR_CAST(bdev);
950 * once the super is inserted into the list by sget, s_umount
951 * will protect the lockfs code from trying to start a snapshot
952 * while we are mounting
954 mutex_lock(&bdev->bd_fsfreeze_mutex);
955 if (bdev->bd_fsfreeze_count > 0) {
956 mutex_unlock(&bdev->bd_fsfreeze_mutex);
957 error = -EBUSY;
958 goto error_bdev;
960 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
961 mutex_unlock(&bdev->bd_fsfreeze_mutex);
962 if (IS_ERR(s))
963 goto error_s;
965 if (s->s_root) {
966 if ((flags ^ s->s_flags) & MS_RDONLY) {
967 deactivate_locked_super(s);
968 error = -EBUSY;
969 goto error_bdev;
973 * s_umount nests inside bd_mutex during
974 * __invalidate_device(). blkdev_put() acquires
975 * bd_mutex and can't be called under s_umount. Drop
976 * s_umount temporarily. This is safe as we're
977 * holding an active reference.
979 up_write(&s->s_umount);
980 blkdev_put(bdev, mode);
981 down_write(&s->s_umount);
982 } else {
983 char b[BDEVNAME_SIZE];
985 s->s_flags = flags | MS_NOSEC;
986 s->s_mode = mode;
987 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
988 sb_set_blocksize(s, block_size(bdev));
989 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
990 if (error) {
991 deactivate_locked_super(s);
992 goto error;
995 s->s_flags |= MS_ACTIVE;
996 bdev->bd_super = s;
999 return dget(s->s_root);
1001 error_s:
1002 error = PTR_ERR(s);
1003 error_bdev:
1004 blkdev_put(bdev, mode);
1005 error:
1006 return ERR_PTR(error);
1008 EXPORT_SYMBOL(mount_bdev);
1010 void kill_block_super(struct super_block *sb)
1012 struct block_device *bdev = sb->s_bdev;
1013 fmode_t mode = sb->s_mode;
1015 bdev->bd_super = NULL;
1016 generic_shutdown_super(sb);
1017 sync_blockdev(bdev);
1018 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1019 blkdev_put(bdev, mode | FMODE_EXCL);
1022 EXPORT_SYMBOL(kill_block_super);
1023 #endif
1025 struct dentry *mount_nodev(struct file_system_type *fs_type,
1026 int flags, void *data,
1027 int (*fill_super)(struct super_block *, void *, int))
1029 int error;
1030 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1032 if (IS_ERR(s))
1033 return ERR_CAST(s);
1035 s->s_flags = flags;
1037 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1038 if (error) {
1039 deactivate_locked_super(s);
1040 return ERR_PTR(error);
1042 s->s_flags |= MS_ACTIVE;
1043 return dget(s->s_root);
1045 EXPORT_SYMBOL(mount_nodev);
1047 static int compare_single(struct super_block *s, void *p)
1049 return 1;
1052 struct dentry *mount_single(struct file_system_type *fs_type,
1053 int flags, void *data,
1054 int (*fill_super)(struct super_block *, void *, int))
1056 struct super_block *s;
1057 int error;
1059 s = sget(fs_type, compare_single, set_anon_super, NULL);
1060 if (IS_ERR(s))
1061 return ERR_CAST(s);
1062 if (!s->s_root) {
1063 s->s_flags = flags;
1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1065 if (error) {
1066 deactivate_locked_super(s);
1067 return ERR_PTR(error);
1069 s->s_flags |= MS_ACTIVE;
1070 } else {
1071 do_remount_sb(s, flags, data, 0);
1073 return dget(s->s_root);
1075 EXPORT_SYMBOL(mount_single);
1077 struct dentry *
1078 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1080 struct dentry *root;
1081 struct super_block *sb;
1082 char *secdata = NULL;
1083 int error = -ENOMEM;
1085 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1086 secdata = alloc_secdata();
1087 if (!secdata)
1088 goto out;
1090 error = security_sb_copy_data(data, secdata);
1091 if (error)
1092 goto out_free_secdata;
1095 root = type->mount(type, flags, name, data);
1096 if (IS_ERR(root)) {
1097 error = PTR_ERR(root);
1098 goto out_free_secdata;
1100 sb = root->d_sb;
1101 BUG_ON(!sb);
1102 WARN_ON(!sb->s_bdi);
1103 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1104 sb->s_flags |= MS_BORN;
1106 error = security_sb_kern_mount(sb, flags, secdata);
1107 if (error)
1108 goto out_sb;
1111 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1112 * but s_maxbytes was an unsigned long long for many releases. Throw
1113 * this warning for a little while to try and catch filesystems that
1114 * violate this rule.
1116 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1117 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1119 up_write(&sb->s_umount);
1120 free_secdata(secdata);
1121 return root;
1122 out_sb:
1123 dput(root);
1124 deactivate_locked_super(sb);
1125 out_free_secdata:
1126 free_secdata(secdata);
1127 out:
1128 return ERR_PTR(error);
1132 * freeze_super - lock the filesystem and force it into a consistent state
1133 * @sb: the super to lock
1135 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1136 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1137 * -EBUSY.
1139 int freeze_super(struct super_block *sb)
1141 int ret;
1143 atomic_inc(&sb->s_active);
1144 down_write(&sb->s_umount);
1145 if (sb->s_frozen) {
1146 deactivate_locked_super(sb);
1147 return -EBUSY;
1150 if (!(sb->s_flags & MS_BORN)) {
1151 up_write(&sb->s_umount);
1152 return 0; /* sic - it's "nothing to do" */
1155 if (sb->s_flags & MS_RDONLY) {
1156 sb->s_frozen = SB_FREEZE_TRANS;
1157 smp_wmb();
1158 up_write(&sb->s_umount);
1159 return 0;
1162 sb->s_frozen = SB_FREEZE_WRITE;
1163 smp_wmb();
1165 sync_filesystem(sb);
1167 sb->s_frozen = SB_FREEZE_TRANS;
1168 smp_wmb();
1170 sync_blockdev(sb->s_bdev);
1171 if (sb->s_op->freeze_fs) {
1172 ret = sb->s_op->freeze_fs(sb);
1173 if (ret) {
1174 printk(KERN_ERR
1175 "VFS:Filesystem freeze failed\n");
1176 sb->s_frozen = SB_UNFROZEN;
1177 deactivate_locked_super(sb);
1178 return ret;
1181 up_write(&sb->s_umount);
1182 return 0;
1184 EXPORT_SYMBOL(freeze_super);
1187 * thaw_super -- unlock filesystem
1188 * @sb: the super to thaw
1190 * Unlocks the filesystem and marks it writeable again after freeze_super().
1192 int thaw_super(struct super_block *sb)
1194 int error;
1196 down_write(&sb->s_umount);
1197 if (sb->s_frozen == SB_UNFROZEN) {
1198 up_write(&sb->s_umount);
1199 return -EINVAL;
1202 if (sb->s_flags & MS_RDONLY)
1203 goto out;
1205 if (sb->s_op->unfreeze_fs) {
1206 error = sb->s_op->unfreeze_fs(sb);
1207 if (error) {
1208 printk(KERN_ERR
1209 "VFS:Filesystem thaw failed\n");
1210 sb->s_frozen = SB_FREEZE_TRANS;
1211 up_write(&sb->s_umount);
1212 return error;
1216 out:
1217 sb->s_frozen = SB_UNFROZEN;
1218 smp_wmb();
1219 wake_up(&sb->s_wait_unfrozen);
1220 deactivate_locked_super(sb);
1222 return 0;
1224 EXPORT_SYMBOL(thaw_super);