ACPI: thinkpad-acpi: handle HKEY thermal and battery alarms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-timings.c
blob8c2f8327f4872bba709ee503142866d0a102b214
1 /*
2 * Copyright (c) 1999-2001 Vojtech Pavlik
3 * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Should you need to contact me, the author, you can do so either by
20 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
21 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
24 #include <linux/kernel.h>
25 #include <linux/hdreg.h>
26 #include <linux/ide.h>
27 #include <linux/module.h>
30 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
31 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
32 * for PIO 5, which is a nonstandard extension and UDMA6, which
33 * is currently supported only by Maxtor drives.
36 static struct ide_timing ide_timing[] = {
38 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
39 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
40 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
41 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
43 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
44 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
45 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
47 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
48 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
49 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
51 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
52 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
53 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
55 { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
56 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
57 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
59 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
60 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
61 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
63 { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
65 { 0xff }
68 struct ide_timing *ide_timing_find_mode(u8 speed)
70 struct ide_timing *t;
72 for (t = ide_timing; t->mode != speed; t++)
73 if (t->mode == 0xff)
74 return NULL;
75 return t;
77 EXPORT_SYMBOL_GPL(ide_timing_find_mode);
79 u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
81 struct hd_driveid *id = drive->id;
82 struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
83 u16 cycle = 0;
85 if (id->field_valid & 2) {
86 if (id->capability & 8)
87 cycle = id->eide_pio_iordy;
88 else
89 cycle = id->eide_pio;
91 /* conservative "downgrade" for all pre-ATA2 drives */
92 if (pio < 3 && cycle < t->cycle)
93 cycle = 0; /* use standard timing */
96 return cycle ? cycle : t->cycle;
98 EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
100 #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
101 #define EZ(v, unit) ((v) ? ENOUGH(v, unit) : 0)
103 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
104 int T, int UT)
106 q->setup = EZ(t->setup * 1000, T);
107 q->act8b = EZ(t->act8b * 1000, T);
108 q->rec8b = EZ(t->rec8b * 1000, T);
109 q->cyc8b = EZ(t->cyc8b * 1000, T);
110 q->active = EZ(t->active * 1000, T);
111 q->recover = EZ(t->recover * 1000, T);
112 q->cycle = EZ(t->cycle * 1000, T);
113 q->udma = EZ(t->udma * 1000, UT);
116 void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
117 struct ide_timing *m, unsigned int what)
119 if (what & IDE_TIMING_SETUP)
120 m->setup = max(a->setup, b->setup);
121 if (what & IDE_TIMING_ACT8B)
122 m->act8b = max(a->act8b, b->act8b);
123 if (what & IDE_TIMING_REC8B)
124 m->rec8b = max(a->rec8b, b->rec8b);
125 if (what & IDE_TIMING_CYC8B)
126 m->cyc8b = max(a->cyc8b, b->cyc8b);
127 if (what & IDE_TIMING_ACTIVE)
128 m->active = max(a->active, b->active);
129 if (what & IDE_TIMING_RECOVER)
130 m->recover = max(a->recover, b->recover);
131 if (what & IDE_TIMING_CYCLE)
132 m->cycle = max(a->cycle, b->cycle);
133 if (what & IDE_TIMING_UDMA)
134 m->udma = max(a->udma, b->udma);
136 EXPORT_SYMBOL_GPL(ide_timing_merge);
138 int ide_timing_compute(ide_drive_t *drive, u8 speed,
139 struct ide_timing *t, int T, int UT)
141 struct hd_driveid *id = drive->id;
142 struct ide_timing *s, p;
145 * Find the mode.
147 s = ide_timing_find_mode(speed);
148 if (s == NULL)
149 return -EINVAL;
152 * Copy the timing from the table.
154 *t = *s;
157 * If the drive is an EIDE drive, it can tell us it needs extended
158 * PIO/MWDMA cycle timing.
160 if (id && id->field_valid & 2) { /* EIDE drive */
162 memset(&p, 0, sizeof(p));
164 if (speed <= XFER_PIO_2)
165 p.cycle = p.cyc8b = id->eide_pio;
166 else if (speed <= XFER_PIO_5)
167 p.cycle = p.cyc8b = id->eide_pio_iordy;
168 else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
169 p.cycle = id->eide_dma_min;
171 ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
175 * Convert the timing to bus clock counts.
177 ide_timing_quantize(t, t, T, UT);
180 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
181 * S.M.A.R.T and some other commands. We have to ensure that the
182 * DMA cycle timing is slower/equal than the fastest PIO timing.
184 if (speed >= XFER_SW_DMA_0) {
185 u8 pio = ide_get_best_pio_mode(drive, 255, 5);
186 ide_timing_compute(drive, XFER_PIO_0 + pio, &p, T, UT);
187 ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
191 * Lengthen active & recovery time so that cycle time is correct.
193 if (t->act8b + t->rec8b < t->cyc8b) {
194 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
195 t->rec8b = t->cyc8b - t->act8b;
198 if (t->active + t->recover < t->cycle) {
199 t->active += (t->cycle - (t->active + t->recover)) / 2;
200 t->recover = t->cycle - t->active;
203 return 0;
205 EXPORT_SYMBOL_GPL(ide_timing_compute);