Revert "drm/i915: Enable GMBUS for post-gen2 chipsets"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / mmu.c
blob22fae7593ee7973df269219addbfdc8cc7c5ddc5
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled = false;
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
72 #undef MMU_DEBUG
74 #ifdef MMU_DEBUG
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
79 #else
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
84 #endif
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
102 #endif
104 #define PTE_PREFETCH_NUM 8
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
109 #define PT64_LEVEL_BITS 9
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
114 #define PT64_INDEX(address, level)\
115 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118 #define PT32_LEVEL_BITS 10
120 #define PT32_LEVEL_SHIFT(level) \
121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123 #define PT32_LVL_OFFSET_MASK(level) \
124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
127 #define PT32_INDEX(address, level)\
128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146 * PT32_LEVEL_BITS))) - 1))
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149 | PT64_NX_MASK)
151 #define RMAP_EXT 4
153 #define ACC_EXEC_MASK 1
154 #define ACC_WRITE_MASK PT_WRITABLE_MASK
155 #define ACC_USER_MASK PT_USER_MASK
156 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
158 #include <trace/events/kvm.h>
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
167 struct kvm_rmap_desc {
168 u64 *sptes[RMAP_EXT];
169 struct kvm_rmap_desc *more;
172 struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
175 int level;
176 u64 *sptep;
177 unsigned index;
180 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
185 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
187 static struct kmem_cache *pte_chain_cache;
188 static struct kmem_cache *rmap_desc_cache;
189 static struct kmem_cache *mmu_page_header_cache;
190 static struct percpu_counter kvm_total_used_mmu_pages;
192 static u64 __read_mostly shadow_trap_nonpresent_pte;
193 static u64 __read_mostly shadow_notrap_nonpresent_pte;
194 static u64 __read_mostly shadow_nx_mask;
195 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196 static u64 __read_mostly shadow_user_mask;
197 static u64 __read_mostly shadow_accessed_mask;
198 static u64 __read_mostly shadow_dirty_mask;
200 static inline u64 rsvd_bits(int s, int e)
202 return ((1ULL << (e - s + 1)) - 1) << s;
205 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
207 shadow_trap_nonpresent_pte = trap_pte;
208 shadow_notrap_nonpresent_pte = notrap_pte;
210 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
212 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
213 u64 dirty_mask, u64 nx_mask, u64 x_mask)
215 shadow_user_mask = user_mask;
216 shadow_accessed_mask = accessed_mask;
217 shadow_dirty_mask = dirty_mask;
218 shadow_nx_mask = nx_mask;
219 shadow_x_mask = x_mask;
221 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
223 static bool is_write_protection(struct kvm_vcpu *vcpu)
225 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
228 static int is_cpuid_PSE36(void)
230 return 1;
233 static int is_nx(struct kvm_vcpu *vcpu)
235 return vcpu->arch.efer & EFER_NX;
238 static int is_shadow_present_pte(u64 pte)
240 return pte != shadow_trap_nonpresent_pte
241 && pte != shadow_notrap_nonpresent_pte;
244 static int is_large_pte(u64 pte)
246 return pte & PT_PAGE_SIZE_MASK;
249 static int is_writable_pte(unsigned long pte)
251 return pte & PT_WRITABLE_MASK;
254 static int is_dirty_gpte(unsigned long pte)
256 return pte & PT_DIRTY_MASK;
259 static int is_rmap_spte(u64 pte)
261 return is_shadow_present_pte(pte);
264 static int is_last_spte(u64 pte, int level)
266 if (level == PT_PAGE_TABLE_LEVEL)
267 return 1;
268 if (is_large_pte(pte))
269 return 1;
270 return 0;
273 static pfn_t spte_to_pfn(u64 pte)
275 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
278 static gfn_t pse36_gfn_delta(u32 gpte)
280 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
282 return (gpte & PT32_DIR_PSE36_MASK) << shift;
285 static void __set_spte(u64 *sptep, u64 spte)
287 set_64bit(sptep, spte);
290 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
292 #ifdef CONFIG_X86_64
293 return xchg(sptep, new_spte);
294 #else
295 u64 old_spte;
297 do {
298 old_spte = *sptep;
299 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
301 return old_spte;
302 #endif
305 static bool spte_has_volatile_bits(u64 spte)
307 if (!shadow_accessed_mask)
308 return false;
310 if (!is_shadow_present_pte(spte))
311 return false;
313 if ((spte & shadow_accessed_mask) &&
314 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
315 return false;
317 return true;
320 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
322 return (old_spte & bit_mask) && !(new_spte & bit_mask);
325 static void update_spte(u64 *sptep, u64 new_spte)
327 u64 mask, old_spte = *sptep;
329 WARN_ON(!is_rmap_spte(new_spte));
331 new_spte |= old_spte & shadow_dirty_mask;
333 mask = shadow_accessed_mask;
334 if (is_writable_pte(old_spte))
335 mask |= shadow_dirty_mask;
337 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
338 __set_spte(sptep, new_spte);
339 else
340 old_spte = __xchg_spte(sptep, new_spte);
342 if (!shadow_accessed_mask)
343 return;
345 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
346 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
347 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
348 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
351 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
352 struct kmem_cache *base_cache, int min)
354 void *obj;
356 if (cache->nobjs >= min)
357 return 0;
358 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
359 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
360 if (!obj)
361 return -ENOMEM;
362 cache->objects[cache->nobjs++] = obj;
364 return 0;
367 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
368 struct kmem_cache *cache)
370 while (mc->nobjs)
371 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
374 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
375 int min)
377 void *page;
379 if (cache->nobjs >= min)
380 return 0;
381 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
382 page = (void *)__get_free_page(GFP_KERNEL);
383 if (!page)
384 return -ENOMEM;
385 cache->objects[cache->nobjs++] = page;
387 return 0;
390 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
392 while (mc->nobjs)
393 free_page((unsigned long)mc->objects[--mc->nobjs]);
396 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
398 int r;
400 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
401 pte_chain_cache, 4);
402 if (r)
403 goto out;
404 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
405 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
406 if (r)
407 goto out;
408 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
409 if (r)
410 goto out;
411 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
412 mmu_page_header_cache, 4);
413 out:
414 return r;
417 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
419 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
420 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
421 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
422 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
423 mmu_page_header_cache);
426 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
427 size_t size)
429 void *p;
431 BUG_ON(!mc->nobjs);
432 p = mc->objects[--mc->nobjs];
433 return p;
436 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
438 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
439 sizeof(struct kvm_pte_chain));
442 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
444 kmem_cache_free(pte_chain_cache, pc);
447 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
449 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
450 sizeof(struct kvm_rmap_desc));
453 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
455 kmem_cache_free(rmap_desc_cache, rd);
458 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
460 if (!sp->role.direct)
461 return sp->gfns[index];
463 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
466 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
468 if (sp->role.direct)
469 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
470 else
471 sp->gfns[index] = gfn;
475 * Return the pointer to the large page information for a given gfn,
476 * handling slots that are not large page aligned.
478 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
479 struct kvm_memory_slot *slot,
480 int level)
482 unsigned long idx;
484 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
485 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
486 return &slot->lpage_info[level - 2][idx];
489 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
491 struct kvm_memory_slot *slot;
492 struct kvm_lpage_info *linfo;
493 int i;
495 slot = gfn_to_memslot(kvm, gfn);
496 for (i = PT_DIRECTORY_LEVEL;
497 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
498 linfo = lpage_info_slot(gfn, slot, i);
499 linfo->write_count += 1;
503 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
505 struct kvm_memory_slot *slot;
506 struct kvm_lpage_info *linfo;
507 int i;
509 slot = gfn_to_memslot(kvm, gfn);
510 for (i = PT_DIRECTORY_LEVEL;
511 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
512 linfo = lpage_info_slot(gfn, slot, i);
513 linfo->write_count -= 1;
514 WARN_ON(linfo->write_count < 0);
518 static int has_wrprotected_page(struct kvm *kvm,
519 gfn_t gfn,
520 int level)
522 struct kvm_memory_slot *slot;
523 struct kvm_lpage_info *linfo;
525 slot = gfn_to_memslot(kvm, gfn);
526 if (slot) {
527 linfo = lpage_info_slot(gfn, slot, level);
528 return linfo->write_count;
531 return 1;
534 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
536 unsigned long page_size;
537 int i, ret = 0;
539 page_size = kvm_host_page_size(kvm, gfn);
541 for (i = PT_PAGE_TABLE_LEVEL;
542 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
543 if (page_size >= KVM_HPAGE_SIZE(i))
544 ret = i;
545 else
546 break;
549 return ret;
552 static struct kvm_memory_slot *
553 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
554 bool no_dirty_log)
556 struct kvm_memory_slot *slot;
558 slot = gfn_to_memslot(vcpu->kvm, gfn);
559 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
560 (no_dirty_log && slot->dirty_bitmap))
561 slot = NULL;
563 return slot;
566 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
568 return gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
571 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
573 int host_level, level, max_level;
575 host_level = host_mapping_level(vcpu->kvm, large_gfn);
577 if (host_level == PT_PAGE_TABLE_LEVEL)
578 return host_level;
580 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
581 kvm_x86_ops->get_lpage_level() : host_level;
583 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
584 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
585 break;
587 return level - 1;
591 * Take gfn and return the reverse mapping to it.
594 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
596 struct kvm_memory_slot *slot;
597 struct kvm_lpage_info *linfo;
599 slot = gfn_to_memslot(kvm, gfn);
600 if (likely(level == PT_PAGE_TABLE_LEVEL))
601 return &slot->rmap[gfn - slot->base_gfn];
603 linfo = lpage_info_slot(gfn, slot, level);
605 return &linfo->rmap_pde;
609 * Reverse mapping data structures:
611 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
612 * that points to page_address(page).
614 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
615 * containing more mappings.
617 * Returns the number of rmap entries before the spte was added or zero if
618 * the spte was not added.
621 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
623 struct kvm_mmu_page *sp;
624 struct kvm_rmap_desc *desc;
625 unsigned long *rmapp;
626 int i, count = 0;
628 if (!is_rmap_spte(*spte))
629 return count;
630 sp = page_header(__pa(spte));
631 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
632 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
633 if (!*rmapp) {
634 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
635 *rmapp = (unsigned long)spte;
636 } else if (!(*rmapp & 1)) {
637 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
638 desc = mmu_alloc_rmap_desc(vcpu);
639 desc->sptes[0] = (u64 *)*rmapp;
640 desc->sptes[1] = spte;
641 *rmapp = (unsigned long)desc | 1;
642 ++count;
643 } else {
644 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
645 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
646 while (desc->sptes[RMAP_EXT-1] && desc->more) {
647 desc = desc->more;
648 count += RMAP_EXT;
650 if (desc->sptes[RMAP_EXT-1]) {
651 desc->more = mmu_alloc_rmap_desc(vcpu);
652 desc = desc->more;
654 for (i = 0; desc->sptes[i]; ++i)
655 ++count;
656 desc->sptes[i] = spte;
658 return count;
661 static void rmap_desc_remove_entry(unsigned long *rmapp,
662 struct kvm_rmap_desc *desc,
663 int i,
664 struct kvm_rmap_desc *prev_desc)
666 int j;
668 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
670 desc->sptes[i] = desc->sptes[j];
671 desc->sptes[j] = NULL;
672 if (j != 0)
673 return;
674 if (!prev_desc && !desc->more)
675 *rmapp = (unsigned long)desc->sptes[0];
676 else
677 if (prev_desc)
678 prev_desc->more = desc->more;
679 else
680 *rmapp = (unsigned long)desc->more | 1;
681 mmu_free_rmap_desc(desc);
684 static void rmap_remove(struct kvm *kvm, u64 *spte)
686 struct kvm_rmap_desc *desc;
687 struct kvm_rmap_desc *prev_desc;
688 struct kvm_mmu_page *sp;
689 gfn_t gfn;
690 unsigned long *rmapp;
691 int i;
693 sp = page_header(__pa(spte));
694 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
695 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
696 if (!*rmapp) {
697 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
698 BUG();
699 } else if (!(*rmapp & 1)) {
700 rmap_printk("rmap_remove: %p 1->0\n", spte);
701 if ((u64 *)*rmapp != spte) {
702 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
703 BUG();
705 *rmapp = 0;
706 } else {
707 rmap_printk("rmap_remove: %p many->many\n", spte);
708 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
709 prev_desc = NULL;
710 while (desc) {
711 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
712 if (desc->sptes[i] == spte) {
713 rmap_desc_remove_entry(rmapp,
714 desc, i,
715 prev_desc);
716 return;
718 prev_desc = desc;
719 desc = desc->more;
721 pr_err("rmap_remove: %p many->many\n", spte);
722 BUG();
726 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
728 pfn_t pfn;
729 u64 old_spte = *sptep;
731 if (!spte_has_volatile_bits(old_spte))
732 __set_spte(sptep, new_spte);
733 else
734 old_spte = __xchg_spte(sptep, new_spte);
736 if (!is_rmap_spte(old_spte))
737 return 0;
739 pfn = spte_to_pfn(old_spte);
740 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
741 kvm_set_pfn_accessed(pfn);
742 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
743 kvm_set_pfn_dirty(pfn);
744 return 1;
747 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
749 if (set_spte_track_bits(sptep, new_spte))
750 rmap_remove(kvm, sptep);
753 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
755 struct kvm_rmap_desc *desc;
756 u64 *prev_spte;
757 int i;
759 if (!*rmapp)
760 return NULL;
761 else if (!(*rmapp & 1)) {
762 if (!spte)
763 return (u64 *)*rmapp;
764 return NULL;
766 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
767 prev_spte = NULL;
768 while (desc) {
769 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
770 if (prev_spte == spte)
771 return desc->sptes[i];
772 prev_spte = desc->sptes[i];
774 desc = desc->more;
776 return NULL;
779 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
781 unsigned long *rmapp;
782 u64 *spte;
783 int i, write_protected = 0;
785 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
787 spte = rmap_next(kvm, rmapp, NULL);
788 while (spte) {
789 BUG_ON(!spte);
790 BUG_ON(!(*spte & PT_PRESENT_MASK));
791 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
792 if (is_writable_pte(*spte)) {
793 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
794 write_protected = 1;
796 spte = rmap_next(kvm, rmapp, spte);
799 /* check for huge page mappings */
800 for (i = PT_DIRECTORY_LEVEL;
801 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
802 rmapp = gfn_to_rmap(kvm, gfn, i);
803 spte = rmap_next(kvm, rmapp, NULL);
804 while (spte) {
805 BUG_ON(!spte);
806 BUG_ON(!(*spte & PT_PRESENT_MASK));
807 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
808 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
809 if (is_writable_pte(*spte)) {
810 drop_spte(kvm, spte,
811 shadow_trap_nonpresent_pte);
812 --kvm->stat.lpages;
813 spte = NULL;
814 write_protected = 1;
816 spte = rmap_next(kvm, rmapp, spte);
820 return write_protected;
823 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
824 unsigned long data)
826 u64 *spte;
827 int need_tlb_flush = 0;
829 while ((spte = rmap_next(kvm, rmapp, NULL))) {
830 BUG_ON(!(*spte & PT_PRESENT_MASK));
831 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
832 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
833 need_tlb_flush = 1;
835 return need_tlb_flush;
838 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
839 unsigned long data)
841 int need_flush = 0;
842 u64 *spte, new_spte;
843 pte_t *ptep = (pte_t *)data;
844 pfn_t new_pfn;
846 WARN_ON(pte_huge(*ptep));
847 new_pfn = pte_pfn(*ptep);
848 spte = rmap_next(kvm, rmapp, NULL);
849 while (spte) {
850 BUG_ON(!is_shadow_present_pte(*spte));
851 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
852 need_flush = 1;
853 if (pte_write(*ptep)) {
854 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
855 spte = rmap_next(kvm, rmapp, NULL);
856 } else {
857 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
858 new_spte |= (u64)new_pfn << PAGE_SHIFT;
860 new_spte &= ~PT_WRITABLE_MASK;
861 new_spte &= ~SPTE_HOST_WRITEABLE;
862 new_spte &= ~shadow_accessed_mask;
863 set_spte_track_bits(spte, new_spte);
864 spte = rmap_next(kvm, rmapp, spte);
867 if (need_flush)
868 kvm_flush_remote_tlbs(kvm);
870 return 0;
873 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
874 unsigned long data,
875 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
876 unsigned long data))
878 int i, j;
879 int ret;
880 int retval = 0;
881 struct kvm_memslots *slots;
883 slots = kvm_memslots(kvm);
885 for (i = 0; i < slots->nmemslots; i++) {
886 struct kvm_memory_slot *memslot = &slots->memslots[i];
887 unsigned long start = memslot->userspace_addr;
888 unsigned long end;
890 end = start + (memslot->npages << PAGE_SHIFT);
891 if (hva >= start && hva < end) {
892 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
893 gfn_t gfn = memslot->base_gfn + gfn_offset;
895 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
897 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
898 struct kvm_lpage_info *linfo;
900 linfo = lpage_info_slot(gfn, memslot,
901 PT_DIRECTORY_LEVEL + j);
902 ret |= handler(kvm, &linfo->rmap_pde, data);
904 trace_kvm_age_page(hva, memslot, ret);
905 retval |= ret;
909 return retval;
912 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
914 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
917 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
919 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
922 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
923 unsigned long data)
925 u64 *spte;
926 int young = 0;
929 * Emulate the accessed bit for EPT, by checking if this page has
930 * an EPT mapping, and clearing it if it does. On the next access,
931 * a new EPT mapping will be established.
932 * This has some overhead, but not as much as the cost of swapping
933 * out actively used pages or breaking up actively used hugepages.
935 if (!shadow_accessed_mask)
936 return kvm_unmap_rmapp(kvm, rmapp, data);
938 spte = rmap_next(kvm, rmapp, NULL);
939 while (spte) {
940 int _young;
941 u64 _spte = *spte;
942 BUG_ON(!(_spte & PT_PRESENT_MASK));
943 _young = _spte & PT_ACCESSED_MASK;
944 if (_young) {
945 young = 1;
946 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
948 spte = rmap_next(kvm, rmapp, spte);
950 return young;
953 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
954 unsigned long data)
956 u64 *spte;
957 int young = 0;
960 * If there's no access bit in the secondary pte set by the
961 * hardware it's up to gup-fast/gup to set the access bit in
962 * the primary pte or in the page structure.
964 if (!shadow_accessed_mask)
965 goto out;
967 spte = rmap_next(kvm, rmapp, NULL);
968 while (spte) {
969 u64 _spte = *spte;
970 BUG_ON(!(_spte & PT_PRESENT_MASK));
971 young = _spte & PT_ACCESSED_MASK;
972 if (young) {
973 young = 1;
974 break;
976 spte = rmap_next(kvm, rmapp, spte);
978 out:
979 return young;
982 #define RMAP_RECYCLE_THRESHOLD 1000
984 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
986 unsigned long *rmapp;
987 struct kvm_mmu_page *sp;
989 sp = page_header(__pa(spte));
991 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
993 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
994 kvm_flush_remote_tlbs(vcpu->kvm);
997 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
999 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1002 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1004 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1007 #ifdef MMU_DEBUG
1008 static int is_empty_shadow_page(u64 *spt)
1010 u64 *pos;
1011 u64 *end;
1013 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1014 if (is_shadow_present_pte(*pos)) {
1015 printk(KERN_ERR "%s: %p %llx\n", __func__,
1016 pos, *pos);
1017 return 0;
1019 return 1;
1021 #endif
1024 * This value is the sum of all of the kvm instances's
1025 * kvm->arch.n_used_mmu_pages values. We need a global,
1026 * aggregate version in order to make the slab shrinker
1027 * faster
1029 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1031 kvm->arch.n_used_mmu_pages += nr;
1032 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1035 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1037 ASSERT(is_empty_shadow_page(sp->spt));
1038 hlist_del(&sp->hash_link);
1039 list_del(&sp->link);
1040 free_page((unsigned long)sp->spt);
1041 if (!sp->role.direct)
1042 free_page((unsigned long)sp->gfns);
1043 kmem_cache_free(mmu_page_header_cache, sp);
1044 kvm_mod_used_mmu_pages(kvm, -1);
1047 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1049 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1052 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1053 u64 *parent_pte, int direct)
1055 struct kvm_mmu_page *sp;
1057 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1058 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1059 if (!direct)
1060 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1061 PAGE_SIZE);
1062 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1063 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1064 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1065 sp->multimapped = 0;
1066 sp->parent_pte = parent_pte;
1067 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1068 return sp;
1071 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1072 struct kvm_mmu_page *sp, u64 *parent_pte)
1074 struct kvm_pte_chain *pte_chain;
1075 struct hlist_node *node;
1076 int i;
1078 if (!parent_pte)
1079 return;
1080 if (!sp->multimapped) {
1081 u64 *old = sp->parent_pte;
1083 if (!old) {
1084 sp->parent_pte = parent_pte;
1085 return;
1087 sp->multimapped = 1;
1088 pte_chain = mmu_alloc_pte_chain(vcpu);
1089 INIT_HLIST_HEAD(&sp->parent_ptes);
1090 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1091 pte_chain->parent_ptes[0] = old;
1093 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1094 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1095 continue;
1096 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1097 if (!pte_chain->parent_ptes[i]) {
1098 pte_chain->parent_ptes[i] = parent_pte;
1099 return;
1102 pte_chain = mmu_alloc_pte_chain(vcpu);
1103 BUG_ON(!pte_chain);
1104 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1105 pte_chain->parent_ptes[0] = parent_pte;
1108 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1109 u64 *parent_pte)
1111 struct kvm_pte_chain *pte_chain;
1112 struct hlist_node *node;
1113 int i;
1115 if (!sp->multimapped) {
1116 BUG_ON(sp->parent_pte != parent_pte);
1117 sp->parent_pte = NULL;
1118 return;
1120 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1121 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1122 if (!pte_chain->parent_ptes[i])
1123 break;
1124 if (pte_chain->parent_ptes[i] != parent_pte)
1125 continue;
1126 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1127 && pte_chain->parent_ptes[i + 1]) {
1128 pte_chain->parent_ptes[i]
1129 = pte_chain->parent_ptes[i + 1];
1130 ++i;
1132 pte_chain->parent_ptes[i] = NULL;
1133 if (i == 0) {
1134 hlist_del(&pte_chain->link);
1135 mmu_free_pte_chain(pte_chain);
1136 if (hlist_empty(&sp->parent_ptes)) {
1137 sp->multimapped = 0;
1138 sp->parent_pte = NULL;
1141 return;
1143 BUG();
1146 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1148 struct kvm_pte_chain *pte_chain;
1149 struct hlist_node *node;
1150 struct kvm_mmu_page *parent_sp;
1151 int i;
1153 if (!sp->multimapped && sp->parent_pte) {
1154 parent_sp = page_header(__pa(sp->parent_pte));
1155 fn(parent_sp, sp->parent_pte);
1156 return;
1159 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1160 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1161 u64 *spte = pte_chain->parent_ptes[i];
1163 if (!spte)
1164 break;
1165 parent_sp = page_header(__pa(spte));
1166 fn(parent_sp, spte);
1170 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1171 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1173 mmu_parent_walk(sp, mark_unsync);
1176 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1178 unsigned int index;
1180 index = spte - sp->spt;
1181 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1182 return;
1183 if (sp->unsync_children++)
1184 return;
1185 kvm_mmu_mark_parents_unsync(sp);
1188 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1189 struct kvm_mmu_page *sp)
1191 int i;
1193 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1194 sp->spt[i] = shadow_trap_nonpresent_pte;
1197 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1198 struct kvm_mmu_page *sp)
1200 return 1;
1203 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1207 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1208 struct kvm_mmu_page *sp, u64 *spte,
1209 const void *pte, unsigned long mmu_seq)
1211 WARN_ON(1);
1214 #define KVM_PAGE_ARRAY_NR 16
1216 struct kvm_mmu_pages {
1217 struct mmu_page_and_offset {
1218 struct kvm_mmu_page *sp;
1219 unsigned int idx;
1220 } page[KVM_PAGE_ARRAY_NR];
1221 unsigned int nr;
1224 #define for_each_unsync_children(bitmap, idx) \
1225 for (idx = find_first_bit(bitmap, 512); \
1226 idx < 512; \
1227 idx = find_next_bit(bitmap, 512, idx+1))
1229 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1230 int idx)
1232 int i;
1234 if (sp->unsync)
1235 for (i=0; i < pvec->nr; i++)
1236 if (pvec->page[i].sp == sp)
1237 return 0;
1239 pvec->page[pvec->nr].sp = sp;
1240 pvec->page[pvec->nr].idx = idx;
1241 pvec->nr++;
1242 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1245 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1246 struct kvm_mmu_pages *pvec)
1248 int i, ret, nr_unsync_leaf = 0;
1250 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1251 struct kvm_mmu_page *child;
1252 u64 ent = sp->spt[i];
1254 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1255 goto clear_child_bitmap;
1257 child = page_header(ent & PT64_BASE_ADDR_MASK);
1259 if (child->unsync_children) {
1260 if (mmu_pages_add(pvec, child, i))
1261 return -ENOSPC;
1263 ret = __mmu_unsync_walk(child, pvec);
1264 if (!ret)
1265 goto clear_child_bitmap;
1266 else if (ret > 0)
1267 nr_unsync_leaf += ret;
1268 else
1269 return ret;
1270 } else if (child->unsync) {
1271 nr_unsync_leaf++;
1272 if (mmu_pages_add(pvec, child, i))
1273 return -ENOSPC;
1274 } else
1275 goto clear_child_bitmap;
1277 continue;
1279 clear_child_bitmap:
1280 __clear_bit(i, sp->unsync_child_bitmap);
1281 sp->unsync_children--;
1282 WARN_ON((int)sp->unsync_children < 0);
1286 return nr_unsync_leaf;
1289 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1290 struct kvm_mmu_pages *pvec)
1292 if (!sp->unsync_children)
1293 return 0;
1295 mmu_pages_add(pvec, sp, 0);
1296 return __mmu_unsync_walk(sp, pvec);
1299 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1301 WARN_ON(!sp->unsync);
1302 trace_kvm_mmu_sync_page(sp);
1303 sp->unsync = 0;
1304 --kvm->stat.mmu_unsync;
1307 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1308 struct list_head *invalid_list);
1309 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1310 struct list_head *invalid_list);
1312 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1313 hlist_for_each_entry(sp, pos, \
1314 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1315 if ((sp)->gfn != (gfn)) {} else
1317 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1318 hlist_for_each_entry(sp, pos, \
1319 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1320 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1321 (sp)->role.invalid) {} else
1323 /* @sp->gfn should be write-protected at the call site */
1324 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1325 struct list_head *invalid_list, bool clear_unsync)
1327 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1328 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1329 return 1;
1332 if (clear_unsync)
1333 kvm_unlink_unsync_page(vcpu->kvm, sp);
1335 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1336 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1337 return 1;
1340 kvm_mmu_flush_tlb(vcpu);
1341 return 0;
1344 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1345 struct kvm_mmu_page *sp)
1347 LIST_HEAD(invalid_list);
1348 int ret;
1350 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1351 if (ret)
1352 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1354 return ret;
1357 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1358 struct list_head *invalid_list)
1360 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1363 /* @gfn should be write-protected at the call site */
1364 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1366 struct kvm_mmu_page *s;
1367 struct hlist_node *node;
1368 LIST_HEAD(invalid_list);
1369 bool flush = false;
1371 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1372 if (!s->unsync)
1373 continue;
1375 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1376 kvm_unlink_unsync_page(vcpu->kvm, s);
1377 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1378 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1379 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1380 continue;
1382 flush = true;
1385 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1386 if (flush)
1387 kvm_mmu_flush_tlb(vcpu);
1390 struct mmu_page_path {
1391 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1392 unsigned int idx[PT64_ROOT_LEVEL-1];
1395 #define for_each_sp(pvec, sp, parents, i) \
1396 for (i = mmu_pages_next(&pvec, &parents, -1), \
1397 sp = pvec.page[i].sp; \
1398 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1399 i = mmu_pages_next(&pvec, &parents, i))
1401 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1402 struct mmu_page_path *parents,
1403 int i)
1405 int n;
1407 for (n = i+1; n < pvec->nr; n++) {
1408 struct kvm_mmu_page *sp = pvec->page[n].sp;
1410 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1411 parents->idx[0] = pvec->page[n].idx;
1412 return n;
1415 parents->parent[sp->role.level-2] = sp;
1416 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1419 return n;
1422 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1424 struct kvm_mmu_page *sp;
1425 unsigned int level = 0;
1427 do {
1428 unsigned int idx = parents->idx[level];
1430 sp = parents->parent[level];
1431 if (!sp)
1432 return;
1434 --sp->unsync_children;
1435 WARN_ON((int)sp->unsync_children < 0);
1436 __clear_bit(idx, sp->unsync_child_bitmap);
1437 level++;
1438 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1441 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1442 struct mmu_page_path *parents,
1443 struct kvm_mmu_pages *pvec)
1445 parents->parent[parent->role.level-1] = NULL;
1446 pvec->nr = 0;
1449 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1450 struct kvm_mmu_page *parent)
1452 int i;
1453 struct kvm_mmu_page *sp;
1454 struct mmu_page_path parents;
1455 struct kvm_mmu_pages pages;
1456 LIST_HEAD(invalid_list);
1458 kvm_mmu_pages_init(parent, &parents, &pages);
1459 while (mmu_unsync_walk(parent, &pages)) {
1460 int protected = 0;
1462 for_each_sp(pages, sp, parents, i)
1463 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1465 if (protected)
1466 kvm_flush_remote_tlbs(vcpu->kvm);
1468 for_each_sp(pages, sp, parents, i) {
1469 kvm_sync_page(vcpu, sp, &invalid_list);
1470 mmu_pages_clear_parents(&parents);
1472 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1473 cond_resched_lock(&vcpu->kvm->mmu_lock);
1474 kvm_mmu_pages_init(parent, &parents, &pages);
1478 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1479 gfn_t gfn,
1480 gva_t gaddr,
1481 unsigned level,
1482 int direct,
1483 unsigned access,
1484 u64 *parent_pte)
1486 union kvm_mmu_page_role role;
1487 unsigned quadrant;
1488 struct kvm_mmu_page *sp;
1489 struct hlist_node *node;
1490 bool need_sync = false;
1492 role = vcpu->arch.mmu.base_role;
1493 role.level = level;
1494 role.direct = direct;
1495 if (role.direct)
1496 role.cr4_pae = 0;
1497 role.access = access;
1498 if (!vcpu->arch.mmu.direct_map
1499 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1500 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1501 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1502 role.quadrant = quadrant;
1504 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1505 if (!need_sync && sp->unsync)
1506 need_sync = true;
1508 if (sp->role.word != role.word)
1509 continue;
1511 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1512 break;
1514 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1515 if (sp->unsync_children) {
1516 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1517 kvm_mmu_mark_parents_unsync(sp);
1518 } else if (sp->unsync)
1519 kvm_mmu_mark_parents_unsync(sp);
1521 trace_kvm_mmu_get_page(sp, false);
1522 return sp;
1524 ++vcpu->kvm->stat.mmu_cache_miss;
1525 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1526 if (!sp)
1527 return sp;
1528 sp->gfn = gfn;
1529 sp->role = role;
1530 hlist_add_head(&sp->hash_link,
1531 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1532 if (!direct) {
1533 if (rmap_write_protect(vcpu->kvm, gfn))
1534 kvm_flush_remote_tlbs(vcpu->kvm);
1535 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1536 kvm_sync_pages(vcpu, gfn);
1538 account_shadowed(vcpu->kvm, gfn);
1540 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1541 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1542 else
1543 nonpaging_prefetch_page(vcpu, sp);
1544 trace_kvm_mmu_get_page(sp, true);
1545 return sp;
1548 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1549 struct kvm_vcpu *vcpu, u64 addr)
1551 iterator->addr = addr;
1552 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1553 iterator->level = vcpu->arch.mmu.shadow_root_level;
1555 if (iterator->level == PT64_ROOT_LEVEL &&
1556 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1557 !vcpu->arch.mmu.direct_map)
1558 --iterator->level;
1560 if (iterator->level == PT32E_ROOT_LEVEL) {
1561 iterator->shadow_addr
1562 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1563 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1564 --iterator->level;
1565 if (!iterator->shadow_addr)
1566 iterator->level = 0;
1570 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1572 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1573 return false;
1575 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1576 if (is_large_pte(*iterator->sptep))
1577 return false;
1579 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1580 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1581 return true;
1584 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1586 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1587 --iterator->level;
1590 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1592 u64 spte;
1594 spte = __pa(sp->spt)
1595 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1596 | PT_WRITABLE_MASK | PT_USER_MASK;
1597 __set_spte(sptep, spte);
1600 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1602 if (is_large_pte(*sptep)) {
1603 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1604 kvm_flush_remote_tlbs(vcpu->kvm);
1608 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1609 unsigned direct_access)
1611 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1612 struct kvm_mmu_page *child;
1615 * For the direct sp, if the guest pte's dirty bit
1616 * changed form clean to dirty, it will corrupt the
1617 * sp's access: allow writable in the read-only sp,
1618 * so we should update the spte at this point to get
1619 * a new sp with the correct access.
1621 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1622 if (child->role.access == direct_access)
1623 return;
1625 mmu_page_remove_parent_pte(child, sptep);
1626 __set_spte(sptep, shadow_trap_nonpresent_pte);
1627 kvm_flush_remote_tlbs(vcpu->kvm);
1631 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1632 struct kvm_mmu_page *sp)
1634 unsigned i;
1635 u64 *pt;
1636 u64 ent;
1638 pt = sp->spt;
1640 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1641 ent = pt[i];
1643 if (is_shadow_present_pte(ent)) {
1644 if (!is_last_spte(ent, sp->role.level)) {
1645 ent &= PT64_BASE_ADDR_MASK;
1646 mmu_page_remove_parent_pte(page_header(ent),
1647 &pt[i]);
1648 } else {
1649 if (is_large_pte(ent))
1650 --kvm->stat.lpages;
1651 drop_spte(kvm, &pt[i],
1652 shadow_trap_nonpresent_pte);
1655 pt[i] = shadow_trap_nonpresent_pte;
1659 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1661 mmu_page_remove_parent_pte(sp, parent_pte);
1664 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1666 int i;
1667 struct kvm_vcpu *vcpu;
1669 kvm_for_each_vcpu(i, vcpu, kvm)
1670 vcpu->arch.last_pte_updated = NULL;
1673 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1675 u64 *parent_pte;
1677 while (sp->multimapped || sp->parent_pte) {
1678 if (!sp->multimapped)
1679 parent_pte = sp->parent_pte;
1680 else {
1681 struct kvm_pte_chain *chain;
1683 chain = container_of(sp->parent_ptes.first,
1684 struct kvm_pte_chain, link);
1685 parent_pte = chain->parent_ptes[0];
1687 BUG_ON(!parent_pte);
1688 kvm_mmu_put_page(sp, parent_pte);
1689 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1693 static int mmu_zap_unsync_children(struct kvm *kvm,
1694 struct kvm_mmu_page *parent,
1695 struct list_head *invalid_list)
1697 int i, zapped = 0;
1698 struct mmu_page_path parents;
1699 struct kvm_mmu_pages pages;
1701 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1702 return 0;
1704 kvm_mmu_pages_init(parent, &parents, &pages);
1705 while (mmu_unsync_walk(parent, &pages)) {
1706 struct kvm_mmu_page *sp;
1708 for_each_sp(pages, sp, parents, i) {
1709 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1710 mmu_pages_clear_parents(&parents);
1711 zapped++;
1713 kvm_mmu_pages_init(parent, &parents, &pages);
1716 return zapped;
1719 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1720 struct list_head *invalid_list)
1722 int ret;
1724 trace_kvm_mmu_prepare_zap_page(sp);
1725 ++kvm->stat.mmu_shadow_zapped;
1726 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1727 kvm_mmu_page_unlink_children(kvm, sp);
1728 kvm_mmu_unlink_parents(kvm, sp);
1729 if (!sp->role.invalid && !sp->role.direct)
1730 unaccount_shadowed(kvm, sp->gfn);
1731 if (sp->unsync)
1732 kvm_unlink_unsync_page(kvm, sp);
1733 if (!sp->root_count) {
1734 /* Count self */
1735 ret++;
1736 list_move(&sp->link, invalid_list);
1737 } else {
1738 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1739 kvm_reload_remote_mmus(kvm);
1742 sp->role.invalid = 1;
1743 kvm_mmu_reset_last_pte_updated(kvm);
1744 return ret;
1747 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1748 struct list_head *invalid_list)
1750 struct kvm_mmu_page *sp;
1752 if (list_empty(invalid_list))
1753 return;
1755 kvm_flush_remote_tlbs(kvm);
1757 do {
1758 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1759 WARN_ON(!sp->role.invalid || sp->root_count);
1760 kvm_mmu_free_page(kvm, sp);
1761 } while (!list_empty(invalid_list));
1766 * Changing the number of mmu pages allocated to the vm
1767 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1769 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1771 LIST_HEAD(invalid_list);
1773 * If we set the number of mmu pages to be smaller be than the
1774 * number of actived pages , we must to free some mmu pages before we
1775 * change the value
1778 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1779 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1780 !list_empty(&kvm->arch.active_mmu_pages)) {
1781 struct kvm_mmu_page *page;
1783 page = container_of(kvm->arch.active_mmu_pages.prev,
1784 struct kvm_mmu_page, link);
1785 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1786 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1788 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1791 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1794 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1796 struct kvm_mmu_page *sp;
1797 struct hlist_node *node;
1798 LIST_HEAD(invalid_list);
1799 int r;
1801 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1802 r = 0;
1804 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1805 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1806 sp->role.word);
1807 r = 1;
1808 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1810 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1811 return r;
1814 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1816 struct kvm_mmu_page *sp;
1817 struct hlist_node *node;
1818 LIST_HEAD(invalid_list);
1820 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1821 pgprintk("%s: zap %llx %x\n",
1822 __func__, gfn, sp->role.word);
1823 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1825 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1828 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1830 int slot = memslot_id(kvm, gfn);
1831 struct kvm_mmu_page *sp = page_header(__pa(pte));
1833 __set_bit(slot, sp->slot_bitmap);
1836 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1838 int i;
1839 u64 *pt = sp->spt;
1841 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1842 return;
1844 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1845 if (pt[i] == shadow_notrap_nonpresent_pte)
1846 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1851 * The function is based on mtrr_type_lookup() in
1852 * arch/x86/kernel/cpu/mtrr/generic.c
1854 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1855 u64 start, u64 end)
1857 int i;
1858 u64 base, mask;
1859 u8 prev_match, curr_match;
1860 int num_var_ranges = KVM_NR_VAR_MTRR;
1862 if (!mtrr_state->enabled)
1863 return 0xFF;
1865 /* Make end inclusive end, instead of exclusive */
1866 end--;
1868 /* Look in fixed ranges. Just return the type as per start */
1869 if (mtrr_state->have_fixed && (start < 0x100000)) {
1870 int idx;
1872 if (start < 0x80000) {
1873 idx = 0;
1874 idx += (start >> 16);
1875 return mtrr_state->fixed_ranges[idx];
1876 } else if (start < 0xC0000) {
1877 idx = 1 * 8;
1878 idx += ((start - 0x80000) >> 14);
1879 return mtrr_state->fixed_ranges[idx];
1880 } else if (start < 0x1000000) {
1881 idx = 3 * 8;
1882 idx += ((start - 0xC0000) >> 12);
1883 return mtrr_state->fixed_ranges[idx];
1888 * Look in variable ranges
1889 * Look of multiple ranges matching this address and pick type
1890 * as per MTRR precedence
1892 if (!(mtrr_state->enabled & 2))
1893 return mtrr_state->def_type;
1895 prev_match = 0xFF;
1896 for (i = 0; i < num_var_ranges; ++i) {
1897 unsigned short start_state, end_state;
1899 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1900 continue;
1902 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1903 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1904 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1905 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1907 start_state = ((start & mask) == (base & mask));
1908 end_state = ((end & mask) == (base & mask));
1909 if (start_state != end_state)
1910 return 0xFE;
1912 if ((start & mask) != (base & mask))
1913 continue;
1915 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1916 if (prev_match == 0xFF) {
1917 prev_match = curr_match;
1918 continue;
1921 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1922 curr_match == MTRR_TYPE_UNCACHABLE)
1923 return MTRR_TYPE_UNCACHABLE;
1925 if ((prev_match == MTRR_TYPE_WRBACK &&
1926 curr_match == MTRR_TYPE_WRTHROUGH) ||
1927 (prev_match == MTRR_TYPE_WRTHROUGH &&
1928 curr_match == MTRR_TYPE_WRBACK)) {
1929 prev_match = MTRR_TYPE_WRTHROUGH;
1930 curr_match = MTRR_TYPE_WRTHROUGH;
1933 if (prev_match != curr_match)
1934 return MTRR_TYPE_UNCACHABLE;
1937 if (prev_match != 0xFF)
1938 return prev_match;
1940 return mtrr_state->def_type;
1943 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1945 u8 mtrr;
1947 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1948 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1949 if (mtrr == 0xfe || mtrr == 0xff)
1950 mtrr = MTRR_TYPE_WRBACK;
1951 return mtrr;
1953 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1955 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1957 trace_kvm_mmu_unsync_page(sp);
1958 ++vcpu->kvm->stat.mmu_unsync;
1959 sp->unsync = 1;
1961 kvm_mmu_mark_parents_unsync(sp);
1962 mmu_convert_notrap(sp);
1965 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1967 struct kvm_mmu_page *s;
1968 struct hlist_node *node;
1970 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1971 if (s->unsync)
1972 continue;
1973 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1974 __kvm_unsync_page(vcpu, s);
1978 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1979 bool can_unsync)
1981 struct kvm_mmu_page *s;
1982 struct hlist_node *node;
1983 bool need_unsync = false;
1985 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1986 if (!can_unsync)
1987 return 1;
1989 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1990 return 1;
1992 if (!need_unsync && !s->unsync) {
1993 if (!oos_shadow)
1994 return 1;
1995 need_unsync = true;
1998 if (need_unsync)
1999 kvm_unsync_pages(vcpu, gfn);
2000 return 0;
2003 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2004 unsigned pte_access, int user_fault,
2005 int write_fault, int dirty, int level,
2006 gfn_t gfn, pfn_t pfn, bool speculative,
2007 bool can_unsync, bool host_writable)
2009 u64 spte, entry = *sptep;
2010 int ret = 0;
2013 * We don't set the accessed bit, since we sometimes want to see
2014 * whether the guest actually used the pte (in order to detect
2015 * demand paging).
2017 spte = PT_PRESENT_MASK;
2018 if (!speculative)
2019 spte |= shadow_accessed_mask;
2020 if (!dirty)
2021 pte_access &= ~ACC_WRITE_MASK;
2022 if (pte_access & ACC_EXEC_MASK)
2023 spte |= shadow_x_mask;
2024 else
2025 spte |= shadow_nx_mask;
2026 if (pte_access & ACC_USER_MASK)
2027 spte |= shadow_user_mask;
2028 if (level > PT_PAGE_TABLE_LEVEL)
2029 spte |= PT_PAGE_SIZE_MASK;
2030 if (tdp_enabled)
2031 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2032 kvm_is_mmio_pfn(pfn));
2034 if (host_writable)
2035 spte |= SPTE_HOST_WRITEABLE;
2036 else
2037 pte_access &= ~ACC_WRITE_MASK;
2039 spte |= (u64)pfn << PAGE_SHIFT;
2041 if ((pte_access & ACC_WRITE_MASK)
2042 || (!vcpu->arch.mmu.direct_map && write_fault
2043 && !is_write_protection(vcpu) && !user_fault)) {
2045 if (level > PT_PAGE_TABLE_LEVEL &&
2046 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2047 ret = 1;
2048 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2049 goto done;
2052 spte |= PT_WRITABLE_MASK;
2054 if (!vcpu->arch.mmu.direct_map
2055 && !(pte_access & ACC_WRITE_MASK))
2056 spte &= ~PT_USER_MASK;
2059 * Optimization: for pte sync, if spte was writable the hash
2060 * lookup is unnecessary (and expensive). Write protection
2061 * is responsibility of mmu_get_page / kvm_sync_page.
2062 * Same reasoning can be applied to dirty page accounting.
2064 if (!can_unsync && is_writable_pte(*sptep))
2065 goto set_pte;
2067 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2068 pgprintk("%s: found shadow page for %llx, marking ro\n",
2069 __func__, gfn);
2070 ret = 1;
2071 pte_access &= ~ACC_WRITE_MASK;
2072 if (is_writable_pte(spte))
2073 spte &= ~PT_WRITABLE_MASK;
2077 if (pte_access & ACC_WRITE_MASK)
2078 mark_page_dirty(vcpu->kvm, gfn);
2080 set_pte:
2081 update_spte(sptep, spte);
2083 * If we overwrite a writable spte with a read-only one we
2084 * should flush remote TLBs. Otherwise rmap_write_protect
2085 * will find a read-only spte, even though the writable spte
2086 * might be cached on a CPU's TLB.
2088 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2089 kvm_flush_remote_tlbs(vcpu->kvm);
2090 done:
2091 return ret;
2094 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2095 unsigned pt_access, unsigned pte_access,
2096 int user_fault, int write_fault, int dirty,
2097 int *ptwrite, int level, gfn_t gfn,
2098 pfn_t pfn, bool speculative,
2099 bool host_writable)
2101 int was_rmapped = 0;
2102 int rmap_count;
2104 pgprintk("%s: spte %llx access %x write_fault %d"
2105 " user_fault %d gfn %llx\n",
2106 __func__, *sptep, pt_access,
2107 write_fault, user_fault, gfn);
2109 if (is_rmap_spte(*sptep)) {
2111 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2112 * the parent of the now unreachable PTE.
2114 if (level > PT_PAGE_TABLE_LEVEL &&
2115 !is_large_pte(*sptep)) {
2116 struct kvm_mmu_page *child;
2117 u64 pte = *sptep;
2119 child = page_header(pte & PT64_BASE_ADDR_MASK);
2120 mmu_page_remove_parent_pte(child, sptep);
2121 __set_spte(sptep, shadow_trap_nonpresent_pte);
2122 kvm_flush_remote_tlbs(vcpu->kvm);
2123 } else if (pfn != spte_to_pfn(*sptep)) {
2124 pgprintk("hfn old %llx new %llx\n",
2125 spte_to_pfn(*sptep), pfn);
2126 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2127 kvm_flush_remote_tlbs(vcpu->kvm);
2128 } else
2129 was_rmapped = 1;
2132 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2133 dirty, level, gfn, pfn, speculative, true,
2134 host_writable)) {
2135 if (write_fault)
2136 *ptwrite = 1;
2137 kvm_mmu_flush_tlb(vcpu);
2140 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2141 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2142 is_large_pte(*sptep)? "2MB" : "4kB",
2143 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2144 *sptep, sptep);
2145 if (!was_rmapped && is_large_pte(*sptep))
2146 ++vcpu->kvm->stat.lpages;
2148 page_header_update_slot(vcpu->kvm, sptep, gfn);
2149 if (!was_rmapped) {
2150 rmap_count = rmap_add(vcpu, sptep, gfn);
2151 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2152 rmap_recycle(vcpu, sptep, gfn);
2154 kvm_release_pfn_clean(pfn);
2155 if (speculative) {
2156 vcpu->arch.last_pte_updated = sptep;
2157 vcpu->arch.last_pte_gfn = gfn;
2161 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2165 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2166 bool no_dirty_log)
2168 struct kvm_memory_slot *slot;
2169 unsigned long hva;
2171 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2172 if (!slot) {
2173 get_page(bad_page);
2174 return page_to_pfn(bad_page);
2177 hva = gfn_to_hva_memslot(slot, gfn);
2179 return hva_to_pfn_atomic(vcpu->kvm, hva);
2182 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2183 struct kvm_mmu_page *sp,
2184 u64 *start, u64 *end)
2186 struct page *pages[PTE_PREFETCH_NUM];
2187 unsigned access = sp->role.access;
2188 int i, ret;
2189 gfn_t gfn;
2191 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2192 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2193 return -1;
2195 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2196 if (ret <= 0)
2197 return -1;
2199 for (i = 0; i < ret; i++, gfn++, start++)
2200 mmu_set_spte(vcpu, start, ACC_ALL,
2201 access, 0, 0, 1, NULL,
2202 sp->role.level, gfn,
2203 page_to_pfn(pages[i]), true, true);
2205 return 0;
2208 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2209 struct kvm_mmu_page *sp, u64 *sptep)
2211 u64 *spte, *start = NULL;
2212 int i;
2214 WARN_ON(!sp->role.direct);
2216 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2217 spte = sp->spt + i;
2219 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2220 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2221 if (!start)
2222 continue;
2223 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2224 break;
2225 start = NULL;
2226 } else if (!start)
2227 start = spte;
2231 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2233 struct kvm_mmu_page *sp;
2236 * Since it's no accessed bit on EPT, it's no way to
2237 * distinguish between actually accessed translations
2238 * and prefetched, so disable pte prefetch if EPT is
2239 * enabled.
2241 if (!shadow_accessed_mask)
2242 return;
2244 sp = page_header(__pa(sptep));
2245 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2246 return;
2248 __direct_pte_prefetch(vcpu, sp, sptep);
2251 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2252 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2253 bool prefault)
2255 struct kvm_shadow_walk_iterator iterator;
2256 struct kvm_mmu_page *sp;
2257 int pt_write = 0;
2258 gfn_t pseudo_gfn;
2260 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2261 if (iterator.level == level) {
2262 unsigned pte_access = ACC_ALL;
2264 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2265 0, write, 1, &pt_write,
2266 level, gfn, pfn, prefault, map_writable);
2267 direct_pte_prefetch(vcpu, iterator.sptep);
2268 ++vcpu->stat.pf_fixed;
2269 break;
2272 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2273 u64 base_addr = iterator.addr;
2275 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2276 pseudo_gfn = base_addr >> PAGE_SHIFT;
2277 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2278 iterator.level - 1,
2279 1, ACC_ALL, iterator.sptep);
2280 if (!sp) {
2281 pgprintk("nonpaging_map: ENOMEM\n");
2282 kvm_release_pfn_clean(pfn);
2283 return -ENOMEM;
2286 __set_spte(iterator.sptep,
2287 __pa(sp->spt)
2288 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2289 | shadow_user_mask | shadow_x_mask
2290 | shadow_accessed_mask);
2293 return pt_write;
2296 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2298 siginfo_t info;
2300 info.si_signo = SIGBUS;
2301 info.si_errno = 0;
2302 info.si_code = BUS_MCEERR_AR;
2303 info.si_addr = (void __user *)address;
2304 info.si_addr_lsb = PAGE_SHIFT;
2306 send_sig_info(SIGBUS, &info, tsk);
2309 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2311 kvm_release_pfn_clean(pfn);
2312 if (is_hwpoison_pfn(pfn)) {
2313 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2314 return 0;
2315 } else if (is_fault_pfn(pfn))
2316 return -EFAULT;
2318 return 1;
2321 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2322 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2324 pfn_t pfn = *pfnp;
2325 gfn_t gfn = *gfnp;
2326 int level = *levelp;
2329 * Check if it's a transparent hugepage. If this would be an
2330 * hugetlbfs page, level wouldn't be set to
2331 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2332 * here.
2334 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2335 level == PT_PAGE_TABLE_LEVEL &&
2336 PageTransCompound(pfn_to_page(pfn)) &&
2337 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2338 unsigned long mask;
2340 * mmu_notifier_retry was successful and we hold the
2341 * mmu_lock here, so the pmd can't become splitting
2342 * from under us, and in turn
2343 * __split_huge_page_refcount() can't run from under
2344 * us and we can safely transfer the refcount from
2345 * PG_tail to PG_head as we switch the pfn to tail to
2346 * head.
2348 *levelp = level = PT_DIRECTORY_LEVEL;
2349 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2350 VM_BUG_ON((gfn & mask) != (pfn & mask));
2351 if (pfn & mask) {
2352 gfn &= ~mask;
2353 *gfnp = gfn;
2354 kvm_release_pfn_clean(pfn);
2355 pfn &= ~mask;
2356 if (!get_page_unless_zero(pfn_to_page(pfn)))
2357 BUG();
2358 *pfnp = pfn;
2363 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2364 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2366 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2367 bool prefault)
2369 int r;
2370 int level;
2371 int force_pt_level;
2372 pfn_t pfn;
2373 unsigned long mmu_seq;
2374 bool map_writable;
2376 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2377 if (likely(!force_pt_level)) {
2378 level = mapping_level(vcpu, gfn);
2380 * This path builds a PAE pagetable - so we can map
2381 * 2mb pages at maximum. Therefore check if the level
2382 * is larger than that.
2384 if (level > PT_DIRECTORY_LEVEL)
2385 level = PT_DIRECTORY_LEVEL;
2387 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2388 } else
2389 level = PT_PAGE_TABLE_LEVEL;
2391 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2392 smp_rmb();
2394 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2395 return 0;
2397 /* mmio */
2398 if (is_error_pfn(pfn))
2399 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2401 spin_lock(&vcpu->kvm->mmu_lock);
2402 if (mmu_notifier_retry(vcpu, mmu_seq))
2403 goto out_unlock;
2404 kvm_mmu_free_some_pages(vcpu);
2405 if (likely(!force_pt_level))
2406 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2407 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2408 prefault);
2409 spin_unlock(&vcpu->kvm->mmu_lock);
2412 return r;
2414 out_unlock:
2415 spin_unlock(&vcpu->kvm->mmu_lock);
2416 kvm_release_pfn_clean(pfn);
2417 return 0;
2421 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2423 int i;
2424 struct kvm_mmu_page *sp;
2425 LIST_HEAD(invalid_list);
2427 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2428 return;
2429 spin_lock(&vcpu->kvm->mmu_lock);
2430 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2431 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2432 vcpu->arch.mmu.direct_map)) {
2433 hpa_t root = vcpu->arch.mmu.root_hpa;
2435 sp = page_header(root);
2436 --sp->root_count;
2437 if (!sp->root_count && sp->role.invalid) {
2438 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2439 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2441 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2442 spin_unlock(&vcpu->kvm->mmu_lock);
2443 return;
2445 for (i = 0; i < 4; ++i) {
2446 hpa_t root = vcpu->arch.mmu.pae_root[i];
2448 if (root) {
2449 root &= PT64_BASE_ADDR_MASK;
2450 sp = page_header(root);
2451 --sp->root_count;
2452 if (!sp->root_count && sp->role.invalid)
2453 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2454 &invalid_list);
2456 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2458 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2459 spin_unlock(&vcpu->kvm->mmu_lock);
2460 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2463 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2465 int ret = 0;
2467 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2468 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2469 ret = 1;
2472 return ret;
2475 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2477 struct kvm_mmu_page *sp;
2478 unsigned i;
2480 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2481 spin_lock(&vcpu->kvm->mmu_lock);
2482 kvm_mmu_free_some_pages(vcpu);
2483 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2484 1, ACC_ALL, NULL);
2485 ++sp->root_count;
2486 spin_unlock(&vcpu->kvm->mmu_lock);
2487 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2488 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2489 for (i = 0; i < 4; ++i) {
2490 hpa_t root = vcpu->arch.mmu.pae_root[i];
2492 ASSERT(!VALID_PAGE(root));
2493 spin_lock(&vcpu->kvm->mmu_lock);
2494 kvm_mmu_free_some_pages(vcpu);
2495 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2496 i << 30,
2497 PT32_ROOT_LEVEL, 1, ACC_ALL,
2498 NULL);
2499 root = __pa(sp->spt);
2500 ++sp->root_count;
2501 spin_unlock(&vcpu->kvm->mmu_lock);
2502 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2504 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2505 } else
2506 BUG();
2508 return 0;
2511 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2513 struct kvm_mmu_page *sp;
2514 u64 pdptr, pm_mask;
2515 gfn_t root_gfn;
2516 int i;
2518 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2520 if (mmu_check_root(vcpu, root_gfn))
2521 return 1;
2524 * Do we shadow a long mode page table? If so we need to
2525 * write-protect the guests page table root.
2527 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2528 hpa_t root = vcpu->arch.mmu.root_hpa;
2530 ASSERT(!VALID_PAGE(root));
2532 spin_lock(&vcpu->kvm->mmu_lock);
2533 kvm_mmu_free_some_pages(vcpu);
2534 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2535 0, ACC_ALL, NULL);
2536 root = __pa(sp->spt);
2537 ++sp->root_count;
2538 spin_unlock(&vcpu->kvm->mmu_lock);
2539 vcpu->arch.mmu.root_hpa = root;
2540 return 0;
2544 * We shadow a 32 bit page table. This may be a legacy 2-level
2545 * or a PAE 3-level page table. In either case we need to be aware that
2546 * the shadow page table may be a PAE or a long mode page table.
2548 pm_mask = PT_PRESENT_MASK;
2549 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2550 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2552 for (i = 0; i < 4; ++i) {
2553 hpa_t root = vcpu->arch.mmu.pae_root[i];
2555 ASSERT(!VALID_PAGE(root));
2556 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2557 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2558 if (!is_present_gpte(pdptr)) {
2559 vcpu->arch.mmu.pae_root[i] = 0;
2560 continue;
2562 root_gfn = pdptr >> PAGE_SHIFT;
2563 if (mmu_check_root(vcpu, root_gfn))
2564 return 1;
2566 spin_lock(&vcpu->kvm->mmu_lock);
2567 kvm_mmu_free_some_pages(vcpu);
2568 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2569 PT32_ROOT_LEVEL, 0,
2570 ACC_ALL, NULL);
2571 root = __pa(sp->spt);
2572 ++sp->root_count;
2573 spin_unlock(&vcpu->kvm->mmu_lock);
2575 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2577 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2580 * If we shadow a 32 bit page table with a long mode page
2581 * table we enter this path.
2583 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2584 if (vcpu->arch.mmu.lm_root == NULL) {
2586 * The additional page necessary for this is only
2587 * allocated on demand.
2590 u64 *lm_root;
2592 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2593 if (lm_root == NULL)
2594 return 1;
2596 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2598 vcpu->arch.mmu.lm_root = lm_root;
2601 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2604 return 0;
2607 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2609 if (vcpu->arch.mmu.direct_map)
2610 return mmu_alloc_direct_roots(vcpu);
2611 else
2612 return mmu_alloc_shadow_roots(vcpu);
2615 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2617 int i;
2618 struct kvm_mmu_page *sp;
2620 if (vcpu->arch.mmu.direct_map)
2621 return;
2623 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2624 return;
2626 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2627 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2628 hpa_t root = vcpu->arch.mmu.root_hpa;
2629 sp = page_header(root);
2630 mmu_sync_children(vcpu, sp);
2631 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2632 return;
2634 for (i = 0; i < 4; ++i) {
2635 hpa_t root = vcpu->arch.mmu.pae_root[i];
2637 if (root && VALID_PAGE(root)) {
2638 root &= PT64_BASE_ADDR_MASK;
2639 sp = page_header(root);
2640 mmu_sync_children(vcpu, sp);
2643 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2646 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2648 spin_lock(&vcpu->kvm->mmu_lock);
2649 mmu_sync_roots(vcpu);
2650 spin_unlock(&vcpu->kvm->mmu_lock);
2653 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2654 u32 access, struct x86_exception *exception)
2656 if (exception)
2657 exception->error_code = 0;
2658 return vaddr;
2661 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2662 u32 access,
2663 struct x86_exception *exception)
2665 if (exception)
2666 exception->error_code = 0;
2667 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2670 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2671 u32 error_code, bool prefault)
2673 gfn_t gfn;
2674 int r;
2676 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2677 r = mmu_topup_memory_caches(vcpu);
2678 if (r)
2679 return r;
2681 ASSERT(vcpu);
2682 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2684 gfn = gva >> PAGE_SHIFT;
2686 return nonpaging_map(vcpu, gva & PAGE_MASK,
2687 error_code & PFERR_WRITE_MASK, gfn, prefault);
2690 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2692 struct kvm_arch_async_pf arch;
2694 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2695 arch.gfn = gfn;
2696 arch.direct_map = vcpu->arch.mmu.direct_map;
2697 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2699 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2702 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2704 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2705 kvm_event_needs_reinjection(vcpu)))
2706 return false;
2708 return kvm_x86_ops->interrupt_allowed(vcpu);
2711 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2712 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2714 bool async;
2716 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2718 if (!async)
2719 return false; /* *pfn has correct page already */
2721 put_page(pfn_to_page(*pfn));
2723 if (!prefault && can_do_async_pf(vcpu)) {
2724 trace_kvm_try_async_get_page(gva, gfn);
2725 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2726 trace_kvm_async_pf_doublefault(gva, gfn);
2727 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2728 return true;
2729 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2730 return true;
2733 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2735 return false;
2738 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2739 bool prefault)
2741 pfn_t pfn;
2742 int r;
2743 int level;
2744 int force_pt_level;
2745 gfn_t gfn = gpa >> PAGE_SHIFT;
2746 unsigned long mmu_seq;
2747 int write = error_code & PFERR_WRITE_MASK;
2748 bool map_writable;
2750 ASSERT(vcpu);
2751 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2753 r = mmu_topup_memory_caches(vcpu);
2754 if (r)
2755 return r;
2757 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2758 if (likely(!force_pt_level)) {
2759 level = mapping_level(vcpu, gfn);
2760 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2761 } else
2762 level = PT_PAGE_TABLE_LEVEL;
2764 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2765 smp_rmb();
2767 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2768 return 0;
2770 /* mmio */
2771 if (is_error_pfn(pfn))
2772 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2773 spin_lock(&vcpu->kvm->mmu_lock);
2774 if (mmu_notifier_retry(vcpu, mmu_seq))
2775 goto out_unlock;
2776 kvm_mmu_free_some_pages(vcpu);
2777 if (likely(!force_pt_level))
2778 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2779 r = __direct_map(vcpu, gpa, write, map_writable,
2780 level, gfn, pfn, prefault);
2781 spin_unlock(&vcpu->kvm->mmu_lock);
2783 return r;
2785 out_unlock:
2786 spin_unlock(&vcpu->kvm->mmu_lock);
2787 kvm_release_pfn_clean(pfn);
2788 return 0;
2791 static void nonpaging_free(struct kvm_vcpu *vcpu)
2793 mmu_free_roots(vcpu);
2796 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2797 struct kvm_mmu *context)
2799 context->new_cr3 = nonpaging_new_cr3;
2800 context->page_fault = nonpaging_page_fault;
2801 context->gva_to_gpa = nonpaging_gva_to_gpa;
2802 context->free = nonpaging_free;
2803 context->prefetch_page = nonpaging_prefetch_page;
2804 context->sync_page = nonpaging_sync_page;
2805 context->invlpg = nonpaging_invlpg;
2806 context->update_pte = nonpaging_update_pte;
2807 context->root_level = 0;
2808 context->shadow_root_level = PT32E_ROOT_LEVEL;
2809 context->root_hpa = INVALID_PAGE;
2810 context->direct_map = true;
2811 context->nx = false;
2812 return 0;
2815 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2817 ++vcpu->stat.tlb_flush;
2818 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2821 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2823 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2824 mmu_free_roots(vcpu);
2827 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2829 return kvm_read_cr3(vcpu);
2832 static void inject_page_fault(struct kvm_vcpu *vcpu,
2833 struct x86_exception *fault)
2835 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2838 static void paging_free(struct kvm_vcpu *vcpu)
2840 nonpaging_free(vcpu);
2843 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2845 int bit7;
2847 bit7 = (gpte >> 7) & 1;
2848 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2851 #define PTTYPE 64
2852 #include "paging_tmpl.h"
2853 #undef PTTYPE
2855 #define PTTYPE 32
2856 #include "paging_tmpl.h"
2857 #undef PTTYPE
2859 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2860 struct kvm_mmu *context,
2861 int level)
2863 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2864 u64 exb_bit_rsvd = 0;
2866 if (!context->nx)
2867 exb_bit_rsvd = rsvd_bits(63, 63);
2868 switch (level) {
2869 case PT32_ROOT_LEVEL:
2870 /* no rsvd bits for 2 level 4K page table entries */
2871 context->rsvd_bits_mask[0][1] = 0;
2872 context->rsvd_bits_mask[0][0] = 0;
2873 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2875 if (!is_pse(vcpu)) {
2876 context->rsvd_bits_mask[1][1] = 0;
2877 break;
2880 if (is_cpuid_PSE36())
2881 /* 36bits PSE 4MB page */
2882 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2883 else
2884 /* 32 bits PSE 4MB page */
2885 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2886 break;
2887 case PT32E_ROOT_LEVEL:
2888 context->rsvd_bits_mask[0][2] =
2889 rsvd_bits(maxphyaddr, 63) |
2890 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2891 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2892 rsvd_bits(maxphyaddr, 62); /* PDE */
2893 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2894 rsvd_bits(maxphyaddr, 62); /* PTE */
2895 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2896 rsvd_bits(maxphyaddr, 62) |
2897 rsvd_bits(13, 20); /* large page */
2898 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2899 break;
2900 case PT64_ROOT_LEVEL:
2901 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2902 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2903 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2904 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2905 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2906 rsvd_bits(maxphyaddr, 51);
2907 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2908 rsvd_bits(maxphyaddr, 51);
2909 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2910 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2911 rsvd_bits(maxphyaddr, 51) |
2912 rsvd_bits(13, 29);
2913 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2914 rsvd_bits(maxphyaddr, 51) |
2915 rsvd_bits(13, 20); /* large page */
2916 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2917 break;
2921 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2922 struct kvm_mmu *context,
2923 int level)
2925 context->nx = is_nx(vcpu);
2927 reset_rsvds_bits_mask(vcpu, context, level);
2929 ASSERT(is_pae(vcpu));
2930 context->new_cr3 = paging_new_cr3;
2931 context->page_fault = paging64_page_fault;
2932 context->gva_to_gpa = paging64_gva_to_gpa;
2933 context->prefetch_page = paging64_prefetch_page;
2934 context->sync_page = paging64_sync_page;
2935 context->invlpg = paging64_invlpg;
2936 context->update_pte = paging64_update_pte;
2937 context->free = paging_free;
2938 context->root_level = level;
2939 context->shadow_root_level = level;
2940 context->root_hpa = INVALID_PAGE;
2941 context->direct_map = false;
2942 return 0;
2945 static int paging64_init_context(struct kvm_vcpu *vcpu,
2946 struct kvm_mmu *context)
2948 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2951 static int paging32_init_context(struct kvm_vcpu *vcpu,
2952 struct kvm_mmu *context)
2954 context->nx = false;
2956 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2958 context->new_cr3 = paging_new_cr3;
2959 context->page_fault = paging32_page_fault;
2960 context->gva_to_gpa = paging32_gva_to_gpa;
2961 context->free = paging_free;
2962 context->prefetch_page = paging32_prefetch_page;
2963 context->sync_page = paging32_sync_page;
2964 context->invlpg = paging32_invlpg;
2965 context->update_pte = paging32_update_pte;
2966 context->root_level = PT32_ROOT_LEVEL;
2967 context->shadow_root_level = PT32E_ROOT_LEVEL;
2968 context->root_hpa = INVALID_PAGE;
2969 context->direct_map = false;
2970 return 0;
2973 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2974 struct kvm_mmu *context)
2976 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2979 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2981 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2983 context->base_role.word = 0;
2984 context->new_cr3 = nonpaging_new_cr3;
2985 context->page_fault = tdp_page_fault;
2986 context->free = nonpaging_free;
2987 context->prefetch_page = nonpaging_prefetch_page;
2988 context->sync_page = nonpaging_sync_page;
2989 context->invlpg = nonpaging_invlpg;
2990 context->update_pte = nonpaging_update_pte;
2991 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2992 context->root_hpa = INVALID_PAGE;
2993 context->direct_map = true;
2994 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2995 context->get_cr3 = get_cr3;
2996 context->inject_page_fault = kvm_inject_page_fault;
2997 context->nx = is_nx(vcpu);
2999 if (!is_paging(vcpu)) {
3000 context->nx = false;
3001 context->gva_to_gpa = nonpaging_gva_to_gpa;
3002 context->root_level = 0;
3003 } else if (is_long_mode(vcpu)) {
3004 context->nx = is_nx(vcpu);
3005 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3006 context->gva_to_gpa = paging64_gva_to_gpa;
3007 context->root_level = PT64_ROOT_LEVEL;
3008 } else if (is_pae(vcpu)) {
3009 context->nx = is_nx(vcpu);
3010 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3011 context->gva_to_gpa = paging64_gva_to_gpa;
3012 context->root_level = PT32E_ROOT_LEVEL;
3013 } else {
3014 context->nx = false;
3015 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3016 context->gva_to_gpa = paging32_gva_to_gpa;
3017 context->root_level = PT32_ROOT_LEVEL;
3020 return 0;
3023 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3025 int r;
3026 ASSERT(vcpu);
3027 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3029 if (!is_paging(vcpu))
3030 r = nonpaging_init_context(vcpu, context);
3031 else if (is_long_mode(vcpu))
3032 r = paging64_init_context(vcpu, context);
3033 else if (is_pae(vcpu))
3034 r = paging32E_init_context(vcpu, context);
3035 else
3036 r = paging32_init_context(vcpu, context);
3038 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3039 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3041 return r;
3043 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3045 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3047 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3049 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3050 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3051 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3053 return r;
3056 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3058 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3060 g_context->get_cr3 = get_cr3;
3061 g_context->inject_page_fault = kvm_inject_page_fault;
3064 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3065 * translation of l2_gpa to l1_gpa addresses is done using the
3066 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3067 * functions between mmu and nested_mmu are swapped.
3069 if (!is_paging(vcpu)) {
3070 g_context->nx = false;
3071 g_context->root_level = 0;
3072 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3073 } else if (is_long_mode(vcpu)) {
3074 g_context->nx = is_nx(vcpu);
3075 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3076 g_context->root_level = PT64_ROOT_LEVEL;
3077 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3078 } else if (is_pae(vcpu)) {
3079 g_context->nx = is_nx(vcpu);
3080 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3081 g_context->root_level = PT32E_ROOT_LEVEL;
3082 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3083 } else {
3084 g_context->nx = false;
3085 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3086 g_context->root_level = PT32_ROOT_LEVEL;
3087 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3090 return 0;
3093 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3095 if (mmu_is_nested(vcpu))
3096 return init_kvm_nested_mmu(vcpu);
3097 else if (tdp_enabled)
3098 return init_kvm_tdp_mmu(vcpu);
3099 else
3100 return init_kvm_softmmu(vcpu);
3103 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3105 ASSERT(vcpu);
3106 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3107 /* mmu.free() should set root_hpa = INVALID_PAGE */
3108 vcpu->arch.mmu.free(vcpu);
3111 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3113 destroy_kvm_mmu(vcpu);
3114 return init_kvm_mmu(vcpu);
3116 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3118 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3120 int r;
3122 r = mmu_topup_memory_caches(vcpu);
3123 if (r)
3124 goto out;
3125 r = mmu_alloc_roots(vcpu);
3126 spin_lock(&vcpu->kvm->mmu_lock);
3127 mmu_sync_roots(vcpu);
3128 spin_unlock(&vcpu->kvm->mmu_lock);
3129 if (r)
3130 goto out;
3131 /* set_cr3() should ensure TLB has been flushed */
3132 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3133 out:
3134 return r;
3136 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3138 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3140 mmu_free_roots(vcpu);
3142 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3144 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3145 struct kvm_mmu_page *sp,
3146 u64 *spte)
3148 u64 pte;
3149 struct kvm_mmu_page *child;
3151 pte = *spte;
3152 if (is_shadow_present_pte(pte)) {
3153 if (is_last_spte(pte, sp->role.level))
3154 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3155 else {
3156 child = page_header(pte & PT64_BASE_ADDR_MASK);
3157 mmu_page_remove_parent_pte(child, spte);
3160 __set_spte(spte, shadow_trap_nonpresent_pte);
3161 if (is_large_pte(pte))
3162 --vcpu->kvm->stat.lpages;
3165 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3166 struct kvm_mmu_page *sp,
3167 u64 *spte,
3168 const void *new, unsigned long mmu_seq)
3170 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3171 ++vcpu->kvm->stat.mmu_pde_zapped;
3172 return;
3175 ++vcpu->kvm->stat.mmu_pte_updated;
3176 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new, mmu_seq);
3179 static bool need_remote_flush(u64 old, u64 new)
3181 if (!is_shadow_present_pte(old))
3182 return false;
3183 if (!is_shadow_present_pte(new))
3184 return true;
3185 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3186 return true;
3187 old ^= PT64_NX_MASK;
3188 new ^= PT64_NX_MASK;
3189 return (old & ~new & PT64_PERM_MASK) != 0;
3192 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3193 bool remote_flush, bool local_flush)
3195 if (zap_page)
3196 return;
3198 if (remote_flush)
3199 kvm_flush_remote_tlbs(vcpu->kvm);
3200 else if (local_flush)
3201 kvm_mmu_flush_tlb(vcpu);
3204 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3206 u64 *spte = vcpu->arch.last_pte_updated;
3208 return !!(spte && (*spte & shadow_accessed_mask));
3211 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3213 u64 *spte = vcpu->arch.last_pte_updated;
3215 if (spte
3216 && vcpu->arch.last_pte_gfn == gfn
3217 && shadow_accessed_mask
3218 && !(*spte & shadow_accessed_mask)
3219 && is_shadow_present_pte(*spte))
3220 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3223 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3224 const u8 *new, int bytes,
3225 bool guest_initiated)
3227 gfn_t gfn = gpa >> PAGE_SHIFT;
3228 union kvm_mmu_page_role mask = { .word = 0 };
3229 struct kvm_mmu_page *sp;
3230 struct hlist_node *node;
3231 LIST_HEAD(invalid_list);
3232 unsigned long mmu_seq;
3233 u64 entry, gentry, *spte;
3234 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3235 int level, npte, invlpg_counter, r, flooded = 0;
3236 bool remote_flush, local_flush, zap_page;
3238 zap_page = remote_flush = local_flush = false;
3239 offset = offset_in_page(gpa);
3241 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3243 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3246 * Assume that the pte write on a page table of the same type
3247 * as the current vcpu paging mode since we update the sptes only
3248 * when they have the same mode.
3250 if ((is_pae(vcpu) && bytes == 4) || !new) {
3251 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3252 if (is_pae(vcpu)) {
3253 gpa &= ~(gpa_t)7;
3254 bytes = 8;
3256 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3257 if (r)
3258 gentry = 0;
3259 new = (const u8 *)&gentry;
3262 switch (bytes) {
3263 case 4:
3264 gentry = *(const u32 *)new;
3265 break;
3266 case 8:
3267 gentry = *(const u64 *)new;
3268 break;
3269 default:
3270 gentry = 0;
3271 break;
3274 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3275 smp_rmb();
3277 spin_lock(&vcpu->kvm->mmu_lock);
3278 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3279 gentry = 0;
3280 kvm_mmu_free_some_pages(vcpu);
3281 ++vcpu->kvm->stat.mmu_pte_write;
3282 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3283 if (guest_initiated) {
3284 kvm_mmu_access_page(vcpu, gfn);
3285 if (gfn == vcpu->arch.last_pt_write_gfn
3286 && !last_updated_pte_accessed(vcpu)) {
3287 ++vcpu->arch.last_pt_write_count;
3288 if (vcpu->arch.last_pt_write_count >= 3)
3289 flooded = 1;
3290 } else {
3291 vcpu->arch.last_pt_write_gfn = gfn;
3292 vcpu->arch.last_pt_write_count = 1;
3293 vcpu->arch.last_pte_updated = NULL;
3297 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3298 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3299 pte_size = sp->role.cr4_pae ? 8 : 4;
3300 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3301 misaligned |= bytes < 4;
3302 if (misaligned || flooded) {
3304 * Misaligned accesses are too much trouble to fix
3305 * up; also, they usually indicate a page is not used
3306 * as a page table.
3308 * If we're seeing too many writes to a page,
3309 * it may no longer be a page table, or we may be
3310 * forking, in which case it is better to unmap the
3311 * page.
3313 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3314 gpa, bytes, sp->role.word);
3315 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3316 &invalid_list);
3317 ++vcpu->kvm->stat.mmu_flooded;
3318 continue;
3320 page_offset = offset;
3321 level = sp->role.level;
3322 npte = 1;
3323 if (!sp->role.cr4_pae) {
3324 page_offset <<= 1; /* 32->64 */
3326 * A 32-bit pde maps 4MB while the shadow pdes map
3327 * only 2MB. So we need to double the offset again
3328 * and zap two pdes instead of one.
3330 if (level == PT32_ROOT_LEVEL) {
3331 page_offset &= ~7; /* kill rounding error */
3332 page_offset <<= 1;
3333 npte = 2;
3335 quadrant = page_offset >> PAGE_SHIFT;
3336 page_offset &= ~PAGE_MASK;
3337 if (quadrant != sp->role.quadrant)
3338 continue;
3340 local_flush = true;
3341 spte = &sp->spt[page_offset / sizeof(*spte)];
3342 while (npte--) {
3343 entry = *spte;
3344 mmu_pte_write_zap_pte(vcpu, sp, spte);
3345 if (gentry &&
3346 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3347 & mask.word))
3348 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry,
3349 mmu_seq);
3350 if (!remote_flush && need_remote_flush(entry, *spte))
3351 remote_flush = true;
3352 ++spte;
3355 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3356 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3357 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3358 spin_unlock(&vcpu->kvm->mmu_lock);
3361 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3363 gpa_t gpa;
3364 int r;
3366 if (vcpu->arch.mmu.direct_map)
3367 return 0;
3369 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3371 spin_lock(&vcpu->kvm->mmu_lock);
3372 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3373 spin_unlock(&vcpu->kvm->mmu_lock);
3374 return r;
3376 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3378 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3380 LIST_HEAD(invalid_list);
3382 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3383 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3384 struct kvm_mmu_page *sp;
3386 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3387 struct kvm_mmu_page, link);
3388 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3389 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3390 ++vcpu->kvm->stat.mmu_recycled;
3394 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3395 void *insn, int insn_len)
3397 int r;
3398 enum emulation_result er;
3400 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3401 if (r < 0)
3402 goto out;
3404 if (!r) {
3405 r = 1;
3406 goto out;
3409 r = mmu_topup_memory_caches(vcpu);
3410 if (r)
3411 goto out;
3413 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3415 switch (er) {
3416 case EMULATE_DONE:
3417 return 1;
3418 case EMULATE_DO_MMIO:
3419 ++vcpu->stat.mmio_exits;
3420 /* fall through */
3421 case EMULATE_FAIL:
3422 return 0;
3423 default:
3424 BUG();
3426 out:
3427 return r;
3429 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3431 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3433 vcpu->arch.mmu.invlpg(vcpu, gva);
3434 kvm_mmu_flush_tlb(vcpu);
3435 ++vcpu->stat.invlpg;
3437 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3439 void kvm_enable_tdp(void)
3441 tdp_enabled = true;
3443 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3445 void kvm_disable_tdp(void)
3447 tdp_enabled = false;
3449 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3451 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3453 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3454 if (vcpu->arch.mmu.lm_root != NULL)
3455 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3458 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3460 struct page *page;
3461 int i;
3463 ASSERT(vcpu);
3466 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3467 * Therefore we need to allocate shadow page tables in the first
3468 * 4GB of memory, which happens to fit the DMA32 zone.
3470 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3471 if (!page)
3472 return -ENOMEM;
3474 vcpu->arch.mmu.pae_root = page_address(page);
3475 for (i = 0; i < 4; ++i)
3476 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3478 return 0;
3481 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3483 ASSERT(vcpu);
3484 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3486 return alloc_mmu_pages(vcpu);
3489 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3491 ASSERT(vcpu);
3492 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3494 return init_kvm_mmu(vcpu);
3497 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3499 struct kvm_mmu_page *sp;
3501 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3502 int i;
3503 u64 *pt;
3505 if (!test_bit(slot, sp->slot_bitmap))
3506 continue;
3508 pt = sp->spt;
3509 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3510 if (!is_shadow_present_pte(pt[i]) ||
3511 !is_last_spte(pt[i], sp->role.level))
3512 continue;
3514 if (is_large_pte(pt[i])) {
3515 drop_spte(kvm, &pt[i],
3516 shadow_trap_nonpresent_pte);
3517 --kvm->stat.lpages;
3518 continue;
3521 /* avoid RMW */
3522 if (is_writable_pte(pt[i]))
3523 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3526 kvm_flush_remote_tlbs(kvm);
3529 void kvm_mmu_zap_all(struct kvm *kvm)
3531 struct kvm_mmu_page *sp, *node;
3532 LIST_HEAD(invalid_list);
3534 spin_lock(&kvm->mmu_lock);
3535 restart:
3536 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3537 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3538 goto restart;
3540 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3541 spin_unlock(&kvm->mmu_lock);
3544 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3545 struct list_head *invalid_list)
3547 struct kvm_mmu_page *page;
3549 page = container_of(kvm->arch.active_mmu_pages.prev,
3550 struct kvm_mmu_page, link);
3551 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3554 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3556 struct kvm *kvm;
3557 struct kvm *kvm_freed = NULL;
3559 if (nr_to_scan == 0)
3560 goto out;
3562 raw_spin_lock(&kvm_lock);
3564 list_for_each_entry(kvm, &vm_list, vm_list) {
3565 int idx, freed_pages;
3566 LIST_HEAD(invalid_list);
3568 idx = srcu_read_lock(&kvm->srcu);
3569 spin_lock(&kvm->mmu_lock);
3570 if (!kvm_freed && nr_to_scan > 0 &&
3571 kvm->arch.n_used_mmu_pages > 0) {
3572 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3573 &invalid_list);
3574 kvm_freed = kvm;
3576 nr_to_scan--;
3578 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3579 spin_unlock(&kvm->mmu_lock);
3580 srcu_read_unlock(&kvm->srcu, idx);
3582 if (kvm_freed)
3583 list_move_tail(&kvm_freed->vm_list, &vm_list);
3585 raw_spin_unlock(&kvm_lock);
3587 out:
3588 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3591 static struct shrinker mmu_shrinker = {
3592 .shrink = mmu_shrink,
3593 .seeks = DEFAULT_SEEKS * 10,
3596 static void mmu_destroy_caches(void)
3598 if (pte_chain_cache)
3599 kmem_cache_destroy(pte_chain_cache);
3600 if (rmap_desc_cache)
3601 kmem_cache_destroy(rmap_desc_cache);
3602 if (mmu_page_header_cache)
3603 kmem_cache_destroy(mmu_page_header_cache);
3606 int kvm_mmu_module_init(void)
3608 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3609 sizeof(struct kvm_pte_chain),
3610 0, 0, NULL);
3611 if (!pte_chain_cache)
3612 goto nomem;
3613 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3614 sizeof(struct kvm_rmap_desc),
3615 0, 0, NULL);
3616 if (!rmap_desc_cache)
3617 goto nomem;
3619 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3620 sizeof(struct kvm_mmu_page),
3621 0, 0, NULL);
3622 if (!mmu_page_header_cache)
3623 goto nomem;
3625 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3626 goto nomem;
3628 register_shrinker(&mmu_shrinker);
3630 return 0;
3632 nomem:
3633 mmu_destroy_caches();
3634 return -ENOMEM;
3638 * Caculate mmu pages needed for kvm.
3640 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3642 int i;
3643 unsigned int nr_mmu_pages;
3644 unsigned int nr_pages = 0;
3645 struct kvm_memslots *slots;
3647 slots = kvm_memslots(kvm);
3649 for (i = 0; i < slots->nmemslots; i++)
3650 nr_pages += slots->memslots[i].npages;
3652 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3653 nr_mmu_pages = max(nr_mmu_pages,
3654 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3656 return nr_mmu_pages;
3659 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3660 unsigned len)
3662 if (len > buffer->len)
3663 return NULL;
3664 return buffer->ptr;
3667 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3668 unsigned len)
3670 void *ret;
3672 ret = pv_mmu_peek_buffer(buffer, len);
3673 if (!ret)
3674 return ret;
3675 buffer->ptr += len;
3676 buffer->len -= len;
3677 buffer->processed += len;
3678 return ret;
3681 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3682 gpa_t addr, gpa_t value)
3684 int bytes = 8;
3685 int r;
3687 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3688 bytes = 4;
3690 r = mmu_topup_memory_caches(vcpu);
3691 if (r)
3692 return r;
3694 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3695 return -EFAULT;
3697 return 1;
3700 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3702 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3703 return 1;
3706 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3708 spin_lock(&vcpu->kvm->mmu_lock);
3709 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3710 spin_unlock(&vcpu->kvm->mmu_lock);
3711 return 1;
3714 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3715 struct kvm_pv_mmu_op_buffer *buffer)
3717 struct kvm_mmu_op_header *header;
3719 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3720 if (!header)
3721 return 0;
3722 switch (header->op) {
3723 case KVM_MMU_OP_WRITE_PTE: {
3724 struct kvm_mmu_op_write_pte *wpte;
3726 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3727 if (!wpte)
3728 return 0;
3729 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3730 wpte->pte_val);
3732 case KVM_MMU_OP_FLUSH_TLB: {
3733 struct kvm_mmu_op_flush_tlb *ftlb;
3735 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3736 if (!ftlb)
3737 return 0;
3738 return kvm_pv_mmu_flush_tlb(vcpu);
3740 case KVM_MMU_OP_RELEASE_PT: {
3741 struct kvm_mmu_op_release_pt *rpt;
3743 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3744 if (!rpt)
3745 return 0;
3746 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3748 default: return 0;
3752 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3753 gpa_t addr, unsigned long *ret)
3755 int r;
3756 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3758 buffer->ptr = buffer->buf;
3759 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3760 buffer->processed = 0;
3762 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3763 if (r)
3764 goto out;
3766 while (buffer->len) {
3767 r = kvm_pv_mmu_op_one(vcpu, buffer);
3768 if (r < 0)
3769 goto out;
3770 if (r == 0)
3771 break;
3774 r = 1;
3775 out:
3776 *ret = buffer->processed;
3777 return r;
3780 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3782 struct kvm_shadow_walk_iterator iterator;
3783 int nr_sptes = 0;
3785 spin_lock(&vcpu->kvm->mmu_lock);
3786 for_each_shadow_entry(vcpu, addr, iterator) {
3787 sptes[iterator.level-1] = *iterator.sptep;
3788 nr_sptes++;
3789 if (!is_shadow_present_pte(*iterator.sptep))
3790 break;
3792 spin_unlock(&vcpu->kvm->mmu_lock);
3794 return nr_sptes;
3796 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3798 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3800 ASSERT(vcpu);
3802 destroy_kvm_mmu(vcpu);
3803 free_mmu_pages(vcpu);
3804 mmu_free_memory_caches(vcpu);
3807 #ifdef CONFIG_KVM_MMU_AUDIT
3808 #include "mmu_audit.c"
3809 #else
3810 static void mmu_audit_disable(void) { }
3811 #endif
3813 void kvm_mmu_module_exit(void)
3815 mmu_destroy_caches();
3816 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3817 unregister_shrinker(&mmu_shrinker);
3818 mmu_audit_disable();