ACPI: thinkpad-acpi: handle HKEY thermal and battery alarms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / chips / cfi_cmdset_0001.c
blob5f1b472137a024b96fcff3ea3f9bcd654c7389f8
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
8 * 10/10/2000 Nicolas Pitre <nico@cam.org>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/cfi.h>
40 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
41 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
43 // debugging, turns off buffer write mode if set to 1
44 #define FORCE_WORD_WRITE 0
46 #define MANUFACTURER_INTEL 0x0089
47 #define I82802AB 0x00ad
48 #define I82802AC 0x00ac
49 #define MANUFACTURER_ST 0x0020
50 #define M50LPW080 0x002F
51 #define M50FLW080A 0x0080
52 #define M50FLW080B 0x0081
53 #define AT49BV640D 0x02de
55 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
59 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_intelext_sync (struct mtd_info *);
61 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
62 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
63 #ifdef CONFIG_MTD_OTP
64 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
67 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
68 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
69 struct otp_info *, size_t);
70 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
71 struct otp_info *, size_t);
72 #endif
73 static int cfi_intelext_suspend (struct mtd_info *);
74 static void cfi_intelext_resume (struct mtd_info *);
75 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
77 static void cfi_intelext_destroy(struct mtd_info *);
79 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
81 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
82 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
84 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
85 size_t *retlen, void **virt, resource_size_t *phys);
86 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
88 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
89 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
90 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
91 #include "fwh_lock.h"
96 * *********** SETUP AND PROBE BITS ***********
99 static struct mtd_chip_driver cfi_intelext_chipdrv = {
100 .probe = NULL, /* Not usable directly */
101 .destroy = cfi_intelext_destroy,
102 .name = "cfi_cmdset_0001",
103 .module = THIS_MODULE
106 /* #define DEBUG_LOCK_BITS */
107 /* #define DEBUG_CFI_FEATURES */
109 #ifdef DEBUG_CFI_FEATURES
110 static void cfi_tell_features(struct cfi_pri_intelext *extp)
112 int i;
113 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
114 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
115 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
116 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
117 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
118 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
119 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
120 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
121 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
122 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
123 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
124 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
125 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
126 for (i=11; i<32; i++) {
127 if (extp->FeatureSupport & (1<<i))
128 printk(" - Unknown Bit %X: supported\n", i);
131 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
132 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
133 for (i=1; i<8; i++) {
134 if (extp->SuspendCmdSupport & (1<<i))
135 printk(" - Unknown Bit %X: supported\n", i);
138 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
139 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
140 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
141 for (i=2; i<3; i++) {
142 if (extp->BlkStatusRegMask & (1<<i))
143 printk(" - Unknown Bit %X Active: yes\n",i);
145 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
146 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
147 for (i=6; i<16; i++) {
148 if (extp->BlkStatusRegMask & (1<<i))
149 printk(" - Unknown Bit %X Active: yes\n",i);
152 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
153 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
154 if (extp->VppOptimal)
155 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
156 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
158 #endif
160 /* Atmel chips don't use the same PRI format as Intel chips */
161 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
163 struct map_info *map = mtd->priv;
164 struct cfi_private *cfi = map->fldrv_priv;
165 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
166 struct cfi_pri_atmel atmel_pri;
167 uint32_t features = 0;
169 /* Reverse byteswapping */
170 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
171 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
172 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
174 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
175 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
177 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
179 if (atmel_pri.Features & 0x01) /* chip erase supported */
180 features |= (1<<0);
181 if (atmel_pri.Features & 0x02) /* erase suspend supported */
182 features |= (1<<1);
183 if (atmel_pri.Features & 0x04) /* program suspend supported */
184 features |= (1<<2);
185 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
186 features |= (1<<9);
187 if (atmel_pri.Features & 0x20) /* page mode read supported */
188 features |= (1<<7);
189 if (atmel_pri.Features & 0x40) /* queued erase supported */
190 features |= (1<<4);
191 if (atmel_pri.Features & 0x80) /* Protection bits supported */
192 features |= (1<<6);
194 extp->FeatureSupport = features;
196 /* burst write mode not supported */
197 cfi->cfiq->BufWriteTimeoutTyp = 0;
198 cfi->cfiq->BufWriteTimeoutMax = 0;
201 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
202 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
203 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
205 struct map_info *map = mtd->priv;
206 struct cfi_private *cfi = map->fldrv_priv;
207 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
209 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
210 "erase on write disabled.\n");
211 extp->SuspendCmdSupport &= ~1;
213 #endif
215 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
216 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
222 if (cfip && (cfip->FeatureSupport&4)) {
223 cfip->FeatureSupport &= ~4;
224 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
227 #endif
229 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
231 struct map_info *map = mtd->priv;
232 struct cfi_private *cfi = map->fldrv_priv;
234 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
235 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
238 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
240 struct map_info *map = mtd->priv;
241 struct cfi_private *cfi = map->fldrv_priv;
243 /* Note this is done after the region info is endian swapped */
244 cfi->cfiq->EraseRegionInfo[1] =
245 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
248 static void fixup_use_point(struct mtd_info *mtd, void *param)
250 struct map_info *map = mtd->priv;
251 if (!mtd->point && map_is_linear(map)) {
252 mtd->point = cfi_intelext_point;
253 mtd->unpoint = cfi_intelext_unpoint;
257 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
259 struct map_info *map = mtd->priv;
260 struct cfi_private *cfi = map->fldrv_priv;
261 if (cfi->cfiq->BufWriteTimeoutTyp) {
262 printk(KERN_INFO "Using buffer write method\n" );
263 mtd->write = cfi_intelext_write_buffers;
264 mtd->writev = cfi_intelext_writev;
269 * Some chips power-up with all sectors locked by default.
271 static void fixup_unlock_powerup_lock(struct mtd_info *mtd, void *param)
273 struct map_info *map = mtd->priv;
274 struct cfi_private *cfi = map->fldrv_priv;
275 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
277 if (cfip->FeatureSupport&32) {
278 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
279 mtd->flags |= MTD_POWERUP_LOCK;
283 static struct cfi_fixup cfi_fixup_table[] = {
284 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
285 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
286 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
287 #endif
288 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
289 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
290 #endif
291 #if !FORCE_WORD_WRITE
292 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
293 #endif
294 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
295 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
296 { MANUFACTURER_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock, NULL, },
297 { 0, 0, NULL, NULL }
300 static struct cfi_fixup jedec_fixup_table[] = {
301 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
302 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
303 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
304 { MANUFACTURER_ST, M50FLW080A, fixup_use_fwh_lock, NULL, },
305 { MANUFACTURER_ST, M50FLW080B, fixup_use_fwh_lock, NULL, },
306 { 0, 0, NULL, NULL }
308 static struct cfi_fixup fixup_table[] = {
309 /* The CFI vendor ids and the JEDEC vendor IDs appear
310 * to be common. It is like the devices id's are as
311 * well. This table is to pick all cases where
312 * we know that is the case.
314 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
315 { 0, 0, NULL, NULL }
318 static inline struct cfi_pri_intelext *
319 read_pri_intelext(struct map_info *map, __u16 adr)
321 struct cfi_pri_intelext *extp;
322 unsigned int extp_size = sizeof(*extp);
324 again:
325 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
326 if (!extp)
327 return NULL;
329 if (extp->MajorVersion != '1' ||
330 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
331 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
332 "version %c.%c.\n", extp->MajorVersion,
333 extp->MinorVersion);
334 kfree(extp);
335 return NULL;
338 /* Do some byteswapping if necessary */
339 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
340 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
341 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
343 if (extp->MajorVersion == '1' && extp->MinorVersion >= '3') {
344 unsigned int extra_size = 0;
345 int nb_parts, i;
347 /* Protection Register info */
348 extra_size += (extp->NumProtectionFields - 1) *
349 sizeof(struct cfi_intelext_otpinfo);
351 /* Burst Read info */
352 extra_size += 2;
353 if (extp_size < sizeof(*extp) + extra_size)
354 goto need_more;
355 extra_size += extp->extra[extra_size-1];
357 /* Number of hardware-partitions */
358 extra_size += 1;
359 if (extp_size < sizeof(*extp) + extra_size)
360 goto need_more;
361 nb_parts = extp->extra[extra_size - 1];
363 /* skip the sizeof(partregion) field in CFI 1.4 */
364 if (extp->MinorVersion >= '4')
365 extra_size += 2;
367 for (i = 0; i < nb_parts; i++) {
368 struct cfi_intelext_regioninfo *rinfo;
369 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
370 extra_size += sizeof(*rinfo);
371 if (extp_size < sizeof(*extp) + extra_size)
372 goto need_more;
373 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
374 extra_size += (rinfo->NumBlockTypes - 1)
375 * sizeof(struct cfi_intelext_blockinfo);
378 if (extp->MinorVersion >= '4')
379 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
381 if (extp_size < sizeof(*extp) + extra_size) {
382 need_more:
383 extp_size = sizeof(*extp) + extra_size;
384 kfree(extp);
385 if (extp_size > 4096) {
386 printk(KERN_ERR
387 "%s: cfi_pri_intelext is too fat\n",
388 __func__);
389 return NULL;
391 goto again;
395 return extp;
398 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
400 struct cfi_private *cfi = map->fldrv_priv;
401 struct mtd_info *mtd;
402 int i;
404 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
405 if (!mtd) {
406 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
407 return NULL;
409 mtd->priv = map;
410 mtd->type = MTD_NORFLASH;
412 /* Fill in the default mtd operations */
413 mtd->erase = cfi_intelext_erase_varsize;
414 mtd->read = cfi_intelext_read;
415 mtd->write = cfi_intelext_write_words;
416 mtd->sync = cfi_intelext_sync;
417 mtd->lock = cfi_intelext_lock;
418 mtd->unlock = cfi_intelext_unlock;
419 mtd->suspend = cfi_intelext_suspend;
420 mtd->resume = cfi_intelext_resume;
421 mtd->flags = MTD_CAP_NORFLASH;
422 mtd->name = map->name;
423 mtd->writesize = 1;
425 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
427 if (cfi->cfi_mode == CFI_MODE_CFI) {
429 * It's a real CFI chip, not one for which the probe
430 * routine faked a CFI structure. So we read the feature
431 * table from it.
433 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
434 struct cfi_pri_intelext *extp;
436 extp = read_pri_intelext(map, adr);
437 if (!extp) {
438 kfree(mtd);
439 return NULL;
442 /* Install our own private info structure */
443 cfi->cmdset_priv = extp;
445 cfi_fixup(mtd, cfi_fixup_table);
447 #ifdef DEBUG_CFI_FEATURES
448 /* Tell the user about it in lots of lovely detail */
449 cfi_tell_features(extp);
450 #endif
452 if(extp->SuspendCmdSupport & 1) {
453 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
456 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
457 /* Apply jedec specific fixups */
458 cfi_fixup(mtd, jedec_fixup_table);
460 /* Apply generic fixups */
461 cfi_fixup(mtd, fixup_table);
463 for (i=0; i< cfi->numchips; i++) {
464 if (cfi->cfiq->WordWriteTimeoutTyp)
465 cfi->chips[i].word_write_time =
466 1<<cfi->cfiq->WordWriteTimeoutTyp;
467 else
468 cfi->chips[i].word_write_time = 50000;
470 if (cfi->cfiq->BufWriteTimeoutTyp)
471 cfi->chips[i].buffer_write_time =
472 1<<cfi->cfiq->BufWriteTimeoutTyp;
473 /* No default; if it isn't specified, we won't use it */
475 if (cfi->cfiq->BlockEraseTimeoutTyp)
476 cfi->chips[i].erase_time =
477 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
478 else
479 cfi->chips[i].erase_time = 2000000;
481 cfi->chips[i].ref_point_counter = 0;
482 init_waitqueue_head(&(cfi->chips[i].wq));
485 map->fldrv = &cfi_intelext_chipdrv;
487 return cfi_intelext_setup(mtd);
489 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
490 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
491 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
492 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
493 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
495 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
497 struct map_info *map = mtd->priv;
498 struct cfi_private *cfi = map->fldrv_priv;
499 unsigned long offset = 0;
500 int i,j;
501 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
503 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
505 mtd->size = devsize * cfi->numchips;
507 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
508 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
509 * mtd->numeraseregions, GFP_KERNEL);
510 if (!mtd->eraseregions) {
511 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
512 goto setup_err;
515 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
516 unsigned long ernum, ersize;
517 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
518 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
520 if (mtd->erasesize < ersize) {
521 mtd->erasesize = ersize;
523 for (j=0; j<cfi->numchips; j++) {
524 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
525 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
526 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
527 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
529 offset += (ersize * ernum);
532 if (offset != devsize) {
533 /* Argh */
534 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
535 goto setup_err;
538 for (i=0; i<mtd->numeraseregions;i++){
539 printk(KERN_DEBUG "erase region %d: offset=0x%x,size=0x%x,blocks=%d\n",
540 i,mtd->eraseregions[i].offset,
541 mtd->eraseregions[i].erasesize,
542 mtd->eraseregions[i].numblocks);
545 #ifdef CONFIG_MTD_OTP
546 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
547 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
548 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
549 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
550 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
551 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
552 #endif
554 /* This function has the potential to distort the reality
555 a bit and therefore should be called last. */
556 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
557 goto setup_err;
559 __module_get(THIS_MODULE);
560 register_reboot_notifier(&mtd->reboot_notifier);
561 return mtd;
563 setup_err:
564 if(mtd) {
565 kfree(mtd->eraseregions);
566 kfree(mtd);
568 kfree(cfi->cmdset_priv);
569 return NULL;
572 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
573 struct cfi_private **pcfi)
575 struct map_info *map = mtd->priv;
576 struct cfi_private *cfi = *pcfi;
577 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
580 * Probing of multi-partition flash chips.
582 * To support multiple partitions when available, we simply arrange
583 * for each of them to have their own flchip structure even if they
584 * are on the same physical chip. This means completely recreating
585 * a new cfi_private structure right here which is a blatent code
586 * layering violation, but this is still the least intrusive
587 * arrangement at this point. This can be rearranged in the future
588 * if someone feels motivated enough. --nico
590 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
591 && extp->FeatureSupport & (1 << 9)) {
592 struct cfi_private *newcfi;
593 struct flchip *chip;
594 struct flchip_shared *shared;
595 int offs, numregions, numparts, partshift, numvirtchips, i, j;
597 /* Protection Register info */
598 offs = (extp->NumProtectionFields - 1) *
599 sizeof(struct cfi_intelext_otpinfo);
601 /* Burst Read info */
602 offs += extp->extra[offs+1]+2;
604 /* Number of partition regions */
605 numregions = extp->extra[offs];
606 offs += 1;
608 /* skip the sizeof(partregion) field in CFI 1.4 */
609 if (extp->MinorVersion >= '4')
610 offs += 2;
612 /* Number of hardware partitions */
613 numparts = 0;
614 for (i = 0; i < numregions; i++) {
615 struct cfi_intelext_regioninfo *rinfo;
616 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
617 numparts += rinfo->NumIdentPartitions;
618 offs += sizeof(*rinfo)
619 + (rinfo->NumBlockTypes - 1) *
620 sizeof(struct cfi_intelext_blockinfo);
623 if (!numparts)
624 numparts = 1;
626 /* Programming Region info */
627 if (extp->MinorVersion >= '4') {
628 struct cfi_intelext_programming_regioninfo *prinfo;
629 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
630 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
631 mtd->flags &= ~MTD_BIT_WRITEABLE;
632 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
633 map->name, mtd->writesize,
634 cfi->interleave * prinfo->ControlValid,
635 cfi->interleave * prinfo->ControlInvalid);
639 * All functions below currently rely on all chips having
640 * the same geometry so we'll just assume that all hardware
641 * partitions are of the same size too.
643 partshift = cfi->chipshift - __ffs(numparts);
645 if ((1 << partshift) < mtd->erasesize) {
646 printk( KERN_ERR
647 "%s: bad number of hw partitions (%d)\n",
648 __func__, numparts);
649 return -EINVAL;
652 numvirtchips = cfi->numchips * numparts;
653 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
654 if (!newcfi)
655 return -ENOMEM;
656 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
657 if (!shared) {
658 kfree(newcfi);
659 return -ENOMEM;
661 memcpy(newcfi, cfi, sizeof(struct cfi_private));
662 newcfi->numchips = numvirtchips;
663 newcfi->chipshift = partshift;
665 chip = &newcfi->chips[0];
666 for (i = 0; i < cfi->numchips; i++) {
667 shared[i].writing = shared[i].erasing = NULL;
668 spin_lock_init(&shared[i].lock);
669 for (j = 0; j < numparts; j++) {
670 *chip = cfi->chips[i];
671 chip->start += j << partshift;
672 chip->priv = &shared[i];
673 /* those should be reset too since
674 they create memory references. */
675 init_waitqueue_head(&chip->wq);
676 spin_lock_init(&chip->_spinlock);
677 chip->mutex = &chip->_spinlock;
678 chip++;
682 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
683 "--> %d partitions of %d KiB\n",
684 map->name, cfi->numchips, cfi->interleave,
685 newcfi->numchips, 1<<(newcfi->chipshift-10));
687 map->fldrv_priv = newcfi;
688 *pcfi = newcfi;
689 kfree(cfi);
692 return 0;
696 * *********** CHIP ACCESS FUNCTIONS ***********
698 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
700 DECLARE_WAITQUEUE(wait, current);
701 struct cfi_private *cfi = map->fldrv_priv;
702 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
703 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
704 unsigned long timeo = jiffies + HZ;
706 switch (chip->state) {
708 case FL_STATUS:
709 for (;;) {
710 status = map_read(map, adr);
711 if (map_word_andequal(map, status, status_OK, status_OK))
712 break;
714 /* At this point we're fine with write operations
715 in other partitions as they don't conflict. */
716 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
717 break;
719 spin_unlock(chip->mutex);
720 cfi_udelay(1);
721 spin_lock(chip->mutex);
722 /* Someone else might have been playing with it. */
723 return -EAGAIN;
725 /* Fall through */
726 case FL_READY:
727 case FL_CFI_QUERY:
728 case FL_JEDEC_QUERY:
729 return 0;
731 case FL_ERASING:
732 if (!cfip ||
733 !(cfip->FeatureSupport & 2) ||
734 !(mode == FL_READY || mode == FL_POINT ||
735 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
736 goto sleep;
739 /* Erase suspend */
740 map_write(map, CMD(0xB0), adr);
742 /* If the flash has finished erasing, then 'erase suspend'
743 * appears to make some (28F320) flash devices switch to
744 * 'read' mode. Make sure that we switch to 'read status'
745 * mode so we get the right data. --rmk
747 map_write(map, CMD(0x70), adr);
748 chip->oldstate = FL_ERASING;
749 chip->state = FL_ERASE_SUSPENDING;
750 chip->erase_suspended = 1;
751 for (;;) {
752 status = map_read(map, adr);
753 if (map_word_andequal(map, status, status_OK, status_OK))
754 break;
756 if (time_after(jiffies, timeo)) {
757 /* Urgh. Resume and pretend we weren't here. */
758 map_write(map, CMD(0xd0), adr);
759 /* Make sure we're in 'read status' mode if it had finished */
760 map_write(map, CMD(0x70), adr);
761 chip->state = FL_ERASING;
762 chip->oldstate = FL_READY;
763 printk(KERN_ERR "%s: Chip not ready after erase "
764 "suspended: status = 0x%lx\n", map->name, status.x[0]);
765 return -EIO;
768 spin_unlock(chip->mutex);
769 cfi_udelay(1);
770 spin_lock(chip->mutex);
771 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
772 So we can just loop here. */
774 chip->state = FL_STATUS;
775 return 0;
777 case FL_XIP_WHILE_ERASING:
778 if (mode != FL_READY && mode != FL_POINT &&
779 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
780 goto sleep;
781 chip->oldstate = chip->state;
782 chip->state = FL_READY;
783 return 0;
785 case FL_SHUTDOWN:
786 /* The machine is rebooting now,so no one can get chip anymore */
787 return -EIO;
788 case FL_POINT:
789 /* Only if there's no operation suspended... */
790 if (mode == FL_READY && chip->oldstate == FL_READY)
791 return 0;
792 /* Fall through */
793 default:
794 sleep:
795 set_current_state(TASK_UNINTERRUPTIBLE);
796 add_wait_queue(&chip->wq, &wait);
797 spin_unlock(chip->mutex);
798 schedule();
799 remove_wait_queue(&chip->wq, &wait);
800 spin_lock(chip->mutex);
801 return -EAGAIN;
805 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
807 int ret;
808 DECLARE_WAITQUEUE(wait, current);
810 retry:
811 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING
812 || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) {
814 * OK. We have possibility for contention on the write/erase
815 * operations which are global to the real chip and not per
816 * partition. So let's fight it over in the partition which
817 * currently has authority on the operation.
819 * The rules are as follows:
821 * - any write operation must own shared->writing.
823 * - any erase operation must own _both_ shared->writing and
824 * shared->erasing.
826 * - contention arbitration is handled in the owner's context.
828 * The 'shared' struct can be read and/or written only when
829 * its lock is taken.
831 struct flchip_shared *shared = chip->priv;
832 struct flchip *contender;
833 spin_lock(&shared->lock);
834 contender = shared->writing;
835 if (contender && contender != chip) {
837 * The engine to perform desired operation on this
838 * partition is already in use by someone else.
839 * Let's fight over it in the context of the chip
840 * currently using it. If it is possible to suspend,
841 * that other partition will do just that, otherwise
842 * it'll happily send us to sleep. In any case, when
843 * get_chip returns success we're clear to go ahead.
845 ret = spin_trylock(contender->mutex);
846 spin_unlock(&shared->lock);
847 if (!ret)
848 goto retry;
849 spin_unlock(chip->mutex);
850 ret = chip_ready(map, contender, contender->start, mode);
851 spin_lock(chip->mutex);
853 if (ret == -EAGAIN) {
854 spin_unlock(contender->mutex);
855 goto retry;
857 if (ret) {
858 spin_unlock(contender->mutex);
859 return ret;
861 spin_lock(&shared->lock);
862 spin_unlock(contender->mutex);
865 /* Check if we already have suspended erase
866 * on this chip. Sleep. */
867 if (mode == FL_ERASING && shared->erasing
868 && shared->erasing->oldstate == FL_ERASING) {
869 spin_unlock(&shared->lock);
870 set_current_state(TASK_UNINTERRUPTIBLE);
871 add_wait_queue(&chip->wq, &wait);
872 spin_unlock(chip->mutex);
873 schedule();
874 remove_wait_queue(&chip->wq, &wait);
875 spin_lock(chip->mutex);
876 goto retry;
879 /* We now own it */
880 shared->writing = chip;
881 if (mode == FL_ERASING)
882 shared->erasing = chip;
883 spin_unlock(&shared->lock);
885 ret = chip_ready(map, chip, adr, mode);
886 if (ret == -EAGAIN)
887 goto retry;
889 return ret;
892 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
894 struct cfi_private *cfi = map->fldrv_priv;
896 if (chip->priv) {
897 struct flchip_shared *shared = chip->priv;
898 spin_lock(&shared->lock);
899 if (shared->writing == chip && chip->oldstate == FL_READY) {
900 /* We own the ability to write, but we're done */
901 shared->writing = shared->erasing;
902 if (shared->writing && shared->writing != chip) {
903 /* give back ownership to who we loaned it from */
904 struct flchip *loaner = shared->writing;
905 spin_lock(loaner->mutex);
906 spin_unlock(&shared->lock);
907 spin_unlock(chip->mutex);
908 put_chip(map, loaner, loaner->start);
909 spin_lock(chip->mutex);
910 spin_unlock(loaner->mutex);
911 wake_up(&chip->wq);
912 return;
914 shared->erasing = NULL;
915 shared->writing = NULL;
916 } else if (shared->erasing == chip && shared->writing != chip) {
918 * We own the ability to erase without the ability
919 * to write, which means the erase was suspended
920 * and some other partition is currently writing.
921 * Don't let the switch below mess things up since
922 * we don't have ownership to resume anything.
924 spin_unlock(&shared->lock);
925 wake_up(&chip->wq);
926 return;
928 spin_unlock(&shared->lock);
931 switch(chip->oldstate) {
932 case FL_ERASING:
933 chip->state = chip->oldstate;
934 /* What if one interleaved chip has finished and the
935 other hasn't? The old code would leave the finished
936 one in READY mode. That's bad, and caused -EROFS
937 errors to be returned from do_erase_oneblock because
938 that's the only bit it checked for at the time.
939 As the state machine appears to explicitly allow
940 sending the 0x70 (Read Status) command to an erasing
941 chip and expecting it to be ignored, that's what we
942 do. */
943 map_write(map, CMD(0xd0), adr);
944 map_write(map, CMD(0x70), adr);
945 chip->oldstate = FL_READY;
946 chip->state = FL_ERASING;
947 break;
949 case FL_XIP_WHILE_ERASING:
950 chip->state = chip->oldstate;
951 chip->oldstate = FL_READY;
952 break;
954 case FL_READY:
955 case FL_STATUS:
956 case FL_JEDEC_QUERY:
957 /* We should really make set_vpp() count, rather than doing this */
958 DISABLE_VPP(map);
959 break;
960 default:
961 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
963 wake_up(&chip->wq);
966 #ifdef CONFIG_MTD_XIP
969 * No interrupt what so ever can be serviced while the flash isn't in array
970 * mode. This is ensured by the xip_disable() and xip_enable() functions
971 * enclosing any code path where the flash is known not to be in array mode.
972 * And within a XIP disabled code path, only functions marked with __xipram
973 * may be called and nothing else (it's a good thing to inspect generated
974 * assembly to make sure inline functions were actually inlined and that gcc
975 * didn't emit calls to its own support functions). Also configuring MTD CFI
976 * support to a single buswidth and a single interleave is also recommended.
979 static void xip_disable(struct map_info *map, struct flchip *chip,
980 unsigned long adr)
982 /* TODO: chips with no XIP use should ignore and return */
983 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
984 local_irq_disable();
987 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
988 unsigned long adr)
990 struct cfi_private *cfi = map->fldrv_priv;
991 if (chip->state != FL_POINT && chip->state != FL_READY) {
992 map_write(map, CMD(0xff), adr);
993 chip->state = FL_READY;
995 (void) map_read(map, adr);
996 xip_iprefetch();
997 local_irq_enable();
1001 * When a delay is required for the flash operation to complete, the
1002 * xip_wait_for_operation() function is polling for both the given timeout
1003 * and pending (but still masked) hardware interrupts. Whenever there is an
1004 * interrupt pending then the flash erase or write operation is suspended,
1005 * array mode restored and interrupts unmasked. Task scheduling might also
1006 * happen at that point. The CPU eventually returns from the interrupt or
1007 * the call to schedule() and the suspended flash operation is resumed for
1008 * the remaining of the delay period.
1010 * Warning: this function _will_ fool interrupt latency tracing tools.
1013 static int __xipram xip_wait_for_operation(
1014 struct map_info *map, struct flchip *chip,
1015 unsigned long adr, unsigned int chip_op_time )
1017 struct cfi_private *cfi = map->fldrv_priv;
1018 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1019 map_word status, OK = CMD(0x80);
1020 unsigned long usec, suspended, start, done;
1021 flstate_t oldstate, newstate;
1023 start = xip_currtime();
1024 usec = chip_op_time * 8;
1025 if (usec == 0)
1026 usec = 500000;
1027 done = 0;
1029 do {
1030 cpu_relax();
1031 if (xip_irqpending() && cfip &&
1032 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1033 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1034 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1036 * Let's suspend the erase or write operation when
1037 * supported. Note that we currently don't try to
1038 * suspend interleaved chips if there is already
1039 * another operation suspended (imagine what happens
1040 * when one chip was already done with the current
1041 * operation while another chip suspended it, then
1042 * we resume the whole thing at once). Yes, it
1043 * can happen!
1045 usec -= done;
1046 map_write(map, CMD(0xb0), adr);
1047 map_write(map, CMD(0x70), adr);
1048 suspended = xip_currtime();
1049 do {
1050 if (xip_elapsed_since(suspended) > 100000) {
1052 * The chip doesn't want to suspend
1053 * after waiting for 100 msecs.
1054 * This is a critical error but there
1055 * is not much we can do here.
1057 return -EIO;
1059 status = map_read(map, adr);
1060 } while (!map_word_andequal(map, status, OK, OK));
1062 /* Suspend succeeded */
1063 oldstate = chip->state;
1064 if (oldstate == FL_ERASING) {
1065 if (!map_word_bitsset(map, status, CMD(0x40)))
1066 break;
1067 newstate = FL_XIP_WHILE_ERASING;
1068 chip->erase_suspended = 1;
1069 } else {
1070 if (!map_word_bitsset(map, status, CMD(0x04)))
1071 break;
1072 newstate = FL_XIP_WHILE_WRITING;
1073 chip->write_suspended = 1;
1075 chip->state = newstate;
1076 map_write(map, CMD(0xff), adr);
1077 (void) map_read(map, adr);
1078 xip_iprefetch();
1079 local_irq_enable();
1080 spin_unlock(chip->mutex);
1081 xip_iprefetch();
1082 cond_resched();
1085 * We're back. However someone else might have
1086 * decided to go write to the chip if we are in
1087 * a suspended erase state. If so let's wait
1088 * until it's done.
1090 spin_lock(chip->mutex);
1091 while (chip->state != newstate) {
1092 DECLARE_WAITQUEUE(wait, current);
1093 set_current_state(TASK_UNINTERRUPTIBLE);
1094 add_wait_queue(&chip->wq, &wait);
1095 spin_unlock(chip->mutex);
1096 schedule();
1097 remove_wait_queue(&chip->wq, &wait);
1098 spin_lock(chip->mutex);
1100 /* Disallow XIP again */
1101 local_irq_disable();
1103 /* Resume the write or erase operation */
1104 map_write(map, CMD(0xd0), adr);
1105 map_write(map, CMD(0x70), adr);
1106 chip->state = oldstate;
1107 start = xip_currtime();
1108 } else if (usec >= 1000000/HZ) {
1110 * Try to save on CPU power when waiting delay
1111 * is at least a system timer tick period.
1112 * No need to be extremely accurate here.
1114 xip_cpu_idle();
1116 status = map_read(map, adr);
1117 done = xip_elapsed_since(start);
1118 } while (!map_word_andequal(map, status, OK, OK)
1119 && done < usec);
1121 return (done >= usec) ? -ETIME : 0;
1125 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1126 * the flash is actively programming or erasing since we have to poll for
1127 * the operation to complete anyway. We can't do that in a generic way with
1128 * a XIP setup so do it before the actual flash operation in this case
1129 * and stub it out from INVAL_CACHE_AND_WAIT.
1131 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1132 INVALIDATE_CACHED_RANGE(map, from, size)
1134 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \
1135 xip_wait_for_operation(map, chip, cmd_adr, usec)
1137 #else
1139 #define xip_disable(map, chip, adr)
1140 #define xip_enable(map, chip, adr)
1141 #define XIP_INVAL_CACHED_RANGE(x...)
1142 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1144 static int inval_cache_and_wait_for_operation(
1145 struct map_info *map, struct flchip *chip,
1146 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1147 unsigned int chip_op_time)
1149 struct cfi_private *cfi = map->fldrv_priv;
1150 map_word status, status_OK = CMD(0x80);
1151 int chip_state = chip->state;
1152 unsigned int timeo, sleep_time, reset_timeo;
1154 spin_unlock(chip->mutex);
1155 if (inval_len)
1156 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1157 spin_lock(chip->mutex);
1159 /* set our timeout to 8 times the expected delay */
1160 timeo = chip_op_time * 8;
1161 if (!timeo)
1162 timeo = 500000;
1163 reset_timeo = timeo;
1164 sleep_time = chip_op_time / 2;
1166 for (;;) {
1167 status = map_read(map, cmd_adr);
1168 if (map_word_andequal(map, status, status_OK, status_OK))
1169 break;
1171 if (!timeo) {
1172 map_write(map, CMD(0x70), cmd_adr);
1173 chip->state = FL_STATUS;
1174 return -ETIME;
1177 /* OK Still waiting. Drop the lock, wait a while and retry. */
1178 spin_unlock(chip->mutex);
1179 if (sleep_time >= 1000000/HZ) {
1181 * Half of the normal delay still remaining
1182 * can be performed with a sleeping delay instead
1183 * of busy waiting.
1185 msleep(sleep_time/1000);
1186 timeo -= sleep_time;
1187 sleep_time = 1000000/HZ;
1188 } else {
1189 udelay(1);
1190 cond_resched();
1191 timeo--;
1193 spin_lock(chip->mutex);
1195 while (chip->state != chip_state) {
1196 /* Someone's suspended the operation: sleep */
1197 DECLARE_WAITQUEUE(wait, current);
1198 set_current_state(TASK_UNINTERRUPTIBLE);
1199 add_wait_queue(&chip->wq, &wait);
1200 spin_unlock(chip->mutex);
1201 schedule();
1202 remove_wait_queue(&chip->wq, &wait);
1203 spin_lock(chip->mutex);
1205 if (chip->erase_suspended || chip->write_suspended) {
1206 /* Suspend has occured while sleep: reset timeout */
1207 timeo = reset_timeo;
1208 chip->erase_suspended = 0;
1209 chip->write_suspended = 0;
1213 /* Done and happy. */
1214 chip->state = FL_STATUS;
1215 return 0;
1218 #endif
1220 #define WAIT_TIMEOUT(map, chip, adr, udelay) \
1221 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay);
1224 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1226 unsigned long cmd_addr;
1227 struct cfi_private *cfi = map->fldrv_priv;
1228 int ret = 0;
1230 adr += chip->start;
1232 /* Ensure cmd read/writes are aligned. */
1233 cmd_addr = adr & ~(map_bankwidth(map)-1);
1235 spin_lock(chip->mutex);
1237 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1239 if (!ret) {
1240 if (chip->state != FL_POINT && chip->state != FL_READY)
1241 map_write(map, CMD(0xff), cmd_addr);
1243 chip->state = FL_POINT;
1244 chip->ref_point_counter++;
1246 spin_unlock(chip->mutex);
1248 return ret;
1251 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1252 size_t *retlen, void **virt, resource_size_t *phys)
1254 struct map_info *map = mtd->priv;
1255 struct cfi_private *cfi = map->fldrv_priv;
1256 unsigned long ofs, last_end = 0;
1257 int chipnum;
1258 int ret = 0;
1260 if (!map->virt || (from + len > mtd->size))
1261 return -EINVAL;
1263 /* Now lock the chip(s) to POINT state */
1265 /* ofs: offset within the first chip that the first read should start */
1266 chipnum = (from >> cfi->chipshift);
1267 ofs = from - (chipnum << cfi->chipshift);
1269 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1270 *retlen = 0;
1271 if (phys)
1272 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1274 while (len) {
1275 unsigned long thislen;
1277 if (chipnum >= cfi->numchips)
1278 break;
1280 /* We cannot point across chips that are virtually disjoint */
1281 if (!last_end)
1282 last_end = cfi->chips[chipnum].start;
1283 else if (cfi->chips[chipnum].start != last_end)
1284 break;
1286 if ((len + ofs -1) >> cfi->chipshift)
1287 thislen = (1<<cfi->chipshift) - ofs;
1288 else
1289 thislen = len;
1291 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1292 if (ret)
1293 break;
1295 *retlen += thislen;
1296 len -= thislen;
1298 ofs = 0;
1299 last_end += 1 << cfi->chipshift;
1300 chipnum++;
1302 return 0;
1305 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1307 struct map_info *map = mtd->priv;
1308 struct cfi_private *cfi = map->fldrv_priv;
1309 unsigned long ofs;
1310 int chipnum;
1312 /* Now unlock the chip(s) POINT state */
1314 /* ofs: offset within the first chip that the first read should start */
1315 chipnum = (from >> cfi->chipshift);
1316 ofs = from - (chipnum << cfi->chipshift);
1318 while (len) {
1319 unsigned long thislen;
1320 struct flchip *chip;
1322 chip = &cfi->chips[chipnum];
1323 if (chipnum >= cfi->numchips)
1324 break;
1326 if ((len + ofs -1) >> cfi->chipshift)
1327 thislen = (1<<cfi->chipshift) - ofs;
1328 else
1329 thislen = len;
1331 spin_lock(chip->mutex);
1332 if (chip->state == FL_POINT) {
1333 chip->ref_point_counter--;
1334 if(chip->ref_point_counter == 0)
1335 chip->state = FL_READY;
1336 } else
1337 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1339 put_chip(map, chip, chip->start);
1340 spin_unlock(chip->mutex);
1342 len -= thislen;
1343 ofs = 0;
1344 chipnum++;
1348 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1350 unsigned long cmd_addr;
1351 struct cfi_private *cfi = map->fldrv_priv;
1352 int ret;
1354 adr += chip->start;
1356 /* Ensure cmd read/writes are aligned. */
1357 cmd_addr = adr & ~(map_bankwidth(map)-1);
1359 spin_lock(chip->mutex);
1360 ret = get_chip(map, chip, cmd_addr, FL_READY);
1361 if (ret) {
1362 spin_unlock(chip->mutex);
1363 return ret;
1366 if (chip->state != FL_POINT && chip->state != FL_READY) {
1367 map_write(map, CMD(0xff), cmd_addr);
1369 chip->state = FL_READY;
1372 map_copy_from(map, buf, adr, len);
1374 put_chip(map, chip, cmd_addr);
1376 spin_unlock(chip->mutex);
1377 return 0;
1380 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1382 struct map_info *map = mtd->priv;
1383 struct cfi_private *cfi = map->fldrv_priv;
1384 unsigned long ofs;
1385 int chipnum;
1386 int ret = 0;
1388 /* ofs: offset within the first chip that the first read should start */
1389 chipnum = (from >> cfi->chipshift);
1390 ofs = from - (chipnum << cfi->chipshift);
1392 *retlen = 0;
1394 while (len) {
1395 unsigned long thislen;
1397 if (chipnum >= cfi->numchips)
1398 break;
1400 if ((len + ofs -1) >> cfi->chipshift)
1401 thislen = (1<<cfi->chipshift) - ofs;
1402 else
1403 thislen = len;
1405 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1406 if (ret)
1407 break;
1409 *retlen += thislen;
1410 len -= thislen;
1411 buf += thislen;
1413 ofs = 0;
1414 chipnum++;
1416 return ret;
1419 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1420 unsigned long adr, map_word datum, int mode)
1422 struct cfi_private *cfi = map->fldrv_priv;
1423 map_word status, write_cmd;
1424 int ret=0;
1426 adr += chip->start;
1428 switch (mode) {
1429 case FL_WRITING:
1430 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1431 break;
1432 case FL_OTP_WRITE:
1433 write_cmd = CMD(0xc0);
1434 break;
1435 default:
1436 return -EINVAL;
1439 spin_lock(chip->mutex);
1440 ret = get_chip(map, chip, adr, mode);
1441 if (ret) {
1442 spin_unlock(chip->mutex);
1443 return ret;
1446 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1447 ENABLE_VPP(map);
1448 xip_disable(map, chip, adr);
1449 map_write(map, write_cmd, adr);
1450 map_write(map, datum, adr);
1451 chip->state = mode;
1453 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1454 adr, map_bankwidth(map),
1455 chip->word_write_time);
1456 if (ret) {
1457 xip_enable(map, chip, adr);
1458 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1459 goto out;
1462 /* check for errors */
1463 status = map_read(map, adr);
1464 if (map_word_bitsset(map, status, CMD(0x1a))) {
1465 unsigned long chipstatus = MERGESTATUS(status);
1467 /* reset status */
1468 map_write(map, CMD(0x50), adr);
1469 map_write(map, CMD(0x70), adr);
1470 xip_enable(map, chip, adr);
1472 if (chipstatus & 0x02) {
1473 ret = -EROFS;
1474 } else if (chipstatus & 0x08) {
1475 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1476 ret = -EIO;
1477 } else {
1478 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1479 ret = -EINVAL;
1482 goto out;
1485 xip_enable(map, chip, adr);
1486 out: put_chip(map, chip, adr);
1487 spin_unlock(chip->mutex);
1488 return ret;
1492 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1494 struct map_info *map = mtd->priv;
1495 struct cfi_private *cfi = map->fldrv_priv;
1496 int ret = 0;
1497 int chipnum;
1498 unsigned long ofs;
1500 *retlen = 0;
1501 if (!len)
1502 return 0;
1504 chipnum = to >> cfi->chipshift;
1505 ofs = to - (chipnum << cfi->chipshift);
1507 /* If it's not bus-aligned, do the first byte write */
1508 if (ofs & (map_bankwidth(map)-1)) {
1509 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1510 int gap = ofs - bus_ofs;
1511 int n;
1512 map_word datum;
1514 n = min_t(int, len, map_bankwidth(map)-gap);
1515 datum = map_word_ff(map);
1516 datum = map_word_load_partial(map, datum, buf, gap, n);
1518 ret = do_write_oneword(map, &cfi->chips[chipnum],
1519 bus_ofs, datum, FL_WRITING);
1520 if (ret)
1521 return ret;
1523 len -= n;
1524 ofs += n;
1525 buf += n;
1526 (*retlen) += n;
1528 if (ofs >> cfi->chipshift) {
1529 chipnum ++;
1530 ofs = 0;
1531 if (chipnum == cfi->numchips)
1532 return 0;
1536 while(len >= map_bankwidth(map)) {
1537 map_word datum = map_word_load(map, buf);
1539 ret = do_write_oneword(map, &cfi->chips[chipnum],
1540 ofs, datum, FL_WRITING);
1541 if (ret)
1542 return ret;
1544 ofs += map_bankwidth(map);
1545 buf += map_bankwidth(map);
1546 (*retlen) += map_bankwidth(map);
1547 len -= map_bankwidth(map);
1549 if (ofs >> cfi->chipshift) {
1550 chipnum ++;
1551 ofs = 0;
1552 if (chipnum == cfi->numchips)
1553 return 0;
1557 if (len & (map_bankwidth(map)-1)) {
1558 map_word datum;
1560 datum = map_word_ff(map);
1561 datum = map_word_load_partial(map, datum, buf, 0, len);
1563 ret = do_write_oneword(map, &cfi->chips[chipnum],
1564 ofs, datum, FL_WRITING);
1565 if (ret)
1566 return ret;
1568 (*retlen) += len;
1571 return 0;
1575 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1576 unsigned long adr, const struct kvec **pvec,
1577 unsigned long *pvec_seek, int len)
1579 struct cfi_private *cfi = map->fldrv_priv;
1580 map_word status, write_cmd, datum;
1581 unsigned long cmd_adr;
1582 int ret, wbufsize, word_gap, words;
1583 const struct kvec *vec;
1584 unsigned long vec_seek;
1585 unsigned long initial_adr;
1586 int initial_len = len;
1588 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1589 adr += chip->start;
1590 initial_adr = adr;
1591 cmd_adr = adr & ~(wbufsize-1);
1593 /* Let's determine this according to the interleave only once */
1594 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1596 spin_lock(chip->mutex);
1597 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1598 if (ret) {
1599 spin_unlock(chip->mutex);
1600 return ret;
1603 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1604 ENABLE_VPP(map);
1605 xip_disable(map, chip, cmd_adr);
1607 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1608 [...], the device will not accept any more Write to Buffer commands".
1609 So we must check here and reset those bits if they're set. Otherwise
1610 we're just pissing in the wind */
1611 if (chip->state != FL_STATUS) {
1612 map_write(map, CMD(0x70), cmd_adr);
1613 chip->state = FL_STATUS;
1615 status = map_read(map, cmd_adr);
1616 if (map_word_bitsset(map, status, CMD(0x30))) {
1617 xip_enable(map, chip, cmd_adr);
1618 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1619 xip_disable(map, chip, cmd_adr);
1620 map_write(map, CMD(0x50), cmd_adr);
1621 map_write(map, CMD(0x70), cmd_adr);
1624 chip->state = FL_WRITING_TO_BUFFER;
1625 map_write(map, write_cmd, cmd_adr);
1626 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0);
1627 if (ret) {
1628 /* Argh. Not ready for write to buffer */
1629 map_word Xstatus = map_read(map, cmd_adr);
1630 map_write(map, CMD(0x70), cmd_adr);
1631 chip->state = FL_STATUS;
1632 status = map_read(map, cmd_adr);
1633 map_write(map, CMD(0x50), cmd_adr);
1634 map_write(map, CMD(0x70), cmd_adr);
1635 xip_enable(map, chip, cmd_adr);
1636 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1637 map->name, Xstatus.x[0], status.x[0]);
1638 goto out;
1641 /* Figure out the number of words to write */
1642 word_gap = (-adr & (map_bankwidth(map)-1));
1643 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
1644 if (!word_gap) {
1645 words--;
1646 } else {
1647 word_gap = map_bankwidth(map) - word_gap;
1648 adr -= word_gap;
1649 datum = map_word_ff(map);
1652 /* Write length of data to come */
1653 map_write(map, CMD(words), cmd_adr );
1655 /* Write data */
1656 vec = *pvec;
1657 vec_seek = *pvec_seek;
1658 do {
1659 int n = map_bankwidth(map) - word_gap;
1660 if (n > vec->iov_len - vec_seek)
1661 n = vec->iov_len - vec_seek;
1662 if (n > len)
1663 n = len;
1665 if (!word_gap && len < map_bankwidth(map))
1666 datum = map_word_ff(map);
1668 datum = map_word_load_partial(map, datum,
1669 vec->iov_base + vec_seek,
1670 word_gap, n);
1672 len -= n;
1673 word_gap += n;
1674 if (!len || word_gap == map_bankwidth(map)) {
1675 map_write(map, datum, adr);
1676 adr += map_bankwidth(map);
1677 word_gap = 0;
1680 vec_seek += n;
1681 if (vec_seek == vec->iov_len) {
1682 vec++;
1683 vec_seek = 0;
1685 } while (len);
1686 *pvec = vec;
1687 *pvec_seek = vec_seek;
1689 /* GO GO GO */
1690 map_write(map, CMD(0xd0), cmd_adr);
1691 chip->state = FL_WRITING;
1693 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1694 initial_adr, initial_len,
1695 chip->buffer_write_time);
1696 if (ret) {
1697 map_write(map, CMD(0x70), cmd_adr);
1698 chip->state = FL_STATUS;
1699 xip_enable(map, chip, cmd_adr);
1700 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1701 goto out;
1704 /* check for errors */
1705 status = map_read(map, cmd_adr);
1706 if (map_word_bitsset(map, status, CMD(0x1a))) {
1707 unsigned long chipstatus = MERGESTATUS(status);
1709 /* reset status */
1710 map_write(map, CMD(0x50), cmd_adr);
1711 map_write(map, CMD(0x70), cmd_adr);
1712 xip_enable(map, chip, cmd_adr);
1714 if (chipstatus & 0x02) {
1715 ret = -EROFS;
1716 } else if (chipstatus & 0x08) {
1717 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1718 ret = -EIO;
1719 } else {
1720 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1721 ret = -EINVAL;
1724 goto out;
1727 xip_enable(map, chip, cmd_adr);
1728 out: put_chip(map, chip, cmd_adr);
1729 spin_unlock(chip->mutex);
1730 return ret;
1733 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1734 unsigned long count, loff_t to, size_t *retlen)
1736 struct map_info *map = mtd->priv;
1737 struct cfi_private *cfi = map->fldrv_priv;
1738 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1739 int ret = 0;
1740 int chipnum;
1741 unsigned long ofs, vec_seek, i;
1742 size_t len = 0;
1744 for (i = 0; i < count; i++)
1745 len += vecs[i].iov_len;
1747 *retlen = 0;
1748 if (!len)
1749 return 0;
1751 chipnum = to >> cfi->chipshift;
1752 ofs = to - (chipnum << cfi->chipshift);
1753 vec_seek = 0;
1755 do {
1756 /* We must not cross write block boundaries */
1757 int size = wbufsize - (ofs & (wbufsize-1));
1759 if (size > len)
1760 size = len;
1761 ret = do_write_buffer(map, &cfi->chips[chipnum],
1762 ofs, &vecs, &vec_seek, size);
1763 if (ret)
1764 return ret;
1766 ofs += size;
1767 (*retlen) += size;
1768 len -= size;
1770 if (ofs >> cfi->chipshift) {
1771 chipnum ++;
1772 ofs = 0;
1773 if (chipnum == cfi->numchips)
1774 return 0;
1777 /* Be nice and reschedule with the chip in a usable state for other
1778 processes. */
1779 cond_resched();
1781 } while (len);
1783 return 0;
1786 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1787 size_t len, size_t *retlen, const u_char *buf)
1789 struct kvec vec;
1791 vec.iov_base = (void *) buf;
1792 vec.iov_len = len;
1794 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1797 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1798 unsigned long adr, int len, void *thunk)
1800 struct cfi_private *cfi = map->fldrv_priv;
1801 map_word status;
1802 int retries = 3;
1803 int ret;
1805 adr += chip->start;
1807 retry:
1808 spin_lock(chip->mutex);
1809 ret = get_chip(map, chip, adr, FL_ERASING);
1810 if (ret) {
1811 spin_unlock(chip->mutex);
1812 return ret;
1815 XIP_INVAL_CACHED_RANGE(map, adr, len);
1816 ENABLE_VPP(map);
1817 xip_disable(map, chip, adr);
1819 /* Clear the status register first */
1820 map_write(map, CMD(0x50), adr);
1822 /* Now erase */
1823 map_write(map, CMD(0x20), adr);
1824 map_write(map, CMD(0xD0), adr);
1825 chip->state = FL_ERASING;
1826 chip->erase_suspended = 0;
1828 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1829 adr, len,
1830 chip->erase_time);
1831 if (ret) {
1832 map_write(map, CMD(0x70), adr);
1833 chip->state = FL_STATUS;
1834 xip_enable(map, chip, adr);
1835 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1836 goto out;
1839 /* We've broken this before. It doesn't hurt to be safe */
1840 map_write(map, CMD(0x70), adr);
1841 chip->state = FL_STATUS;
1842 status = map_read(map, adr);
1844 /* check for errors */
1845 if (map_word_bitsset(map, status, CMD(0x3a))) {
1846 unsigned long chipstatus = MERGESTATUS(status);
1848 /* Reset the error bits */
1849 map_write(map, CMD(0x50), adr);
1850 map_write(map, CMD(0x70), adr);
1851 xip_enable(map, chip, adr);
1853 if ((chipstatus & 0x30) == 0x30) {
1854 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1855 ret = -EINVAL;
1856 } else if (chipstatus & 0x02) {
1857 /* Protection bit set */
1858 ret = -EROFS;
1859 } else if (chipstatus & 0x8) {
1860 /* Voltage */
1861 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1862 ret = -EIO;
1863 } else if (chipstatus & 0x20 && retries--) {
1864 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1865 put_chip(map, chip, adr);
1866 spin_unlock(chip->mutex);
1867 goto retry;
1868 } else {
1869 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1870 ret = -EIO;
1873 goto out;
1876 xip_enable(map, chip, adr);
1877 out: put_chip(map, chip, adr);
1878 spin_unlock(chip->mutex);
1879 return ret;
1882 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1884 unsigned long ofs, len;
1885 int ret;
1887 ofs = instr->addr;
1888 len = instr->len;
1890 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1891 if (ret)
1892 return ret;
1894 instr->state = MTD_ERASE_DONE;
1895 mtd_erase_callback(instr);
1897 return 0;
1900 static void cfi_intelext_sync (struct mtd_info *mtd)
1902 struct map_info *map = mtd->priv;
1903 struct cfi_private *cfi = map->fldrv_priv;
1904 int i;
1905 struct flchip *chip;
1906 int ret = 0;
1908 for (i=0; !ret && i<cfi->numchips; i++) {
1909 chip = &cfi->chips[i];
1911 spin_lock(chip->mutex);
1912 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1914 if (!ret) {
1915 chip->oldstate = chip->state;
1916 chip->state = FL_SYNCING;
1917 /* No need to wake_up() on this state change -
1918 * as the whole point is that nobody can do anything
1919 * with the chip now anyway.
1922 spin_unlock(chip->mutex);
1925 /* Unlock the chips again */
1927 for (i--; i >=0; i--) {
1928 chip = &cfi->chips[i];
1930 spin_lock(chip->mutex);
1932 if (chip->state == FL_SYNCING) {
1933 chip->state = chip->oldstate;
1934 chip->oldstate = FL_READY;
1935 wake_up(&chip->wq);
1937 spin_unlock(chip->mutex);
1941 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
1942 struct flchip *chip,
1943 unsigned long adr,
1944 int len, void *thunk)
1946 struct cfi_private *cfi = map->fldrv_priv;
1947 int status, ofs_factor = cfi->interleave * cfi->device_type;
1949 adr += chip->start;
1950 xip_disable(map, chip, adr+(2*ofs_factor));
1951 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1952 chip->state = FL_JEDEC_QUERY;
1953 status = cfi_read_query(map, adr+(2*ofs_factor));
1954 xip_enable(map, chip, 0);
1955 return status;
1958 #ifdef DEBUG_LOCK_BITS
1959 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1960 struct flchip *chip,
1961 unsigned long adr,
1962 int len, void *thunk)
1964 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
1965 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
1966 return 0;
1968 #endif
1970 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
1971 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
1973 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
1974 unsigned long adr, int len, void *thunk)
1976 struct cfi_private *cfi = map->fldrv_priv;
1977 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1978 int udelay;
1979 int ret;
1981 adr += chip->start;
1983 spin_lock(chip->mutex);
1984 ret = get_chip(map, chip, adr, FL_LOCKING);
1985 if (ret) {
1986 spin_unlock(chip->mutex);
1987 return ret;
1990 ENABLE_VPP(map);
1991 xip_disable(map, chip, adr);
1993 map_write(map, CMD(0x60), adr);
1994 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
1995 map_write(map, CMD(0x01), adr);
1996 chip->state = FL_LOCKING;
1997 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
1998 map_write(map, CMD(0xD0), adr);
1999 chip->state = FL_UNLOCKING;
2000 } else
2001 BUG();
2004 * If Instant Individual Block Locking supported then no need
2005 * to delay.
2007 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2009 ret = WAIT_TIMEOUT(map, chip, adr, udelay);
2010 if (ret) {
2011 map_write(map, CMD(0x70), adr);
2012 chip->state = FL_STATUS;
2013 xip_enable(map, chip, adr);
2014 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2015 goto out;
2018 xip_enable(map, chip, adr);
2019 out: put_chip(map, chip, adr);
2020 spin_unlock(chip->mutex);
2021 return ret;
2024 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2026 int ret;
2028 #ifdef DEBUG_LOCK_BITS
2029 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2030 __func__, ofs, len);
2031 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2032 ofs, len, NULL);
2033 #endif
2035 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2036 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2038 #ifdef DEBUG_LOCK_BITS
2039 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2040 __func__, ret);
2041 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2042 ofs, len, NULL);
2043 #endif
2045 return ret;
2048 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2050 int ret;
2052 #ifdef DEBUG_LOCK_BITS
2053 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2054 __func__, ofs, len);
2055 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2056 ofs, len, NULL);
2057 #endif
2059 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2060 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2062 #ifdef DEBUG_LOCK_BITS
2063 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2064 __func__, ret);
2065 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2066 ofs, len, NULL);
2067 #endif
2069 return ret;
2072 #ifdef CONFIG_MTD_OTP
2074 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2075 u_long data_offset, u_char *buf, u_int size,
2076 u_long prot_offset, u_int groupno, u_int groupsize);
2078 static int __xipram
2079 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2080 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2082 struct cfi_private *cfi = map->fldrv_priv;
2083 int ret;
2085 spin_lock(chip->mutex);
2086 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2087 if (ret) {
2088 spin_unlock(chip->mutex);
2089 return ret;
2092 /* let's ensure we're not reading back cached data from array mode */
2093 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2095 xip_disable(map, chip, chip->start);
2096 if (chip->state != FL_JEDEC_QUERY) {
2097 map_write(map, CMD(0x90), chip->start);
2098 chip->state = FL_JEDEC_QUERY;
2100 map_copy_from(map, buf, chip->start + offset, size);
2101 xip_enable(map, chip, chip->start);
2103 /* then ensure we don't keep OTP data in the cache */
2104 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2106 put_chip(map, chip, chip->start);
2107 spin_unlock(chip->mutex);
2108 return 0;
2111 static int
2112 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2113 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2115 int ret;
2117 while (size) {
2118 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2119 int gap = offset - bus_ofs;
2120 int n = min_t(int, size, map_bankwidth(map)-gap);
2121 map_word datum = map_word_ff(map);
2123 datum = map_word_load_partial(map, datum, buf, gap, n);
2124 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2125 if (ret)
2126 return ret;
2128 offset += n;
2129 buf += n;
2130 size -= n;
2133 return 0;
2136 static int
2137 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2138 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2140 struct cfi_private *cfi = map->fldrv_priv;
2141 map_word datum;
2143 /* make sure area matches group boundaries */
2144 if (size != grpsz)
2145 return -EXDEV;
2147 datum = map_word_ff(map);
2148 datum = map_word_clr(map, datum, CMD(1 << grpno));
2149 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2152 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2153 size_t *retlen, u_char *buf,
2154 otp_op_t action, int user_regs)
2156 struct map_info *map = mtd->priv;
2157 struct cfi_private *cfi = map->fldrv_priv;
2158 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2159 struct flchip *chip;
2160 struct cfi_intelext_otpinfo *otp;
2161 u_long devsize, reg_prot_offset, data_offset;
2162 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2163 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2164 int ret;
2166 *retlen = 0;
2168 /* Check that we actually have some OTP registers */
2169 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2170 return -ENODATA;
2172 /* we need real chips here not virtual ones */
2173 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2174 chip_step = devsize >> cfi->chipshift;
2175 chip_num = 0;
2177 /* Some chips have OTP located in the _top_ partition only.
2178 For example: Intel 28F256L18T (T means top-parameter device) */
2179 if (cfi->mfr == MANUFACTURER_INTEL) {
2180 switch (cfi->id) {
2181 case 0x880b:
2182 case 0x880c:
2183 case 0x880d:
2184 chip_num = chip_step - 1;
2188 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2189 chip = &cfi->chips[chip_num];
2190 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2192 /* first OTP region */
2193 field = 0;
2194 reg_prot_offset = extp->ProtRegAddr;
2195 reg_fact_groups = 1;
2196 reg_fact_size = 1 << extp->FactProtRegSize;
2197 reg_user_groups = 1;
2198 reg_user_size = 1 << extp->UserProtRegSize;
2200 while (len > 0) {
2201 /* flash geometry fixup */
2202 data_offset = reg_prot_offset + 1;
2203 data_offset *= cfi->interleave * cfi->device_type;
2204 reg_prot_offset *= cfi->interleave * cfi->device_type;
2205 reg_fact_size *= cfi->interleave;
2206 reg_user_size *= cfi->interleave;
2208 if (user_regs) {
2209 groups = reg_user_groups;
2210 groupsize = reg_user_size;
2211 /* skip over factory reg area */
2212 groupno = reg_fact_groups;
2213 data_offset += reg_fact_groups * reg_fact_size;
2214 } else {
2215 groups = reg_fact_groups;
2216 groupsize = reg_fact_size;
2217 groupno = 0;
2220 while (len > 0 && groups > 0) {
2221 if (!action) {
2223 * Special case: if action is NULL
2224 * we fill buf with otp_info records.
2226 struct otp_info *otpinfo;
2227 map_word lockword;
2228 len -= sizeof(struct otp_info);
2229 if (len <= 0)
2230 return -ENOSPC;
2231 ret = do_otp_read(map, chip,
2232 reg_prot_offset,
2233 (u_char *)&lockword,
2234 map_bankwidth(map),
2235 0, 0, 0);
2236 if (ret)
2237 return ret;
2238 otpinfo = (struct otp_info *)buf;
2239 otpinfo->start = from;
2240 otpinfo->length = groupsize;
2241 otpinfo->locked =
2242 !map_word_bitsset(map, lockword,
2243 CMD(1 << groupno));
2244 from += groupsize;
2245 buf += sizeof(*otpinfo);
2246 *retlen += sizeof(*otpinfo);
2247 } else if (from >= groupsize) {
2248 from -= groupsize;
2249 data_offset += groupsize;
2250 } else {
2251 int size = groupsize;
2252 data_offset += from;
2253 size -= from;
2254 from = 0;
2255 if (size > len)
2256 size = len;
2257 ret = action(map, chip, data_offset,
2258 buf, size, reg_prot_offset,
2259 groupno, groupsize);
2260 if (ret < 0)
2261 return ret;
2262 buf += size;
2263 len -= size;
2264 *retlen += size;
2265 data_offset += size;
2267 groupno++;
2268 groups--;
2271 /* next OTP region */
2272 if (++field == extp->NumProtectionFields)
2273 break;
2274 reg_prot_offset = otp->ProtRegAddr;
2275 reg_fact_groups = otp->FactGroups;
2276 reg_fact_size = 1 << otp->FactProtRegSize;
2277 reg_user_groups = otp->UserGroups;
2278 reg_user_size = 1 << otp->UserProtRegSize;
2279 otp++;
2283 return 0;
2286 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2287 size_t len, size_t *retlen,
2288 u_char *buf)
2290 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2291 buf, do_otp_read, 0);
2294 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2295 size_t len, size_t *retlen,
2296 u_char *buf)
2298 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2299 buf, do_otp_read, 1);
2302 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2303 size_t len, size_t *retlen,
2304 u_char *buf)
2306 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2307 buf, do_otp_write, 1);
2310 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2311 loff_t from, size_t len)
2313 size_t retlen;
2314 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2315 NULL, do_otp_lock, 1);
2318 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2319 struct otp_info *buf, size_t len)
2321 size_t retlen;
2322 int ret;
2324 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2325 return ret ? : retlen;
2328 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2329 struct otp_info *buf, size_t len)
2331 size_t retlen;
2332 int ret;
2334 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2335 return ret ? : retlen;
2338 #endif
2340 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2342 struct mtd_erase_region_info *region;
2343 int block, status, i;
2344 unsigned long adr;
2345 size_t len;
2347 for (i = 0; i < mtd->numeraseregions; i++) {
2348 region = &mtd->eraseregions[i];
2349 if (!region->lockmap)
2350 continue;
2352 for (block = 0; block < region->numblocks; block++){
2353 len = region->erasesize;
2354 adr = region->offset + block * len;
2356 status = cfi_varsize_frob(mtd,
2357 do_getlockstatus_oneblock, adr, len, NULL);
2358 if (status)
2359 set_bit(block, region->lockmap);
2360 else
2361 clear_bit(block, region->lockmap);
2366 static int cfi_intelext_suspend(struct mtd_info *mtd)
2368 struct map_info *map = mtd->priv;
2369 struct cfi_private *cfi = map->fldrv_priv;
2370 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2371 int i;
2372 struct flchip *chip;
2373 int ret = 0;
2375 if ((mtd->flags & MTD_POWERUP_LOCK)
2376 && extp && (extp->FeatureSupport & (1 << 5)))
2377 cfi_intelext_save_locks(mtd);
2379 for (i=0; !ret && i<cfi->numchips; i++) {
2380 chip = &cfi->chips[i];
2382 spin_lock(chip->mutex);
2384 switch (chip->state) {
2385 case FL_READY:
2386 case FL_STATUS:
2387 case FL_CFI_QUERY:
2388 case FL_JEDEC_QUERY:
2389 if (chip->oldstate == FL_READY) {
2390 /* place the chip in a known state before suspend */
2391 map_write(map, CMD(0xFF), cfi->chips[i].start);
2392 chip->oldstate = chip->state;
2393 chip->state = FL_PM_SUSPENDED;
2394 /* No need to wake_up() on this state change -
2395 * as the whole point is that nobody can do anything
2396 * with the chip now anyway.
2398 } else {
2399 /* There seems to be an operation pending. We must wait for it. */
2400 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2401 ret = -EAGAIN;
2403 break;
2404 default:
2405 /* Should we actually wait? Once upon a time these routines weren't
2406 allowed to. Or should we return -EAGAIN, because the upper layers
2407 ought to have already shut down anything which was using the device
2408 anyway? The latter for now. */
2409 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2410 ret = -EAGAIN;
2411 case FL_PM_SUSPENDED:
2412 break;
2414 spin_unlock(chip->mutex);
2417 /* Unlock the chips again */
2419 if (ret) {
2420 for (i--; i >=0; i--) {
2421 chip = &cfi->chips[i];
2423 spin_lock(chip->mutex);
2425 if (chip->state == FL_PM_SUSPENDED) {
2426 /* No need to force it into a known state here,
2427 because we're returning failure, and it didn't
2428 get power cycled */
2429 chip->state = chip->oldstate;
2430 chip->oldstate = FL_READY;
2431 wake_up(&chip->wq);
2433 spin_unlock(chip->mutex);
2437 return ret;
2440 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2442 struct mtd_erase_region_info *region;
2443 int block, i;
2444 unsigned long adr;
2445 size_t len;
2447 for (i = 0; i < mtd->numeraseregions; i++) {
2448 region = &mtd->eraseregions[i];
2449 if (!region->lockmap)
2450 continue;
2452 for (block = 0; block < region->numblocks; block++) {
2453 len = region->erasesize;
2454 adr = region->offset + block * len;
2456 if (!test_bit(block, region->lockmap))
2457 cfi_intelext_unlock(mtd, adr, len);
2462 static void cfi_intelext_resume(struct mtd_info *mtd)
2464 struct map_info *map = mtd->priv;
2465 struct cfi_private *cfi = map->fldrv_priv;
2466 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2467 int i;
2468 struct flchip *chip;
2470 for (i=0; i<cfi->numchips; i++) {
2472 chip = &cfi->chips[i];
2474 spin_lock(chip->mutex);
2476 /* Go to known state. Chip may have been power cycled */
2477 if (chip->state == FL_PM_SUSPENDED) {
2478 map_write(map, CMD(0xFF), cfi->chips[i].start);
2479 chip->oldstate = chip->state = FL_READY;
2480 wake_up(&chip->wq);
2483 spin_unlock(chip->mutex);
2486 if ((mtd->flags & MTD_POWERUP_LOCK)
2487 && extp && (extp->FeatureSupport & (1 << 5)))
2488 cfi_intelext_restore_locks(mtd);
2491 static int cfi_intelext_reset(struct mtd_info *mtd)
2493 struct map_info *map = mtd->priv;
2494 struct cfi_private *cfi = map->fldrv_priv;
2495 int i, ret;
2497 for (i=0; i < cfi->numchips; i++) {
2498 struct flchip *chip = &cfi->chips[i];
2500 /* force the completion of any ongoing operation
2501 and switch to array mode so any bootloader in
2502 flash is accessible for soft reboot. */
2503 spin_lock(chip->mutex);
2504 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2505 if (!ret) {
2506 map_write(map, CMD(0xff), chip->start);
2507 chip->state = FL_SHUTDOWN;
2509 spin_unlock(chip->mutex);
2512 return 0;
2515 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2516 void *v)
2518 struct mtd_info *mtd;
2520 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2521 cfi_intelext_reset(mtd);
2522 return NOTIFY_DONE;
2525 static void cfi_intelext_destroy(struct mtd_info *mtd)
2527 struct map_info *map = mtd->priv;
2528 struct cfi_private *cfi = map->fldrv_priv;
2529 struct mtd_erase_region_info *region;
2530 int i;
2531 cfi_intelext_reset(mtd);
2532 unregister_reboot_notifier(&mtd->reboot_notifier);
2533 kfree(cfi->cmdset_priv);
2534 kfree(cfi->cfiq);
2535 kfree(cfi->chips[0].priv);
2536 kfree(cfi);
2537 for (i = 0; i < mtd->numeraseregions; i++) {
2538 region = &mtd->eraseregions[i];
2539 if (region->lockmap)
2540 kfree(region->lockmap);
2542 kfree(mtd->eraseregions);
2545 MODULE_LICENSE("GPL");
2546 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2547 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2548 MODULE_ALIAS("cfi_cmdset_0003");
2549 MODULE_ALIAS("cfi_cmdset_0200");