2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
28 #include <asm/uaccess.h>
32 * Conventional PIO operations for ATA devices
35 static u8
ide_inb (unsigned long port
)
37 return (u8
) inb(port
);
40 static void ide_outb (u8 val
, unsigned long port
)
46 * MMIO operations, typically used for SATA controllers
49 static u8
ide_mm_inb (unsigned long port
)
51 return (u8
) readb((void __iomem
*) port
);
54 static void ide_mm_outb (u8 value
, unsigned long port
)
56 writeb(value
, (void __iomem
*) port
);
59 void SELECT_DRIVE (ide_drive_t
*drive
)
61 ide_hwif_t
*hwif
= drive
->hwif
;
62 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
65 if (port_ops
&& port_ops
->selectproc
)
66 port_ops
->selectproc(drive
);
68 memset(&task
, 0, sizeof(task
));
69 task
.tf_flags
= IDE_TFLAG_OUT_DEVICE
;
71 drive
->hwif
->tp_ops
->tf_load(drive
, &task
);
74 void SELECT_MASK(ide_drive_t
*drive
, int mask
)
76 const struct ide_port_ops
*port_ops
= drive
->hwif
->port_ops
;
78 if (port_ops
&& port_ops
->maskproc
)
79 port_ops
->maskproc(drive
, mask
);
82 void ide_exec_command(ide_hwif_t
*hwif
, u8 cmd
)
84 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
85 writeb(cmd
, (void __iomem
*)hwif
->io_ports
.command_addr
);
87 outb(cmd
, hwif
->io_ports
.command_addr
);
89 EXPORT_SYMBOL_GPL(ide_exec_command
);
91 u8
ide_read_status(ide_hwif_t
*hwif
)
93 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
94 return readb((void __iomem
*)hwif
->io_ports
.status_addr
);
96 return inb(hwif
->io_ports
.status_addr
);
98 EXPORT_SYMBOL_GPL(ide_read_status
);
100 u8
ide_read_altstatus(ide_hwif_t
*hwif
)
102 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
103 return readb((void __iomem
*)hwif
->io_ports
.ctl_addr
);
105 return inb(hwif
->io_ports
.ctl_addr
);
107 EXPORT_SYMBOL_GPL(ide_read_altstatus
);
109 u8
ide_read_sff_dma_status(ide_hwif_t
*hwif
)
111 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
112 return readb((void __iomem
*)(hwif
->dma_base
+ ATA_DMA_STATUS
));
114 return inb(hwif
->dma_base
+ ATA_DMA_STATUS
);
116 EXPORT_SYMBOL_GPL(ide_read_sff_dma_status
);
118 void ide_set_irq(ide_hwif_t
*hwif
, int on
)
120 u8 ctl
= ATA_DEVCTL_OBS
;
122 if (on
== 4) { /* hack for SRST */
129 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
130 writeb(ctl
, (void __iomem
*)hwif
->io_ports
.ctl_addr
);
132 outb(ctl
, hwif
->io_ports
.ctl_addr
);
134 EXPORT_SYMBOL_GPL(ide_set_irq
);
136 void ide_tf_load(ide_drive_t
*drive
, ide_task_t
*task
)
138 ide_hwif_t
*hwif
= drive
->hwif
;
139 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
140 struct ide_taskfile
*tf
= &task
->tf
;
141 void (*tf_outb
)(u8 addr
, unsigned long port
);
142 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
143 u8 HIHI
= (task
->tf_flags
& IDE_TFLAG_LBA48
) ? 0xE0 : 0xEF;
146 tf_outb
= ide_mm_outb
;
150 if (task
->tf_flags
& IDE_TFLAG_FLAGGED
)
153 if (task
->tf_flags
& IDE_TFLAG_OUT_DATA
) {
154 u16 data
= (tf
->hob_data
<< 8) | tf
->data
;
157 writew(data
, (void __iomem
*)io_ports
->data_addr
);
159 outw(data
, io_ports
->data_addr
);
162 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_FEATURE
)
163 tf_outb(tf
->hob_feature
, io_ports
->feature_addr
);
164 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_NSECT
)
165 tf_outb(tf
->hob_nsect
, io_ports
->nsect_addr
);
166 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAL
)
167 tf_outb(tf
->hob_lbal
, io_ports
->lbal_addr
);
168 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAM
)
169 tf_outb(tf
->hob_lbam
, io_ports
->lbam_addr
);
170 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAH
)
171 tf_outb(tf
->hob_lbah
, io_ports
->lbah_addr
);
173 if (task
->tf_flags
& IDE_TFLAG_OUT_FEATURE
)
174 tf_outb(tf
->feature
, io_ports
->feature_addr
);
175 if (task
->tf_flags
& IDE_TFLAG_OUT_NSECT
)
176 tf_outb(tf
->nsect
, io_ports
->nsect_addr
);
177 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAL
)
178 tf_outb(tf
->lbal
, io_ports
->lbal_addr
);
179 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAM
)
180 tf_outb(tf
->lbam
, io_ports
->lbam_addr
);
181 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAH
)
182 tf_outb(tf
->lbah
, io_ports
->lbah_addr
);
184 if (task
->tf_flags
& IDE_TFLAG_OUT_DEVICE
)
185 tf_outb((tf
->device
& HIHI
) | drive
->select
.all
,
186 io_ports
->device_addr
);
188 EXPORT_SYMBOL_GPL(ide_tf_load
);
190 void ide_tf_read(ide_drive_t
*drive
, ide_task_t
*task
)
192 ide_hwif_t
*hwif
= drive
->hwif
;
193 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
194 struct ide_taskfile
*tf
= &task
->tf
;
195 void (*tf_outb
)(u8 addr
, unsigned long port
);
196 u8 (*tf_inb
)(unsigned long port
);
197 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
200 tf_outb
= ide_mm_outb
;
207 if (task
->tf_flags
& IDE_TFLAG_IN_DATA
) {
211 data
= readw((void __iomem
*)io_ports
->data_addr
);
213 data
= inw(io_ports
->data_addr
);
215 tf
->data
= data
& 0xff;
216 tf
->hob_data
= (data
>> 8) & 0xff;
219 /* be sure we're looking at the low order bits */
220 tf_outb(ATA_DEVCTL_OBS
& ~0x80, io_ports
->ctl_addr
);
222 if (task
->tf_flags
& IDE_TFLAG_IN_FEATURE
)
223 tf
->feature
= tf_inb(io_ports
->feature_addr
);
224 if (task
->tf_flags
& IDE_TFLAG_IN_NSECT
)
225 tf
->nsect
= tf_inb(io_ports
->nsect_addr
);
226 if (task
->tf_flags
& IDE_TFLAG_IN_LBAL
)
227 tf
->lbal
= tf_inb(io_ports
->lbal_addr
);
228 if (task
->tf_flags
& IDE_TFLAG_IN_LBAM
)
229 tf
->lbam
= tf_inb(io_ports
->lbam_addr
);
230 if (task
->tf_flags
& IDE_TFLAG_IN_LBAH
)
231 tf
->lbah
= tf_inb(io_ports
->lbah_addr
);
232 if (task
->tf_flags
& IDE_TFLAG_IN_DEVICE
)
233 tf
->device
= tf_inb(io_ports
->device_addr
);
235 if (task
->tf_flags
& IDE_TFLAG_LBA48
) {
236 tf_outb(ATA_DEVCTL_OBS
| 0x80, io_ports
->ctl_addr
);
238 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_FEATURE
)
239 tf
->hob_feature
= tf_inb(io_ports
->feature_addr
);
240 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_NSECT
)
241 tf
->hob_nsect
= tf_inb(io_ports
->nsect_addr
);
242 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAL
)
243 tf
->hob_lbal
= tf_inb(io_ports
->lbal_addr
);
244 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAM
)
245 tf
->hob_lbam
= tf_inb(io_ports
->lbam_addr
);
246 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAH
)
247 tf
->hob_lbah
= tf_inb(io_ports
->lbah_addr
);
250 EXPORT_SYMBOL_GPL(ide_tf_read
);
253 * Some localbus EIDE interfaces require a special access sequence
254 * when using 32-bit I/O instructions to transfer data. We call this
255 * the "vlb_sync" sequence, which consists of three successive reads
256 * of the sector count register location, with interrupts disabled
257 * to ensure that the reads all happen together.
259 static void ata_vlb_sync(unsigned long port
)
267 * This is used for most PIO data transfers *from* the IDE interface
269 * These routines will round up any request for an odd number of bytes,
270 * so if an odd len is specified, be sure that there's at least one
271 * extra byte allocated for the buffer.
273 void ide_input_data(ide_drive_t
*drive
, struct request
*rq
, void *buf
,
276 ide_hwif_t
*hwif
= drive
->hwif
;
277 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
278 unsigned long data_addr
= io_ports
->data_addr
;
279 u8 io_32bit
= drive
->io_32bit
;
280 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
285 unsigned long uninitialized_var(flags
);
287 if ((io_32bit
& 2) && !mmio
) {
288 local_irq_save(flags
);
289 ata_vlb_sync(io_ports
->nsect_addr
);
293 __ide_mm_insl((void __iomem
*)data_addr
, buf
, len
/ 4);
295 insl(data_addr
, buf
, len
/ 4);
297 if ((io_32bit
& 2) && !mmio
)
298 local_irq_restore(flags
);
300 if ((len
& 3) >= 2) {
302 __ide_mm_insw((void __iomem
*)data_addr
,
303 (u8
*)buf
+ (len
& ~3), 1);
305 insw(data_addr
, (u8
*)buf
+ (len
& ~3), 1);
309 __ide_mm_insw((void __iomem
*)data_addr
, buf
, len
/ 2);
311 insw(data_addr
, buf
, len
/ 2);
314 EXPORT_SYMBOL_GPL(ide_input_data
);
317 * This is used for most PIO data transfers *to* the IDE interface
319 void ide_output_data(ide_drive_t
*drive
, struct request
*rq
, void *buf
,
322 ide_hwif_t
*hwif
= drive
->hwif
;
323 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
324 unsigned long data_addr
= io_ports
->data_addr
;
325 u8 io_32bit
= drive
->io_32bit
;
326 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
331 unsigned long uninitialized_var(flags
);
333 if ((io_32bit
& 2) && !mmio
) {
334 local_irq_save(flags
);
335 ata_vlb_sync(io_ports
->nsect_addr
);
339 __ide_mm_outsl((void __iomem
*)data_addr
, buf
, len
/ 4);
341 outsl(data_addr
, buf
, len
/ 4);
343 if ((io_32bit
& 2) && !mmio
)
344 local_irq_restore(flags
);
346 if ((len
& 3) >= 2) {
348 __ide_mm_outsw((void __iomem
*)data_addr
,
349 (u8
*)buf
+ (len
& ~3), 1);
351 outsw(data_addr
, (u8
*)buf
+ (len
& ~3), 1);
355 __ide_mm_outsw((void __iomem
*)data_addr
, buf
, len
/ 2);
357 outsw(data_addr
, buf
, len
/ 2);
360 EXPORT_SYMBOL_GPL(ide_output_data
);
362 u8
ide_read_error(ide_drive_t
*drive
)
366 memset(&task
, 0, sizeof(task
));
367 task
.tf_flags
= IDE_TFLAG_IN_FEATURE
;
369 drive
->hwif
->tp_ops
->tf_read(drive
, &task
);
371 return task
.tf
.error
;
373 EXPORT_SYMBOL_GPL(ide_read_error
);
375 void ide_read_bcount_and_ireason(ide_drive_t
*drive
, u16
*bcount
, u8
*ireason
)
379 memset(&task
, 0, sizeof(task
));
380 task
.tf_flags
= IDE_TFLAG_IN_LBAH
| IDE_TFLAG_IN_LBAM
|
383 drive
->hwif
->tp_ops
->tf_read(drive
, &task
);
385 *bcount
= (task
.tf
.lbah
<< 8) | task
.tf
.lbam
;
386 *ireason
= task
.tf
.nsect
& 3;
388 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason
);
390 const struct ide_tp_ops default_tp_ops
= {
391 .exec_command
= ide_exec_command
,
392 .read_status
= ide_read_status
,
393 .read_altstatus
= ide_read_altstatus
,
394 .read_sff_dma_status
= ide_read_sff_dma_status
,
396 .set_irq
= ide_set_irq
,
398 .tf_load
= ide_tf_load
,
399 .tf_read
= ide_tf_read
,
401 .input_data
= ide_input_data
,
402 .output_data
= ide_output_data
,
405 void ide_fix_driveid (struct hd_driveid
*id
)
407 #ifndef __LITTLE_ENDIAN
412 id
->config
= __le16_to_cpu(id
->config
);
413 id
->cyls
= __le16_to_cpu(id
->cyls
);
414 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
415 id
->heads
= __le16_to_cpu(id
->heads
);
416 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
417 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
418 id
->sectors
= __le16_to_cpu(id
->sectors
);
419 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
420 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
421 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
422 stringcast
= (u16
*)&id
->serial_no
[0];
423 for (i
= 0; i
< (20/2); i
++)
424 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
425 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
426 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
427 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
428 stringcast
= (u16
*)&id
->fw_rev
[0];
429 for (i
= 0; i
< (8/2); i
++)
430 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
431 stringcast
= (u16
*)&id
->model
[0];
432 for (i
= 0; i
< (40/2); i
++)
433 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
434 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
435 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
436 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
437 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
438 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
439 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
440 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
441 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
442 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
443 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
444 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
445 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
446 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
447 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
448 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
449 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
450 for (i
= 0; i
< 2; ++i
)
451 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
452 for (i
= 0; i
< 4; ++i
)
453 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
454 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
455 for (i
= 0; i
< 4; ++i
)
456 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
457 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
458 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
459 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
460 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
461 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
462 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
463 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
464 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
465 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
466 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
467 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
468 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
469 id
->mprc
= __le16_to_cpu(id
->mprc
);
470 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
471 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
472 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
473 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
474 id
->sal
= __le16_to_cpu(id
->sal
);
475 id
->spg
= __le32_to_cpu(id
->spg
);
476 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
477 for (i
= 0; i
< 22; i
++)
478 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
479 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
480 id
->word127
= __le16_to_cpu(id
->word127
);
481 id
->dlf
= __le16_to_cpu(id
->dlf
);
482 id
->csfo
= __le16_to_cpu(id
->csfo
);
483 for (i
= 0; i
< 26; i
++)
484 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
485 id
->word156
= __le16_to_cpu(id
->word156
);
486 for (i
= 0; i
< 3; i
++)
487 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
488 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
489 for (i
= 0; i
< 15; i
++)
490 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
491 for (i
= 0; i
< 30; i
++)
492 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
493 for (i
= 0; i
< 49; i
++)
494 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
495 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
497 # error "Please fix <asm/byteorder.h>"
503 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
504 * removing leading/trailing blanks and compressing internal blanks.
505 * It is primarily used to tidy up the model name/number fields as
506 * returned by the WIN_[P]IDENTIFY commands.
509 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
511 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
514 /* convert from big-endian to host byte order */
515 for (p
= end
; p
!= s
;)
516 be16_to_cpus((u16
*)(p
-= 2));
518 /* strip leading blanks */
519 while (s
!= end
&& *s
== ' ')
521 /* compress internal blanks and strip trailing blanks */
522 while (s
!= end
&& *s
) {
523 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
526 /* wipe out trailing garbage */
531 EXPORT_SYMBOL(ide_fixstring
);
534 * Needed for PCI irq sharing
536 int drive_is_ready (ide_drive_t
*drive
)
538 ide_hwif_t
*hwif
= HWIF(drive
);
541 if (drive
->waiting_for_dma
)
542 return hwif
->dma_ops
->dma_test_irq(drive
);
545 /* need to guarantee 400ns since last command was issued */
550 * We do a passive status test under shared PCI interrupts on
551 * cards that truly share the ATA side interrupt, but may also share
552 * an interrupt with another pci card/device. We make no assumptions
553 * about possible isa-pnp and pci-pnp issues yet.
555 if (hwif
->io_ports
.ctl_addr
)
556 stat
= hwif
->tp_ops
->read_altstatus(hwif
);
558 /* Note: this may clear a pending IRQ!! */
559 stat
= hwif
->tp_ops
->read_status(hwif
);
561 if (stat
& BUSY_STAT
)
562 /* drive busy: definitely not interrupting */
565 /* drive ready: *might* be interrupting */
569 EXPORT_SYMBOL(drive_is_ready
);
572 * This routine busy-waits for the drive status to be not "busy".
573 * It then checks the status for all of the "good" bits and none
574 * of the "bad" bits, and if all is okay it returns 0. All other
575 * cases return error -- caller may then invoke ide_error().
577 * This routine should get fixed to not hog the cpu during extra long waits..
578 * That could be done by busy-waiting for the first jiffy or two, and then
579 * setting a timer to wake up at half second intervals thereafter,
580 * until timeout is achieved, before timing out.
582 static int __ide_wait_stat(ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
, u8
*rstat
)
584 ide_hwif_t
*hwif
= drive
->hwif
;
585 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
590 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
591 stat
= tp_ops
->read_status(hwif
);
593 if (stat
& BUSY_STAT
) {
594 local_irq_set(flags
);
596 while ((stat
= tp_ops
->read_status(hwif
)) & BUSY_STAT
) {
597 if (time_after(jiffies
, timeout
)) {
599 * One last read after the timeout in case
600 * heavy interrupt load made us not make any
601 * progress during the timeout..
603 stat
= tp_ops
->read_status(hwif
);
604 if (!(stat
& BUSY_STAT
))
607 local_irq_restore(flags
);
612 local_irq_restore(flags
);
615 * Allow status to settle, then read it again.
616 * A few rare drives vastly violate the 400ns spec here,
617 * so we'll wait up to 10usec for a "good" status
618 * rather than expensively fail things immediately.
619 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
621 for (i
= 0; i
< 10; i
++) {
623 stat
= tp_ops
->read_status(hwif
);
625 if (OK_STAT(stat
, good
, bad
)) {
635 * In case of error returns error value after doing "*startstop = ide_error()".
636 * The caller should return the updated value of "startstop" in this case,
637 * "startstop" is unchanged when the function returns 0.
639 int ide_wait_stat(ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
644 /* bail early if we've exceeded max_failures */
645 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
646 *startstop
= ide_stopped
;
650 err
= __ide_wait_stat(drive
, good
, bad
, timeout
, &stat
);
653 char *s
= (err
== -EBUSY
) ? "status timeout" : "status error";
654 *startstop
= ide_error(drive
, s
, stat
);
660 EXPORT_SYMBOL(ide_wait_stat
);
663 * ide_in_drive_list - look for drive in black/white list
664 * @id: drive identifier
665 * @drive_table: list to inspect
667 * Look for a drive in the blacklist and the whitelist tables
668 * Returns 1 if the drive is found in the table.
671 int ide_in_drive_list(struct hd_driveid
*id
, const struct drive_list_entry
*drive_table
)
673 for ( ; drive_table
->id_model
; drive_table
++)
674 if ((!strcmp(drive_table
->id_model
, id
->model
)) &&
675 (!drive_table
->id_firmware
||
676 strstr(id
->fw_rev
, drive_table
->id_firmware
)))
681 EXPORT_SYMBOL_GPL(ide_in_drive_list
);
684 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
685 * We list them here and depend on the device side cable detection for them.
687 * Some optical devices with the buggy firmwares have the same problem.
689 static const struct drive_list_entry ivb_list
[] = {
690 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
691 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
692 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
693 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
694 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
695 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
696 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
701 * All hosts that use the 80c ribbon must use!
702 * The name is derived from upper byte of word 93 and the 80c ribbon.
704 u8
eighty_ninty_three (ide_drive_t
*drive
)
706 ide_hwif_t
*hwif
= drive
->hwif
;
707 struct hd_driveid
*id
= drive
->id
;
708 int ivb
= ide_in_drive_list(id
, ivb_list
);
710 if (hwif
->cbl
== ATA_CBL_PATA40_SHORT
)
714 printk(KERN_DEBUG
"%s: skipping word 93 validity check\n",
717 if (ide_dev_is_sata(id
) && !ivb
)
720 if (hwif
->cbl
!= ATA_CBL_PATA80
&& !ivb
)
725 * - change master/slave IDENTIFY order
726 * - force bit13 (80c cable present) check also for !ivb devices
727 * (unless the slave device is pre-ATA3)
729 if ((id
->hw_config
& 0x4000) || (ivb
&& (id
->hw_config
& 0x2000)))
733 if (drive
->udma33_warned
== 1)
736 printk(KERN_WARNING
"%s: %s side 80-wire cable detection failed, "
737 "limiting max speed to UDMA33\n",
739 hwif
->cbl
== ATA_CBL_PATA80
? "drive" : "host");
741 drive
->udma33_warned
= 1;
746 int ide_driveid_update(ide_drive_t
*drive
)
748 ide_hwif_t
*hwif
= drive
->hwif
;
749 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
750 struct hd_driveid
*id
;
751 unsigned long timeout
, flags
;
755 * Re-read drive->id for possible DMA mode
756 * change (copied from ide-probe.c)
759 SELECT_MASK(drive
, 1);
760 tp_ops
->set_irq(hwif
, 0);
762 tp_ops
->exec_command(hwif
, WIN_IDENTIFY
);
763 timeout
= jiffies
+ WAIT_WORSTCASE
;
765 if (time_after(jiffies
, timeout
)) {
766 SELECT_MASK(drive
, 0);
767 return 0; /* drive timed-out */
770 msleep(50); /* give drive a breather */
771 stat
= tp_ops
->read_altstatus(hwif
);
772 } while (stat
& BUSY_STAT
);
774 msleep(50); /* wait for IRQ and DRQ_STAT */
775 stat
= tp_ops
->read_status(hwif
);
777 if (!OK_STAT(stat
, DRQ_STAT
, BAD_R_STAT
)) {
778 SELECT_MASK(drive
, 0);
779 printk("%s: CHECK for good STATUS\n", drive
->name
);
782 local_irq_save(flags
);
783 SELECT_MASK(drive
, 0);
784 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
786 local_irq_restore(flags
);
789 tp_ops
->input_data(drive
, NULL
, id
, SECTOR_SIZE
);
790 (void)tp_ops
->read_status(hwif
); /* clear drive IRQ */
792 local_irq_restore(flags
);
795 drive
->id
->dma_ultra
= id
->dma_ultra
;
796 drive
->id
->dma_mword
= id
->dma_mword
;
797 drive
->id
->dma_1word
= id
->dma_1word
;
798 /* anything more ? */
801 if (drive
->using_dma
&& ide_id_dma_bug(drive
))
808 int ide_config_drive_speed(ide_drive_t
*drive
, u8 speed
)
810 ide_hwif_t
*hwif
= drive
->hwif
;
811 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
816 #ifdef CONFIG_BLK_DEV_IDEDMA
817 if (hwif
->dma_ops
) /* check if host supports DMA */
818 hwif
->dma_ops
->dma_host_set(drive
, 0);
821 /* Skip setting PIO flow-control modes on pre-EIDE drives */
822 if ((speed
& 0xf8) == XFER_PIO_0
&& !(drive
->id
->capability
& 0x08))
826 * Don't use ide_wait_cmd here - it will
827 * attempt to set_geometry and recalibrate,
828 * but for some reason these don't work at
829 * this point (lost interrupt).
832 * Select the drive, and issue the SETFEATURES command
834 disable_irq_nosync(hwif
->irq
);
837 * FIXME: we race against the running IRQ here if
838 * this is called from non IRQ context. If we use
839 * disable_irq() we hang on the error path. Work
845 SELECT_MASK(drive
, 0);
847 tp_ops
->set_irq(hwif
, 0);
849 memset(&task
, 0, sizeof(task
));
850 task
.tf_flags
= IDE_TFLAG_OUT_FEATURE
| IDE_TFLAG_OUT_NSECT
;
851 task
.tf
.feature
= SETFEATURES_XFER
;
852 task
.tf
.nsect
= speed
;
854 tp_ops
->tf_load(drive
, &task
);
856 tp_ops
->exec_command(hwif
, WIN_SETFEATURES
);
858 if (drive
->quirk_list
== 2)
859 tp_ops
->set_irq(hwif
, 1);
861 error
= __ide_wait_stat(drive
, drive
->ready_stat
,
862 BUSY_STAT
|DRQ_STAT
|ERR_STAT
,
865 SELECT_MASK(drive
, 0);
867 enable_irq(hwif
->irq
);
870 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
874 drive
->id
->dma_ultra
&= ~0xFF00;
875 drive
->id
->dma_mword
&= ~0x0F00;
876 drive
->id
->dma_1word
&= ~0x0F00;
879 #ifdef CONFIG_BLK_DEV_IDEDMA
880 if (speed
>= XFER_SW_DMA_0
&& drive
->using_dma
)
881 hwif
->dma_ops
->dma_host_set(drive
, 1);
882 else if (hwif
->dma_ops
) /* check if host supports DMA */
883 ide_dma_off_quietly(drive
);
887 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
888 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
889 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
890 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
891 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
892 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
893 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
894 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
895 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
896 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
897 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
898 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
899 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
900 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
903 if (!drive
->init_speed
)
904 drive
->init_speed
= speed
;
905 drive
->current_speed
= speed
;
910 * This should get invoked any time we exit the driver to
911 * wait for an interrupt response from a drive. handler() points
912 * at the appropriate code to handle the next interrupt, and a
913 * timer is started to prevent us from waiting forever in case
914 * something goes wrong (see the ide_timer_expiry() handler later on).
916 * See also ide_execute_command
918 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
919 unsigned int timeout
, ide_expiry_t
*expiry
)
921 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
923 BUG_ON(hwgroup
->handler
);
924 hwgroup
->handler
= handler
;
925 hwgroup
->expiry
= expiry
;
926 hwgroup
->timer
.expires
= jiffies
+ timeout
;
927 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
928 add_timer(&hwgroup
->timer
);
931 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
932 unsigned int timeout
, ide_expiry_t
*expiry
)
935 spin_lock_irqsave(&ide_lock
, flags
);
936 __ide_set_handler(drive
, handler
, timeout
, expiry
);
937 spin_unlock_irqrestore(&ide_lock
, flags
);
940 EXPORT_SYMBOL(ide_set_handler
);
943 * ide_execute_command - execute an IDE command
944 * @drive: IDE drive to issue the command against
945 * @command: command byte to write
946 * @handler: handler for next phase
947 * @timeout: timeout for command
948 * @expiry: handler to run on timeout
950 * Helper function to issue an IDE command. This handles the
951 * atomicity requirements, command timing and ensures that the
952 * handler and IRQ setup do not race. All IDE command kick off
953 * should go via this function or do equivalent locking.
956 void ide_execute_command(ide_drive_t
*drive
, u8 cmd
, ide_handler_t
*handler
,
957 unsigned timeout
, ide_expiry_t
*expiry
)
960 ide_hwif_t
*hwif
= HWIF(drive
);
962 spin_lock_irqsave(&ide_lock
, flags
);
963 __ide_set_handler(drive
, handler
, timeout
, expiry
);
964 hwif
->tp_ops
->exec_command(hwif
, cmd
);
966 * Drive takes 400nS to respond, we must avoid the IRQ being
967 * serviced before that.
969 * FIXME: we could skip this delay with care on non shared devices
972 spin_unlock_irqrestore(&ide_lock
, flags
);
974 EXPORT_SYMBOL(ide_execute_command
);
976 void ide_execute_pkt_cmd(ide_drive_t
*drive
)
978 ide_hwif_t
*hwif
= drive
->hwif
;
981 spin_lock_irqsave(&ide_lock
, flags
);
982 hwif
->tp_ops
->exec_command(hwif
, WIN_PACKETCMD
);
984 spin_unlock_irqrestore(&ide_lock
, flags
);
986 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd
);
988 static inline void ide_complete_drive_reset(ide_drive_t
*drive
, int err
)
990 struct request
*rq
= drive
->hwif
->hwgroup
->rq
;
992 if (rq
&& blk_special_request(rq
) && rq
->cmd
[0] == REQ_DRIVE_RESET
)
993 ide_end_request(drive
, err
? err
: 1, 0);
997 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
1000 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1001 * during an atapi drive reset operation. If the drive has not yet responded,
1002 * and we have not yet hit our maximum waiting time, then the timer is restarted
1005 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
1007 ide_hwif_t
*hwif
= drive
->hwif
;
1008 ide_hwgroup_t
*hwgroup
= hwif
->hwgroup
;
1011 SELECT_DRIVE(drive
);
1013 stat
= hwif
->tp_ops
->read_status(hwif
);
1015 if (OK_STAT(stat
, 0, BUSY_STAT
))
1016 printk("%s: ATAPI reset complete\n", drive
->name
);
1018 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1019 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1020 /* continue polling */
1023 /* end of polling */
1024 hwgroup
->polling
= 0;
1025 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1027 /* do it the old fashioned way */
1028 return do_reset1(drive
, 1);
1031 hwgroup
->polling
= 0;
1032 ide_complete_drive_reset(drive
, 0);
1037 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1038 * during an ide reset operation. If the drives have not yet responded,
1039 * and we have not yet hit our maximum waiting time, then the timer is restarted
1042 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
1044 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1045 ide_hwif_t
*hwif
= HWIF(drive
);
1046 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
1050 if (port_ops
&& port_ops
->reset_poll
) {
1051 err
= port_ops
->reset_poll(drive
);
1053 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
1054 hwif
->name
, drive
->name
);
1059 tmp
= hwif
->tp_ops
->read_status(hwif
);
1061 if (!OK_STAT(tmp
, 0, BUSY_STAT
)) {
1062 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1063 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1064 /* continue polling */
1067 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
1071 printk("%s: reset: ", hwif
->name
);
1072 tmp
= ide_read_error(drive
);
1075 printk("success\n");
1076 drive
->failures
= 0;
1080 switch (tmp
& 0x7f) {
1081 case 1: printk("passed");
1083 case 2: printk("formatter device error");
1085 case 3: printk("sector buffer error");
1087 case 4: printk("ECC circuitry error");
1089 case 5: printk("controlling MPU error");
1091 default:printk("error (0x%02x?)", tmp
);
1094 printk("; slave: failed");
1100 hwgroup
->polling
= 0; /* done polling */
1101 ide_complete_drive_reset(drive
, err
);
1105 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1107 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1109 drive
->special
.all
= 0;
1110 drive
->special
.b
.set_geometry
= legacy
;
1111 drive
->special
.b
.recalibrate
= legacy
;
1112 drive
->mult_count
= 0;
1113 if (!drive
->keep_settings
&& !drive
->using_dma
)
1114 drive
->mult_req
= 0;
1115 if (drive
->mult_req
!= drive
->mult_count
)
1116 drive
->special
.b
.set_multmode
= 1;
1119 static void pre_reset(ide_drive_t
*drive
)
1121 const struct ide_port_ops
*port_ops
= drive
->hwif
->port_ops
;
1123 if (drive
->media
== ide_disk
)
1124 ide_disk_pre_reset(drive
);
1126 drive
->post_reset
= 1;
1128 if (drive
->using_dma
) {
1129 if (drive
->crc_count
)
1130 ide_check_dma_crc(drive
);
1135 if (!drive
->keep_settings
) {
1136 if (!drive
->using_dma
) {
1138 drive
->io_32bit
= 0;
1143 if (port_ops
&& port_ops
->pre_reset
)
1144 port_ops
->pre_reset(drive
);
1146 if (drive
->current_speed
!= 0xff)
1147 drive
->desired_speed
= drive
->current_speed
;
1148 drive
->current_speed
= 0xff;
1152 * do_reset1() attempts to recover a confused drive by resetting it.
1153 * Unfortunately, resetting a disk drive actually resets all devices on
1154 * the same interface, so it can really be thought of as resetting the
1155 * interface rather than resetting the drive.
1157 * ATAPI devices have their own reset mechanism which allows them to be
1158 * individually reset without clobbering other devices on the same interface.
1160 * Unfortunately, the IDE interface does not generate an interrupt to let
1161 * us know when the reset operation has finished, so we must poll for this.
1162 * Equally poor, though, is the fact that this may a very long time to complete,
1163 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1164 * we set a timer to poll at 50ms intervals.
1166 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1169 unsigned long flags
;
1171 ide_hwgroup_t
*hwgroup
;
1172 struct ide_io_ports
*io_ports
;
1173 const struct ide_tp_ops
*tp_ops
;
1174 const struct ide_port_ops
*port_ops
;
1176 spin_lock_irqsave(&ide_lock
, flags
);
1178 hwgroup
= HWGROUP(drive
);
1180 io_ports
= &hwif
->io_ports
;
1182 tp_ops
= hwif
->tp_ops
;
1184 /* We must not reset with running handlers */
1185 BUG_ON(hwgroup
->handler
!= NULL
);
1187 /* For an ATAPI device, first try an ATAPI SRST. */
1188 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1190 SELECT_DRIVE(drive
);
1192 tp_ops
->exec_command(hwif
, WIN_SRST
);
1194 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1195 hwgroup
->polling
= 1;
1196 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1197 spin_unlock_irqrestore(&ide_lock
, flags
);
1202 * First, reset any device state data we were maintaining
1203 * for any of the drives on this interface.
1205 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1206 pre_reset(&hwif
->drives
[unit
]);
1208 if (io_ports
->ctl_addr
== 0) {
1209 spin_unlock_irqrestore(&ide_lock
, flags
);
1210 ide_complete_drive_reset(drive
, -ENXIO
);
1215 * Note that we also set nIEN while resetting the device,
1216 * to mask unwanted interrupts from the interface during the reset.
1217 * However, due to the design of PC hardware, this will cause an
1218 * immediate interrupt due to the edge transition it produces.
1219 * This single interrupt gives us a "fast poll" for drives that
1220 * recover from reset very quickly, saving us the first 50ms wait time.
1222 * TODO: add ->softreset method and stop abusing ->set_irq
1224 /* set SRST and nIEN */
1225 tp_ops
->set_irq(hwif
, 4);
1226 /* more than enough time */
1228 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1229 tp_ops
->set_irq(hwif
, drive
->quirk_list
== 2);
1230 /* more than enough time */
1232 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1233 hwgroup
->polling
= 1;
1234 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1237 * Some weird controller like resetting themselves to a strange
1238 * state when the disks are reset this way. At least, the Winbond
1239 * 553 documentation says that
1241 port_ops
= hwif
->port_ops
;
1242 if (port_ops
&& port_ops
->resetproc
)
1243 port_ops
->resetproc(drive
);
1245 spin_unlock_irqrestore(&ide_lock
, flags
);
1250 * ide_do_reset() is the entry point to the drive/interface reset code.
1253 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1255 return do_reset1(drive
, 0);
1258 EXPORT_SYMBOL(ide_do_reset
);
1261 * ide_wait_not_busy() waits for the currently selected device on the hwif
1262 * to report a non-busy status, see comments in ide_probe_port().
1264 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1270 * Turn this into a schedule() sleep once I'm sure
1271 * about locking issues (2.5 work ?).
1274 stat
= hwif
->tp_ops
->read_status(hwif
);
1275 if ((stat
& BUSY_STAT
) == 0)
1278 * Assume a value of 0xff means nothing is connected to
1279 * the interface and it doesn't implement the pull-down
1284 touch_softlockup_watchdog();
1285 touch_nmi_watchdog();
1290 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);