1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
9 #include <linux/delay.h>
11 #include <asm/fixmap.h>
13 #include <asm/i8253.h>
16 #define HPET_MASK CLOCKSOURCE_MASK(32)
19 /* FSEC = 10^-15 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address
;
26 static void __iomem
*hpet_virt_address
;
28 unsigned long hpet_readl(unsigned long a
)
30 return readl(hpet_virt_address
+ a
);
33 static inline void hpet_writel(unsigned long d
, unsigned long a
)
35 writel(d
, hpet_virt_address
+ a
);
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE
, hpet_address
);
45 __set_fixmap(VSYSCALL_HPET
, hpet_address
, PAGE_KERNEL_VSYSCALL_NOCACHE
);
46 hpet_virt_address
= (void __iomem
*)fix_to_virt(FIX_HPET_BASE
);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address
= NULL
;
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address
);
64 hpet_virt_address
= NULL
;
69 * HPET command line enable / disable
71 static int boot_hpet_disable
;
73 static int __init
hpet_setup(char* str
)
76 if (!strncmp("disable", str
, 7))
77 boot_hpet_disable
= 1;
81 __setup("hpet=", hpet_setup
);
83 static int __init
disable_hpet(char *str
)
85 boot_hpet_disable
= 1;
88 __setup("nohpet", disable_hpet
);
90 static inline int is_hpet_capable(void)
92 return (!boot_hpet_disable
&& hpet_address
);
96 * HPET timer interrupt enable / disable
98 static int hpet_legacy_int_enabled
;
101 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
103 int is_hpet_enabled(void)
105 return is_hpet_capable() && hpet_legacy_int_enabled
;
109 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
110 * timer 0 and timer 1 in case of RTC emulation.
113 static void hpet_reserve_platform_timers(unsigned long id
)
115 struct hpet __iomem
*hpet
= hpet_virt_address
;
116 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
117 unsigned int nrtimers
, i
;
120 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
122 memset(&hd
, 0, sizeof (hd
));
123 hd
.hd_phys_address
= hpet_address
;
124 hd
.hd_address
= hpet
;
125 hd
.hd_nirqs
= nrtimers
;
126 hd
.hd_flags
= HPET_DATA_PLATFORM
;
127 hpet_reserve_timer(&hd
, 0);
129 #ifdef CONFIG_HPET_EMULATE_RTC
130 hpet_reserve_timer(&hd
, 1);
133 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
134 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
136 for (i
= 2; i
< nrtimers
; timer
++, i
++)
137 hd
.hd_irq
[i
] = (timer
->hpet_config
& Tn_INT_ROUTE_CNF_MASK
) >>
138 Tn_INT_ROUTE_CNF_SHIFT
;
144 static void hpet_reserve_platform_timers(unsigned long id
) { }
150 static unsigned long hpet_period
;
152 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
153 struct clock_event_device
*evt
);
154 static int hpet_legacy_next_event(unsigned long delta
,
155 struct clock_event_device
*evt
);
158 * The hpet clock event device
160 static struct clock_event_device hpet_clockevent
= {
162 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
163 .set_mode
= hpet_legacy_set_mode
,
164 .set_next_event
= hpet_legacy_next_event
,
170 static void hpet_start_counter(void)
172 unsigned long cfg
= hpet_readl(HPET_CFG
);
174 cfg
&= ~HPET_CFG_ENABLE
;
175 hpet_writel(cfg
, HPET_CFG
);
176 hpet_writel(0, HPET_COUNTER
);
177 hpet_writel(0, HPET_COUNTER
+ 4);
178 cfg
|= HPET_CFG_ENABLE
;
179 hpet_writel(cfg
, HPET_CFG
);
182 static void hpet_resume_device(void)
187 static void hpet_restart_counter(void)
189 hpet_resume_device();
190 hpet_start_counter();
193 static void hpet_enable_legacy_int(void)
195 unsigned long cfg
= hpet_readl(HPET_CFG
);
197 cfg
|= HPET_CFG_LEGACY
;
198 hpet_writel(cfg
, HPET_CFG
);
199 hpet_legacy_int_enabled
= 1;
202 static void hpet_legacy_clockevent_register(void)
206 /* Start HPET legacy interrupts */
207 hpet_enable_legacy_int();
210 * The period is a femto seconds value. We need to calculate the
211 * scaled math multiplication factor for nanosecond to hpet tick
214 hpet_freq
= 1000000000000000ULL;
215 do_div(hpet_freq
, hpet_period
);
216 hpet_clockevent
.mult
= div_sc((unsigned long) hpet_freq
,
218 /* Calculate the min / max delta */
219 hpet_clockevent
.max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF,
221 hpet_clockevent
.min_delta_ns
= clockevent_delta2ns(0x30,
225 * Start hpet with the boot cpu mask and make it
226 * global after the IO_APIC has been initialized.
228 hpet_clockevent
.cpumask
= cpumask_of_cpu(smp_processor_id());
229 clockevents_register_device(&hpet_clockevent
);
230 global_clock_event
= &hpet_clockevent
;
231 printk(KERN_DEBUG
"hpet clockevent registered\n");
234 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
235 struct clock_event_device
*evt
)
237 unsigned long cfg
, cmp
, now
;
241 case CLOCK_EVT_MODE_PERIODIC
:
242 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * hpet_clockevent
.mult
;
243 delta
>>= hpet_clockevent
.shift
;
244 now
= hpet_readl(HPET_COUNTER
);
245 cmp
= now
+ (unsigned long) delta
;
246 cfg
= hpet_readl(HPET_T0_CFG
);
247 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
248 HPET_TN_SETVAL
| HPET_TN_32BIT
;
249 hpet_writel(cfg
, HPET_T0_CFG
);
251 * The first write after writing TN_SETVAL to the
252 * config register sets the counter value, the second
253 * write sets the period.
255 hpet_writel(cmp
, HPET_T0_CMP
);
257 hpet_writel((unsigned long) delta
, HPET_T0_CMP
);
260 case CLOCK_EVT_MODE_ONESHOT
:
261 cfg
= hpet_readl(HPET_T0_CFG
);
262 cfg
&= ~HPET_TN_PERIODIC
;
263 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
264 hpet_writel(cfg
, HPET_T0_CFG
);
267 case CLOCK_EVT_MODE_UNUSED
:
268 case CLOCK_EVT_MODE_SHUTDOWN
:
269 cfg
= hpet_readl(HPET_T0_CFG
);
270 cfg
&= ~HPET_TN_ENABLE
;
271 hpet_writel(cfg
, HPET_T0_CFG
);
274 case CLOCK_EVT_MODE_RESUME
:
275 hpet_enable_legacy_int();
280 static int hpet_legacy_next_event(unsigned long delta
,
281 struct clock_event_device
*evt
)
285 cnt
= hpet_readl(HPET_COUNTER
);
287 hpet_writel(cnt
, HPET_T0_CMP
);
289 return ((long)(hpet_readl(HPET_COUNTER
) - cnt
) > 0) ? -ETIME
: 0;
293 * Clock source related code
295 static cycle_t
read_hpet(void)
297 return (cycle_t
)hpet_readl(HPET_COUNTER
);
301 static cycle_t __vsyscall_fn
vread_hpet(void)
303 return readl((const void __iomem
*)fix_to_virt(VSYSCALL_HPET
) + 0xf0);
307 static struct clocksource clocksource_hpet
= {
313 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
314 .resume
= hpet_restart_counter
,
320 static int hpet_clocksource_register(void)
325 /* Start the counter */
326 hpet_start_counter();
328 /* Verify whether hpet counter works */
333 * We don't know the TSC frequency yet, but waiting for
334 * 200000 TSC cycles is safe:
341 } while ((now
- start
) < 200000UL);
343 if (t1
== read_hpet()) {
345 "HPET counter not counting. HPET disabled\n");
349 /* Initialize and register HPET clocksource
351 * hpet period is in femto seconds per cycle
352 * so we need to convert this to ns/cyc units
353 * aproximated by mult/2^shift
355 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
356 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
357 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
358 * (fsec/cyc << shift)/1000000 = mult
359 * (hpet_period << shift)/FSEC_PER_NSEC = mult
361 tmp
= (u64
)hpet_period
<< HPET_SHIFT
;
362 do_div(tmp
, FSEC_PER_NSEC
);
363 clocksource_hpet
.mult
= (u32
)tmp
;
365 clocksource_register(&clocksource_hpet
);
371 * Try to setup the HPET timer
373 int __init
hpet_enable(void)
377 if (!is_hpet_capable())
383 * Read the period and check for a sane value:
385 hpet_period
= hpet_readl(HPET_PERIOD
);
386 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
390 * Read the HPET ID register to retrieve the IRQ routing
391 * information and the number of channels
393 id
= hpet_readl(HPET_ID
);
395 #ifdef CONFIG_HPET_EMULATE_RTC
397 * The legacy routing mode needs at least two channels, tick timer
398 * and the rtc emulation channel.
400 if (!(id
& HPET_ID_NUMBER
))
404 if (hpet_clocksource_register())
407 if (id
& HPET_ID_LEGSUP
) {
408 hpet_legacy_clockevent_register();
414 hpet_clear_mapping();
415 boot_hpet_disable
= 1;
420 * Needs to be late, as the reserve_timer code calls kalloc !
422 * Not a problem on i386 as hpet_enable is called from late_time_init,
423 * but on x86_64 it is necessary !
425 static __init
int hpet_late_init(void)
427 if (boot_hpet_disable
)
431 if (!force_hpet_address
)
434 hpet_address
= force_hpet_address
;
436 if (!hpet_virt_address
)
440 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
444 fs_initcall(hpet_late_init
);
446 #ifdef CONFIG_HPET_EMULATE_RTC
448 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
449 * is enabled, we support RTC interrupt functionality in software.
450 * RTC has 3 kinds of interrupts:
451 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
453 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
454 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
455 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
456 * (1) and (2) above are implemented using polling at a frequency of
457 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
458 * overhead. (DEFAULT_RTC_INT_FREQ)
459 * For (3), we use interrupts at 64Hz or user specified periodic
460 * frequency, whichever is higher.
462 #include <linux/mc146818rtc.h>
463 #include <linux/rtc.h>
465 #define DEFAULT_RTC_INT_FREQ 64
466 #define DEFAULT_RTC_SHIFT 6
467 #define RTC_NUM_INTS 1
469 static unsigned long hpet_rtc_flags
;
470 static unsigned long hpet_prev_update_sec
;
471 static struct rtc_time hpet_alarm_time
;
472 static unsigned long hpet_pie_count
;
473 static unsigned long hpet_t1_cmp
;
474 static unsigned long hpet_default_delta
;
475 static unsigned long hpet_pie_delta
;
476 static unsigned long hpet_pie_limit
;
479 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
480 * is not supported by all HPET implementations for timer 1.
482 * hpet_rtc_timer_init() is called when the rtc is initialized.
484 int hpet_rtc_timer_init(void)
486 unsigned long cfg
, cnt
, delta
, flags
;
488 if (!is_hpet_enabled())
491 if (!hpet_default_delta
) {
494 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
495 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
496 hpet_default_delta
= (unsigned long) clc
;
499 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
500 delta
= hpet_default_delta
;
502 delta
= hpet_pie_delta
;
504 local_irq_save(flags
);
506 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
507 hpet_writel(cnt
, HPET_T1_CMP
);
510 cfg
= hpet_readl(HPET_T1_CFG
);
511 cfg
&= ~HPET_TN_PERIODIC
;
512 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
513 hpet_writel(cfg
, HPET_T1_CFG
);
515 local_irq_restore(flags
);
521 * The functions below are called from rtc driver.
522 * Return 0 if HPET is not being used.
523 * Otherwise do the necessary changes and return 1.
525 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
527 if (!is_hpet_enabled())
530 hpet_rtc_flags
&= ~bit_mask
;
534 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
536 unsigned long oldbits
= hpet_rtc_flags
;
538 if (!is_hpet_enabled())
541 hpet_rtc_flags
|= bit_mask
;
544 hpet_rtc_timer_init();
549 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
552 if (!is_hpet_enabled())
555 hpet_alarm_time
.tm_hour
= hrs
;
556 hpet_alarm_time
.tm_min
= min
;
557 hpet_alarm_time
.tm_sec
= sec
;
562 int hpet_set_periodic_freq(unsigned long freq
)
566 if (!is_hpet_enabled())
569 if (freq
<= DEFAULT_RTC_INT_FREQ
)
570 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
572 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
574 clc
>>= hpet_clockevent
.shift
;
575 hpet_pie_delta
= (unsigned long) clc
;
580 int hpet_rtc_dropped_irq(void)
582 return is_hpet_enabled();
585 static void hpet_rtc_timer_reinit(void)
587 unsigned long cfg
, delta
;
590 if (unlikely(!hpet_rtc_flags
)) {
591 cfg
= hpet_readl(HPET_T1_CFG
);
592 cfg
&= ~HPET_TN_ENABLE
;
593 hpet_writel(cfg
, HPET_T1_CFG
);
597 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
598 delta
= hpet_default_delta
;
600 delta
= hpet_pie_delta
;
603 * Increment the comparator value until we are ahead of the
607 hpet_t1_cmp
+= delta
;
608 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
610 } while ((long)(hpet_readl(HPET_COUNTER
) - hpet_t1_cmp
) > 0);
613 if (hpet_rtc_flags
& RTC_PIE
)
614 hpet_pie_count
+= lost_ints
;
615 if (printk_ratelimit())
616 printk(KERN_WARNING
"rtc: lost %d interrupts\n",
621 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
623 struct rtc_time curr_time
;
624 unsigned long rtc_int_flag
= 0;
626 hpet_rtc_timer_reinit();
628 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
629 rtc_get_rtc_time(&curr_time
);
631 if (hpet_rtc_flags
& RTC_UIE
&&
632 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
633 rtc_int_flag
= RTC_UF
;
634 hpet_prev_update_sec
= curr_time
.tm_sec
;
637 if (hpet_rtc_flags
& RTC_PIE
&&
638 ++hpet_pie_count
>= hpet_pie_limit
) {
639 rtc_int_flag
|= RTC_PF
;
643 if (hpet_rtc_flags
& RTC_PIE
&&
644 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
645 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
646 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
647 rtc_int_flag
|= RTC_AF
;
650 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
651 rtc_interrupt(rtc_int_flag
, dev_id
);