Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/usb-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobd3d76136f53adea6293244f7cd9a9aa07f24b4d0
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
17 * tunables
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
32 #define CFQ_KEY_ASYNC (0)
35 * for the hash of cfqq inside the cfqd
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
46 static kmem_cache_t *cfq_pool;
47 static kmem_cache_t *cfq_ioc_pool;
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define ASYNC (0)
57 #define SYNC (1)
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
67 #define sample_valid(samples) ((samples) > 80)
70 * Per block device queue structure
72 struct cfq_data {
73 request_queue_t *queue;
76 * rr list of queues with requests and the count of them
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
85 * cfqq lookup hash
87 struct hlist_head *cfq_hash;
89 int rq_in_driver;
90 int hw_tag;
93 * idle window management
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
103 struct timer_list idle_class_timer;
105 sector_t last_sector;
106 unsigned long last_end_request;
109 * tunables, see top of file
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
119 struct list_head cic_list;
123 * Per process-grouping structure
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
160 /* various state flags, see below */
161 unsigned int flags;
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0,
166 CFQ_CFQQ_FLAG_wait_request,
167 CFQ_CFQQ_FLAG_must_alloc,
168 CFQ_CFQQ_FLAG_must_alloc_slice,
169 CFQ_CFQQ_FLAG_must_dispatch,
170 CFQ_CFQQ_FLAG_fifo_expire,
171 CFQ_CFQQ_FLAG_idle_window,
172 CFQ_CFQQ_FLAG_prio_changed,
173 CFQ_CFQQ_FLAG_queue_new,
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
215 static int cfq_queue_empty(request_queue_t *q)
217 struct cfq_data *cfqd = q->elevator->elevator_data;
219 return !cfqd->busy_queues;
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
224 if (rw == READ || rw == WRITE_SYNC)
225 return task->pid;
227 return CFQ_KEY_ASYNC;
231 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
232 * We choose the request that is closest to the head right now. Distance
233 * behind the head is penalized and only allowed to a certain extent.
235 static struct request *
236 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
238 sector_t last, s1, s2, d1 = 0, d2 = 0;
239 unsigned long back_max;
240 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
241 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
242 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
244 if (rq1 == NULL || rq1 == rq2)
245 return rq2;
246 if (rq2 == NULL)
247 return rq1;
249 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
250 return rq1;
251 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
252 return rq2;
253 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
254 return rq1;
255 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
256 return rq2;
258 s1 = rq1->sector;
259 s2 = rq2->sector;
261 last = cfqd->last_sector;
264 * by definition, 1KiB is 2 sectors
266 back_max = cfqd->cfq_back_max * 2;
269 * Strict one way elevator _except_ in the case where we allow
270 * short backward seeks which are biased as twice the cost of a
271 * similar forward seek.
273 if (s1 >= last)
274 d1 = s1 - last;
275 else if (s1 + back_max >= last)
276 d1 = (last - s1) * cfqd->cfq_back_penalty;
277 else
278 wrap |= CFQ_RQ1_WRAP;
280 if (s2 >= last)
281 d2 = s2 - last;
282 else if (s2 + back_max >= last)
283 d2 = (last - s2) * cfqd->cfq_back_penalty;
284 else
285 wrap |= CFQ_RQ2_WRAP;
287 /* Found required data */
290 * By doing switch() on the bit mask "wrap" we avoid having to
291 * check two variables for all permutations: --> faster!
293 switch (wrap) {
294 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
295 if (d1 < d2)
296 return rq1;
297 else if (d2 < d1)
298 return rq2;
299 else {
300 if (s1 >= s2)
301 return rq1;
302 else
303 return rq2;
306 case CFQ_RQ2_WRAP:
307 return rq1;
308 case CFQ_RQ1_WRAP:
309 return rq2;
310 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
311 default:
313 * Since both rqs are wrapped,
314 * start with the one that's further behind head
315 * (--> only *one* back seek required),
316 * since back seek takes more time than forward.
318 if (s1 <= s2)
319 return rq1;
320 else
321 return rq2;
326 * would be nice to take fifo expire time into account as well
328 static struct request *
329 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
330 struct request *last)
332 struct rb_node *rbnext = rb_next(&last->rb_node);
333 struct rb_node *rbprev = rb_prev(&last->rb_node);
334 struct request *next = NULL, *prev = NULL;
336 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
338 if (rbprev)
339 prev = rb_entry_rq(rbprev);
341 if (rbnext)
342 next = rb_entry_rq(rbnext);
343 else {
344 rbnext = rb_first(&cfqq->sort_list);
345 if (rbnext && rbnext != &last->rb_node)
346 next = rb_entry_rq(rbnext);
349 return cfq_choose_req(cfqd, next, prev);
352 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
354 struct cfq_data *cfqd = cfqq->cfqd;
355 struct list_head *list;
357 BUG_ON(!cfq_cfqq_on_rr(cfqq));
359 list_del(&cfqq->cfq_list);
361 if (cfq_class_rt(cfqq))
362 list = &cfqd->cur_rr;
363 else if (cfq_class_idle(cfqq))
364 list = &cfqd->idle_rr;
365 else {
367 * if cfqq has requests in flight, don't allow it to be
368 * found in cfq_set_active_queue before it has finished them.
369 * this is done to increase fairness between a process that
370 * has lots of io pending vs one that only generates one
371 * sporadically or synchronously
373 if (cfq_cfqq_dispatched(cfqq))
374 list = &cfqd->busy_rr;
375 else
376 list = &cfqd->rr_list[cfqq->ioprio];
380 * If this queue was preempted or is new (never been serviced), let
381 * it be added first for fairness but beind other new queues.
382 * Otherwise, just add to the back of the list.
384 if (preempted || cfq_cfqq_queue_new(cfqq)) {
385 struct list_head *n = list;
386 struct cfq_queue *__cfqq;
388 while (n->next != list) {
389 __cfqq = list_entry_cfqq(n->next);
390 if (!cfq_cfqq_queue_new(__cfqq))
391 break;
393 n = n->next;
396 list = n;
399 list_add_tail(&cfqq->cfq_list, list);
403 * add to busy list of queues for service, trying to be fair in ordering
404 * the pending list according to last request service
406 static inline void
407 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
409 BUG_ON(cfq_cfqq_on_rr(cfqq));
410 cfq_mark_cfqq_on_rr(cfqq);
411 cfqd->busy_queues++;
413 cfq_resort_rr_list(cfqq, 0);
416 static inline void
417 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
419 BUG_ON(!cfq_cfqq_on_rr(cfqq));
420 cfq_clear_cfqq_on_rr(cfqq);
421 list_del_init(&cfqq->cfq_list);
423 BUG_ON(!cfqd->busy_queues);
424 cfqd->busy_queues--;
428 * rb tree support functions
430 static inline void cfq_del_rq_rb(struct request *rq)
432 struct cfq_queue *cfqq = RQ_CFQQ(rq);
433 struct cfq_data *cfqd = cfqq->cfqd;
434 const int sync = rq_is_sync(rq);
436 BUG_ON(!cfqq->queued[sync]);
437 cfqq->queued[sync]--;
439 elv_rb_del(&cfqq->sort_list, rq);
441 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
442 cfq_del_cfqq_rr(cfqd, cfqq);
445 static void cfq_add_rq_rb(struct request *rq)
447 struct cfq_queue *cfqq = RQ_CFQQ(rq);
448 struct cfq_data *cfqd = cfqq->cfqd;
449 struct request *__alias;
451 cfqq->queued[rq_is_sync(rq)]++;
454 * looks a little odd, but the first insert might return an alias.
455 * if that happens, put the alias on the dispatch list
457 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
458 cfq_dispatch_insert(cfqd->queue, __alias);
461 static inline void
462 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
464 elv_rb_del(&cfqq->sort_list, rq);
465 cfqq->queued[rq_is_sync(rq)]--;
466 cfq_add_rq_rb(rq);
469 static struct request *
470 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
472 struct task_struct *tsk = current;
473 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
474 struct cfq_queue *cfqq;
476 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
477 if (cfqq) {
478 sector_t sector = bio->bi_sector + bio_sectors(bio);
480 return elv_rb_find(&cfqq->sort_list, sector);
483 return NULL;
486 static void cfq_activate_request(request_queue_t *q, struct request *rq)
488 struct cfq_data *cfqd = q->elevator->elevator_data;
490 cfqd->rq_in_driver++;
493 * If the depth is larger 1, it really could be queueing. But lets
494 * make the mark a little higher - idling could still be good for
495 * low queueing, and a low queueing number could also just indicate
496 * a SCSI mid layer like behaviour where limit+1 is often seen.
498 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
499 cfqd->hw_tag = 1;
502 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
504 struct cfq_data *cfqd = q->elevator->elevator_data;
506 WARN_ON(!cfqd->rq_in_driver);
507 cfqd->rq_in_driver--;
510 static void cfq_remove_request(struct request *rq)
512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
514 if (cfqq->next_rq == rq)
515 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
517 list_del_init(&rq->queuelist);
518 cfq_del_rq_rb(rq);
520 if (rq_is_meta(rq)) {
521 WARN_ON(!cfqq->meta_pending);
522 cfqq->meta_pending--;
526 static int
527 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
529 struct cfq_data *cfqd = q->elevator->elevator_data;
530 struct request *__rq;
532 __rq = cfq_find_rq_fmerge(cfqd, bio);
533 if (__rq && elv_rq_merge_ok(__rq, bio)) {
534 *req = __rq;
535 return ELEVATOR_FRONT_MERGE;
538 return ELEVATOR_NO_MERGE;
541 static void cfq_merged_request(request_queue_t *q, struct request *req,
542 int type)
544 if (type == ELEVATOR_FRONT_MERGE) {
545 struct cfq_queue *cfqq = RQ_CFQQ(req);
547 cfq_reposition_rq_rb(cfqq, req);
551 static void
552 cfq_merged_requests(request_queue_t *q, struct request *rq,
553 struct request *next)
556 * reposition in fifo if next is older than rq
558 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
559 time_before(next->start_time, rq->start_time))
560 list_move(&rq->queuelist, &next->queuelist);
562 cfq_remove_request(next);
565 static inline void
566 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
568 if (cfqq) {
570 * stop potential idle class queues waiting service
572 del_timer(&cfqd->idle_class_timer);
574 cfqq->slice_start = jiffies;
575 cfqq->slice_end = 0;
576 cfqq->slice_left = 0;
577 cfq_clear_cfqq_must_alloc_slice(cfqq);
578 cfq_clear_cfqq_fifo_expire(cfqq);
581 cfqd->active_queue = cfqq;
585 * current cfqq expired its slice (or was too idle), select new one
587 static void
588 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
589 int preempted)
591 unsigned long now = jiffies;
593 if (cfq_cfqq_wait_request(cfqq))
594 del_timer(&cfqd->idle_slice_timer);
596 if (!preempted && !cfq_cfqq_dispatched(cfqq))
597 cfq_schedule_dispatch(cfqd);
599 cfq_clear_cfqq_must_dispatch(cfqq);
600 cfq_clear_cfqq_wait_request(cfqq);
601 cfq_clear_cfqq_queue_new(cfqq);
604 * store what was left of this slice, if the queue idled out
605 * or was preempted
607 if (time_after(cfqq->slice_end, now))
608 cfqq->slice_left = cfqq->slice_end - now;
609 else
610 cfqq->slice_left = 0;
612 if (cfq_cfqq_on_rr(cfqq))
613 cfq_resort_rr_list(cfqq, preempted);
615 if (cfqq == cfqd->active_queue)
616 cfqd->active_queue = NULL;
618 if (cfqd->active_cic) {
619 put_io_context(cfqd->active_cic->ioc);
620 cfqd->active_cic = NULL;
623 cfqd->dispatch_slice = 0;
626 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
628 struct cfq_queue *cfqq = cfqd->active_queue;
630 if (cfqq)
631 __cfq_slice_expired(cfqd, cfqq, preempted);
636 * 0,1
637 * 0,1,2
638 * 0,1,2,3
639 * 0,1,2,3,4
640 * 0,1,2,3,4,5
641 * 0,1,2,3,4,5,6
642 * 0,1,2,3,4,5,6,7
644 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
646 int prio, wrap;
648 prio = -1;
649 wrap = 0;
650 do {
651 int p;
653 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
654 if (!list_empty(&cfqd->rr_list[p])) {
655 prio = p;
656 break;
660 if (prio != -1)
661 break;
662 cfqd->cur_prio = 0;
663 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
664 cfqd->cur_end_prio = 0;
665 if (wrap)
666 break;
667 wrap = 1;
669 } while (1);
671 if (unlikely(prio == -1))
672 return -1;
674 BUG_ON(prio >= CFQ_PRIO_LISTS);
676 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
678 cfqd->cur_prio = prio + 1;
679 if (cfqd->cur_prio > cfqd->cur_end_prio) {
680 cfqd->cur_end_prio = cfqd->cur_prio;
681 cfqd->cur_prio = 0;
683 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
684 cfqd->cur_prio = 0;
685 cfqd->cur_end_prio = 0;
688 return prio;
691 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
693 struct cfq_queue *cfqq = NULL;
695 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
697 * if current list is non-empty, grab first entry. if it is
698 * empty, get next prio level and grab first entry then if any
699 * are spliced
701 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
702 } else if (!list_empty(&cfqd->busy_rr)) {
704 * If no new queues are available, check if the busy list has
705 * some before falling back to idle io.
707 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
708 } else if (!list_empty(&cfqd->idle_rr)) {
710 * if we have idle queues and no rt or be queues had pending
711 * requests, either allow immediate service if the grace period
712 * has passed or arm the idle grace timer
714 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
716 if (time_after_eq(jiffies, end))
717 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
718 else
719 mod_timer(&cfqd->idle_class_timer, end);
722 __cfq_set_active_queue(cfqd, cfqq);
723 return cfqq;
726 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
728 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
731 struct cfq_io_context *cic;
732 unsigned long sl;
734 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
735 WARN_ON(cfqq != cfqd->active_queue);
738 * idle is disabled, either manually or by past process history
740 if (!cfqd->cfq_slice_idle)
741 return 0;
742 if (!cfq_cfqq_idle_window(cfqq))
743 return 0;
745 * task has exited, don't wait
747 cic = cfqd->active_cic;
748 if (!cic || !cic->ioc->task)
749 return 0;
751 cfq_mark_cfqq_must_dispatch(cfqq);
752 cfq_mark_cfqq_wait_request(cfqq);
754 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
757 * we don't want to idle for seeks, but we do want to allow
758 * fair distribution of slice time for a process doing back-to-back
759 * seeks. so allow a little bit of time for him to submit a new rq
761 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
762 sl = min(sl, msecs_to_jiffies(2));
764 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
765 return 1;
768 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
770 struct cfq_data *cfqd = q->elevator->elevator_data;
771 struct cfq_queue *cfqq = RQ_CFQQ(rq);
773 cfq_remove_request(rq);
774 cfqq->on_dispatch[rq_is_sync(rq)]++;
775 elv_dispatch_sort(q, rq);
777 rq = list_entry(q->queue_head.prev, struct request, queuelist);
778 cfqd->last_sector = rq->sector + rq->nr_sectors;
782 * return expired entry, or NULL to just start from scratch in rbtree
784 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
786 struct cfq_data *cfqd = cfqq->cfqd;
787 struct request *rq;
788 int fifo;
790 if (cfq_cfqq_fifo_expire(cfqq))
791 return NULL;
792 if (list_empty(&cfqq->fifo))
793 return NULL;
795 fifo = cfq_cfqq_class_sync(cfqq);
796 rq = rq_entry_fifo(cfqq->fifo.next);
798 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
799 cfq_mark_cfqq_fifo_expire(cfqq);
800 return rq;
803 return NULL;
807 * Scale schedule slice based on io priority. Use the sync time slice only
808 * if a queue is marked sync and has sync io queued. A sync queue with async
809 * io only, should not get full sync slice length.
811 static inline int
812 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
814 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
816 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
818 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
821 static inline void
822 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
824 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
827 static inline int
828 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
830 const int base_rq = cfqd->cfq_slice_async_rq;
832 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
834 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
838 * get next queue for service
840 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
842 unsigned long now = jiffies;
843 struct cfq_queue *cfqq;
845 cfqq = cfqd->active_queue;
846 if (!cfqq)
847 goto new_queue;
850 * slice has expired
852 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
853 goto expire;
856 * if queue has requests, dispatch one. if not, check if
857 * enough slice is left to wait for one
859 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
860 goto keep_queue;
861 else if (cfq_cfqq_dispatched(cfqq)) {
862 cfqq = NULL;
863 goto keep_queue;
864 } else if (cfq_cfqq_class_sync(cfqq)) {
865 if (cfq_arm_slice_timer(cfqd, cfqq))
866 return NULL;
869 expire:
870 cfq_slice_expired(cfqd, 0);
871 new_queue:
872 cfqq = cfq_set_active_queue(cfqd);
873 keep_queue:
874 return cfqq;
877 static int
878 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
879 int max_dispatch)
881 int dispatched = 0;
883 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
885 do {
886 struct request *rq;
889 * follow expired path, else get first next available
891 if ((rq = cfq_check_fifo(cfqq)) == NULL)
892 rq = cfqq->next_rq;
895 * finally, insert request into driver dispatch list
897 cfq_dispatch_insert(cfqd->queue, rq);
899 cfqd->dispatch_slice++;
900 dispatched++;
902 if (!cfqd->active_cic) {
903 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
904 cfqd->active_cic = RQ_CIC(rq);
907 if (RB_EMPTY_ROOT(&cfqq->sort_list))
908 break;
910 } while (dispatched < max_dispatch);
913 * if slice end isn't set yet, set it.
915 if (!cfqq->slice_end)
916 cfq_set_prio_slice(cfqd, cfqq);
919 * expire an async queue immediately if it has used up its slice. idle
920 * queue always expire after 1 dispatch round.
922 if ((!cfq_cfqq_sync(cfqq) &&
923 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
924 cfq_class_idle(cfqq) ||
925 !cfq_cfqq_idle_window(cfqq))
926 cfq_slice_expired(cfqd, 0);
928 return dispatched;
931 static int
932 cfq_forced_dispatch_cfqqs(struct list_head *list)
934 struct cfq_queue *cfqq, *next;
935 int dispatched;
937 dispatched = 0;
938 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
939 while (cfqq->next_rq) {
940 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
941 dispatched++;
943 BUG_ON(!list_empty(&cfqq->fifo));
946 return dispatched;
949 static int
950 cfq_forced_dispatch(struct cfq_data *cfqd)
952 int i, dispatched = 0;
954 for (i = 0; i < CFQ_PRIO_LISTS; i++)
955 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
957 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
958 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
959 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
961 cfq_slice_expired(cfqd, 0);
963 BUG_ON(cfqd->busy_queues);
965 return dispatched;
968 static int
969 cfq_dispatch_requests(request_queue_t *q, int force)
971 struct cfq_data *cfqd = q->elevator->elevator_data;
972 struct cfq_queue *cfqq, *prev_cfqq;
973 int dispatched;
975 if (!cfqd->busy_queues)
976 return 0;
978 if (unlikely(force))
979 return cfq_forced_dispatch(cfqd);
981 dispatched = 0;
982 prev_cfqq = NULL;
983 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
984 int max_dispatch;
987 * Don't repeat dispatch from the previous queue.
989 if (prev_cfqq == cfqq)
990 break;
992 cfq_clear_cfqq_must_dispatch(cfqq);
993 cfq_clear_cfqq_wait_request(cfqq);
994 del_timer(&cfqd->idle_slice_timer);
996 max_dispatch = cfqd->cfq_quantum;
997 if (cfq_class_idle(cfqq))
998 max_dispatch = 1;
1000 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1003 * If the dispatch cfqq has idling enabled and is still
1004 * the active queue, break out.
1006 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1007 break;
1009 prev_cfqq = cfqq;
1012 return dispatched;
1016 * task holds one reference to the queue, dropped when task exits. each rq
1017 * in-flight on this queue also holds a reference, dropped when rq is freed.
1019 * queue lock must be held here.
1021 static void cfq_put_queue(struct cfq_queue *cfqq)
1023 struct cfq_data *cfqd = cfqq->cfqd;
1025 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1027 if (!atomic_dec_and_test(&cfqq->ref))
1028 return;
1030 BUG_ON(rb_first(&cfqq->sort_list));
1031 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1032 BUG_ON(cfq_cfqq_on_rr(cfqq));
1034 if (unlikely(cfqd->active_queue == cfqq))
1035 __cfq_slice_expired(cfqd, cfqq, 0);
1038 * it's on the empty list and still hashed
1040 list_del(&cfqq->cfq_list);
1041 hlist_del(&cfqq->cfq_hash);
1042 kmem_cache_free(cfq_pool, cfqq);
1045 static struct cfq_queue *
1046 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1047 const int hashval)
1049 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1050 struct hlist_node *entry;
1051 struct cfq_queue *__cfqq;
1053 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1054 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1056 if (__cfqq->key == key && (__p == prio || !prio))
1057 return __cfqq;
1060 return NULL;
1063 static struct cfq_queue *
1064 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1066 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1069 static void cfq_free_io_context(struct io_context *ioc)
1071 struct cfq_io_context *__cic;
1072 struct rb_node *n;
1073 int freed = 0;
1075 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1076 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1077 rb_erase(&__cic->rb_node, &ioc->cic_root);
1078 kmem_cache_free(cfq_ioc_pool, __cic);
1079 freed++;
1082 elv_ioc_count_mod(ioc_count, -freed);
1084 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1085 complete(ioc_gone);
1088 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1090 if (unlikely(cfqq == cfqd->active_queue))
1091 __cfq_slice_expired(cfqd, cfqq, 0);
1093 cfq_put_queue(cfqq);
1096 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1097 struct cfq_io_context *cic)
1099 list_del_init(&cic->queue_list);
1100 smp_wmb();
1101 cic->key = NULL;
1103 if (cic->cfqq[ASYNC]) {
1104 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1105 cic->cfqq[ASYNC] = NULL;
1108 if (cic->cfqq[SYNC]) {
1109 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1110 cic->cfqq[SYNC] = NULL;
1116 * Called with interrupts disabled
1118 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1120 struct cfq_data *cfqd = cic->key;
1122 if (cfqd) {
1123 request_queue_t *q = cfqd->queue;
1125 spin_lock_irq(q->queue_lock);
1126 __cfq_exit_single_io_context(cfqd, cic);
1127 spin_unlock_irq(q->queue_lock);
1131 static void cfq_exit_io_context(struct io_context *ioc)
1133 struct cfq_io_context *__cic;
1134 struct rb_node *n;
1137 * put the reference this task is holding to the various queues
1140 n = rb_first(&ioc->cic_root);
1141 while (n != NULL) {
1142 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1144 cfq_exit_single_io_context(__cic);
1145 n = rb_next(n);
1149 static struct cfq_io_context *
1150 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1152 struct cfq_io_context *cic;
1154 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1155 if (cic) {
1156 memset(cic, 0, sizeof(*cic));
1157 cic->last_end_request = jiffies;
1158 INIT_LIST_HEAD(&cic->queue_list);
1159 cic->dtor = cfq_free_io_context;
1160 cic->exit = cfq_exit_io_context;
1161 elv_ioc_count_inc(ioc_count);
1164 return cic;
1167 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1169 struct task_struct *tsk = current;
1170 int ioprio_class;
1172 if (!cfq_cfqq_prio_changed(cfqq))
1173 return;
1175 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1176 switch (ioprio_class) {
1177 default:
1178 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1179 case IOPRIO_CLASS_NONE:
1181 * no prio set, place us in the middle of the BE classes
1183 cfqq->ioprio = task_nice_ioprio(tsk);
1184 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1185 break;
1186 case IOPRIO_CLASS_RT:
1187 cfqq->ioprio = task_ioprio(tsk);
1188 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1189 break;
1190 case IOPRIO_CLASS_BE:
1191 cfqq->ioprio = task_ioprio(tsk);
1192 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1193 break;
1194 case IOPRIO_CLASS_IDLE:
1195 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1196 cfqq->ioprio = 7;
1197 cfq_clear_cfqq_idle_window(cfqq);
1198 break;
1202 * keep track of original prio settings in case we have to temporarily
1203 * elevate the priority of this queue
1205 cfqq->org_ioprio = cfqq->ioprio;
1206 cfqq->org_ioprio_class = cfqq->ioprio_class;
1208 if (cfq_cfqq_on_rr(cfqq))
1209 cfq_resort_rr_list(cfqq, 0);
1211 cfq_clear_cfqq_prio_changed(cfqq);
1214 static inline void changed_ioprio(struct cfq_io_context *cic)
1216 struct cfq_data *cfqd = cic->key;
1217 struct cfq_queue *cfqq;
1219 if (unlikely(!cfqd))
1220 return;
1222 spin_lock(cfqd->queue->queue_lock);
1224 cfqq = cic->cfqq[ASYNC];
1225 if (cfqq) {
1226 struct cfq_queue *new_cfqq;
1227 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1228 GFP_ATOMIC);
1229 if (new_cfqq) {
1230 cic->cfqq[ASYNC] = new_cfqq;
1231 cfq_put_queue(cfqq);
1235 cfqq = cic->cfqq[SYNC];
1236 if (cfqq)
1237 cfq_mark_cfqq_prio_changed(cfqq);
1239 spin_unlock(cfqd->queue->queue_lock);
1242 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1244 struct cfq_io_context *cic;
1245 struct rb_node *n;
1247 ioc->ioprio_changed = 0;
1249 n = rb_first(&ioc->cic_root);
1250 while (n != NULL) {
1251 cic = rb_entry(n, struct cfq_io_context, rb_node);
1253 changed_ioprio(cic);
1254 n = rb_next(n);
1258 static struct cfq_queue *
1259 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1260 gfp_t gfp_mask)
1262 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1263 struct cfq_queue *cfqq, *new_cfqq = NULL;
1264 unsigned short ioprio;
1266 retry:
1267 ioprio = tsk->ioprio;
1268 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1270 if (!cfqq) {
1271 if (new_cfqq) {
1272 cfqq = new_cfqq;
1273 new_cfqq = NULL;
1274 } else if (gfp_mask & __GFP_WAIT) {
1276 * Inform the allocator of the fact that we will
1277 * just repeat this allocation if it fails, to allow
1278 * the allocator to do whatever it needs to attempt to
1279 * free memory.
1281 spin_unlock_irq(cfqd->queue->queue_lock);
1282 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1283 spin_lock_irq(cfqd->queue->queue_lock);
1284 goto retry;
1285 } else {
1286 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1287 if (!cfqq)
1288 goto out;
1291 memset(cfqq, 0, sizeof(*cfqq));
1293 INIT_HLIST_NODE(&cfqq->cfq_hash);
1294 INIT_LIST_HEAD(&cfqq->cfq_list);
1295 INIT_LIST_HEAD(&cfqq->fifo);
1297 cfqq->key = key;
1298 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1299 atomic_set(&cfqq->ref, 0);
1300 cfqq->cfqd = cfqd;
1302 * set ->slice_left to allow preemption for a new process
1304 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1305 cfq_mark_cfqq_idle_window(cfqq);
1306 cfq_mark_cfqq_prio_changed(cfqq);
1307 cfq_mark_cfqq_queue_new(cfqq);
1308 cfq_init_prio_data(cfqq);
1311 if (new_cfqq)
1312 kmem_cache_free(cfq_pool, new_cfqq);
1314 atomic_inc(&cfqq->ref);
1315 out:
1316 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1317 return cfqq;
1320 static void
1321 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1323 WARN_ON(!list_empty(&cic->queue_list));
1324 rb_erase(&cic->rb_node, &ioc->cic_root);
1325 kmem_cache_free(cfq_ioc_pool, cic);
1326 elv_ioc_count_dec(ioc_count);
1329 static struct cfq_io_context *
1330 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1332 struct rb_node *n;
1333 struct cfq_io_context *cic;
1334 void *k, *key = cfqd;
1336 restart:
1337 n = ioc->cic_root.rb_node;
1338 while (n) {
1339 cic = rb_entry(n, struct cfq_io_context, rb_node);
1340 /* ->key must be copied to avoid race with cfq_exit_queue() */
1341 k = cic->key;
1342 if (unlikely(!k)) {
1343 cfq_drop_dead_cic(ioc, cic);
1344 goto restart;
1347 if (key < k)
1348 n = n->rb_left;
1349 else if (key > k)
1350 n = n->rb_right;
1351 else
1352 return cic;
1355 return NULL;
1358 static inline void
1359 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1360 struct cfq_io_context *cic)
1362 struct rb_node **p;
1363 struct rb_node *parent;
1364 struct cfq_io_context *__cic;
1365 void *k;
1367 cic->ioc = ioc;
1368 cic->key = cfqd;
1370 restart:
1371 parent = NULL;
1372 p = &ioc->cic_root.rb_node;
1373 while (*p) {
1374 parent = *p;
1375 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1376 /* ->key must be copied to avoid race with cfq_exit_queue() */
1377 k = __cic->key;
1378 if (unlikely(!k)) {
1379 cfq_drop_dead_cic(ioc, __cic);
1380 goto restart;
1383 if (cic->key < k)
1384 p = &(*p)->rb_left;
1385 else if (cic->key > k)
1386 p = &(*p)->rb_right;
1387 else
1388 BUG();
1391 rb_link_node(&cic->rb_node, parent, p);
1392 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1394 spin_lock_irq(cfqd->queue->queue_lock);
1395 list_add(&cic->queue_list, &cfqd->cic_list);
1396 spin_unlock_irq(cfqd->queue->queue_lock);
1400 * Setup general io context and cfq io context. There can be several cfq
1401 * io contexts per general io context, if this process is doing io to more
1402 * than one device managed by cfq.
1404 static struct cfq_io_context *
1405 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1407 struct io_context *ioc = NULL;
1408 struct cfq_io_context *cic;
1410 might_sleep_if(gfp_mask & __GFP_WAIT);
1412 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1413 if (!ioc)
1414 return NULL;
1416 cic = cfq_cic_rb_lookup(cfqd, ioc);
1417 if (cic)
1418 goto out;
1420 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1421 if (cic == NULL)
1422 goto err;
1424 cfq_cic_link(cfqd, ioc, cic);
1425 out:
1426 smp_read_barrier_depends();
1427 if (unlikely(ioc->ioprio_changed))
1428 cfq_ioc_set_ioprio(ioc);
1430 return cic;
1431 err:
1432 put_io_context(ioc);
1433 return NULL;
1436 static void
1437 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1439 unsigned long elapsed, ttime;
1442 * if this context already has stuff queued, thinktime is from
1443 * last queue not last end
1445 #if 0
1446 if (time_after(cic->last_end_request, cic->last_queue))
1447 elapsed = jiffies - cic->last_end_request;
1448 else
1449 elapsed = jiffies - cic->last_queue;
1450 #else
1451 elapsed = jiffies - cic->last_end_request;
1452 #endif
1454 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1456 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1457 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1458 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1461 static void
1462 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1463 struct request *rq)
1465 sector_t sdist;
1466 u64 total;
1468 if (cic->last_request_pos < rq->sector)
1469 sdist = rq->sector - cic->last_request_pos;
1470 else
1471 sdist = cic->last_request_pos - rq->sector;
1474 * Don't allow the seek distance to get too large from the
1475 * odd fragment, pagein, etc
1477 if (cic->seek_samples <= 60) /* second&third seek */
1478 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1479 else
1480 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1482 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1483 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1484 total = cic->seek_total + (cic->seek_samples/2);
1485 do_div(total, cic->seek_samples);
1486 cic->seek_mean = (sector_t)total;
1490 * Disable idle window if the process thinks too long or seeks so much that
1491 * it doesn't matter
1493 static void
1494 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1495 struct cfq_io_context *cic)
1497 int enable_idle = cfq_cfqq_idle_window(cfqq);
1499 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1500 (cfqd->hw_tag && CIC_SEEKY(cic)))
1501 enable_idle = 0;
1502 else if (sample_valid(cic->ttime_samples)) {
1503 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1504 enable_idle = 0;
1505 else
1506 enable_idle = 1;
1509 if (enable_idle)
1510 cfq_mark_cfqq_idle_window(cfqq);
1511 else
1512 cfq_clear_cfqq_idle_window(cfqq);
1517 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1518 * no or if we aren't sure, a 1 will cause a preempt.
1520 static int
1521 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1522 struct request *rq)
1524 struct cfq_queue *cfqq = cfqd->active_queue;
1526 if (cfq_class_idle(new_cfqq))
1527 return 0;
1529 if (!cfqq)
1530 return 0;
1532 if (cfq_class_idle(cfqq))
1533 return 1;
1534 if (!cfq_cfqq_wait_request(new_cfqq))
1535 return 0;
1537 * if it doesn't have slice left, forget it
1539 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1540 return 0;
1542 * if the new request is sync, but the currently running queue is
1543 * not, let the sync request have priority.
1545 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1546 return 1;
1548 * So both queues are sync. Let the new request get disk time if
1549 * it's a metadata request and the current queue is doing regular IO.
1551 if (rq_is_meta(rq) && !cfqq->meta_pending)
1552 return 1;
1554 return 0;
1558 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1559 * let it have half of its nominal slice.
1561 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1563 cfq_slice_expired(cfqd, 1);
1565 if (!cfqq->slice_left)
1566 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1569 * Put the new queue at the front of the of the current list,
1570 * so we know that it will be selected next.
1572 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1573 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1575 cfqq->slice_end = cfqq->slice_left + jiffies;
1579 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1580 * something we should do about it
1582 static void
1583 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1584 struct request *rq)
1586 struct cfq_io_context *cic = RQ_CIC(rq);
1588 if (rq_is_meta(rq))
1589 cfqq->meta_pending++;
1592 * check if this request is a better next-serve candidate)) {
1594 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1595 BUG_ON(!cfqq->next_rq);
1598 * we never wait for an async request and we don't allow preemption
1599 * of an async request. so just return early
1601 if (!rq_is_sync(rq)) {
1603 * sync process issued an async request, if it's waiting
1604 * then expire it and kick rq handling.
1606 if (cic == cfqd->active_cic &&
1607 del_timer(&cfqd->idle_slice_timer)) {
1608 cfq_slice_expired(cfqd, 0);
1609 blk_start_queueing(cfqd->queue);
1611 return;
1614 cfq_update_io_thinktime(cfqd, cic);
1615 cfq_update_io_seektime(cfqd, cic, rq);
1616 cfq_update_idle_window(cfqd, cfqq, cic);
1618 cic->last_queue = jiffies;
1619 cic->last_request_pos = rq->sector + rq->nr_sectors;
1621 if (cfqq == cfqd->active_queue) {
1623 * if we are waiting for a request for this queue, let it rip
1624 * immediately and flag that we must not expire this queue
1625 * just now
1627 if (cfq_cfqq_wait_request(cfqq)) {
1628 cfq_mark_cfqq_must_dispatch(cfqq);
1629 del_timer(&cfqd->idle_slice_timer);
1630 blk_start_queueing(cfqd->queue);
1632 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1634 * not the active queue - expire current slice if it is
1635 * idle and has expired it's mean thinktime or this new queue
1636 * has some old slice time left and is of higher priority
1638 cfq_preempt_queue(cfqd, cfqq);
1639 cfq_mark_cfqq_must_dispatch(cfqq);
1640 blk_start_queueing(cfqd->queue);
1644 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1646 struct cfq_data *cfqd = q->elevator->elevator_data;
1647 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1649 cfq_init_prio_data(cfqq);
1651 cfq_add_rq_rb(rq);
1653 if (!cfq_cfqq_on_rr(cfqq))
1654 cfq_add_cfqq_rr(cfqd, cfqq);
1656 list_add_tail(&rq->queuelist, &cfqq->fifo);
1658 cfq_rq_enqueued(cfqd, cfqq, rq);
1661 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1663 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1664 struct cfq_data *cfqd = cfqq->cfqd;
1665 const int sync = rq_is_sync(rq);
1666 unsigned long now;
1668 now = jiffies;
1670 WARN_ON(!cfqd->rq_in_driver);
1671 WARN_ON(!cfqq->on_dispatch[sync]);
1672 cfqd->rq_in_driver--;
1673 cfqq->on_dispatch[sync]--;
1675 if (!cfq_class_idle(cfqq))
1676 cfqd->last_end_request = now;
1678 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1679 cfq_resort_rr_list(cfqq, 0);
1681 if (sync)
1682 RQ_CIC(rq)->last_end_request = now;
1685 * If this is the active queue, check if it needs to be expired,
1686 * or if we want to idle in case it has no pending requests.
1688 if (cfqd->active_queue == cfqq) {
1689 if (time_after(now, cfqq->slice_end))
1690 cfq_slice_expired(cfqd, 0);
1691 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1692 if (!cfq_arm_slice_timer(cfqd, cfqq))
1693 cfq_schedule_dispatch(cfqd);
1699 * we temporarily boost lower priority queues if they are holding fs exclusive
1700 * resources. they are boosted to normal prio (CLASS_BE/4)
1702 static void cfq_prio_boost(struct cfq_queue *cfqq)
1704 const int ioprio_class = cfqq->ioprio_class;
1705 const int ioprio = cfqq->ioprio;
1707 if (has_fs_excl()) {
1709 * boost idle prio on transactions that would lock out other
1710 * users of the filesystem
1712 if (cfq_class_idle(cfqq))
1713 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1714 if (cfqq->ioprio > IOPRIO_NORM)
1715 cfqq->ioprio = IOPRIO_NORM;
1716 } else {
1718 * check if we need to unboost the queue
1720 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1721 cfqq->ioprio_class = cfqq->org_ioprio_class;
1722 if (cfqq->ioprio != cfqq->org_ioprio)
1723 cfqq->ioprio = cfqq->org_ioprio;
1727 * refile between round-robin lists if we moved the priority class
1729 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1730 cfq_cfqq_on_rr(cfqq))
1731 cfq_resort_rr_list(cfqq, 0);
1734 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1736 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1737 !cfq_cfqq_must_alloc_slice(cfqq)) {
1738 cfq_mark_cfqq_must_alloc_slice(cfqq);
1739 return ELV_MQUEUE_MUST;
1742 return ELV_MQUEUE_MAY;
1745 static int cfq_may_queue(request_queue_t *q, int rw)
1747 struct cfq_data *cfqd = q->elevator->elevator_data;
1748 struct task_struct *tsk = current;
1749 struct cfq_queue *cfqq;
1752 * don't force setup of a queue from here, as a call to may_queue
1753 * does not necessarily imply that a request actually will be queued.
1754 * so just lookup a possibly existing queue, or return 'may queue'
1755 * if that fails
1757 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1758 if (cfqq) {
1759 cfq_init_prio_data(cfqq);
1760 cfq_prio_boost(cfqq);
1762 return __cfq_may_queue(cfqq);
1765 return ELV_MQUEUE_MAY;
1769 * queue lock held here
1771 static void cfq_put_request(request_queue_t *q, struct request *rq)
1773 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1775 if (cfqq) {
1776 const int rw = rq_data_dir(rq);
1778 BUG_ON(!cfqq->allocated[rw]);
1779 cfqq->allocated[rw]--;
1781 put_io_context(RQ_CIC(rq)->ioc);
1783 rq->elevator_private = NULL;
1784 rq->elevator_private2 = NULL;
1786 cfq_put_queue(cfqq);
1791 * Allocate cfq data structures associated with this request.
1793 static int
1794 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1796 struct cfq_data *cfqd = q->elevator->elevator_data;
1797 struct task_struct *tsk = current;
1798 struct cfq_io_context *cic;
1799 const int rw = rq_data_dir(rq);
1800 pid_t key = cfq_queue_pid(tsk, rw);
1801 struct cfq_queue *cfqq;
1802 unsigned long flags;
1803 int is_sync = key != CFQ_KEY_ASYNC;
1805 might_sleep_if(gfp_mask & __GFP_WAIT);
1807 cic = cfq_get_io_context(cfqd, gfp_mask);
1809 spin_lock_irqsave(q->queue_lock, flags);
1811 if (!cic)
1812 goto queue_fail;
1814 if (!cic->cfqq[is_sync]) {
1815 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1816 if (!cfqq)
1817 goto queue_fail;
1819 cic->cfqq[is_sync] = cfqq;
1820 } else
1821 cfqq = cic->cfqq[is_sync];
1823 cfqq->allocated[rw]++;
1824 cfq_clear_cfqq_must_alloc(cfqq);
1825 atomic_inc(&cfqq->ref);
1827 spin_unlock_irqrestore(q->queue_lock, flags);
1829 rq->elevator_private = cic;
1830 rq->elevator_private2 = cfqq;
1831 return 0;
1833 queue_fail:
1834 if (cic)
1835 put_io_context(cic->ioc);
1837 cfq_schedule_dispatch(cfqd);
1838 spin_unlock_irqrestore(q->queue_lock, flags);
1839 return 1;
1842 static void cfq_kick_queue(void *data)
1844 request_queue_t *q = data;
1845 unsigned long flags;
1847 spin_lock_irqsave(q->queue_lock, flags);
1848 blk_start_queueing(q);
1849 spin_unlock_irqrestore(q->queue_lock, flags);
1853 * Timer running if the active_queue is currently idling inside its time slice
1855 static void cfq_idle_slice_timer(unsigned long data)
1857 struct cfq_data *cfqd = (struct cfq_data *) data;
1858 struct cfq_queue *cfqq;
1859 unsigned long flags;
1861 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1863 if ((cfqq = cfqd->active_queue) != NULL) {
1864 unsigned long now = jiffies;
1867 * expired
1869 if (time_after(now, cfqq->slice_end))
1870 goto expire;
1873 * only expire and reinvoke request handler, if there are
1874 * other queues with pending requests
1876 if (!cfqd->busy_queues)
1877 goto out_cont;
1880 * not expired and it has a request pending, let it dispatch
1882 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1883 cfq_mark_cfqq_must_dispatch(cfqq);
1884 goto out_kick;
1887 expire:
1888 cfq_slice_expired(cfqd, 0);
1889 out_kick:
1890 cfq_schedule_dispatch(cfqd);
1891 out_cont:
1892 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1896 * Timer running if an idle class queue is waiting for service
1898 static void cfq_idle_class_timer(unsigned long data)
1900 struct cfq_data *cfqd = (struct cfq_data *) data;
1901 unsigned long flags, end;
1903 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1906 * race with a non-idle queue, reset timer
1908 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1909 if (!time_after_eq(jiffies, end))
1910 mod_timer(&cfqd->idle_class_timer, end);
1911 else
1912 cfq_schedule_dispatch(cfqd);
1914 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1917 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1919 del_timer_sync(&cfqd->idle_slice_timer);
1920 del_timer_sync(&cfqd->idle_class_timer);
1921 blk_sync_queue(cfqd->queue);
1924 static void cfq_exit_queue(elevator_t *e)
1926 struct cfq_data *cfqd = e->elevator_data;
1927 request_queue_t *q = cfqd->queue;
1929 cfq_shutdown_timer_wq(cfqd);
1931 spin_lock_irq(q->queue_lock);
1933 if (cfqd->active_queue)
1934 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1936 while (!list_empty(&cfqd->cic_list)) {
1937 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1938 struct cfq_io_context,
1939 queue_list);
1941 __cfq_exit_single_io_context(cfqd, cic);
1944 spin_unlock_irq(q->queue_lock);
1946 cfq_shutdown_timer_wq(cfqd);
1948 kfree(cfqd->cfq_hash);
1949 kfree(cfqd);
1952 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
1954 struct cfq_data *cfqd;
1955 int i;
1957 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1958 if (!cfqd)
1959 return NULL;
1961 memset(cfqd, 0, sizeof(*cfqd));
1963 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1964 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1966 INIT_LIST_HEAD(&cfqd->busy_rr);
1967 INIT_LIST_HEAD(&cfqd->cur_rr);
1968 INIT_LIST_HEAD(&cfqd->idle_rr);
1969 INIT_LIST_HEAD(&cfqd->cic_list);
1971 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1972 if (!cfqd->cfq_hash)
1973 goto out_free;
1975 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1976 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1978 cfqd->queue = q;
1980 init_timer(&cfqd->idle_slice_timer);
1981 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1982 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1984 init_timer(&cfqd->idle_class_timer);
1985 cfqd->idle_class_timer.function = cfq_idle_class_timer;
1986 cfqd->idle_class_timer.data = (unsigned long) cfqd;
1988 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
1990 cfqd->cfq_quantum = cfq_quantum;
1991 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
1992 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1993 cfqd->cfq_back_max = cfq_back_max;
1994 cfqd->cfq_back_penalty = cfq_back_penalty;
1995 cfqd->cfq_slice[0] = cfq_slice_async;
1996 cfqd->cfq_slice[1] = cfq_slice_sync;
1997 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
1998 cfqd->cfq_slice_idle = cfq_slice_idle;
2000 return cfqd;
2001 out_free:
2002 kfree(cfqd);
2003 return NULL;
2006 static void cfq_slab_kill(void)
2008 if (cfq_pool)
2009 kmem_cache_destroy(cfq_pool);
2010 if (cfq_ioc_pool)
2011 kmem_cache_destroy(cfq_ioc_pool);
2014 static int __init cfq_slab_setup(void)
2016 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2017 NULL, NULL);
2018 if (!cfq_pool)
2019 goto fail;
2021 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2022 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2023 if (!cfq_ioc_pool)
2024 goto fail;
2026 return 0;
2027 fail:
2028 cfq_slab_kill();
2029 return -ENOMEM;
2033 * sysfs parts below -->
2036 static ssize_t
2037 cfq_var_show(unsigned int var, char *page)
2039 return sprintf(page, "%d\n", var);
2042 static ssize_t
2043 cfq_var_store(unsigned int *var, const char *page, size_t count)
2045 char *p = (char *) page;
2047 *var = simple_strtoul(p, &p, 10);
2048 return count;
2051 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2052 static ssize_t __FUNC(elevator_t *e, char *page) \
2054 struct cfq_data *cfqd = e->elevator_data; \
2055 unsigned int __data = __VAR; \
2056 if (__CONV) \
2057 __data = jiffies_to_msecs(__data); \
2058 return cfq_var_show(__data, (page)); \
2060 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2061 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2062 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2063 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2064 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2065 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2066 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2067 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2068 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2069 #undef SHOW_FUNCTION
2071 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2072 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2074 struct cfq_data *cfqd = e->elevator_data; \
2075 unsigned int __data; \
2076 int ret = cfq_var_store(&__data, (page), count); \
2077 if (__data < (MIN)) \
2078 __data = (MIN); \
2079 else if (__data > (MAX)) \
2080 __data = (MAX); \
2081 if (__CONV) \
2082 *(__PTR) = msecs_to_jiffies(__data); \
2083 else \
2084 *(__PTR) = __data; \
2085 return ret; \
2087 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2088 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2089 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2090 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2091 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2092 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2093 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2094 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2095 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2096 #undef STORE_FUNCTION
2098 #define CFQ_ATTR(name) \
2099 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2101 static struct elv_fs_entry cfq_attrs[] = {
2102 CFQ_ATTR(quantum),
2103 CFQ_ATTR(fifo_expire_sync),
2104 CFQ_ATTR(fifo_expire_async),
2105 CFQ_ATTR(back_seek_max),
2106 CFQ_ATTR(back_seek_penalty),
2107 CFQ_ATTR(slice_sync),
2108 CFQ_ATTR(slice_async),
2109 CFQ_ATTR(slice_async_rq),
2110 CFQ_ATTR(slice_idle),
2111 __ATTR_NULL
2114 static struct elevator_type iosched_cfq = {
2115 .ops = {
2116 .elevator_merge_fn = cfq_merge,
2117 .elevator_merged_fn = cfq_merged_request,
2118 .elevator_merge_req_fn = cfq_merged_requests,
2119 .elevator_dispatch_fn = cfq_dispatch_requests,
2120 .elevator_add_req_fn = cfq_insert_request,
2121 .elevator_activate_req_fn = cfq_activate_request,
2122 .elevator_deactivate_req_fn = cfq_deactivate_request,
2123 .elevator_queue_empty_fn = cfq_queue_empty,
2124 .elevator_completed_req_fn = cfq_completed_request,
2125 .elevator_former_req_fn = elv_rb_former_request,
2126 .elevator_latter_req_fn = elv_rb_latter_request,
2127 .elevator_set_req_fn = cfq_set_request,
2128 .elevator_put_req_fn = cfq_put_request,
2129 .elevator_may_queue_fn = cfq_may_queue,
2130 .elevator_init_fn = cfq_init_queue,
2131 .elevator_exit_fn = cfq_exit_queue,
2132 .trim = cfq_free_io_context,
2134 .elevator_attrs = cfq_attrs,
2135 .elevator_name = "cfq",
2136 .elevator_owner = THIS_MODULE,
2139 static int __init cfq_init(void)
2141 int ret;
2144 * could be 0 on HZ < 1000 setups
2146 if (!cfq_slice_async)
2147 cfq_slice_async = 1;
2148 if (!cfq_slice_idle)
2149 cfq_slice_idle = 1;
2151 if (cfq_slab_setup())
2152 return -ENOMEM;
2154 ret = elv_register(&iosched_cfq);
2155 if (ret)
2156 cfq_slab_kill();
2158 return ret;
2161 static void __exit cfq_exit(void)
2163 DECLARE_COMPLETION_ONSTACK(all_gone);
2164 elv_unregister(&iosched_cfq);
2165 ioc_gone = &all_gone;
2166 /* ioc_gone's update must be visible before reading ioc_count */
2167 smp_wmb();
2168 if (elv_ioc_count_read(ioc_count))
2169 wait_for_completion(ioc_gone);
2170 synchronize_rcu();
2171 cfq_slab_kill();
2174 module_init(cfq_init);
2175 module_exit(cfq_exit);
2177 MODULE_AUTHOR("Jens Axboe");
2178 MODULE_LICENSE("GPL");
2179 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");