4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
62 * dentry->d_inode->i_lock
65 * dcache_hash_bucket lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
71 * dentry->d_parent->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
79 int sysctl_vfs_cache_pressure __read_mostly
= 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
82 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
83 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
85 EXPORT_SYMBOL(rename_lock
);
87 static struct kmem_cache
*dentry_cache __read_mostly
;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
108 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
109 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
110 return dentry_hashtable
+ (hash
& D_HASHMASK
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
125 for_each_possible_cpu(i
)
126 sum
+= per_cpu(nr_dentry
, i
);
127 return sum
< 0 ? 0 : sum
;
130 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
131 size_t *lenp
, loff_t
*ppos
)
133 dentry_stat
.nr_dentry
= get_nr_dentry();
134 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
138 static void __d_free(struct rcu_head
*head
)
140 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
142 WARN_ON(!list_empty(&dentry
->d_alias
));
143 if (dname_external(dentry
))
144 kfree(dentry
->d_name
.name
);
145 kmem_cache_free(dentry_cache
, dentry
);
151 static void d_free(struct dentry
*dentry
)
153 BUG_ON(dentry
->d_count
);
154 this_cpu_dec(nr_dentry
);
155 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
156 dentry
->d_op
->d_release(dentry
);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
160 __d_free(&dentry
->d_u
.d_rcu
);
162 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
174 assert_spin_locked(&dentry
->d_lock
);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry
->d_seq
);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
184 static void dentry_iput(struct dentry
* dentry
)
185 __releases(dentry
->d_lock
)
186 __releases(dentry
->d_inode
->i_lock
)
188 struct inode
*inode
= dentry
->d_inode
;
190 dentry
->d_inode
= NULL
;
191 list_del_init(&dentry
->d_alias
);
192 spin_unlock(&dentry
->d_lock
);
193 spin_unlock(&inode
->i_lock
);
195 fsnotify_inoderemove(inode
);
196 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
197 dentry
->d_op
->d_iput(dentry
, inode
);
201 spin_unlock(&dentry
->d_lock
);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry
* dentry
)
210 __releases(dentry
->d_lock
)
211 __releases(dentry
->d_inode
->i_lock
)
213 struct inode
*inode
= dentry
->d_inode
;
214 dentry
->d_inode
= NULL
;
215 list_del_init(&dentry
->d_alias
);
216 dentry_rcuwalk_barrier(dentry
);
217 spin_unlock(&dentry
->d_lock
);
218 spin_unlock(&inode
->i_lock
);
220 fsnotify_inoderemove(inode
);
221 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
222 dentry
->d_op
->d_iput(dentry
, inode
);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry
*dentry
)
232 if (list_empty(&dentry
->d_lru
)) {
233 spin_lock(&dcache_lru_lock
);
234 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
235 dentry
->d_sb
->s_nr_dentry_unused
++;
236 dentry_stat
.nr_unused
++;
237 spin_unlock(&dcache_lru_lock
);
241 static void __dentry_lru_del(struct dentry
*dentry
)
243 list_del_init(&dentry
->d_lru
);
244 dentry
->d_sb
->s_nr_dentry_unused
--;
245 dentry_stat
.nr_unused
--;
248 static void dentry_lru_del(struct dentry
*dentry
)
250 if (!list_empty(&dentry
->d_lru
)) {
251 spin_lock(&dcache_lru_lock
);
252 __dentry_lru_del(dentry
);
253 spin_unlock(&dcache_lru_lock
);
257 static void dentry_lru_move_tail(struct dentry
*dentry
)
259 spin_lock(&dcache_lru_lock
);
260 if (list_empty(&dentry
->d_lru
)) {
261 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
262 dentry
->d_sb
->s_nr_dentry_unused
++;
263 dentry_stat
.nr_unused
++;
265 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
267 spin_unlock(&dcache_lru_lock
);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
282 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
283 __releases(dentry
->d_lock
)
284 __releases(parent
->d_lock
)
285 __releases(dentry
->d_inode
->i_lock
)
287 list_del(&dentry
->d_u
.d_child
);
289 * Inform try_to_ascend() that we are no longer attached to the
292 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
294 spin_unlock(&parent
->d_lock
);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
317 * __d_drop requires dentry->d_lock.
319 void __d_drop(struct dentry
*dentry
)
321 if (!d_unhashed(dentry
)) {
322 struct hlist_bl_head
*b
;
323 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
324 b
= &dentry
->d_sb
->s_anon
;
326 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
329 __hlist_bl_del(&dentry
->d_hash
);
330 dentry
->d_hash
.pprev
= NULL
;
333 dentry_rcuwalk_barrier(dentry
);
336 EXPORT_SYMBOL(__d_drop
);
338 void d_drop(struct dentry
*dentry
)
340 spin_lock(&dentry
->d_lock
);
342 spin_unlock(&dentry
->d_lock
);
344 EXPORT_SYMBOL(d_drop
);
347 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348 * @dentry: dentry to drop
350 * This is called when we do a lookup on a placeholder dentry that needed to be
351 * looked up. The dentry should have been hashed in order for it to be found by
352 * the lookup code, but now needs to be unhashed while we do the actual lookup
353 * and clear the DCACHE_NEED_LOOKUP flag.
355 void d_clear_need_lookup(struct dentry
*dentry
)
357 spin_lock(&dentry
->d_lock
);
359 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
360 spin_unlock(&dentry
->d_lock
);
362 EXPORT_SYMBOL(d_clear_need_lookup
);
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
370 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
371 __releases(dentry
->d_lock
)
374 struct dentry
*parent
;
376 inode
= dentry
->d_inode
;
377 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
379 spin_unlock(&dentry
->d_lock
);
381 return dentry
; /* try again with same dentry */
386 parent
= dentry
->d_parent
;
387 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
389 spin_unlock(&inode
->i_lock
);
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry
);
397 /* if it was on the hash then remove it */
399 return d_kill(dentry
, parent
);
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
420 * dput - release a dentry
421 * @dentry: dentry to release
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
428 void dput(struct dentry
*dentry
)
434 if (dentry
->d_count
== 1)
436 spin_lock(&dentry
->d_lock
);
437 BUG_ON(!dentry
->d_count
);
438 if (dentry
->d_count
> 1) {
440 spin_unlock(&dentry
->d_lock
);
444 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
445 if (dentry
->d_op
->d_delete(dentry
))
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry
))
454 * If this dentry needs lookup, don't set the referenced flag so that it
455 * is more likely to be cleaned up by the dcache shrinker in case of
458 if (!d_need_lookup(dentry
))
459 dentry
->d_flags
|= DCACHE_REFERENCED
;
460 dentry_lru_add(dentry
);
463 spin_unlock(&dentry
->d_lock
);
467 dentry
= dentry_kill(dentry
, 1);
474 * d_invalidate - invalidate a dentry
475 * @dentry: dentry to invalidate
477 * Try to invalidate the dentry if it turns out to be
478 * possible. If there are other dentries that can be
479 * reached through this one we can't delete it and we
480 * return -EBUSY. On success we return 0.
485 int d_invalidate(struct dentry
* dentry
)
488 * If it's already been dropped, return OK.
490 spin_lock(&dentry
->d_lock
);
491 if (d_unhashed(dentry
)) {
492 spin_unlock(&dentry
->d_lock
);
496 * Check whether to do a partial shrink_dcache
497 * to get rid of unused child entries.
499 if (!list_empty(&dentry
->d_subdirs
)) {
500 spin_unlock(&dentry
->d_lock
);
501 shrink_dcache_parent(dentry
);
502 spin_lock(&dentry
->d_lock
);
506 * Somebody else still using it?
508 * If it's a directory, we can't drop it
509 * for fear of somebody re-populating it
510 * with children (even though dropping it
511 * would make it unreachable from the root,
512 * we might still populate it if it was a
513 * working directory or similar).
515 if (dentry
->d_count
> 1) {
516 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
517 spin_unlock(&dentry
->d_lock
);
523 spin_unlock(&dentry
->d_lock
);
526 EXPORT_SYMBOL(d_invalidate
);
528 /* This must be called with d_lock held */
529 static inline void __dget_dlock(struct dentry
*dentry
)
534 static inline void __dget(struct dentry
*dentry
)
536 spin_lock(&dentry
->d_lock
);
537 __dget_dlock(dentry
);
538 spin_unlock(&dentry
->d_lock
);
541 struct dentry
*dget_parent(struct dentry
*dentry
)
547 * Don't need rcu_dereference because we re-check it was correct under
551 ret
= dentry
->d_parent
;
552 spin_lock(&ret
->d_lock
);
553 if (unlikely(ret
!= dentry
->d_parent
)) {
554 spin_unlock(&ret
->d_lock
);
559 BUG_ON(!ret
->d_count
);
561 spin_unlock(&ret
->d_lock
);
564 EXPORT_SYMBOL(dget_parent
);
567 * d_find_alias - grab a hashed alias of inode
568 * @inode: inode in question
569 * @want_discon: flag, used by d_splice_alias, to request
570 * that only a DISCONNECTED alias be returned.
572 * If inode has a hashed alias, or is a directory and has any alias,
573 * acquire the reference to alias and return it. Otherwise return NULL.
574 * Notice that if inode is a directory there can be only one alias and
575 * it can be unhashed only if it has no children, or if it is the root
578 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
579 * any other hashed alias over that one unless @want_discon is set,
580 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
582 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
584 struct dentry
*alias
, *discon_alias
;
588 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
589 spin_lock(&alias
->d_lock
);
590 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
591 if (IS_ROOT(alias
) &&
592 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
593 discon_alias
= alias
;
594 } else if (!want_discon
) {
596 spin_unlock(&alias
->d_lock
);
600 spin_unlock(&alias
->d_lock
);
603 alias
= discon_alias
;
604 spin_lock(&alias
->d_lock
);
605 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
606 if (IS_ROOT(alias
) &&
607 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
609 spin_unlock(&alias
->d_lock
);
613 spin_unlock(&alias
->d_lock
);
619 struct dentry
*d_find_alias(struct inode
*inode
)
621 struct dentry
*de
= NULL
;
623 if (!list_empty(&inode
->i_dentry
)) {
624 spin_lock(&inode
->i_lock
);
625 de
= __d_find_alias(inode
, 0);
626 spin_unlock(&inode
->i_lock
);
630 EXPORT_SYMBOL(d_find_alias
);
633 * Try to kill dentries associated with this inode.
634 * WARNING: you must own a reference to inode.
636 void d_prune_aliases(struct inode
*inode
)
638 struct dentry
*dentry
;
640 spin_lock(&inode
->i_lock
);
641 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
642 spin_lock(&dentry
->d_lock
);
643 if (!dentry
->d_count
) {
644 __dget_dlock(dentry
);
646 spin_unlock(&dentry
->d_lock
);
647 spin_unlock(&inode
->i_lock
);
651 spin_unlock(&dentry
->d_lock
);
653 spin_unlock(&inode
->i_lock
);
655 EXPORT_SYMBOL(d_prune_aliases
);
658 * Try to throw away a dentry - free the inode, dput the parent.
659 * Requires dentry->d_lock is held, and dentry->d_count == 0.
660 * Releases dentry->d_lock.
662 * This may fail if locks cannot be acquired no problem, just try again.
664 static void try_prune_one_dentry(struct dentry
*dentry
)
665 __releases(dentry
->d_lock
)
667 struct dentry
*parent
;
669 parent
= dentry_kill(dentry
, 0);
671 * If dentry_kill returns NULL, we have nothing more to do.
672 * if it returns the same dentry, trylocks failed. In either
673 * case, just loop again.
675 * Otherwise, we need to prune ancestors too. This is necessary
676 * to prevent quadratic behavior of shrink_dcache_parent(), but
677 * is also expected to be beneficial in reducing dentry cache
682 if (parent
== dentry
)
685 /* Prune ancestors. */
688 spin_lock(&dentry
->d_lock
);
689 if (dentry
->d_count
> 1) {
691 spin_unlock(&dentry
->d_lock
);
694 dentry
= dentry_kill(dentry
, 1);
698 static void shrink_dentry_list(struct list_head
*list
)
700 struct dentry
*dentry
;
704 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
705 if (&dentry
->d_lru
== list
)
707 spin_lock(&dentry
->d_lock
);
708 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
709 spin_unlock(&dentry
->d_lock
);
714 * We found an inuse dentry which was not removed from
715 * the LRU because of laziness during lookup. Do not free
716 * it - just keep it off the LRU list.
718 if (dentry
->d_count
) {
719 dentry_lru_del(dentry
);
720 spin_unlock(&dentry
->d_lock
);
726 try_prune_one_dentry(dentry
);
734 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
735 * @sb: superblock to shrink dentry LRU.
736 * @count: number of entries to prune
737 * @flags: flags to control the dentry processing
739 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
741 static void __shrink_dcache_sb(struct super_block
*sb
, int count
, int flags
)
743 struct dentry
*dentry
;
744 LIST_HEAD(referenced
);
748 spin_lock(&dcache_lru_lock
);
749 while (!list_empty(&sb
->s_dentry_lru
)) {
750 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
751 struct dentry
, d_lru
);
752 BUG_ON(dentry
->d_sb
!= sb
);
754 if (!spin_trylock(&dentry
->d_lock
)) {
755 spin_unlock(&dcache_lru_lock
);
761 * If we are honouring the DCACHE_REFERENCED flag and the
762 * dentry has this flag set, don't free it. Clear the flag
763 * and put it back on the LRU.
765 if (flags
& DCACHE_REFERENCED
&&
766 dentry
->d_flags
& DCACHE_REFERENCED
) {
767 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
768 list_move(&dentry
->d_lru
, &referenced
);
769 spin_unlock(&dentry
->d_lock
);
771 list_move_tail(&dentry
->d_lru
, &tmp
);
772 spin_unlock(&dentry
->d_lock
);
776 cond_resched_lock(&dcache_lru_lock
);
778 if (!list_empty(&referenced
))
779 list_splice(&referenced
, &sb
->s_dentry_lru
);
780 spin_unlock(&dcache_lru_lock
);
782 shrink_dentry_list(&tmp
);
786 * prune_dcache_sb - shrink the dcache
787 * @nr_to_scan: number of entries to try to free
789 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
790 * done when we need more memory an called from the superblock shrinker
793 * This function may fail to free any resources if all the dentries are in
796 void prune_dcache_sb(struct super_block
*sb
, int nr_to_scan
)
798 __shrink_dcache_sb(sb
, nr_to_scan
, DCACHE_REFERENCED
);
802 * shrink_dcache_sb - shrink dcache for a superblock
805 * Shrink the dcache for the specified super block. This is used to free
806 * the dcache before unmounting a file system.
808 void shrink_dcache_sb(struct super_block
*sb
)
812 spin_lock(&dcache_lru_lock
);
813 while (!list_empty(&sb
->s_dentry_lru
)) {
814 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
815 spin_unlock(&dcache_lru_lock
);
816 shrink_dentry_list(&tmp
);
817 spin_lock(&dcache_lru_lock
);
819 spin_unlock(&dcache_lru_lock
);
821 EXPORT_SYMBOL(shrink_dcache_sb
);
824 * destroy a single subtree of dentries for unmount
825 * - see the comments on shrink_dcache_for_umount() for a description of the
828 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
830 struct dentry
*parent
;
831 unsigned detached
= 0;
833 BUG_ON(!IS_ROOT(dentry
));
835 /* detach this root from the system */
836 spin_lock(&dentry
->d_lock
);
837 dentry_lru_del(dentry
);
839 spin_unlock(&dentry
->d_lock
);
842 /* descend to the first leaf in the current subtree */
843 while (!list_empty(&dentry
->d_subdirs
)) {
846 /* this is a branch with children - detach all of them
847 * from the system in one go */
848 spin_lock(&dentry
->d_lock
);
849 list_for_each_entry(loop
, &dentry
->d_subdirs
,
851 spin_lock_nested(&loop
->d_lock
,
852 DENTRY_D_LOCK_NESTED
);
853 dentry_lru_del(loop
);
855 spin_unlock(&loop
->d_lock
);
857 spin_unlock(&dentry
->d_lock
);
859 /* move to the first child */
860 dentry
= list_entry(dentry
->d_subdirs
.next
,
861 struct dentry
, d_u
.d_child
);
864 /* consume the dentries from this leaf up through its parents
865 * until we find one with children or run out altogether */
869 if (dentry
->d_count
!= 0) {
871 "BUG: Dentry %p{i=%lx,n=%s}"
873 " [unmount of %s %s]\n",
876 dentry
->d_inode
->i_ino
: 0UL,
879 dentry
->d_sb
->s_type
->name
,
884 if (IS_ROOT(dentry
)) {
886 list_del(&dentry
->d_u
.d_child
);
888 parent
= dentry
->d_parent
;
889 spin_lock(&parent
->d_lock
);
891 list_del(&dentry
->d_u
.d_child
);
892 spin_unlock(&parent
->d_lock
);
897 inode
= dentry
->d_inode
;
899 dentry
->d_inode
= NULL
;
900 list_del_init(&dentry
->d_alias
);
901 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
902 dentry
->d_op
->d_iput(dentry
, inode
);
909 /* finished when we fall off the top of the tree,
910 * otherwise we ascend to the parent and move to the
911 * next sibling if there is one */
915 } while (list_empty(&dentry
->d_subdirs
));
917 dentry
= list_entry(dentry
->d_subdirs
.next
,
918 struct dentry
, d_u
.d_child
);
923 * destroy the dentries attached to a superblock on unmounting
924 * - we don't need to use dentry->d_lock because:
925 * - the superblock is detached from all mountings and open files, so the
926 * dentry trees will not be rearranged by the VFS
927 * - s_umount is write-locked, so the memory pressure shrinker will ignore
928 * any dentries belonging to this superblock that it comes across
929 * - the filesystem itself is no longer permitted to rearrange the dentries
932 void shrink_dcache_for_umount(struct super_block
*sb
)
934 struct dentry
*dentry
;
936 if (down_read_trylock(&sb
->s_umount
))
941 spin_lock(&dentry
->d_lock
);
943 spin_unlock(&dentry
->d_lock
);
944 shrink_dcache_for_umount_subtree(dentry
);
946 while (!hlist_bl_empty(&sb
->s_anon
)) {
947 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
948 shrink_dcache_for_umount_subtree(dentry
);
953 * This tries to ascend one level of parenthood, but
954 * we can race with renaming, so we need to re-check
955 * the parenthood after dropping the lock and check
956 * that the sequence number still matches.
958 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
960 struct dentry
*new = old
->d_parent
;
963 spin_unlock(&old
->d_lock
);
964 spin_lock(&new->d_lock
);
967 * might go back up the wrong parent if we have had a rename
970 if (new != old
->d_parent
||
971 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
972 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
973 spin_unlock(&new->d_lock
);
982 * Search for at least 1 mount point in the dentry's subdirs.
983 * We descend to the next level whenever the d_subdirs
984 * list is non-empty and continue searching.
988 * have_submounts - check for mounts over a dentry
989 * @parent: dentry to check.
991 * Return true if the parent or its subdirectories contain
994 int have_submounts(struct dentry
*parent
)
996 struct dentry
*this_parent
;
997 struct list_head
*next
;
1001 seq
= read_seqbegin(&rename_lock
);
1003 this_parent
= parent
;
1005 if (d_mountpoint(parent
))
1007 spin_lock(&this_parent
->d_lock
);
1009 next
= this_parent
->d_subdirs
.next
;
1011 while (next
!= &this_parent
->d_subdirs
) {
1012 struct list_head
*tmp
= next
;
1013 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1016 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1017 /* Have we found a mount point ? */
1018 if (d_mountpoint(dentry
)) {
1019 spin_unlock(&dentry
->d_lock
);
1020 spin_unlock(&this_parent
->d_lock
);
1023 if (!list_empty(&dentry
->d_subdirs
)) {
1024 spin_unlock(&this_parent
->d_lock
);
1025 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1026 this_parent
= dentry
;
1027 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1030 spin_unlock(&dentry
->d_lock
);
1033 * All done at this level ... ascend and resume the search.
1035 if (this_parent
!= parent
) {
1036 struct dentry
*child
= this_parent
;
1037 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1040 next
= child
->d_u
.d_child
.next
;
1043 spin_unlock(&this_parent
->d_lock
);
1044 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1047 write_sequnlock(&rename_lock
);
1048 return 0; /* No mount points found in tree */
1050 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1053 write_sequnlock(&rename_lock
);
1058 write_seqlock(&rename_lock
);
1061 EXPORT_SYMBOL(have_submounts
);
1064 * Search the dentry child list for the specified parent,
1065 * and move any unused dentries to the end of the unused
1066 * list for prune_dcache(). We descend to the next level
1067 * whenever the d_subdirs list is non-empty and continue
1070 * It returns zero iff there are no unused children,
1071 * otherwise it returns the number of children moved to
1072 * the end of the unused list. This may not be the total
1073 * number of unused children, because select_parent can
1074 * drop the lock and return early due to latency
1077 static int select_parent(struct dentry
* parent
)
1079 struct dentry
*this_parent
;
1080 struct list_head
*next
;
1085 seq
= read_seqbegin(&rename_lock
);
1087 this_parent
= parent
;
1088 spin_lock(&this_parent
->d_lock
);
1090 next
= this_parent
->d_subdirs
.next
;
1092 while (next
!= &this_parent
->d_subdirs
) {
1093 struct list_head
*tmp
= next
;
1094 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1097 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1100 * move only zero ref count dentries to the end
1101 * of the unused list for prune_dcache
1103 if (!dentry
->d_count
) {
1104 dentry_lru_move_tail(dentry
);
1107 dentry_lru_del(dentry
);
1111 * We can return to the caller if we have found some (this
1112 * ensures forward progress). We'll be coming back to find
1115 if (found
&& need_resched()) {
1116 spin_unlock(&dentry
->d_lock
);
1121 * Descend a level if the d_subdirs list is non-empty.
1123 if (!list_empty(&dentry
->d_subdirs
)) {
1124 spin_unlock(&this_parent
->d_lock
);
1125 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1126 this_parent
= dentry
;
1127 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1131 spin_unlock(&dentry
->d_lock
);
1134 * All done at this level ... ascend and resume the search.
1136 if (this_parent
!= parent
) {
1137 struct dentry
*child
= this_parent
;
1138 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1141 next
= child
->d_u
.d_child
.next
;
1145 spin_unlock(&this_parent
->d_lock
);
1146 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1149 write_sequnlock(&rename_lock
);
1156 write_seqlock(&rename_lock
);
1161 * shrink_dcache_parent - prune dcache
1162 * @parent: parent of entries to prune
1164 * Prune the dcache to remove unused children of the parent dentry.
1167 void shrink_dcache_parent(struct dentry
* parent
)
1169 struct super_block
*sb
= parent
->d_sb
;
1172 while ((found
= select_parent(parent
)) != 0)
1173 __shrink_dcache_sb(sb
, found
, 0);
1175 EXPORT_SYMBOL(shrink_dcache_parent
);
1178 * __d_alloc - allocate a dcache entry
1179 * @sb: filesystem it will belong to
1180 * @name: qstr of the name
1182 * Allocates a dentry. It returns %NULL if there is insufficient memory
1183 * available. On a success the dentry is returned. The name passed in is
1184 * copied and the copy passed in may be reused after this call.
1187 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1189 struct dentry
*dentry
;
1192 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1196 if (name
->len
> DNAME_INLINE_LEN
-1) {
1197 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1199 kmem_cache_free(dentry_cache
, dentry
);
1203 dname
= dentry
->d_iname
;
1205 dentry
->d_name
.name
= dname
;
1207 dentry
->d_name
.len
= name
->len
;
1208 dentry
->d_name
.hash
= name
->hash
;
1209 memcpy(dname
, name
->name
, name
->len
);
1210 dname
[name
->len
] = 0;
1212 dentry
->d_count
= 1;
1213 dentry
->d_flags
= 0;
1214 spin_lock_init(&dentry
->d_lock
);
1215 seqcount_init(&dentry
->d_seq
);
1216 dentry
->d_inode
= NULL
;
1217 dentry
->d_parent
= dentry
;
1219 dentry
->d_op
= NULL
;
1220 dentry
->d_fsdata
= NULL
;
1221 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1222 INIT_LIST_HEAD(&dentry
->d_lru
);
1223 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1224 INIT_LIST_HEAD(&dentry
->d_alias
);
1225 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1226 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1228 this_cpu_inc(nr_dentry
);
1234 * d_alloc - allocate a dcache entry
1235 * @parent: parent of entry to allocate
1236 * @name: qstr of the name
1238 * Allocates a dentry. It returns %NULL if there is insufficient memory
1239 * available. On a success the dentry is returned. The name passed in is
1240 * copied and the copy passed in may be reused after this call.
1242 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1244 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1248 spin_lock(&parent
->d_lock
);
1250 * don't need child lock because it is not subject
1251 * to concurrency here
1253 __dget_dlock(parent
);
1254 dentry
->d_parent
= parent
;
1255 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1256 spin_unlock(&parent
->d_lock
);
1260 EXPORT_SYMBOL(d_alloc
);
1262 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1264 struct dentry
*dentry
= __d_alloc(sb
, name
);
1266 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1269 EXPORT_SYMBOL(d_alloc_pseudo
);
1271 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1276 q
.len
= strlen(name
);
1277 q
.hash
= full_name_hash(q
.name
, q
.len
);
1278 return d_alloc(parent
, &q
);
1280 EXPORT_SYMBOL(d_alloc_name
);
1282 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1284 WARN_ON_ONCE(dentry
->d_op
);
1285 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1287 DCACHE_OP_REVALIDATE
|
1288 DCACHE_OP_DELETE
));
1293 dentry
->d_flags
|= DCACHE_OP_HASH
;
1295 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1296 if (op
->d_revalidate
)
1297 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1299 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1302 EXPORT_SYMBOL(d_set_d_op
);
1304 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1306 spin_lock(&dentry
->d_lock
);
1308 if (unlikely(IS_AUTOMOUNT(inode
)))
1309 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1310 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1312 dentry
->d_inode
= inode
;
1313 dentry_rcuwalk_barrier(dentry
);
1314 spin_unlock(&dentry
->d_lock
);
1315 fsnotify_d_instantiate(dentry
, inode
);
1319 * d_instantiate - fill in inode information for a dentry
1320 * @entry: dentry to complete
1321 * @inode: inode to attach to this dentry
1323 * Fill in inode information in the entry.
1325 * This turns negative dentries into productive full members
1328 * NOTE! This assumes that the inode count has been incremented
1329 * (or otherwise set) by the caller to indicate that it is now
1330 * in use by the dcache.
1333 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1335 BUG_ON(!list_empty(&entry
->d_alias
));
1337 spin_lock(&inode
->i_lock
);
1338 __d_instantiate(entry
, inode
);
1340 spin_unlock(&inode
->i_lock
);
1341 security_d_instantiate(entry
, inode
);
1343 EXPORT_SYMBOL(d_instantiate
);
1346 * d_instantiate_unique - instantiate a non-aliased dentry
1347 * @entry: dentry to instantiate
1348 * @inode: inode to attach to this dentry
1350 * Fill in inode information in the entry. On success, it returns NULL.
1351 * If an unhashed alias of "entry" already exists, then we return the
1352 * aliased dentry instead and drop one reference to inode.
1354 * Note that in order to avoid conflicts with rename() etc, the caller
1355 * had better be holding the parent directory semaphore.
1357 * This also assumes that the inode count has been incremented
1358 * (or otherwise set) by the caller to indicate that it is now
1359 * in use by the dcache.
1361 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1362 struct inode
*inode
)
1364 struct dentry
*alias
;
1365 int len
= entry
->d_name
.len
;
1366 const char *name
= entry
->d_name
.name
;
1367 unsigned int hash
= entry
->d_name
.hash
;
1370 __d_instantiate(entry
, NULL
);
1374 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1375 struct qstr
*qstr
= &alias
->d_name
;
1378 * Don't need alias->d_lock here, because aliases with
1379 * d_parent == entry->d_parent are not subject to name or
1380 * parent changes, because the parent inode i_mutex is held.
1382 if (qstr
->hash
!= hash
)
1384 if (alias
->d_parent
!= entry
->d_parent
)
1386 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1392 __d_instantiate(entry
, inode
);
1396 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1398 struct dentry
*result
;
1400 BUG_ON(!list_empty(&entry
->d_alias
));
1403 spin_lock(&inode
->i_lock
);
1404 result
= __d_instantiate_unique(entry
, inode
);
1406 spin_unlock(&inode
->i_lock
);
1409 security_d_instantiate(entry
, inode
);
1413 BUG_ON(!d_unhashed(result
));
1418 EXPORT_SYMBOL(d_instantiate_unique
);
1421 * d_alloc_root - allocate root dentry
1422 * @root_inode: inode to allocate the root for
1424 * Allocate a root ("/") dentry for the inode given. The inode is
1425 * instantiated and returned. %NULL is returned if there is insufficient
1426 * memory or the inode passed is %NULL.
1429 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1431 struct dentry
*res
= NULL
;
1434 static const struct qstr name
= { .name
= "/", .len
= 1 };
1436 res
= __d_alloc(root_inode
->i_sb
, &name
);
1438 d_instantiate(res
, root_inode
);
1442 EXPORT_SYMBOL(d_alloc_root
);
1444 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1446 struct dentry
*alias
;
1448 if (list_empty(&inode
->i_dentry
))
1450 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1455 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1459 spin_lock(&inode
->i_lock
);
1460 de
= __d_find_any_alias(inode
);
1461 spin_unlock(&inode
->i_lock
);
1467 * d_obtain_alias - find or allocate a dentry for a given inode
1468 * @inode: inode to allocate the dentry for
1470 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1471 * similar open by handle operations. The returned dentry may be anonymous,
1472 * or may have a full name (if the inode was already in the cache).
1474 * When called on a directory inode, we must ensure that the inode only ever
1475 * has one dentry. If a dentry is found, that is returned instead of
1476 * allocating a new one.
1478 * On successful return, the reference to the inode has been transferred
1479 * to the dentry. In case of an error the reference on the inode is released.
1480 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1481 * be passed in and will be the error will be propagate to the return value,
1482 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1484 struct dentry
*d_obtain_alias(struct inode
*inode
)
1486 static const struct qstr anonstring
= { .name
= "" };
1491 return ERR_PTR(-ESTALE
);
1493 return ERR_CAST(inode
);
1495 res
= d_find_any_alias(inode
);
1499 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1501 res
= ERR_PTR(-ENOMEM
);
1505 spin_lock(&inode
->i_lock
);
1506 res
= __d_find_any_alias(inode
);
1508 spin_unlock(&inode
->i_lock
);
1513 /* attach a disconnected dentry */
1514 spin_lock(&tmp
->d_lock
);
1515 tmp
->d_inode
= inode
;
1516 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1517 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1518 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1519 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1520 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1521 spin_unlock(&tmp
->d_lock
);
1522 spin_unlock(&inode
->i_lock
);
1523 security_d_instantiate(tmp
, inode
);
1528 if (res
&& !IS_ERR(res
))
1529 security_d_instantiate(res
, inode
);
1533 EXPORT_SYMBOL(d_obtain_alias
);
1536 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1537 * @inode: the inode which may have a disconnected dentry
1538 * @dentry: a negative dentry which we want to point to the inode.
1540 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1541 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1542 * and return it, else simply d_add the inode to the dentry and return NULL.
1544 * This is needed in the lookup routine of any filesystem that is exportable
1545 * (via knfsd) so that we can build dcache paths to directories effectively.
1547 * If a dentry was found and moved, then it is returned. Otherwise NULL
1548 * is returned. This matches the expected return value of ->lookup.
1551 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1553 struct dentry
*new = NULL
;
1556 return ERR_CAST(inode
);
1558 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1559 spin_lock(&inode
->i_lock
);
1560 new = __d_find_alias(inode
, 1);
1562 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1563 spin_unlock(&inode
->i_lock
);
1564 security_d_instantiate(new, inode
);
1565 d_move(new, dentry
);
1568 /* already taking inode->i_lock, so d_add() by hand */
1569 __d_instantiate(dentry
, inode
);
1570 spin_unlock(&inode
->i_lock
);
1571 security_d_instantiate(dentry
, inode
);
1575 d_add(dentry
, inode
);
1578 EXPORT_SYMBOL(d_splice_alias
);
1581 * d_add_ci - lookup or allocate new dentry with case-exact name
1582 * @inode: the inode case-insensitive lookup has found
1583 * @dentry: the negative dentry that was passed to the parent's lookup func
1584 * @name: the case-exact name to be associated with the returned dentry
1586 * This is to avoid filling the dcache with case-insensitive names to the
1587 * same inode, only the actual correct case is stored in the dcache for
1588 * case-insensitive filesystems.
1590 * For a case-insensitive lookup match and if the the case-exact dentry
1591 * already exists in in the dcache, use it and return it.
1593 * If no entry exists with the exact case name, allocate new dentry with
1594 * the exact case, and return the spliced entry.
1596 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1600 struct dentry
*found
;
1604 * First check if a dentry matching the name already exists,
1605 * if not go ahead and create it now.
1607 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1609 new = d_alloc(dentry
->d_parent
, name
);
1615 found
= d_splice_alias(inode
, new);
1624 * If a matching dentry exists, and it's not negative use it.
1626 * Decrement the reference count to balance the iget() done
1629 if (found
->d_inode
) {
1630 if (unlikely(found
->d_inode
!= inode
)) {
1631 /* This can't happen because bad inodes are unhashed. */
1632 BUG_ON(!is_bad_inode(inode
));
1633 BUG_ON(!is_bad_inode(found
->d_inode
));
1640 * We are going to instantiate this dentry, unhash it and clear the
1641 * lookup flag so we can do that.
1643 if (unlikely(d_need_lookup(found
)))
1644 d_clear_need_lookup(found
);
1647 * Negative dentry: instantiate it unless the inode is a directory and
1648 * already has a dentry.
1650 new = d_splice_alias(inode
, found
);
1659 return ERR_PTR(error
);
1661 EXPORT_SYMBOL(d_add_ci
);
1664 * __d_lookup_rcu - search for a dentry (racy, store-free)
1665 * @parent: parent dentry
1666 * @name: qstr of name we wish to find
1667 * @seq: returns d_seq value at the point where the dentry was found
1668 * @inode: returns dentry->d_inode when the inode was found valid.
1669 * Returns: dentry, or NULL
1671 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1672 * resolution (store-free path walking) design described in
1673 * Documentation/filesystems/path-lookup.txt.
1675 * This is not to be used outside core vfs.
1677 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1678 * held, and rcu_read_lock held. The returned dentry must not be stored into
1679 * without taking d_lock and checking d_seq sequence count against @seq
1682 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1685 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1686 * the returned dentry, so long as its parent's seqlock is checked after the
1687 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1688 * is formed, giving integrity down the path walk.
1690 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1691 unsigned *seq
, struct inode
**inode
)
1693 unsigned int len
= name
->len
;
1694 unsigned int hash
= name
->hash
;
1695 const unsigned char *str
= name
->name
;
1696 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1697 struct hlist_bl_node
*node
;
1698 struct dentry
*dentry
;
1701 * Note: There is significant duplication with __d_lookup_rcu which is
1702 * required to prevent single threaded performance regressions
1703 * especially on architectures where smp_rmb (in seqcounts) are costly.
1704 * Keep the two functions in sync.
1708 * The hash list is protected using RCU.
1710 * Carefully use d_seq when comparing a candidate dentry, to avoid
1711 * races with d_move().
1713 * It is possible that concurrent renames can mess up our list
1714 * walk here and result in missing our dentry, resulting in the
1715 * false-negative result. d_lookup() protects against concurrent
1716 * renames using rename_lock seqlock.
1718 * See Documentation/filesystems/path-lookup.txt for more details.
1720 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1725 if (dentry
->d_name
.hash
!= hash
)
1729 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1730 if (dentry
->d_parent
!= parent
)
1732 if (d_unhashed(dentry
))
1734 tlen
= dentry
->d_name
.len
;
1735 tname
= dentry
->d_name
.name
;
1736 i
= dentry
->d_inode
;
1739 * This seqcount check is required to ensure name and
1740 * len are loaded atomically, so as not to walk off the
1741 * edge of memory when walking. If we could load this
1742 * atomically some other way, we could drop this check.
1744 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1746 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1747 if (parent
->d_op
->d_compare(parent
, *inode
,
1752 if (dentry_cmp(tname
, tlen
, str
, len
))
1756 * No extra seqcount check is required after the name
1757 * compare. The caller must perform a seqcount check in
1758 * order to do anything useful with the returned dentry
1768 * d_lookup - search for a dentry
1769 * @parent: parent dentry
1770 * @name: qstr of name we wish to find
1771 * Returns: dentry, or NULL
1773 * d_lookup searches the children of the parent dentry for the name in
1774 * question. If the dentry is found its reference count is incremented and the
1775 * dentry is returned. The caller must use dput to free the entry when it has
1776 * finished using it. %NULL is returned if the dentry does not exist.
1778 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1780 struct dentry
*dentry
;
1784 seq
= read_seqbegin(&rename_lock
);
1785 dentry
= __d_lookup(parent
, name
);
1788 } while (read_seqretry(&rename_lock
, seq
));
1791 EXPORT_SYMBOL(d_lookup
);
1794 * __d_lookup - search for a dentry (racy)
1795 * @parent: parent dentry
1796 * @name: qstr of name we wish to find
1797 * Returns: dentry, or NULL
1799 * __d_lookup is like d_lookup, however it may (rarely) return a
1800 * false-negative result due to unrelated rename activity.
1802 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1803 * however it must be used carefully, eg. with a following d_lookup in
1804 * the case of failure.
1806 * __d_lookup callers must be commented.
1808 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1810 unsigned int len
= name
->len
;
1811 unsigned int hash
= name
->hash
;
1812 const unsigned char *str
= name
->name
;
1813 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1814 struct hlist_bl_node
*node
;
1815 struct dentry
*found
= NULL
;
1816 struct dentry
*dentry
;
1819 * Note: There is significant duplication with __d_lookup_rcu which is
1820 * required to prevent single threaded performance regressions
1821 * especially on architectures where smp_rmb (in seqcounts) are costly.
1822 * Keep the two functions in sync.
1826 * The hash list is protected using RCU.
1828 * Take d_lock when comparing a candidate dentry, to avoid races
1831 * It is possible that concurrent renames can mess up our list
1832 * walk here and result in missing our dentry, resulting in the
1833 * false-negative result. d_lookup() protects against concurrent
1834 * renames using rename_lock seqlock.
1836 * See Documentation/filesystems/path-lookup.txt for more details.
1840 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1844 if (dentry
->d_name
.hash
!= hash
)
1847 spin_lock(&dentry
->d_lock
);
1848 if (dentry
->d_parent
!= parent
)
1850 if (d_unhashed(dentry
))
1854 * It is safe to compare names since d_move() cannot
1855 * change the qstr (protected by d_lock).
1857 tlen
= dentry
->d_name
.len
;
1858 tname
= dentry
->d_name
.name
;
1859 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1860 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1861 dentry
, dentry
->d_inode
,
1865 if (dentry_cmp(tname
, tlen
, str
, len
))
1871 spin_unlock(&dentry
->d_lock
);
1874 spin_unlock(&dentry
->d_lock
);
1882 * d_hash_and_lookup - hash the qstr then search for a dentry
1883 * @dir: Directory to search in
1884 * @name: qstr of name we wish to find
1886 * On hash failure or on lookup failure NULL is returned.
1888 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1890 struct dentry
*dentry
= NULL
;
1893 * Check for a fs-specific hash function. Note that we must
1894 * calculate the standard hash first, as the d_op->d_hash()
1895 * routine may choose to leave the hash value unchanged.
1897 name
->hash
= full_name_hash(name
->name
, name
->len
);
1898 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1899 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1902 dentry
= d_lookup(dir
, name
);
1908 * d_validate - verify dentry provided from insecure source (deprecated)
1909 * @dentry: The dentry alleged to be valid child of @dparent
1910 * @dparent: The parent dentry (known to be valid)
1912 * An insecure source has sent us a dentry, here we verify it and dget() it.
1913 * This is used by ncpfs in its readdir implementation.
1914 * Zero is returned in the dentry is invalid.
1916 * This function is slow for big directories, and deprecated, do not use it.
1918 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1920 struct dentry
*child
;
1922 spin_lock(&dparent
->d_lock
);
1923 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
1924 if (dentry
== child
) {
1925 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1926 __dget_dlock(dentry
);
1927 spin_unlock(&dentry
->d_lock
);
1928 spin_unlock(&dparent
->d_lock
);
1932 spin_unlock(&dparent
->d_lock
);
1936 EXPORT_SYMBOL(d_validate
);
1939 * When a file is deleted, we have two options:
1940 * - turn this dentry into a negative dentry
1941 * - unhash this dentry and free it.
1943 * Usually, we want to just turn this into
1944 * a negative dentry, but if anybody else is
1945 * currently using the dentry or the inode
1946 * we can't do that and we fall back on removing
1947 * it from the hash queues and waiting for
1948 * it to be deleted later when it has no users
1952 * d_delete - delete a dentry
1953 * @dentry: The dentry to delete
1955 * Turn the dentry into a negative dentry if possible, otherwise
1956 * remove it from the hash queues so it can be deleted later
1959 void d_delete(struct dentry
* dentry
)
1961 struct inode
*inode
;
1964 * Are we the only user?
1967 spin_lock(&dentry
->d_lock
);
1968 inode
= dentry
->d_inode
;
1969 isdir
= S_ISDIR(inode
->i_mode
);
1970 if (dentry
->d_count
== 1) {
1971 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
1972 spin_unlock(&dentry
->d_lock
);
1976 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
1977 dentry_unlink_inode(dentry
);
1978 fsnotify_nameremove(dentry
, isdir
);
1982 if (!d_unhashed(dentry
))
1985 spin_unlock(&dentry
->d_lock
);
1987 fsnotify_nameremove(dentry
, isdir
);
1989 EXPORT_SYMBOL(d_delete
);
1991 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
1993 BUG_ON(!d_unhashed(entry
));
1995 entry
->d_flags
|= DCACHE_RCUACCESS
;
1996 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2000 static void _d_rehash(struct dentry
* entry
)
2002 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2006 * d_rehash - add an entry back to the hash
2007 * @entry: dentry to add to the hash
2009 * Adds a dentry to the hash according to its name.
2012 void d_rehash(struct dentry
* entry
)
2014 spin_lock(&entry
->d_lock
);
2016 spin_unlock(&entry
->d_lock
);
2018 EXPORT_SYMBOL(d_rehash
);
2021 * dentry_update_name_case - update case insensitive dentry with a new name
2022 * @dentry: dentry to be updated
2025 * Update a case insensitive dentry with new case of name.
2027 * dentry must have been returned by d_lookup with name @name. Old and new
2028 * name lengths must match (ie. no d_compare which allows mismatched name
2031 * Parent inode i_mutex must be held over d_lookup and into this call (to
2032 * keep renames and concurrent inserts, and readdir(2) away).
2034 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2036 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2037 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2039 spin_lock(&dentry
->d_lock
);
2040 write_seqcount_begin(&dentry
->d_seq
);
2041 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2042 write_seqcount_end(&dentry
->d_seq
);
2043 spin_unlock(&dentry
->d_lock
);
2045 EXPORT_SYMBOL(dentry_update_name_case
);
2047 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2049 if (dname_external(target
)) {
2050 if (dname_external(dentry
)) {
2052 * Both external: swap the pointers
2054 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2057 * dentry:internal, target:external. Steal target's
2058 * storage and make target internal.
2060 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2061 dentry
->d_name
.len
+ 1);
2062 dentry
->d_name
.name
= target
->d_name
.name
;
2063 target
->d_name
.name
= target
->d_iname
;
2066 if (dname_external(dentry
)) {
2068 * dentry:external, target:internal. Give dentry's
2069 * storage to target and make dentry internal
2071 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2072 target
->d_name
.len
+ 1);
2073 target
->d_name
.name
= dentry
->d_name
.name
;
2074 dentry
->d_name
.name
= dentry
->d_iname
;
2077 * Both are internal. Just copy target to dentry
2079 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2080 target
->d_name
.len
+ 1);
2081 dentry
->d_name
.len
= target
->d_name
.len
;
2085 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2088 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2091 * XXXX: do we really need to take target->d_lock?
2093 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2094 spin_lock(&target
->d_parent
->d_lock
);
2096 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2097 spin_lock(&dentry
->d_parent
->d_lock
);
2098 spin_lock_nested(&target
->d_parent
->d_lock
,
2099 DENTRY_D_LOCK_NESTED
);
2101 spin_lock(&target
->d_parent
->d_lock
);
2102 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2103 DENTRY_D_LOCK_NESTED
);
2106 if (target
< dentry
) {
2107 spin_lock_nested(&target
->d_lock
, 2);
2108 spin_lock_nested(&dentry
->d_lock
, 3);
2110 spin_lock_nested(&dentry
->d_lock
, 2);
2111 spin_lock_nested(&target
->d_lock
, 3);
2115 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2116 struct dentry
*target
)
2118 if (target
->d_parent
!= dentry
->d_parent
)
2119 spin_unlock(&dentry
->d_parent
->d_lock
);
2120 if (target
->d_parent
!= target
)
2121 spin_unlock(&target
->d_parent
->d_lock
);
2125 * When switching names, the actual string doesn't strictly have to
2126 * be preserved in the target - because we're dropping the target
2127 * anyway. As such, we can just do a simple memcpy() to copy over
2128 * the new name before we switch.
2130 * Note that we have to be a lot more careful about getting the hash
2131 * switched - we have to switch the hash value properly even if it
2132 * then no longer matches the actual (corrupted) string of the target.
2133 * The hash value has to match the hash queue that the dentry is on..
2136 * __d_move - move a dentry
2137 * @dentry: entry to move
2138 * @target: new dentry
2140 * Update the dcache to reflect the move of a file name. Negative
2141 * dcache entries should not be moved in this way. Caller must hold
2142 * rename_lock, the i_mutex of the source and target directories,
2143 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2145 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2147 if (!dentry
->d_inode
)
2148 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2150 BUG_ON(d_ancestor(dentry
, target
));
2151 BUG_ON(d_ancestor(target
, dentry
));
2153 dentry_lock_for_move(dentry
, target
);
2155 write_seqcount_begin(&dentry
->d_seq
);
2156 write_seqcount_begin(&target
->d_seq
);
2158 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2161 * Move the dentry to the target hash queue. Don't bother checking
2162 * for the same hash queue because of how unlikely it is.
2165 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2167 /* Unhash the target: dput() will then get rid of it */
2170 list_del(&dentry
->d_u
.d_child
);
2171 list_del(&target
->d_u
.d_child
);
2173 /* Switch the names.. */
2174 switch_names(dentry
, target
);
2175 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2177 /* ... and switch the parents */
2178 if (IS_ROOT(dentry
)) {
2179 dentry
->d_parent
= target
->d_parent
;
2180 target
->d_parent
= target
;
2181 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2183 swap(dentry
->d_parent
, target
->d_parent
);
2185 /* And add them back to the (new) parent lists */
2186 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2189 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2191 write_seqcount_end(&target
->d_seq
);
2192 write_seqcount_end(&dentry
->d_seq
);
2194 dentry_unlock_parents_for_move(dentry
, target
);
2195 spin_unlock(&target
->d_lock
);
2196 fsnotify_d_move(dentry
);
2197 spin_unlock(&dentry
->d_lock
);
2201 * d_move - move a dentry
2202 * @dentry: entry to move
2203 * @target: new dentry
2205 * Update the dcache to reflect the move of a file name. Negative
2206 * dcache entries should not be moved in this way. See the locking
2207 * requirements for __d_move.
2209 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2211 write_seqlock(&rename_lock
);
2212 __d_move(dentry
, target
);
2213 write_sequnlock(&rename_lock
);
2215 EXPORT_SYMBOL(d_move
);
2218 * d_ancestor - search for an ancestor
2219 * @p1: ancestor dentry
2222 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2223 * an ancestor of p2, else NULL.
2225 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2229 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2230 if (p
->d_parent
== p1
)
2237 * This helper attempts to cope with remotely renamed directories
2239 * It assumes that the caller is already holding
2240 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2242 * Note: If ever the locking in lock_rename() changes, then please
2243 * remember to update this too...
2245 static struct dentry
*__d_unalias(struct inode
*inode
,
2246 struct dentry
*dentry
, struct dentry
*alias
)
2248 struct mutex
*m1
= NULL
, *m2
= NULL
;
2251 /* If alias and dentry share a parent, then no extra locks required */
2252 if (alias
->d_parent
== dentry
->d_parent
)
2255 /* See lock_rename() */
2256 ret
= ERR_PTR(-EBUSY
);
2257 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2259 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2260 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2262 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2264 __d_move(alias
, dentry
);
2267 spin_unlock(&inode
->i_lock
);
2276 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2277 * named dentry in place of the dentry to be replaced.
2278 * returns with anon->d_lock held!
2280 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2282 struct dentry
*dparent
, *aparent
;
2284 dentry_lock_for_move(anon
, dentry
);
2286 write_seqcount_begin(&dentry
->d_seq
);
2287 write_seqcount_begin(&anon
->d_seq
);
2289 dparent
= dentry
->d_parent
;
2290 aparent
= anon
->d_parent
;
2292 switch_names(dentry
, anon
);
2293 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2295 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2296 list_del(&dentry
->d_u
.d_child
);
2297 if (!IS_ROOT(dentry
))
2298 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2300 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2302 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2303 list_del(&anon
->d_u
.d_child
);
2305 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2307 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2309 write_seqcount_end(&dentry
->d_seq
);
2310 write_seqcount_end(&anon
->d_seq
);
2312 dentry_unlock_parents_for_move(anon
, dentry
);
2313 spin_unlock(&dentry
->d_lock
);
2315 /* anon->d_lock still locked, returns locked */
2316 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2320 * d_materialise_unique - introduce an inode into the tree
2321 * @dentry: candidate dentry
2322 * @inode: inode to bind to the dentry, to which aliases may be attached
2324 * Introduces an dentry into the tree, substituting an extant disconnected
2325 * root directory alias in its place if there is one. Caller must hold the
2326 * i_mutex of the parent directory.
2328 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2330 struct dentry
*actual
;
2332 BUG_ON(!d_unhashed(dentry
));
2336 __d_instantiate(dentry
, NULL
);
2341 spin_lock(&inode
->i_lock
);
2343 if (S_ISDIR(inode
->i_mode
)) {
2344 struct dentry
*alias
;
2346 /* Does an aliased dentry already exist? */
2347 alias
= __d_find_alias(inode
, 0);
2350 write_seqlock(&rename_lock
);
2352 if (d_ancestor(alias
, dentry
)) {
2353 /* Check for loops */
2354 actual
= ERR_PTR(-ELOOP
);
2355 } else if (IS_ROOT(alias
)) {
2356 /* Is this an anonymous mountpoint that we
2357 * could splice into our tree? */
2358 __d_materialise_dentry(dentry
, alias
);
2359 write_sequnlock(&rename_lock
);
2363 /* Nope, but we must(!) avoid directory
2365 actual
= __d_unalias(inode
, dentry
, alias
);
2367 write_sequnlock(&rename_lock
);
2374 /* Add a unique reference */
2375 actual
= __d_instantiate_unique(dentry
, inode
);
2379 BUG_ON(!d_unhashed(actual
));
2381 spin_lock(&actual
->d_lock
);
2384 spin_unlock(&actual
->d_lock
);
2385 spin_unlock(&inode
->i_lock
);
2387 if (actual
== dentry
) {
2388 security_d_instantiate(dentry
, inode
);
2395 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2397 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2401 return -ENAMETOOLONG
;
2403 memcpy(*buffer
, str
, namelen
);
2407 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2409 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2413 * prepend_path - Prepend path string to a buffer
2414 * @path: the dentry/vfsmount to report
2415 * @root: root vfsmnt/dentry (may be modified by this function)
2416 * @buffer: pointer to the end of the buffer
2417 * @buflen: pointer to buffer length
2419 * Caller holds the rename_lock.
2421 * If path is not reachable from the supplied root, then the value of
2422 * root is changed (without modifying refcounts).
2424 static int prepend_path(const struct path
*path
, struct path
*root
,
2425 char **buffer
, int *buflen
)
2427 struct dentry
*dentry
= path
->dentry
;
2428 struct vfsmount
*vfsmnt
= path
->mnt
;
2432 br_read_lock(vfsmount_lock
);
2433 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2434 struct dentry
* parent
;
2436 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2438 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2441 dentry
= vfsmnt
->mnt_mountpoint
;
2442 vfsmnt
= vfsmnt
->mnt_parent
;
2445 parent
= dentry
->d_parent
;
2447 spin_lock(&dentry
->d_lock
);
2448 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2449 spin_unlock(&dentry
->d_lock
);
2451 error
= prepend(buffer
, buflen
, "/", 1);
2460 if (!error
&& !slash
)
2461 error
= prepend(buffer
, buflen
, "/", 1);
2463 br_read_unlock(vfsmount_lock
);
2468 * Filesystems needing to implement special "root names"
2469 * should do so with ->d_dname()
2471 if (IS_ROOT(dentry
) &&
2472 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2473 WARN(1, "Root dentry has weird name <%.*s>\n",
2474 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2477 root
->dentry
= dentry
;
2482 * __d_path - return the path of a dentry
2483 * @path: the dentry/vfsmount to report
2484 * @root: root vfsmnt/dentry (may be modified by this function)
2485 * @buf: buffer to return value in
2486 * @buflen: buffer length
2488 * Convert a dentry into an ASCII path name.
2490 * Returns a pointer into the buffer or an error code if the
2491 * path was too long.
2493 * "buflen" should be positive.
2495 * If path is not reachable from the supplied root, then the value of
2496 * root is changed (without modifying refcounts).
2498 char *__d_path(const struct path
*path
, struct path
*root
,
2499 char *buf
, int buflen
)
2501 char *res
= buf
+ buflen
;
2504 prepend(&res
, &buflen
, "\0", 1);
2505 write_seqlock(&rename_lock
);
2506 error
= prepend_path(path
, root
, &res
, &buflen
);
2507 write_sequnlock(&rename_lock
);
2510 return ERR_PTR(error
);
2515 * same as __d_path but appends "(deleted)" for unlinked files.
2517 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2518 char **buf
, int *buflen
)
2520 prepend(buf
, buflen
, "\0", 1);
2521 if (d_unlinked(path
->dentry
)) {
2522 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2527 return prepend_path(path
, root
, buf
, buflen
);
2530 static int prepend_unreachable(char **buffer
, int *buflen
)
2532 return prepend(buffer
, buflen
, "(unreachable)", 13);
2536 * d_path - return the path of a dentry
2537 * @path: path to report
2538 * @buf: buffer to return value in
2539 * @buflen: buffer length
2541 * Convert a dentry into an ASCII path name. If the entry has been deleted
2542 * the string " (deleted)" is appended. Note that this is ambiguous.
2544 * Returns a pointer into the buffer or an error code if the path was
2545 * too long. Note: Callers should use the returned pointer, not the passed
2546 * in buffer, to use the name! The implementation often starts at an offset
2547 * into the buffer, and may leave 0 bytes at the start.
2549 * "buflen" should be positive.
2551 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2553 char *res
= buf
+ buflen
;
2559 * We have various synthetic filesystems that never get mounted. On
2560 * these filesystems dentries are never used for lookup purposes, and
2561 * thus don't need to be hashed. They also don't need a name until a
2562 * user wants to identify the object in /proc/pid/fd/. The little hack
2563 * below allows us to generate a name for these objects on demand:
2565 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2566 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2568 get_fs_root(current
->fs
, &root
);
2569 write_seqlock(&rename_lock
);
2571 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2573 res
= ERR_PTR(error
);
2574 write_sequnlock(&rename_lock
);
2578 EXPORT_SYMBOL(d_path
);
2581 * d_path_with_unreachable - return the path of a dentry
2582 * @path: path to report
2583 * @buf: buffer to return value in
2584 * @buflen: buffer length
2586 * The difference from d_path() is that this prepends "(unreachable)"
2587 * to paths which are unreachable from the current process' root.
2589 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2591 char *res
= buf
+ buflen
;
2596 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2597 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2599 get_fs_root(current
->fs
, &root
);
2600 write_seqlock(&rename_lock
);
2602 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2603 if (!error
&& !path_equal(&tmp
, &root
))
2604 error
= prepend_unreachable(&res
, &buflen
);
2605 write_sequnlock(&rename_lock
);
2608 res
= ERR_PTR(error
);
2614 * Helper function for dentry_operations.d_dname() members
2616 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2617 const char *fmt
, ...)
2623 va_start(args
, fmt
);
2624 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2627 if (sz
> sizeof(temp
) || sz
> buflen
)
2628 return ERR_PTR(-ENAMETOOLONG
);
2630 buffer
+= buflen
- sz
;
2631 return memcpy(buffer
, temp
, sz
);
2635 * Write full pathname from the root of the filesystem into the buffer.
2637 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2639 char *end
= buf
+ buflen
;
2642 prepend(&end
, &buflen
, "\0", 1);
2649 while (!IS_ROOT(dentry
)) {
2650 struct dentry
*parent
= dentry
->d_parent
;
2654 spin_lock(&dentry
->d_lock
);
2655 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2656 spin_unlock(&dentry
->d_lock
);
2657 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2665 return ERR_PTR(-ENAMETOOLONG
);
2668 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2672 write_seqlock(&rename_lock
);
2673 retval
= __dentry_path(dentry
, buf
, buflen
);
2674 write_sequnlock(&rename_lock
);
2678 EXPORT_SYMBOL(dentry_path_raw
);
2680 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2685 write_seqlock(&rename_lock
);
2686 if (d_unlinked(dentry
)) {
2688 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2692 retval
= __dentry_path(dentry
, buf
, buflen
);
2693 write_sequnlock(&rename_lock
);
2694 if (!IS_ERR(retval
) && p
)
2695 *p
= '/'; /* restore '/' overriden with '\0' */
2698 return ERR_PTR(-ENAMETOOLONG
);
2702 * NOTE! The user-level library version returns a
2703 * character pointer. The kernel system call just
2704 * returns the length of the buffer filled (which
2705 * includes the ending '\0' character), or a negative
2706 * error value. So libc would do something like
2708 * char *getcwd(char * buf, size_t size)
2712 * retval = sys_getcwd(buf, size);
2719 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2722 struct path pwd
, root
;
2723 char *page
= (char *) __get_free_page(GFP_USER
);
2728 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2731 write_seqlock(&rename_lock
);
2732 if (!d_unlinked(pwd
.dentry
)) {
2734 struct path tmp
= root
;
2735 char *cwd
= page
+ PAGE_SIZE
;
2736 int buflen
= PAGE_SIZE
;
2738 prepend(&cwd
, &buflen
, "\0", 1);
2739 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2740 write_sequnlock(&rename_lock
);
2745 /* Unreachable from current root */
2746 if (!path_equal(&tmp
, &root
)) {
2747 error
= prepend_unreachable(&cwd
, &buflen
);
2753 len
= PAGE_SIZE
+ page
- cwd
;
2756 if (copy_to_user(buf
, cwd
, len
))
2760 write_sequnlock(&rename_lock
);
2766 free_page((unsigned long) page
);
2771 * Test whether new_dentry is a subdirectory of old_dentry.
2773 * Trivially implemented using the dcache structure
2777 * is_subdir - is new dentry a subdirectory of old_dentry
2778 * @new_dentry: new dentry
2779 * @old_dentry: old dentry
2781 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2782 * Returns 0 otherwise.
2783 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2786 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2791 if (new_dentry
== old_dentry
)
2795 /* for restarting inner loop in case of seq retry */
2796 seq
= read_seqbegin(&rename_lock
);
2798 * Need rcu_readlock to protect against the d_parent trashing
2802 if (d_ancestor(old_dentry
, new_dentry
))
2807 } while (read_seqretry(&rename_lock
, seq
));
2812 int path_is_under(struct path
*path1
, struct path
*path2
)
2814 struct vfsmount
*mnt
= path1
->mnt
;
2815 struct dentry
*dentry
= path1
->dentry
;
2818 br_read_lock(vfsmount_lock
);
2819 if (mnt
!= path2
->mnt
) {
2821 if (mnt
->mnt_parent
== mnt
) {
2822 br_read_unlock(vfsmount_lock
);
2825 if (mnt
->mnt_parent
== path2
->mnt
)
2827 mnt
= mnt
->mnt_parent
;
2829 dentry
= mnt
->mnt_mountpoint
;
2831 res
= is_subdir(dentry
, path2
->dentry
);
2832 br_read_unlock(vfsmount_lock
);
2835 EXPORT_SYMBOL(path_is_under
);
2837 void d_genocide(struct dentry
*root
)
2839 struct dentry
*this_parent
;
2840 struct list_head
*next
;
2844 seq
= read_seqbegin(&rename_lock
);
2847 spin_lock(&this_parent
->d_lock
);
2849 next
= this_parent
->d_subdirs
.next
;
2851 while (next
!= &this_parent
->d_subdirs
) {
2852 struct list_head
*tmp
= next
;
2853 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2856 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2857 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2858 spin_unlock(&dentry
->d_lock
);
2861 if (!list_empty(&dentry
->d_subdirs
)) {
2862 spin_unlock(&this_parent
->d_lock
);
2863 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2864 this_parent
= dentry
;
2865 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2868 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2869 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2872 spin_unlock(&dentry
->d_lock
);
2874 if (this_parent
!= root
) {
2875 struct dentry
*child
= this_parent
;
2876 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2877 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2878 this_parent
->d_count
--;
2880 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2883 next
= child
->d_u
.d_child
.next
;
2886 spin_unlock(&this_parent
->d_lock
);
2887 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2890 write_sequnlock(&rename_lock
);
2895 write_seqlock(&rename_lock
);
2900 * find_inode_number - check for dentry with name
2901 * @dir: directory to check
2902 * @name: Name to find.
2904 * Check whether a dentry already exists for the given name,
2905 * and return the inode number if it has an inode. Otherwise
2908 * This routine is used to post-process directory listings for
2909 * filesystems using synthetic inode numbers, and is necessary
2910 * to keep getcwd() working.
2913 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2915 struct dentry
* dentry
;
2918 dentry
= d_hash_and_lookup(dir
, name
);
2920 if (dentry
->d_inode
)
2921 ino
= dentry
->d_inode
->i_ino
;
2926 EXPORT_SYMBOL(find_inode_number
);
2928 static __initdata
unsigned long dhash_entries
;
2929 static int __init
set_dhash_entries(char *str
)
2933 dhash_entries
= simple_strtoul(str
, &str
, 0);
2936 __setup("dhash_entries=", set_dhash_entries
);
2938 static void __init
dcache_init_early(void)
2942 /* If hashes are distributed across NUMA nodes, defer
2943 * hash allocation until vmalloc space is available.
2949 alloc_large_system_hash("Dentry cache",
2950 sizeof(struct hlist_bl_head
),
2958 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2959 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
2962 static void __init
dcache_init(void)
2967 * A constructor could be added for stable state like the lists,
2968 * but it is probably not worth it because of the cache nature
2971 dentry_cache
= KMEM_CACHE(dentry
,
2972 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2974 /* Hash may have been set up in dcache_init_early */
2979 alloc_large_system_hash("Dentry cache",
2980 sizeof(struct hlist_bl_head
),
2988 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2989 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
2992 /* SLAB cache for __getname() consumers */
2993 struct kmem_cache
*names_cachep __read_mostly
;
2994 EXPORT_SYMBOL(names_cachep
);
2996 EXPORT_SYMBOL(d_genocide
);
2998 void __init
vfs_caches_init_early(void)
3000 dcache_init_early();
3004 void __init
vfs_caches_init(unsigned long mempages
)
3006 unsigned long reserve
;
3008 /* Base hash sizes on available memory, with a reserve equal to
3009 150% of current kernel size */
3011 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3012 mempages
-= reserve
;
3014 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3015 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3019 files_init(mempages
);