2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
19 #include <linux/types.h>
20 #include <linux/string.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
34 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
36 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
51 #if defined(MMU_DEBUG) || defined(AUDIT)
57 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
58 __FILE__, __LINE__, #x); \
61 #define PT64_PT_BITS 9
62 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
63 #define PT32_PT_BITS 10
64 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
66 #define PT_WRITABLE_SHIFT 1
68 #define PT_PRESENT_MASK (1ULL << 0)
69 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
70 #define PT_USER_MASK (1ULL << 2)
71 #define PT_PWT_MASK (1ULL << 3)
72 #define PT_PCD_MASK (1ULL << 4)
73 #define PT_ACCESSED_MASK (1ULL << 5)
74 #define PT_DIRTY_MASK (1ULL << 6)
75 #define PT_PAGE_SIZE_MASK (1ULL << 7)
76 #define PT_PAT_MASK (1ULL << 7)
77 #define PT_GLOBAL_MASK (1ULL << 8)
78 #define PT64_NX_MASK (1ULL << 63)
80 #define PT_PAT_SHIFT 7
81 #define PT_DIR_PAT_SHIFT 12
82 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
84 #define PT32_DIR_PSE36_SIZE 4
85 #define PT32_DIR_PSE36_SHIFT 13
86 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
89 #define PT32_PTE_COPY_MASK \
90 (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
92 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
94 #define PT_FIRST_AVAIL_BITS_SHIFT 9
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
97 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
100 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
101 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
103 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
104 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
106 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
108 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
110 #define PT64_LEVEL_BITS 9
112 #define PT64_LEVEL_SHIFT(level) \
113 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
115 #define PT64_LEVEL_MASK(level) \
116 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
118 #define PT64_INDEX(address, level)\
119 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
122 #define PT32_LEVEL_BITS 10
124 #define PT32_LEVEL_SHIFT(level) \
125 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
127 #define PT32_LEVEL_MASK(level) \
128 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
130 #define PT32_INDEX(address, level)\
131 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
135 #define PT64_DIR_BASE_ADDR_MASK \
136 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
138 #define PT32_BASE_ADDR_MASK PAGE_MASK
139 #define PT32_DIR_BASE_ADDR_MASK \
140 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
157 struct kvm_rmap_desc
{
158 u64
*shadow_ptes
[RMAP_EXT
];
159 struct kvm_rmap_desc
*more
;
162 static int is_write_protection(struct kvm_vcpu
*vcpu
)
164 return vcpu
->cr0
& CR0_WP_MASK
;
167 static int is_cpuid_PSE36(void)
172 static int is_nx(struct kvm_vcpu
*vcpu
)
174 return vcpu
->shadow_efer
& EFER_NX
;
177 static int is_present_pte(unsigned long pte
)
179 return pte
& PT_PRESENT_MASK
;
182 static int is_writeble_pte(unsigned long pte
)
184 return pte
& PT_WRITABLE_MASK
;
187 static int is_io_pte(unsigned long pte
)
189 return pte
& PT_SHADOW_IO_MARK
;
192 static int is_rmap_pte(u64 pte
)
194 return (pte
& (PT_WRITABLE_MASK
| PT_PRESENT_MASK
))
195 == (PT_WRITABLE_MASK
| PT_PRESENT_MASK
);
198 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
199 size_t objsize
, int min
)
203 if (cache
->nobjs
>= min
)
205 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
206 obj
= kzalloc(objsize
, GFP_NOWAIT
);
209 cache
->objects
[cache
->nobjs
++] = obj
;
214 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
217 kfree(mc
->objects
[--mc
->nobjs
]);
220 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
224 r
= mmu_topup_memory_cache(&vcpu
->mmu_pte_chain_cache
,
225 sizeof(struct kvm_pte_chain
), 4);
228 r
= mmu_topup_memory_cache(&vcpu
->mmu_rmap_desc_cache
,
229 sizeof(struct kvm_rmap_desc
), 1);
234 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
236 mmu_free_memory_cache(&vcpu
->mmu_pte_chain_cache
);
237 mmu_free_memory_cache(&vcpu
->mmu_rmap_desc_cache
);
240 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
246 p
= mc
->objects
[--mc
->nobjs
];
251 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache
*mc
, void *obj
)
253 if (mc
->nobjs
< KVM_NR_MEM_OBJS
)
254 mc
->objects
[mc
->nobjs
++] = obj
;
259 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
261 return mmu_memory_cache_alloc(&vcpu
->mmu_pte_chain_cache
,
262 sizeof(struct kvm_pte_chain
));
265 static void mmu_free_pte_chain(struct kvm_vcpu
*vcpu
,
266 struct kvm_pte_chain
*pc
)
268 mmu_memory_cache_free(&vcpu
->mmu_pte_chain_cache
, pc
);
271 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
273 return mmu_memory_cache_alloc(&vcpu
->mmu_rmap_desc_cache
,
274 sizeof(struct kvm_rmap_desc
));
277 static void mmu_free_rmap_desc(struct kvm_vcpu
*vcpu
,
278 struct kvm_rmap_desc
*rd
)
280 mmu_memory_cache_free(&vcpu
->mmu_rmap_desc_cache
, rd
);
284 * Reverse mapping data structures:
286 * If page->private bit zero is zero, then page->private points to the
287 * shadow page table entry that points to page_address(page).
289 * If page->private bit zero is one, (then page->private & ~1) points
290 * to a struct kvm_rmap_desc containing more mappings.
292 static void rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
)
295 struct kvm_rmap_desc
*desc
;
298 if (!is_rmap_pte(*spte
))
300 page
= pfn_to_page((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
);
301 if (!page
->private) {
302 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
303 page
->private = (unsigned long)spte
;
304 } else if (!(page
->private & 1)) {
305 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
306 desc
= mmu_alloc_rmap_desc(vcpu
);
307 desc
->shadow_ptes
[0] = (u64
*)page
->private;
308 desc
->shadow_ptes
[1] = spte
;
309 page
->private = (unsigned long)desc
| 1;
311 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
312 desc
= (struct kvm_rmap_desc
*)(page
->private & ~1ul);
313 while (desc
->shadow_ptes
[RMAP_EXT
-1] && desc
->more
)
315 if (desc
->shadow_ptes
[RMAP_EXT
-1]) {
316 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
319 for (i
= 0; desc
->shadow_ptes
[i
]; ++i
)
321 desc
->shadow_ptes
[i
] = spte
;
325 static void rmap_desc_remove_entry(struct kvm_vcpu
*vcpu
,
327 struct kvm_rmap_desc
*desc
,
329 struct kvm_rmap_desc
*prev_desc
)
333 for (j
= RMAP_EXT
- 1; !desc
->shadow_ptes
[j
] && j
> i
; --j
)
335 desc
->shadow_ptes
[i
] = desc
->shadow_ptes
[j
];
336 desc
->shadow_ptes
[j
] = 0;
339 if (!prev_desc
&& !desc
->more
)
340 page
->private = (unsigned long)desc
->shadow_ptes
[0];
343 prev_desc
->more
= desc
->more
;
345 page
->private = (unsigned long)desc
->more
| 1;
346 mmu_free_rmap_desc(vcpu
, desc
);
349 static void rmap_remove(struct kvm_vcpu
*vcpu
, u64
*spte
)
352 struct kvm_rmap_desc
*desc
;
353 struct kvm_rmap_desc
*prev_desc
;
356 if (!is_rmap_pte(*spte
))
358 page
= pfn_to_page((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
);
359 if (!page
->private) {
360 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
362 } else if (!(page
->private & 1)) {
363 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
364 if ((u64
*)page
->private != spte
) {
365 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
371 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
372 desc
= (struct kvm_rmap_desc
*)(page
->private & ~1ul);
375 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
)
376 if (desc
->shadow_ptes
[i
] == spte
) {
377 rmap_desc_remove_entry(vcpu
, page
,
389 static void rmap_write_protect(struct kvm_vcpu
*vcpu
, u64 gfn
)
391 struct kvm
*kvm
= vcpu
->kvm
;
393 struct kvm_memory_slot
*slot
;
394 struct kvm_rmap_desc
*desc
;
397 slot
= gfn_to_memslot(kvm
, gfn
);
399 page
= gfn_to_page(slot
, gfn
);
401 while (page
->private) {
402 if (!(page
->private & 1))
403 spte
= (u64
*)page
->private;
405 desc
= (struct kvm_rmap_desc
*)(page
->private & ~1ul);
406 spte
= desc
->shadow_ptes
[0];
409 BUG_ON((*spte
& PT64_BASE_ADDR_MASK
) !=
410 page_to_pfn(page
) << PAGE_SHIFT
);
411 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
412 BUG_ON(!(*spte
& PT_WRITABLE_MASK
));
413 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
414 rmap_remove(vcpu
, spte
);
415 kvm_arch_ops
->tlb_flush(vcpu
);
416 *spte
&= ~(u64
)PT_WRITABLE_MASK
;
420 static int is_empty_shadow_page(hpa_t page_hpa
)
425 for (pos
= __va(page_hpa
), end
= pos
+ PAGE_SIZE
/ sizeof(u64
);
428 printk(KERN_ERR
"%s: %p %llx\n", __FUNCTION__
,
435 static void kvm_mmu_free_page(struct kvm_vcpu
*vcpu
, hpa_t page_hpa
)
437 struct kvm_mmu_page
*page_head
= page_header(page_hpa
);
439 ASSERT(is_empty_shadow_page(page_hpa
));
440 list_del(&page_head
->link
);
441 page_head
->page_hpa
= page_hpa
;
442 list_add(&page_head
->link
, &vcpu
->free_pages
);
443 ++vcpu
->kvm
->n_free_mmu_pages
;
446 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
451 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
454 struct kvm_mmu_page
*page
;
456 if (list_empty(&vcpu
->free_pages
))
459 page
= list_entry(vcpu
->free_pages
.next
, struct kvm_mmu_page
, link
);
460 list_del(&page
->link
);
461 list_add(&page
->link
, &vcpu
->kvm
->active_mmu_pages
);
462 ASSERT(is_empty_shadow_page(page
->page_hpa
));
463 page
->slot_bitmap
= 0;
465 page
->multimapped
= 0;
466 page
->parent_pte
= parent_pte
;
467 --vcpu
->kvm
->n_free_mmu_pages
;
471 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
472 struct kvm_mmu_page
*page
, u64
*parent_pte
)
474 struct kvm_pte_chain
*pte_chain
;
475 struct hlist_node
*node
;
480 if (!page
->multimapped
) {
481 u64
*old
= page
->parent_pte
;
484 page
->parent_pte
= parent_pte
;
487 page
->multimapped
= 1;
488 pte_chain
= mmu_alloc_pte_chain(vcpu
);
489 INIT_HLIST_HEAD(&page
->parent_ptes
);
490 hlist_add_head(&pte_chain
->link
, &page
->parent_ptes
);
491 pte_chain
->parent_ptes
[0] = old
;
493 hlist_for_each_entry(pte_chain
, node
, &page
->parent_ptes
, link
) {
494 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
496 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
497 if (!pte_chain
->parent_ptes
[i
]) {
498 pte_chain
->parent_ptes
[i
] = parent_pte
;
502 pte_chain
= mmu_alloc_pte_chain(vcpu
);
504 hlist_add_head(&pte_chain
->link
, &page
->parent_ptes
);
505 pte_chain
->parent_ptes
[0] = parent_pte
;
508 static void mmu_page_remove_parent_pte(struct kvm_vcpu
*vcpu
,
509 struct kvm_mmu_page
*page
,
512 struct kvm_pte_chain
*pte_chain
;
513 struct hlist_node
*node
;
516 if (!page
->multimapped
) {
517 BUG_ON(page
->parent_pte
!= parent_pte
);
518 page
->parent_pte
= NULL
;
521 hlist_for_each_entry(pte_chain
, node
, &page
->parent_ptes
, link
)
522 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
523 if (!pte_chain
->parent_ptes
[i
])
525 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
527 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
528 && pte_chain
->parent_ptes
[i
+ 1]) {
529 pte_chain
->parent_ptes
[i
]
530 = pte_chain
->parent_ptes
[i
+ 1];
533 pte_chain
->parent_ptes
[i
] = NULL
;
535 hlist_del(&pte_chain
->link
);
536 mmu_free_pte_chain(vcpu
, pte_chain
);
537 if (hlist_empty(&page
->parent_ptes
)) {
538 page
->multimapped
= 0;
539 page
->parent_pte
= NULL
;
547 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm_vcpu
*vcpu
,
551 struct hlist_head
*bucket
;
552 struct kvm_mmu_page
*page
;
553 struct hlist_node
*node
;
555 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__
, gfn
);
556 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
557 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
558 hlist_for_each_entry(page
, node
, bucket
, hash_link
)
559 if (page
->gfn
== gfn
&& !page
->role
.metaphysical
) {
560 pgprintk("%s: found role %x\n",
561 __FUNCTION__
, page
->role
.word
);
567 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
574 union kvm_mmu_page_role role
;
577 struct hlist_head
*bucket
;
578 struct kvm_mmu_page
*page
;
579 struct hlist_node
*node
;
582 role
.glevels
= vcpu
->mmu
.root_level
;
584 role
.metaphysical
= metaphysical
;
585 if (vcpu
->mmu
.root_level
<= PT32_ROOT_LEVEL
) {
586 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
587 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
588 role
.quadrant
= quadrant
;
590 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__
,
592 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
593 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
594 hlist_for_each_entry(page
, node
, bucket
, hash_link
)
595 if (page
->gfn
== gfn
&& page
->role
.word
== role
.word
) {
596 mmu_page_add_parent_pte(vcpu
, page
, parent_pte
);
597 pgprintk("%s: found\n", __FUNCTION__
);
600 page
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
603 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__
, gfn
, role
.word
);
606 hlist_add_head(&page
->hash_link
, bucket
);
608 rmap_write_protect(vcpu
, gfn
);
612 static void kvm_mmu_page_unlink_children(struct kvm_vcpu
*vcpu
,
613 struct kvm_mmu_page
*page
)
619 pt
= __va(page
->page_hpa
);
621 if (page
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
622 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
623 if (pt
[i
] & PT_PRESENT_MASK
)
624 rmap_remove(vcpu
, &pt
[i
]);
627 kvm_arch_ops
->tlb_flush(vcpu
);
631 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
635 if (!(ent
& PT_PRESENT_MASK
))
637 ent
&= PT64_BASE_ADDR_MASK
;
638 mmu_page_remove_parent_pte(vcpu
, page_header(ent
), &pt
[i
]);
642 static void kvm_mmu_put_page(struct kvm_vcpu
*vcpu
,
643 struct kvm_mmu_page
*page
,
646 mmu_page_remove_parent_pte(vcpu
, page
, parent_pte
);
649 static void kvm_mmu_zap_page(struct kvm_vcpu
*vcpu
,
650 struct kvm_mmu_page
*page
)
654 while (page
->multimapped
|| page
->parent_pte
) {
655 if (!page
->multimapped
)
656 parent_pte
= page
->parent_pte
;
658 struct kvm_pte_chain
*chain
;
660 chain
= container_of(page
->parent_ptes
.first
,
661 struct kvm_pte_chain
, link
);
662 parent_pte
= chain
->parent_ptes
[0];
665 kvm_mmu_put_page(vcpu
, page
, parent_pte
);
668 kvm_mmu_page_unlink_children(vcpu
, page
);
669 if (!page
->root_count
) {
670 hlist_del(&page
->hash_link
);
671 kvm_mmu_free_page(vcpu
, page
->page_hpa
);
673 list_del(&page
->link
);
674 list_add(&page
->link
, &vcpu
->kvm
->active_mmu_pages
);
678 static int kvm_mmu_unprotect_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
681 struct hlist_head
*bucket
;
682 struct kvm_mmu_page
*page
;
683 struct hlist_node
*node
, *n
;
686 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__
, gfn
);
688 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
689 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
690 hlist_for_each_entry_safe(page
, node
, n
, bucket
, hash_link
)
691 if (page
->gfn
== gfn
&& !page
->role
.metaphysical
) {
692 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__
, gfn
,
694 kvm_mmu_zap_page(vcpu
, page
);
700 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gpa_t gpa
)
702 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gpa
>> PAGE_SHIFT
));
703 struct kvm_mmu_page
*page_head
= page_header(__pa(pte
));
705 __set_bit(slot
, &page_head
->slot_bitmap
);
708 hpa_t
safe_gpa_to_hpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
710 hpa_t hpa
= gpa_to_hpa(vcpu
, gpa
);
712 return is_error_hpa(hpa
) ? bad_page_address
| (gpa
& ~PAGE_MASK
): hpa
;
715 hpa_t
gpa_to_hpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
717 struct kvm_memory_slot
*slot
;
720 ASSERT((gpa
& HPA_ERR_MASK
) == 0);
721 slot
= gfn_to_memslot(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
723 return gpa
| HPA_ERR_MASK
;
724 page
= gfn_to_page(slot
, gpa
>> PAGE_SHIFT
);
725 return ((hpa_t
)page_to_pfn(page
) << PAGE_SHIFT
)
726 | (gpa
& (PAGE_SIZE
-1));
729 hpa_t
gva_to_hpa(struct kvm_vcpu
*vcpu
, gva_t gva
)
731 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
733 if (gpa
== UNMAPPED_GVA
)
735 return gpa_to_hpa(vcpu
, gpa
);
738 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
742 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, hpa_t p
)
744 int level
= PT32E_ROOT_LEVEL
;
745 hpa_t table_addr
= vcpu
->mmu
.root_hpa
;
748 u32 index
= PT64_INDEX(v
, level
);
752 ASSERT(VALID_PAGE(table_addr
));
753 table
= __va(table_addr
);
757 if (is_present_pte(pte
) && is_writeble_pte(pte
))
759 mark_page_dirty(vcpu
->kvm
, v
>> PAGE_SHIFT
);
760 page_header_update_slot(vcpu
->kvm
, table
, v
);
761 table
[index
] = p
| PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
763 rmap_add(vcpu
, &table
[index
]);
767 if (table
[index
] == 0) {
768 struct kvm_mmu_page
*new_table
;
771 pseudo_gfn
= (v
& PT64_DIR_BASE_ADDR_MASK
)
773 new_table
= kvm_mmu_get_page(vcpu
, pseudo_gfn
,
777 pgprintk("nonpaging_map: ENOMEM\n");
781 table
[index
] = new_table
->page_hpa
| PT_PRESENT_MASK
782 | PT_WRITABLE_MASK
| PT_USER_MASK
;
784 table_addr
= table
[index
] & PT64_BASE_ADDR_MASK
;
788 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
791 struct kvm_mmu_page
*page
;
794 if (vcpu
->mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
795 hpa_t root
= vcpu
->mmu
.root_hpa
;
797 ASSERT(VALID_PAGE(root
));
798 page
= page_header(root
);
800 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
804 for (i
= 0; i
< 4; ++i
) {
805 hpa_t root
= vcpu
->mmu
.pae_root
[i
];
807 ASSERT(VALID_PAGE(root
));
808 root
&= PT64_BASE_ADDR_MASK
;
809 page
= page_header(root
);
811 vcpu
->mmu
.pae_root
[i
] = INVALID_PAGE
;
813 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
816 static void mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
820 struct kvm_mmu_page
*page
;
822 root_gfn
= vcpu
->cr3
>> PAGE_SHIFT
;
825 if (vcpu
->mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
826 hpa_t root
= vcpu
->mmu
.root_hpa
;
828 ASSERT(!VALID_PAGE(root
));
829 page
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
830 PT64_ROOT_LEVEL
, 0, NULL
);
831 root
= page
->page_hpa
;
833 vcpu
->mmu
.root_hpa
= root
;
837 for (i
= 0; i
< 4; ++i
) {
838 hpa_t root
= vcpu
->mmu
.pae_root
[i
];
840 ASSERT(!VALID_PAGE(root
));
841 if (vcpu
->mmu
.root_level
== PT32E_ROOT_LEVEL
)
842 root_gfn
= vcpu
->pdptrs
[i
] >> PAGE_SHIFT
;
843 else if (vcpu
->mmu
.root_level
== 0)
845 page
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
846 PT32_ROOT_LEVEL
, !is_paging(vcpu
),
848 root
= page
->page_hpa
;
850 vcpu
->mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
852 vcpu
->mmu
.root_hpa
= __pa(vcpu
->mmu
.pae_root
);
855 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
860 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
867 r
= mmu_topup_memory_caches(vcpu
);
872 ASSERT(VALID_PAGE(vcpu
->mmu
.root_hpa
));
875 paddr
= gpa_to_hpa(vcpu
, addr
& PT64_BASE_ADDR_MASK
);
877 if (is_error_hpa(paddr
))
880 return nonpaging_map(vcpu
, addr
& PAGE_MASK
, paddr
);
883 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
885 mmu_free_roots(vcpu
);
888 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
890 struct kvm_mmu
*context
= &vcpu
->mmu
;
892 context
->new_cr3
= nonpaging_new_cr3
;
893 context
->page_fault
= nonpaging_page_fault
;
894 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
895 context
->free
= nonpaging_free
;
896 context
->root_level
= 0;
897 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
898 mmu_alloc_roots(vcpu
);
899 ASSERT(VALID_PAGE(context
->root_hpa
));
900 kvm_arch_ops
->set_cr3(vcpu
, context
->root_hpa
);
904 static void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
906 ++kvm_stat
.tlb_flush
;
907 kvm_arch_ops
->tlb_flush(vcpu
);
910 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
912 pgprintk("%s: cr3 %lx\n", __FUNCTION__
, vcpu
->cr3
);
913 mmu_free_roots(vcpu
);
914 if (unlikely(vcpu
->kvm
->n_free_mmu_pages
< KVM_MIN_FREE_MMU_PAGES
))
915 kvm_mmu_free_some_pages(vcpu
);
916 mmu_alloc_roots(vcpu
);
917 kvm_mmu_flush_tlb(vcpu
);
918 kvm_arch_ops
->set_cr3(vcpu
, vcpu
->mmu
.root_hpa
);
921 static void mark_pagetable_nonglobal(void *shadow_pte
)
923 page_header(__pa(shadow_pte
))->global
= 0;
926 static inline void set_pte_common(struct kvm_vcpu
*vcpu
,
935 *shadow_pte
|= access_bits
<< PT_SHADOW_BITS_OFFSET
;
937 access_bits
&= ~PT_WRITABLE_MASK
;
939 paddr
= gpa_to_hpa(vcpu
, gaddr
& PT64_BASE_ADDR_MASK
);
941 *shadow_pte
|= access_bits
;
943 if (!(*shadow_pte
& PT_GLOBAL_MASK
))
944 mark_pagetable_nonglobal(shadow_pte
);
946 if (is_error_hpa(paddr
)) {
947 *shadow_pte
|= gaddr
;
948 *shadow_pte
|= PT_SHADOW_IO_MARK
;
949 *shadow_pte
&= ~PT_PRESENT_MASK
;
953 *shadow_pte
|= paddr
;
955 if (access_bits
& PT_WRITABLE_MASK
) {
956 struct kvm_mmu_page
*shadow
;
958 shadow
= kvm_mmu_lookup_page(vcpu
, gfn
);
960 pgprintk("%s: found shadow page for %lx, marking ro\n",
962 access_bits
&= ~PT_WRITABLE_MASK
;
963 if (is_writeble_pte(*shadow_pte
)) {
964 *shadow_pte
&= ~PT_WRITABLE_MASK
;
965 kvm_arch_ops
->tlb_flush(vcpu
);
970 if (access_bits
& PT_WRITABLE_MASK
)
971 mark_page_dirty(vcpu
->kvm
, gaddr
>> PAGE_SHIFT
);
973 page_header_update_slot(vcpu
->kvm
, shadow_pte
, gaddr
);
974 rmap_add(vcpu
, shadow_pte
);
977 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
981 kvm_arch_ops
->inject_page_fault(vcpu
, addr
, err_code
);
984 static inline int fix_read_pf(u64
*shadow_ent
)
986 if ((*shadow_ent
& PT_SHADOW_USER_MASK
) &&
987 !(*shadow_ent
& PT_USER_MASK
)) {
989 * If supervisor write protect is disabled, we shadow kernel
990 * pages as user pages so we can trap the write access.
992 *shadow_ent
|= PT_USER_MASK
;
993 *shadow_ent
&= ~PT_WRITABLE_MASK
;
1001 static void paging_free(struct kvm_vcpu
*vcpu
)
1003 nonpaging_free(vcpu
);
1007 #include "paging_tmpl.h"
1011 #include "paging_tmpl.h"
1014 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
1016 struct kvm_mmu
*context
= &vcpu
->mmu
;
1018 ASSERT(is_pae(vcpu
));
1019 context
->new_cr3
= paging_new_cr3
;
1020 context
->page_fault
= paging64_page_fault
;
1021 context
->gva_to_gpa
= paging64_gva_to_gpa
;
1022 context
->free
= paging_free
;
1023 context
->root_level
= level
;
1024 context
->shadow_root_level
= level
;
1025 mmu_alloc_roots(vcpu
);
1026 ASSERT(VALID_PAGE(context
->root_hpa
));
1027 kvm_arch_ops
->set_cr3(vcpu
, context
->root_hpa
|
1028 (vcpu
->cr3
& (CR3_PCD_MASK
| CR3_WPT_MASK
)));
1032 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
1034 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
1037 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
1039 struct kvm_mmu
*context
= &vcpu
->mmu
;
1041 context
->new_cr3
= paging_new_cr3
;
1042 context
->page_fault
= paging32_page_fault
;
1043 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1044 context
->free
= paging_free
;
1045 context
->root_level
= PT32_ROOT_LEVEL
;
1046 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1047 mmu_alloc_roots(vcpu
);
1048 ASSERT(VALID_PAGE(context
->root_hpa
));
1049 kvm_arch_ops
->set_cr3(vcpu
, context
->root_hpa
|
1050 (vcpu
->cr3
& (CR3_PCD_MASK
| CR3_WPT_MASK
)));
1054 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
1056 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
1059 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
1062 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1064 if (!is_paging(vcpu
))
1065 return nonpaging_init_context(vcpu
);
1066 else if (is_long_mode(vcpu
))
1067 return paging64_init_context(vcpu
);
1068 else if (is_pae(vcpu
))
1069 return paging32E_init_context(vcpu
);
1071 return paging32_init_context(vcpu
);
1074 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
1077 if (VALID_PAGE(vcpu
->mmu
.root_hpa
)) {
1078 vcpu
->mmu
.free(vcpu
);
1079 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
1083 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
1087 destroy_kvm_mmu(vcpu
);
1088 r
= init_kvm_mmu(vcpu
);
1091 r
= mmu_topup_memory_caches(vcpu
);
1096 void kvm_mmu_pre_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
)
1098 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1099 struct kvm_mmu_page
*page
;
1100 struct kvm_mmu_page
*child
;
1101 struct hlist_node
*node
, *n
;
1102 struct hlist_head
*bucket
;
1106 unsigned offset
= offset_in_page(gpa
);
1108 unsigned page_offset
;
1109 unsigned misaligned
;
1113 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__
, gpa
, bytes
);
1114 if (gfn
== vcpu
->last_pt_write_gfn
) {
1115 ++vcpu
->last_pt_write_count
;
1116 if (vcpu
->last_pt_write_count
>= 3)
1119 vcpu
->last_pt_write_gfn
= gfn
;
1120 vcpu
->last_pt_write_count
= 1;
1122 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
1123 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
1124 hlist_for_each_entry_safe(page
, node
, n
, bucket
, hash_link
) {
1125 if (page
->gfn
!= gfn
|| page
->role
.metaphysical
)
1127 pte_size
= page
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
1128 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
1129 if (misaligned
|| flooded
) {
1131 * Misaligned accesses are too much trouble to fix
1132 * up; also, they usually indicate a page is not used
1135 * If we're seeing too many writes to a page,
1136 * it may no longer be a page table, or we may be
1137 * forking, in which case it is better to unmap the
1140 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1141 gpa
, bytes
, page
->role
.word
);
1142 kvm_mmu_zap_page(vcpu
, page
);
1145 page_offset
= offset
;
1146 level
= page
->role
.level
;
1147 if (page
->role
.glevels
== PT32_ROOT_LEVEL
) {
1148 page_offset
<<= 1; /* 32->64 */
1149 page_offset
&= ~PAGE_MASK
;
1151 spte
= __va(page
->page_hpa
);
1152 spte
+= page_offset
/ sizeof(*spte
);
1154 if (is_present_pte(pte
)) {
1155 if (level
== PT_PAGE_TABLE_LEVEL
)
1156 rmap_remove(vcpu
, spte
);
1158 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1159 mmu_page_remove_parent_pte(vcpu
, child
, spte
);
1166 void kvm_mmu_post_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
)
1170 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
1172 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
1174 return kvm_mmu_unprotect_page(vcpu
, gpa
>> PAGE_SHIFT
);
1177 void kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
1179 while (vcpu
->kvm
->n_free_mmu_pages
< KVM_REFILL_PAGES
) {
1180 struct kvm_mmu_page
*page
;
1182 page
= container_of(vcpu
->kvm
->active_mmu_pages
.prev
,
1183 struct kvm_mmu_page
, link
);
1184 kvm_mmu_zap_page(vcpu
, page
);
1187 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages
);
1189 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
1191 struct kvm_mmu_page
*page
;
1193 while (!list_empty(&vcpu
->kvm
->active_mmu_pages
)) {
1194 page
= container_of(vcpu
->kvm
->active_mmu_pages
.next
,
1195 struct kvm_mmu_page
, link
);
1196 kvm_mmu_zap_page(vcpu
, page
);
1198 while (!list_empty(&vcpu
->free_pages
)) {
1199 page
= list_entry(vcpu
->free_pages
.next
,
1200 struct kvm_mmu_page
, link
);
1201 list_del(&page
->link
);
1202 __free_page(pfn_to_page(page
->page_hpa
>> PAGE_SHIFT
));
1203 page
->page_hpa
= INVALID_PAGE
;
1205 free_page((unsigned long)vcpu
->mmu
.pae_root
);
1208 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
1215 for (i
= 0; i
< KVM_NUM_MMU_PAGES
; i
++) {
1216 struct kvm_mmu_page
*page_header
= &vcpu
->page_header_buf
[i
];
1218 INIT_LIST_HEAD(&page_header
->link
);
1219 if ((page
= alloc_page(GFP_KERNEL
)) == NULL
)
1221 page
->private = (unsigned long)page_header
;
1222 page_header
->page_hpa
= (hpa_t
)page_to_pfn(page
) << PAGE_SHIFT
;
1223 memset(__va(page_header
->page_hpa
), 0, PAGE_SIZE
);
1224 list_add(&page_header
->link
, &vcpu
->free_pages
);
1225 ++vcpu
->kvm
->n_free_mmu_pages
;
1229 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1230 * Therefore we need to allocate shadow page tables in the first
1231 * 4GB of memory, which happens to fit the DMA32 zone.
1233 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
1236 vcpu
->mmu
.pae_root
= page_address(page
);
1237 for (i
= 0; i
< 4; ++i
)
1238 vcpu
->mmu
.pae_root
[i
] = INVALID_PAGE
;
1243 free_mmu_pages(vcpu
);
1247 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
1250 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1251 ASSERT(list_empty(&vcpu
->free_pages
));
1253 return alloc_mmu_pages(vcpu
);
1256 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
1259 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1260 ASSERT(!list_empty(&vcpu
->free_pages
));
1262 return init_kvm_mmu(vcpu
);
1265 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
1269 destroy_kvm_mmu(vcpu
);
1270 free_mmu_pages(vcpu
);
1271 mmu_free_memory_caches(vcpu
);
1274 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu
*vcpu
, int slot
)
1276 struct kvm
*kvm
= vcpu
->kvm
;
1277 struct kvm_mmu_page
*page
;
1279 list_for_each_entry(page
, &kvm
->active_mmu_pages
, link
) {
1283 if (!test_bit(slot
, &page
->slot_bitmap
))
1286 pt
= __va(page
->page_hpa
);
1287 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1289 if (pt
[i
] & PT_WRITABLE_MASK
) {
1290 rmap_remove(vcpu
, &pt
[i
]);
1291 pt
[i
] &= ~PT_WRITABLE_MASK
;
1298 static const char *audit_msg
;
1300 static gva_t
canonicalize(gva_t gva
)
1302 #ifdef CONFIG_X86_64
1303 gva
= (long long)(gva
<< 16) >> 16;
1308 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
1309 gva_t va
, int level
)
1311 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
1313 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
1315 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
1318 if (!ent
& PT_PRESENT_MASK
)
1321 va
= canonicalize(va
);
1323 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
1325 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, va
);
1326 hpa_t hpa
= gpa_to_hpa(vcpu
, gpa
);
1328 if ((ent
& PT_PRESENT_MASK
)
1329 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
1330 printk(KERN_ERR
"audit error: (%s) levels %d"
1331 " gva %lx gpa %llx hpa %llx ent %llx\n",
1332 audit_msg
, vcpu
->mmu
.root_level
,
1338 static void audit_mappings(struct kvm_vcpu
*vcpu
)
1342 if (vcpu
->mmu
.root_level
== 4)
1343 audit_mappings_page(vcpu
, vcpu
->mmu
.root_hpa
, 0, 4);
1345 for (i
= 0; i
< 4; ++i
)
1346 if (vcpu
->mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
1347 audit_mappings_page(vcpu
,
1348 vcpu
->mmu
.pae_root
[i
],
1353 static int count_rmaps(struct kvm_vcpu
*vcpu
)
1358 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
1359 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
1360 struct kvm_rmap_desc
*d
;
1362 for (j
= 0; j
< m
->npages
; ++j
) {
1363 struct page
*page
= m
->phys_mem
[j
];
1367 if (!(page
->private & 1)) {
1371 d
= (struct kvm_rmap_desc
*)(page
->private & ~1ul);
1373 for (k
= 0; k
< RMAP_EXT
; ++k
)
1374 if (d
->shadow_ptes
[k
])
1385 static int count_writable_mappings(struct kvm_vcpu
*vcpu
)
1388 struct kvm_mmu_page
*page
;
1391 list_for_each_entry(page
, &vcpu
->kvm
->active_mmu_pages
, link
) {
1392 u64
*pt
= __va(page
->page_hpa
);
1394 if (page
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1397 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1400 if (!(ent
& PT_PRESENT_MASK
))
1402 if (!(ent
& PT_WRITABLE_MASK
))
1410 static void audit_rmap(struct kvm_vcpu
*vcpu
)
1412 int n_rmap
= count_rmaps(vcpu
);
1413 int n_actual
= count_writable_mappings(vcpu
);
1415 if (n_rmap
!= n_actual
)
1416 printk(KERN_ERR
"%s: (%s) rmap %d actual %d\n",
1417 __FUNCTION__
, audit_msg
, n_rmap
, n_actual
);
1420 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
1422 struct kvm_mmu_page
*page
;
1424 list_for_each_entry(page
, &vcpu
->kvm
->active_mmu_pages
, link
) {
1428 if (page
->role
.metaphysical
)
1431 hfn
= gpa_to_hpa(vcpu
, (gpa_t
)page
->gfn
<< PAGE_SHIFT
)
1433 pg
= pfn_to_page(hfn
);
1435 printk(KERN_ERR
"%s: (%s) shadow page has writable"
1436 " mappings: gfn %lx role %x\n",
1437 __FUNCTION__
, audit_msg
, page
->gfn
,
1442 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
1449 audit_write_protection(vcpu
);
1450 audit_mappings(vcpu
);