intel-iommu: Use iommu_should_identity_map() at startup time too.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / intel-iommu.c
blobf9fc4f3bfa3f4eee7426098b4c00505b9bdb3990
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
70 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
75 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
79 return mm_to_dma_pfn(page_to_pfn(pg));
81 static inline unsigned long virt_to_dma_pfn(void *p)
83 return page_to_dma_pfn(virt_to_page(p));
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
89 static int rwbf_quirk;
92 * 0: Present
93 * 1-11: Reserved
94 * 12-63: Context Ptr (12 - (haw-1))
95 * 64-127: Reserved
97 struct root_entry {
98 u64 val;
99 u64 rsvd1;
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
104 return (root->val & 1);
106 static inline void set_root_present(struct root_entry *root)
108 root->val |= 1;
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
112 root->val |= value & VTD_PAGE_MASK;
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
118 return (struct context_entry *)
119 (root_present(root)?phys_to_virt(
120 root->val & VTD_PAGE_MASK) :
121 NULL);
125 * low 64 bits:
126 * 0: present
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
130 * high 64 bits:
131 * 0-2: address width
132 * 3-6: aval
133 * 8-23: domain id
135 struct context_entry {
136 u64 lo;
137 u64 hi;
140 static inline bool context_present(struct context_entry *context)
142 return (context->lo & 1);
144 static inline void context_set_present(struct context_entry *context)
146 context->lo |= 1;
149 static inline void context_set_fault_enable(struct context_entry *context)
151 context->lo &= (((u64)-1) << 2) | 1;
154 static inline void context_set_translation_type(struct context_entry *context,
155 unsigned long value)
157 context->lo &= (((u64)-1) << 4) | 3;
158 context->lo |= (value & 3) << 2;
161 static inline void context_set_address_root(struct context_entry *context,
162 unsigned long value)
164 context->lo |= value & VTD_PAGE_MASK;
167 static inline void context_set_address_width(struct context_entry *context,
168 unsigned long value)
170 context->hi |= value & 7;
173 static inline void context_set_domain_id(struct context_entry *context,
174 unsigned long value)
176 context->hi |= (value & ((1 << 16) - 1)) << 8;
179 static inline void context_clear_entry(struct context_entry *context)
181 context->lo = 0;
182 context->hi = 0;
186 * 0: readable
187 * 1: writable
188 * 2-6: reserved
189 * 7: super page
190 * 8-10: available
191 * 11: snoop behavior
192 * 12-63: Host physcial address
194 struct dma_pte {
195 u64 val;
198 static inline void dma_clear_pte(struct dma_pte *pte)
200 pte->val = 0;
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
205 pte->val |= DMA_PTE_READ;
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
210 pte->val |= DMA_PTE_WRITE;
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
215 pte->val |= DMA_PTE_SNP;
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
220 pte->val = (pte->val & ~3) | (prot & 3);
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
225 #ifdef CONFIG_64BIT
226 return pte->val & VTD_PAGE_MASK;
227 #else
228 /* Must have a full atomic 64-bit read */
229 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230 #endif
233 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
235 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
238 static inline bool dma_pte_present(struct dma_pte *pte)
240 return (pte->val & 3) != 0;
243 static inline int first_pte_in_page(struct dma_pte *pte)
245 return !((unsigned long)pte & ~VTD_PAGE_MASK);
249 * This domain is a statically identity mapping domain.
250 * 1. This domain creats a static 1:1 mapping to all usable memory.
251 * 2. It maps to each iommu if successful.
252 * 3. Each iommu mapps to this domain if successful.
254 struct dmar_domain *si_domain;
256 /* devices under the same p2p bridge are owned in one domain */
257 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
259 /* domain represents a virtual machine, more than one devices
260 * across iommus may be owned in one domain, e.g. kvm guest.
262 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
264 /* si_domain contains mulitple devices */
265 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
267 struct dmar_domain {
268 int id; /* domain id */
269 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
271 struct list_head devices; /* all devices' list */
272 struct iova_domain iovad; /* iova's that belong to this domain */
274 struct dma_pte *pgd; /* virtual address */
275 int gaw; /* max guest address width */
277 /* adjusted guest address width, 0 is level 2 30-bit */
278 int agaw;
280 int flags; /* flags to find out type of domain */
282 int iommu_coherency;/* indicate coherency of iommu access */
283 int iommu_snooping; /* indicate snooping control feature*/
284 int iommu_count; /* reference count of iommu */
285 spinlock_t iommu_lock; /* protect iommu set in domain */
286 u64 max_addr; /* maximum mapped address */
289 /* PCI domain-device relationship */
290 struct device_domain_info {
291 struct list_head link; /* link to domain siblings */
292 struct list_head global; /* link to global list */
293 int segment; /* PCI domain */
294 u8 bus; /* PCI bus number */
295 u8 devfn; /* PCI devfn number */
296 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
297 struct intel_iommu *iommu; /* IOMMU used by this device */
298 struct dmar_domain *domain; /* pointer to domain */
301 static void flush_unmaps_timeout(unsigned long data);
303 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
305 #define HIGH_WATER_MARK 250
306 struct deferred_flush_tables {
307 int next;
308 struct iova *iova[HIGH_WATER_MARK];
309 struct dmar_domain *domain[HIGH_WATER_MARK];
312 static struct deferred_flush_tables *deferred_flush;
314 /* bitmap for indexing intel_iommus */
315 static int g_num_of_iommus;
317 static DEFINE_SPINLOCK(async_umap_flush_lock);
318 static LIST_HEAD(unmaps_to_do);
320 static int timer_on;
321 static long list_size;
323 static void domain_remove_dev_info(struct dmar_domain *domain);
325 #ifdef CONFIG_DMAR_DEFAULT_ON
326 int dmar_disabled = 0;
327 #else
328 int dmar_disabled = 1;
329 #endif /*CONFIG_DMAR_DEFAULT_ON*/
331 static int __initdata dmar_map_gfx = 1;
332 static int dmar_forcedac;
333 static int intel_iommu_strict;
335 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
336 static DEFINE_SPINLOCK(device_domain_lock);
337 static LIST_HEAD(device_domain_list);
339 static struct iommu_ops intel_iommu_ops;
341 static int __init intel_iommu_setup(char *str)
343 if (!str)
344 return -EINVAL;
345 while (*str) {
346 if (!strncmp(str, "on", 2)) {
347 dmar_disabled = 0;
348 printk(KERN_INFO "Intel-IOMMU: enabled\n");
349 } else if (!strncmp(str, "off", 3)) {
350 dmar_disabled = 1;
351 printk(KERN_INFO "Intel-IOMMU: disabled\n");
352 } else if (!strncmp(str, "igfx_off", 8)) {
353 dmar_map_gfx = 0;
354 printk(KERN_INFO
355 "Intel-IOMMU: disable GFX device mapping\n");
356 } else if (!strncmp(str, "forcedac", 8)) {
357 printk(KERN_INFO
358 "Intel-IOMMU: Forcing DAC for PCI devices\n");
359 dmar_forcedac = 1;
360 } else if (!strncmp(str, "strict", 6)) {
361 printk(KERN_INFO
362 "Intel-IOMMU: disable batched IOTLB flush\n");
363 intel_iommu_strict = 1;
366 str += strcspn(str, ",");
367 while (*str == ',')
368 str++;
370 return 0;
372 __setup("intel_iommu=", intel_iommu_setup);
374 static struct kmem_cache *iommu_domain_cache;
375 static struct kmem_cache *iommu_devinfo_cache;
376 static struct kmem_cache *iommu_iova_cache;
378 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
380 unsigned int flags;
381 void *vaddr;
383 /* trying to avoid low memory issues */
384 flags = current->flags & PF_MEMALLOC;
385 current->flags |= PF_MEMALLOC;
386 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
387 current->flags &= (~PF_MEMALLOC | flags);
388 return vaddr;
392 static inline void *alloc_pgtable_page(void)
394 unsigned int flags;
395 void *vaddr;
397 /* trying to avoid low memory issues */
398 flags = current->flags & PF_MEMALLOC;
399 current->flags |= PF_MEMALLOC;
400 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
401 current->flags &= (~PF_MEMALLOC | flags);
402 return vaddr;
405 static inline void free_pgtable_page(void *vaddr)
407 free_page((unsigned long)vaddr);
410 static inline void *alloc_domain_mem(void)
412 return iommu_kmem_cache_alloc(iommu_domain_cache);
415 static void free_domain_mem(void *vaddr)
417 kmem_cache_free(iommu_domain_cache, vaddr);
420 static inline void * alloc_devinfo_mem(void)
422 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
425 static inline void free_devinfo_mem(void *vaddr)
427 kmem_cache_free(iommu_devinfo_cache, vaddr);
430 struct iova *alloc_iova_mem(void)
432 return iommu_kmem_cache_alloc(iommu_iova_cache);
435 void free_iova_mem(struct iova *iova)
437 kmem_cache_free(iommu_iova_cache, iova);
441 static inline int width_to_agaw(int width);
443 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
445 unsigned long sagaw;
446 int agaw = -1;
448 sagaw = cap_sagaw(iommu->cap);
449 for (agaw = width_to_agaw(max_gaw);
450 agaw >= 0; agaw--) {
451 if (test_bit(agaw, &sagaw))
452 break;
455 return agaw;
459 * Calculate max SAGAW for each iommu.
461 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
463 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
467 * calculate agaw for each iommu.
468 * "SAGAW" may be different across iommus, use a default agaw, and
469 * get a supported less agaw for iommus that don't support the default agaw.
471 int iommu_calculate_agaw(struct intel_iommu *iommu)
473 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
476 /* This functionin only returns single iommu in a domain */
477 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
479 int iommu_id;
481 /* si_domain and vm domain should not get here. */
482 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
483 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
485 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
486 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
487 return NULL;
489 return g_iommus[iommu_id];
492 static void domain_update_iommu_coherency(struct dmar_domain *domain)
494 int i;
496 domain->iommu_coherency = 1;
498 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
499 for (; i < g_num_of_iommus; ) {
500 if (!ecap_coherent(g_iommus[i]->ecap)) {
501 domain->iommu_coherency = 0;
502 break;
504 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
508 static void domain_update_iommu_snooping(struct dmar_domain *domain)
510 int i;
512 domain->iommu_snooping = 1;
514 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
515 for (; i < g_num_of_iommus; ) {
516 if (!ecap_sc_support(g_iommus[i]->ecap)) {
517 domain->iommu_snooping = 0;
518 break;
520 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
524 /* Some capabilities may be different across iommus */
525 static void domain_update_iommu_cap(struct dmar_domain *domain)
527 domain_update_iommu_coherency(domain);
528 domain_update_iommu_snooping(domain);
531 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
533 struct dmar_drhd_unit *drhd = NULL;
534 int i;
536 for_each_drhd_unit(drhd) {
537 if (drhd->ignored)
538 continue;
539 if (segment != drhd->segment)
540 continue;
542 for (i = 0; i < drhd->devices_cnt; i++) {
543 if (drhd->devices[i] &&
544 drhd->devices[i]->bus->number == bus &&
545 drhd->devices[i]->devfn == devfn)
546 return drhd->iommu;
547 if (drhd->devices[i] &&
548 drhd->devices[i]->subordinate &&
549 drhd->devices[i]->subordinate->number <= bus &&
550 drhd->devices[i]->subordinate->subordinate >= bus)
551 return drhd->iommu;
554 if (drhd->include_all)
555 return drhd->iommu;
558 return NULL;
561 static void domain_flush_cache(struct dmar_domain *domain,
562 void *addr, int size)
564 if (!domain->iommu_coherency)
565 clflush_cache_range(addr, size);
568 /* Gets context entry for a given bus and devfn */
569 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
570 u8 bus, u8 devfn)
572 struct root_entry *root;
573 struct context_entry *context;
574 unsigned long phy_addr;
575 unsigned long flags;
577 spin_lock_irqsave(&iommu->lock, flags);
578 root = &iommu->root_entry[bus];
579 context = get_context_addr_from_root(root);
580 if (!context) {
581 context = (struct context_entry *)alloc_pgtable_page();
582 if (!context) {
583 spin_unlock_irqrestore(&iommu->lock, flags);
584 return NULL;
586 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
587 phy_addr = virt_to_phys((void *)context);
588 set_root_value(root, phy_addr);
589 set_root_present(root);
590 __iommu_flush_cache(iommu, root, sizeof(*root));
592 spin_unlock_irqrestore(&iommu->lock, flags);
593 return &context[devfn];
596 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
598 struct root_entry *root;
599 struct context_entry *context;
600 int ret;
601 unsigned long flags;
603 spin_lock_irqsave(&iommu->lock, flags);
604 root = &iommu->root_entry[bus];
605 context = get_context_addr_from_root(root);
606 if (!context) {
607 ret = 0;
608 goto out;
610 ret = context_present(&context[devfn]);
611 out:
612 spin_unlock_irqrestore(&iommu->lock, flags);
613 return ret;
616 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
618 struct root_entry *root;
619 struct context_entry *context;
620 unsigned long flags;
622 spin_lock_irqsave(&iommu->lock, flags);
623 root = &iommu->root_entry[bus];
624 context = get_context_addr_from_root(root);
625 if (context) {
626 context_clear_entry(&context[devfn]);
627 __iommu_flush_cache(iommu, &context[devfn], \
628 sizeof(*context));
630 spin_unlock_irqrestore(&iommu->lock, flags);
633 static void free_context_table(struct intel_iommu *iommu)
635 struct root_entry *root;
636 int i;
637 unsigned long flags;
638 struct context_entry *context;
640 spin_lock_irqsave(&iommu->lock, flags);
641 if (!iommu->root_entry) {
642 goto out;
644 for (i = 0; i < ROOT_ENTRY_NR; i++) {
645 root = &iommu->root_entry[i];
646 context = get_context_addr_from_root(root);
647 if (context)
648 free_pgtable_page(context);
650 free_pgtable_page(iommu->root_entry);
651 iommu->root_entry = NULL;
652 out:
653 spin_unlock_irqrestore(&iommu->lock, flags);
656 /* page table handling */
657 #define LEVEL_STRIDE (9)
658 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
660 static inline int agaw_to_level(int agaw)
662 return agaw + 2;
665 static inline int agaw_to_width(int agaw)
667 return 30 + agaw * LEVEL_STRIDE;
671 static inline int width_to_agaw(int width)
673 return (width - 30) / LEVEL_STRIDE;
676 static inline unsigned int level_to_offset_bits(int level)
678 return (level - 1) * LEVEL_STRIDE;
681 static inline int pfn_level_offset(unsigned long pfn, int level)
683 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
686 static inline unsigned long level_mask(int level)
688 return -1UL << level_to_offset_bits(level);
691 static inline unsigned long level_size(int level)
693 return 1UL << level_to_offset_bits(level);
696 static inline unsigned long align_to_level(unsigned long pfn, int level)
698 return (pfn + level_size(level) - 1) & level_mask(level);
701 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
702 unsigned long pfn)
704 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
705 struct dma_pte *parent, *pte = NULL;
706 int level = agaw_to_level(domain->agaw);
707 int offset;
709 BUG_ON(!domain->pgd);
710 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
711 parent = domain->pgd;
713 while (level > 0) {
714 void *tmp_page;
716 offset = pfn_level_offset(pfn, level);
717 pte = &parent[offset];
718 if (level == 1)
719 break;
721 if (!dma_pte_present(pte)) {
722 uint64_t pteval;
724 tmp_page = alloc_pgtable_page();
726 if (!tmp_page)
727 return NULL;
729 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
730 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
731 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
732 /* Someone else set it while we were thinking; use theirs. */
733 free_pgtable_page(tmp_page);
734 } else {
735 dma_pte_addr(pte);
736 domain_flush_cache(domain, pte, sizeof(*pte));
739 parent = phys_to_virt(dma_pte_addr(pte));
740 level--;
743 return pte;
746 /* return address's pte at specific level */
747 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
748 unsigned long pfn,
749 int level)
751 struct dma_pte *parent, *pte = NULL;
752 int total = agaw_to_level(domain->agaw);
753 int offset;
755 parent = domain->pgd;
756 while (level <= total) {
757 offset = pfn_level_offset(pfn, total);
758 pte = &parent[offset];
759 if (level == total)
760 return pte;
762 if (!dma_pte_present(pte))
763 break;
764 parent = phys_to_virt(dma_pte_addr(pte));
765 total--;
767 return NULL;
770 /* clear last level pte, a tlb flush should be followed */
771 static void dma_pte_clear_range(struct dmar_domain *domain,
772 unsigned long start_pfn,
773 unsigned long last_pfn)
775 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
776 struct dma_pte *first_pte, *pte;
778 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
779 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
781 /* we don't need lock here; nobody else touches the iova range */
782 while (start_pfn <= last_pfn) {
783 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
784 if (!pte) {
785 start_pfn = align_to_level(start_pfn + 1, 2);
786 continue;
788 do {
789 dma_clear_pte(pte);
790 start_pfn++;
791 pte++;
792 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
794 domain_flush_cache(domain, first_pte,
795 (void *)pte - (void *)first_pte);
799 /* free page table pages. last level pte should already be cleared */
800 static void dma_pte_free_pagetable(struct dmar_domain *domain,
801 unsigned long start_pfn,
802 unsigned long last_pfn)
804 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
805 struct dma_pte *first_pte, *pte;
806 int total = agaw_to_level(domain->agaw);
807 int level;
808 unsigned long tmp;
810 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
811 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
813 /* We don't need lock here; nobody else touches the iova range */
814 level = 2;
815 while (level <= total) {
816 tmp = align_to_level(start_pfn, level);
818 /* If we can't even clear one PTE at this level, we're done */
819 if (tmp + level_size(level) - 1 > last_pfn)
820 return;
822 while (tmp + level_size(level) - 1 <= last_pfn) {
823 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
824 if (!pte) {
825 tmp = align_to_level(tmp + 1, level + 1);
826 continue;
828 do {
829 if (dma_pte_present(pte)) {
830 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
831 dma_clear_pte(pte);
833 pte++;
834 tmp += level_size(level);
835 } while (!first_pte_in_page(pte) &&
836 tmp + level_size(level) - 1 <= last_pfn);
838 domain_flush_cache(domain, first_pte,
839 (void *)pte - (void *)first_pte);
842 level++;
844 /* free pgd */
845 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
846 free_pgtable_page(domain->pgd);
847 domain->pgd = NULL;
851 /* iommu handling */
852 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
854 struct root_entry *root;
855 unsigned long flags;
857 root = (struct root_entry *)alloc_pgtable_page();
858 if (!root)
859 return -ENOMEM;
861 __iommu_flush_cache(iommu, root, ROOT_SIZE);
863 spin_lock_irqsave(&iommu->lock, flags);
864 iommu->root_entry = root;
865 spin_unlock_irqrestore(&iommu->lock, flags);
867 return 0;
870 static void iommu_set_root_entry(struct intel_iommu *iommu)
872 void *addr;
873 u32 sts;
874 unsigned long flag;
876 addr = iommu->root_entry;
878 spin_lock_irqsave(&iommu->register_lock, flag);
879 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
881 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
883 /* Make sure hardware complete it */
884 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
885 readl, (sts & DMA_GSTS_RTPS), sts);
887 spin_unlock_irqrestore(&iommu->register_lock, flag);
890 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
892 u32 val;
893 unsigned long flag;
895 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
896 return;
898 spin_lock_irqsave(&iommu->register_lock, flag);
899 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
901 /* Make sure hardware complete it */
902 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
903 readl, (!(val & DMA_GSTS_WBFS)), val);
905 spin_unlock_irqrestore(&iommu->register_lock, flag);
908 /* return value determine if we need a write buffer flush */
909 static void __iommu_flush_context(struct intel_iommu *iommu,
910 u16 did, u16 source_id, u8 function_mask,
911 u64 type)
913 u64 val = 0;
914 unsigned long flag;
916 switch (type) {
917 case DMA_CCMD_GLOBAL_INVL:
918 val = DMA_CCMD_GLOBAL_INVL;
919 break;
920 case DMA_CCMD_DOMAIN_INVL:
921 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
922 break;
923 case DMA_CCMD_DEVICE_INVL:
924 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
925 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
926 break;
927 default:
928 BUG();
930 val |= DMA_CCMD_ICC;
932 spin_lock_irqsave(&iommu->register_lock, flag);
933 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
935 /* Make sure hardware complete it */
936 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
937 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
939 spin_unlock_irqrestore(&iommu->register_lock, flag);
942 /* return value determine if we need a write buffer flush */
943 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
944 u64 addr, unsigned int size_order, u64 type)
946 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
947 u64 val = 0, val_iva = 0;
948 unsigned long flag;
950 switch (type) {
951 case DMA_TLB_GLOBAL_FLUSH:
952 /* global flush doesn't need set IVA_REG */
953 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
954 break;
955 case DMA_TLB_DSI_FLUSH:
956 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
957 break;
958 case DMA_TLB_PSI_FLUSH:
959 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
960 /* Note: always flush non-leaf currently */
961 val_iva = size_order | addr;
962 break;
963 default:
964 BUG();
966 /* Note: set drain read/write */
967 #if 0
969 * This is probably to be super secure.. Looks like we can
970 * ignore it without any impact.
972 if (cap_read_drain(iommu->cap))
973 val |= DMA_TLB_READ_DRAIN;
974 #endif
975 if (cap_write_drain(iommu->cap))
976 val |= DMA_TLB_WRITE_DRAIN;
978 spin_lock_irqsave(&iommu->register_lock, flag);
979 /* Note: Only uses first TLB reg currently */
980 if (val_iva)
981 dmar_writeq(iommu->reg + tlb_offset, val_iva);
982 dmar_writeq(iommu->reg + tlb_offset + 8, val);
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
986 dmar_readq, (!(val & DMA_TLB_IVT)), val);
988 spin_unlock_irqrestore(&iommu->register_lock, flag);
990 /* check IOTLB invalidation granularity */
991 if (DMA_TLB_IAIG(val) == 0)
992 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
993 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
994 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
995 (unsigned long long)DMA_TLB_IIRG(type),
996 (unsigned long long)DMA_TLB_IAIG(val));
999 static struct device_domain_info *iommu_support_dev_iotlb(
1000 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1002 int found = 0;
1003 unsigned long flags;
1004 struct device_domain_info *info;
1005 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1007 if (!ecap_dev_iotlb_support(iommu->ecap))
1008 return NULL;
1010 if (!iommu->qi)
1011 return NULL;
1013 spin_lock_irqsave(&device_domain_lock, flags);
1014 list_for_each_entry(info, &domain->devices, link)
1015 if (info->bus == bus && info->devfn == devfn) {
1016 found = 1;
1017 break;
1019 spin_unlock_irqrestore(&device_domain_lock, flags);
1021 if (!found || !info->dev)
1022 return NULL;
1024 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1025 return NULL;
1027 if (!dmar_find_matched_atsr_unit(info->dev))
1028 return NULL;
1030 info->iommu = iommu;
1032 return info;
1035 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1037 if (!info)
1038 return;
1040 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1043 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1045 if (!info->dev || !pci_ats_enabled(info->dev))
1046 return;
1048 pci_disable_ats(info->dev);
1051 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1052 u64 addr, unsigned mask)
1054 u16 sid, qdep;
1055 unsigned long flags;
1056 struct device_domain_info *info;
1058 spin_lock_irqsave(&device_domain_lock, flags);
1059 list_for_each_entry(info, &domain->devices, link) {
1060 if (!info->dev || !pci_ats_enabled(info->dev))
1061 continue;
1063 sid = info->bus << 8 | info->devfn;
1064 qdep = pci_ats_queue_depth(info->dev);
1065 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1067 spin_unlock_irqrestore(&device_domain_lock, flags);
1070 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1071 unsigned long pfn, unsigned int pages)
1073 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1074 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1076 BUG_ON(pages == 0);
1079 * Fallback to domain selective flush if no PSI support or the size is
1080 * too big.
1081 * PSI requires page size to be 2 ^ x, and the base address is naturally
1082 * aligned to the size
1084 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1085 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1086 DMA_TLB_DSI_FLUSH);
1087 else
1088 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1089 DMA_TLB_PSI_FLUSH);
1092 * In caching mode, domain ID 0 is reserved for non-present to present
1093 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1095 if (!cap_caching_mode(iommu->cap) || did)
1096 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1099 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1101 u32 pmen;
1102 unsigned long flags;
1104 spin_lock_irqsave(&iommu->register_lock, flags);
1105 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1106 pmen &= ~DMA_PMEN_EPM;
1107 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1109 /* wait for the protected region status bit to clear */
1110 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1111 readl, !(pmen & DMA_PMEN_PRS), pmen);
1113 spin_unlock_irqrestore(&iommu->register_lock, flags);
1116 static int iommu_enable_translation(struct intel_iommu *iommu)
1118 u32 sts;
1119 unsigned long flags;
1121 spin_lock_irqsave(&iommu->register_lock, flags);
1122 iommu->gcmd |= DMA_GCMD_TE;
1123 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1125 /* Make sure hardware complete it */
1126 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1127 readl, (sts & DMA_GSTS_TES), sts);
1129 spin_unlock_irqrestore(&iommu->register_lock, flags);
1130 return 0;
1133 static int iommu_disable_translation(struct intel_iommu *iommu)
1135 u32 sts;
1136 unsigned long flag;
1138 spin_lock_irqsave(&iommu->register_lock, flag);
1139 iommu->gcmd &= ~DMA_GCMD_TE;
1140 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144 readl, (!(sts & DMA_GSTS_TES)), sts);
1146 spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 return 0;
1151 static int iommu_init_domains(struct intel_iommu *iommu)
1153 unsigned long ndomains;
1154 unsigned long nlongs;
1156 ndomains = cap_ndoms(iommu->cap);
1157 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1158 nlongs = BITS_TO_LONGS(ndomains);
1160 /* TBD: there might be 64K domains,
1161 * consider other allocation for future chip
1163 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1164 if (!iommu->domain_ids) {
1165 printk(KERN_ERR "Allocating domain id array failed\n");
1166 return -ENOMEM;
1168 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1169 GFP_KERNEL);
1170 if (!iommu->domains) {
1171 printk(KERN_ERR "Allocating domain array failed\n");
1172 kfree(iommu->domain_ids);
1173 return -ENOMEM;
1176 spin_lock_init(&iommu->lock);
1179 * if Caching mode is set, then invalid translations are tagged
1180 * with domainid 0. Hence we need to pre-allocate it.
1182 if (cap_caching_mode(iommu->cap))
1183 set_bit(0, iommu->domain_ids);
1184 return 0;
1188 static void domain_exit(struct dmar_domain *domain);
1189 static void vm_domain_exit(struct dmar_domain *domain);
1191 void free_dmar_iommu(struct intel_iommu *iommu)
1193 struct dmar_domain *domain;
1194 int i;
1195 unsigned long flags;
1197 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1198 for (; i < cap_ndoms(iommu->cap); ) {
1199 domain = iommu->domains[i];
1200 clear_bit(i, iommu->domain_ids);
1202 spin_lock_irqsave(&domain->iommu_lock, flags);
1203 if (--domain->iommu_count == 0) {
1204 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1205 vm_domain_exit(domain);
1206 else
1207 domain_exit(domain);
1209 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1211 i = find_next_bit(iommu->domain_ids,
1212 cap_ndoms(iommu->cap), i+1);
1215 if (iommu->gcmd & DMA_GCMD_TE)
1216 iommu_disable_translation(iommu);
1218 if (iommu->irq) {
1219 set_irq_data(iommu->irq, NULL);
1220 /* This will mask the irq */
1221 free_irq(iommu->irq, iommu);
1222 destroy_irq(iommu->irq);
1225 kfree(iommu->domains);
1226 kfree(iommu->domain_ids);
1228 g_iommus[iommu->seq_id] = NULL;
1230 /* if all iommus are freed, free g_iommus */
1231 for (i = 0; i < g_num_of_iommus; i++) {
1232 if (g_iommus[i])
1233 break;
1236 if (i == g_num_of_iommus)
1237 kfree(g_iommus);
1239 /* free context mapping */
1240 free_context_table(iommu);
1243 static struct dmar_domain *alloc_domain(void)
1245 struct dmar_domain *domain;
1247 domain = alloc_domain_mem();
1248 if (!domain)
1249 return NULL;
1251 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1252 domain->flags = 0;
1254 return domain;
1257 static int iommu_attach_domain(struct dmar_domain *domain,
1258 struct intel_iommu *iommu)
1260 int num;
1261 unsigned long ndomains;
1262 unsigned long flags;
1264 ndomains = cap_ndoms(iommu->cap);
1266 spin_lock_irqsave(&iommu->lock, flags);
1268 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1269 if (num >= ndomains) {
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271 printk(KERN_ERR "IOMMU: no free domain ids\n");
1272 return -ENOMEM;
1275 domain->id = num;
1276 set_bit(num, iommu->domain_ids);
1277 set_bit(iommu->seq_id, &domain->iommu_bmp);
1278 iommu->domains[num] = domain;
1279 spin_unlock_irqrestore(&iommu->lock, flags);
1281 return 0;
1284 static void iommu_detach_domain(struct dmar_domain *domain,
1285 struct intel_iommu *iommu)
1287 unsigned long flags;
1288 int num, ndomains;
1289 int found = 0;
1291 spin_lock_irqsave(&iommu->lock, flags);
1292 ndomains = cap_ndoms(iommu->cap);
1293 num = find_first_bit(iommu->domain_ids, ndomains);
1294 for (; num < ndomains; ) {
1295 if (iommu->domains[num] == domain) {
1296 found = 1;
1297 break;
1299 num = find_next_bit(iommu->domain_ids,
1300 cap_ndoms(iommu->cap), num+1);
1303 if (found) {
1304 clear_bit(num, iommu->domain_ids);
1305 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1306 iommu->domains[num] = NULL;
1308 spin_unlock_irqrestore(&iommu->lock, flags);
1311 static struct iova_domain reserved_iova_list;
1312 static struct lock_class_key reserved_alloc_key;
1313 static struct lock_class_key reserved_rbtree_key;
1315 static void dmar_init_reserved_ranges(void)
1317 struct pci_dev *pdev = NULL;
1318 struct iova *iova;
1319 int i;
1321 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1323 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1324 &reserved_alloc_key);
1325 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1326 &reserved_rbtree_key);
1328 /* IOAPIC ranges shouldn't be accessed by DMA */
1329 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1330 IOVA_PFN(IOAPIC_RANGE_END));
1331 if (!iova)
1332 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1334 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1335 for_each_pci_dev(pdev) {
1336 struct resource *r;
1338 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1339 r = &pdev->resource[i];
1340 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1341 continue;
1342 iova = reserve_iova(&reserved_iova_list,
1343 IOVA_PFN(r->start),
1344 IOVA_PFN(r->end));
1345 if (!iova)
1346 printk(KERN_ERR "Reserve iova failed\n");
1352 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1354 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1357 static inline int guestwidth_to_adjustwidth(int gaw)
1359 int agaw;
1360 int r = (gaw - 12) % 9;
1362 if (r == 0)
1363 agaw = gaw;
1364 else
1365 agaw = gaw + 9 - r;
1366 if (agaw > 64)
1367 agaw = 64;
1368 return agaw;
1371 static int domain_init(struct dmar_domain *domain, int guest_width)
1373 struct intel_iommu *iommu;
1374 int adjust_width, agaw;
1375 unsigned long sagaw;
1377 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1378 spin_lock_init(&domain->iommu_lock);
1380 domain_reserve_special_ranges(domain);
1382 /* calculate AGAW */
1383 iommu = domain_get_iommu(domain);
1384 if (guest_width > cap_mgaw(iommu->cap))
1385 guest_width = cap_mgaw(iommu->cap);
1386 domain->gaw = guest_width;
1387 adjust_width = guestwidth_to_adjustwidth(guest_width);
1388 agaw = width_to_agaw(adjust_width);
1389 sagaw = cap_sagaw(iommu->cap);
1390 if (!test_bit(agaw, &sagaw)) {
1391 /* hardware doesn't support it, choose a bigger one */
1392 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1393 agaw = find_next_bit(&sagaw, 5, agaw);
1394 if (agaw >= 5)
1395 return -ENODEV;
1397 domain->agaw = agaw;
1398 INIT_LIST_HEAD(&domain->devices);
1400 if (ecap_coherent(iommu->ecap))
1401 domain->iommu_coherency = 1;
1402 else
1403 domain->iommu_coherency = 0;
1405 if (ecap_sc_support(iommu->ecap))
1406 domain->iommu_snooping = 1;
1407 else
1408 domain->iommu_snooping = 0;
1410 domain->iommu_count = 1;
1412 /* always allocate the top pgd */
1413 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1414 if (!domain->pgd)
1415 return -ENOMEM;
1416 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1417 return 0;
1420 static void domain_exit(struct dmar_domain *domain)
1422 struct dmar_drhd_unit *drhd;
1423 struct intel_iommu *iommu;
1425 /* Domain 0 is reserved, so dont process it */
1426 if (!domain)
1427 return;
1429 domain_remove_dev_info(domain);
1430 /* destroy iovas */
1431 put_iova_domain(&domain->iovad);
1433 /* clear ptes */
1434 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1436 /* free page tables */
1437 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1439 for_each_active_iommu(iommu, drhd)
1440 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1441 iommu_detach_domain(domain, iommu);
1443 free_domain_mem(domain);
1446 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1447 u8 bus, u8 devfn, int translation)
1449 struct context_entry *context;
1450 unsigned long flags;
1451 struct intel_iommu *iommu;
1452 struct dma_pte *pgd;
1453 unsigned long num;
1454 unsigned long ndomains;
1455 int id;
1456 int agaw;
1457 struct device_domain_info *info = NULL;
1459 pr_debug("Set context mapping for %02x:%02x.%d\n",
1460 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1462 BUG_ON(!domain->pgd);
1463 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1464 translation != CONTEXT_TT_MULTI_LEVEL);
1466 iommu = device_to_iommu(segment, bus, devfn);
1467 if (!iommu)
1468 return -ENODEV;
1470 context = device_to_context_entry(iommu, bus, devfn);
1471 if (!context)
1472 return -ENOMEM;
1473 spin_lock_irqsave(&iommu->lock, flags);
1474 if (context_present(context)) {
1475 spin_unlock_irqrestore(&iommu->lock, flags);
1476 return 0;
1479 id = domain->id;
1480 pgd = domain->pgd;
1482 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1483 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1484 int found = 0;
1486 /* find an available domain id for this device in iommu */
1487 ndomains = cap_ndoms(iommu->cap);
1488 num = find_first_bit(iommu->domain_ids, ndomains);
1489 for (; num < ndomains; ) {
1490 if (iommu->domains[num] == domain) {
1491 id = num;
1492 found = 1;
1493 break;
1495 num = find_next_bit(iommu->domain_ids,
1496 cap_ndoms(iommu->cap), num+1);
1499 if (found == 0) {
1500 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1501 if (num >= ndomains) {
1502 spin_unlock_irqrestore(&iommu->lock, flags);
1503 printk(KERN_ERR "IOMMU: no free domain ids\n");
1504 return -EFAULT;
1507 set_bit(num, iommu->domain_ids);
1508 set_bit(iommu->seq_id, &domain->iommu_bmp);
1509 iommu->domains[num] = domain;
1510 id = num;
1513 /* Skip top levels of page tables for
1514 * iommu which has less agaw than default.
1516 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1517 pgd = phys_to_virt(dma_pte_addr(pgd));
1518 if (!dma_pte_present(pgd)) {
1519 spin_unlock_irqrestore(&iommu->lock, flags);
1520 return -ENOMEM;
1525 context_set_domain_id(context, id);
1527 if (translation != CONTEXT_TT_PASS_THROUGH) {
1528 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1529 translation = info ? CONTEXT_TT_DEV_IOTLB :
1530 CONTEXT_TT_MULTI_LEVEL;
1533 * In pass through mode, AW must be programmed to indicate the largest
1534 * AGAW value supported by hardware. And ASR is ignored by hardware.
1536 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1537 context_set_address_width(context, iommu->msagaw);
1538 else {
1539 context_set_address_root(context, virt_to_phys(pgd));
1540 context_set_address_width(context, iommu->agaw);
1543 context_set_translation_type(context, translation);
1544 context_set_fault_enable(context);
1545 context_set_present(context);
1546 domain_flush_cache(domain, context, sizeof(*context));
1549 * It's a non-present to present mapping. If hardware doesn't cache
1550 * non-present entry we only need to flush the write-buffer. If the
1551 * _does_ cache non-present entries, then it does so in the special
1552 * domain #0, which we have to flush:
1554 if (cap_caching_mode(iommu->cap)) {
1555 iommu->flush.flush_context(iommu, 0,
1556 (((u16)bus) << 8) | devfn,
1557 DMA_CCMD_MASK_NOBIT,
1558 DMA_CCMD_DEVICE_INVL);
1559 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1560 } else {
1561 iommu_flush_write_buffer(iommu);
1563 iommu_enable_dev_iotlb(info);
1564 spin_unlock_irqrestore(&iommu->lock, flags);
1566 spin_lock_irqsave(&domain->iommu_lock, flags);
1567 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1568 domain->iommu_count++;
1569 domain_update_iommu_cap(domain);
1571 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1572 return 0;
1575 static int
1576 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1577 int translation)
1579 int ret;
1580 struct pci_dev *tmp, *parent;
1582 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1583 pdev->bus->number, pdev->devfn,
1584 translation);
1585 if (ret)
1586 return ret;
1588 /* dependent device mapping */
1589 tmp = pci_find_upstream_pcie_bridge(pdev);
1590 if (!tmp)
1591 return 0;
1592 /* Secondary interface's bus number and devfn 0 */
1593 parent = pdev->bus->self;
1594 while (parent != tmp) {
1595 ret = domain_context_mapping_one(domain,
1596 pci_domain_nr(parent->bus),
1597 parent->bus->number,
1598 parent->devfn, translation);
1599 if (ret)
1600 return ret;
1601 parent = parent->bus->self;
1603 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1604 return domain_context_mapping_one(domain,
1605 pci_domain_nr(tmp->subordinate),
1606 tmp->subordinate->number, 0,
1607 translation);
1608 else /* this is a legacy PCI bridge */
1609 return domain_context_mapping_one(domain,
1610 pci_domain_nr(tmp->bus),
1611 tmp->bus->number,
1612 tmp->devfn,
1613 translation);
1616 static int domain_context_mapped(struct pci_dev *pdev)
1618 int ret;
1619 struct pci_dev *tmp, *parent;
1620 struct intel_iommu *iommu;
1622 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1623 pdev->devfn);
1624 if (!iommu)
1625 return -ENODEV;
1627 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1628 if (!ret)
1629 return ret;
1630 /* dependent device mapping */
1631 tmp = pci_find_upstream_pcie_bridge(pdev);
1632 if (!tmp)
1633 return ret;
1634 /* Secondary interface's bus number and devfn 0 */
1635 parent = pdev->bus->self;
1636 while (parent != tmp) {
1637 ret = device_context_mapped(iommu, parent->bus->number,
1638 parent->devfn);
1639 if (!ret)
1640 return ret;
1641 parent = parent->bus->self;
1643 if (tmp->is_pcie)
1644 return device_context_mapped(iommu, tmp->subordinate->number,
1646 else
1647 return device_context_mapped(iommu, tmp->bus->number,
1648 tmp->devfn);
1651 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1652 struct scatterlist *sg, unsigned long phys_pfn,
1653 unsigned long nr_pages, int prot)
1655 struct dma_pte *first_pte = NULL, *pte = NULL;
1656 phys_addr_t uninitialized_var(pteval);
1657 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1658 unsigned long sg_res;
1660 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1662 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1663 return -EINVAL;
1665 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1667 if (sg)
1668 sg_res = 0;
1669 else {
1670 sg_res = nr_pages + 1;
1671 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1674 while (nr_pages--) {
1675 uint64_t tmp;
1677 if (!sg_res) {
1678 sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1679 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1680 sg->dma_length = sg->length;
1681 pteval = page_to_phys(sg_page(sg)) | prot;
1683 if (!pte) {
1684 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1685 if (!pte)
1686 return -ENOMEM;
1688 /* We don't need lock here, nobody else
1689 * touches the iova range
1691 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1692 if (tmp) {
1693 static int dumps = 5;
1694 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1695 iov_pfn, tmp, (unsigned long long)pteval);
1696 if (dumps) {
1697 dumps--;
1698 debug_dma_dump_mappings(NULL);
1700 WARN_ON(1);
1702 pte++;
1703 if (!nr_pages || first_pte_in_page(pte)) {
1704 domain_flush_cache(domain, first_pte,
1705 (void *)pte - (void *)first_pte);
1706 pte = NULL;
1708 iov_pfn++;
1709 pteval += VTD_PAGE_SIZE;
1710 sg_res--;
1711 if (!sg_res)
1712 sg = sg_next(sg);
1714 return 0;
1717 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1718 struct scatterlist *sg, unsigned long nr_pages,
1719 int prot)
1721 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1724 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1725 unsigned long phys_pfn, unsigned long nr_pages,
1726 int prot)
1728 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1731 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1733 if (!iommu)
1734 return;
1736 clear_context_table(iommu, bus, devfn);
1737 iommu->flush.flush_context(iommu, 0, 0, 0,
1738 DMA_CCMD_GLOBAL_INVL);
1739 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1742 static void domain_remove_dev_info(struct dmar_domain *domain)
1744 struct device_domain_info *info;
1745 unsigned long flags;
1746 struct intel_iommu *iommu;
1748 spin_lock_irqsave(&device_domain_lock, flags);
1749 while (!list_empty(&domain->devices)) {
1750 info = list_entry(domain->devices.next,
1751 struct device_domain_info, link);
1752 list_del(&info->link);
1753 list_del(&info->global);
1754 if (info->dev)
1755 info->dev->dev.archdata.iommu = NULL;
1756 spin_unlock_irqrestore(&device_domain_lock, flags);
1758 iommu_disable_dev_iotlb(info);
1759 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1760 iommu_detach_dev(iommu, info->bus, info->devfn);
1761 free_devinfo_mem(info);
1763 spin_lock_irqsave(&device_domain_lock, flags);
1765 spin_unlock_irqrestore(&device_domain_lock, flags);
1769 * find_domain
1770 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1772 static struct dmar_domain *
1773 find_domain(struct pci_dev *pdev)
1775 struct device_domain_info *info;
1777 /* No lock here, assumes no domain exit in normal case */
1778 info = pdev->dev.archdata.iommu;
1779 if (info)
1780 return info->domain;
1781 return NULL;
1784 /* domain is initialized */
1785 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1787 struct dmar_domain *domain, *found = NULL;
1788 struct intel_iommu *iommu;
1789 struct dmar_drhd_unit *drhd;
1790 struct device_domain_info *info, *tmp;
1791 struct pci_dev *dev_tmp;
1792 unsigned long flags;
1793 int bus = 0, devfn = 0;
1794 int segment;
1795 int ret;
1797 domain = find_domain(pdev);
1798 if (domain)
1799 return domain;
1801 segment = pci_domain_nr(pdev->bus);
1803 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1804 if (dev_tmp) {
1805 if (dev_tmp->is_pcie) {
1806 bus = dev_tmp->subordinate->number;
1807 devfn = 0;
1808 } else {
1809 bus = dev_tmp->bus->number;
1810 devfn = dev_tmp->devfn;
1812 spin_lock_irqsave(&device_domain_lock, flags);
1813 list_for_each_entry(info, &device_domain_list, global) {
1814 if (info->segment == segment &&
1815 info->bus == bus && info->devfn == devfn) {
1816 found = info->domain;
1817 break;
1820 spin_unlock_irqrestore(&device_domain_lock, flags);
1821 /* pcie-pci bridge already has a domain, uses it */
1822 if (found) {
1823 domain = found;
1824 goto found_domain;
1828 domain = alloc_domain();
1829 if (!domain)
1830 goto error;
1832 /* Allocate new domain for the device */
1833 drhd = dmar_find_matched_drhd_unit(pdev);
1834 if (!drhd) {
1835 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1836 pci_name(pdev));
1837 return NULL;
1839 iommu = drhd->iommu;
1841 ret = iommu_attach_domain(domain, iommu);
1842 if (ret) {
1843 domain_exit(domain);
1844 goto error;
1847 if (domain_init(domain, gaw)) {
1848 domain_exit(domain);
1849 goto error;
1852 /* register pcie-to-pci device */
1853 if (dev_tmp) {
1854 info = alloc_devinfo_mem();
1855 if (!info) {
1856 domain_exit(domain);
1857 goto error;
1859 info->segment = segment;
1860 info->bus = bus;
1861 info->devfn = devfn;
1862 info->dev = NULL;
1863 info->domain = domain;
1864 /* This domain is shared by devices under p2p bridge */
1865 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1867 /* pcie-to-pci bridge already has a domain, uses it */
1868 found = NULL;
1869 spin_lock_irqsave(&device_domain_lock, flags);
1870 list_for_each_entry(tmp, &device_domain_list, global) {
1871 if (tmp->segment == segment &&
1872 tmp->bus == bus && tmp->devfn == devfn) {
1873 found = tmp->domain;
1874 break;
1877 if (found) {
1878 free_devinfo_mem(info);
1879 domain_exit(domain);
1880 domain = found;
1881 } else {
1882 list_add(&info->link, &domain->devices);
1883 list_add(&info->global, &device_domain_list);
1885 spin_unlock_irqrestore(&device_domain_lock, flags);
1888 found_domain:
1889 info = alloc_devinfo_mem();
1890 if (!info)
1891 goto error;
1892 info->segment = segment;
1893 info->bus = pdev->bus->number;
1894 info->devfn = pdev->devfn;
1895 info->dev = pdev;
1896 info->domain = domain;
1897 spin_lock_irqsave(&device_domain_lock, flags);
1898 /* somebody is fast */
1899 found = find_domain(pdev);
1900 if (found != NULL) {
1901 spin_unlock_irqrestore(&device_domain_lock, flags);
1902 if (found != domain) {
1903 domain_exit(domain);
1904 domain = found;
1906 free_devinfo_mem(info);
1907 return domain;
1909 list_add(&info->link, &domain->devices);
1910 list_add(&info->global, &device_domain_list);
1911 pdev->dev.archdata.iommu = info;
1912 spin_unlock_irqrestore(&device_domain_lock, flags);
1913 return domain;
1914 error:
1915 /* recheck it here, maybe others set it */
1916 return find_domain(pdev);
1919 static int iommu_identity_mapping;
1921 static int iommu_domain_identity_map(struct dmar_domain *domain,
1922 unsigned long long start,
1923 unsigned long long end)
1925 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1926 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1928 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1929 dma_to_mm_pfn(last_vpfn))) {
1930 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1931 return -ENOMEM;
1934 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1935 start, end, domain->id);
1937 * RMRR range might have overlap with physical memory range,
1938 * clear it first
1940 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1942 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1943 last_vpfn - first_vpfn + 1,
1944 DMA_PTE_READ|DMA_PTE_WRITE);
1947 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1948 unsigned long long start,
1949 unsigned long long end)
1951 struct dmar_domain *domain;
1952 int ret;
1954 printk(KERN_INFO
1955 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1956 pci_name(pdev), start, end);
1958 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1959 if (!domain)
1960 return -ENOMEM;
1962 ret = iommu_domain_identity_map(domain, start, end);
1963 if (ret)
1964 goto error;
1966 /* context entry init */
1967 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1968 if (ret)
1969 goto error;
1971 return 0;
1973 error:
1974 domain_exit(domain);
1975 return ret;
1978 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1979 struct pci_dev *pdev)
1981 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1982 return 0;
1983 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1984 rmrr->end_address + 1);
1987 #ifdef CONFIG_DMAR_FLOPPY_WA
1988 static inline void iommu_prepare_isa(void)
1990 struct pci_dev *pdev;
1991 int ret;
1993 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1994 if (!pdev)
1995 return;
1997 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1998 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2000 if (ret)
2001 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2002 "floppy might not work\n");
2005 #else
2006 static inline void iommu_prepare_isa(void)
2008 return;
2010 #endif /* !CONFIG_DMAR_FLPY_WA */
2012 /* Initialize each context entry as pass through.*/
2013 static int __init init_context_pass_through(void)
2015 struct pci_dev *pdev = NULL;
2016 struct dmar_domain *domain;
2017 int ret;
2019 for_each_pci_dev(pdev) {
2020 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2021 ret = domain_context_mapping(domain, pdev,
2022 CONTEXT_TT_PASS_THROUGH);
2023 if (ret)
2024 return ret;
2026 return 0;
2029 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2031 static int __init si_domain_work_fn(unsigned long start_pfn,
2032 unsigned long end_pfn, void *datax)
2034 int *ret = datax;
2036 *ret = iommu_domain_identity_map(si_domain,
2037 (uint64_t)start_pfn << PAGE_SHIFT,
2038 (uint64_t)end_pfn << PAGE_SHIFT);
2039 return *ret;
2043 static int si_domain_init(void)
2045 struct dmar_drhd_unit *drhd;
2046 struct intel_iommu *iommu;
2047 int nid, ret = 0;
2049 si_domain = alloc_domain();
2050 if (!si_domain)
2051 return -EFAULT;
2053 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2055 for_each_active_iommu(iommu, drhd) {
2056 ret = iommu_attach_domain(si_domain, iommu);
2057 if (ret) {
2058 domain_exit(si_domain);
2059 return -EFAULT;
2063 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2064 domain_exit(si_domain);
2065 return -EFAULT;
2068 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2070 for_each_online_node(nid) {
2071 work_with_active_regions(nid, si_domain_work_fn, &ret);
2072 if (ret)
2073 return ret;
2076 return 0;
2079 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2080 struct pci_dev *pdev);
2081 static int identity_mapping(struct pci_dev *pdev)
2083 struct device_domain_info *info;
2085 if (likely(!iommu_identity_mapping))
2086 return 0;
2089 list_for_each_entry(info, &si_domain->devices, link)
2090 if (info->dev == pdev)
2091 return 1;
2092 return 0;
2095 static int domain_add_dev_info(struct dmar_domain *domain,
2096 struct pci_dev *pdev)
2098 struct device_domain_info *info;
2099 unsigned long flags;
2101 info = alloc_devinfo_mem();
2102 if (!info)
2103 return -ENOMEM;
2105 info->segment = pci_domain_nr(pdev->bus);
2106 info->bus = pdev->bus->number;
2107 info->devfn = pdev->devfn;
2108 info->dev = pdev;
2109 info->domain = domain;
2111 spin_lock_irqsave(&device_domain_lock, flags);
2112 list_add(&info->link, &domain->devices);
2113 list_add(&info->global, &device_domain_list);
2114 pdev->dev.archdata.iommu = info;
2115 spin_unlock_irqrestore(&device_domain_lock, flags);
2117 return 0;
2120 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2122 if (iommu_identity_mapping == 2)
2123 return IS_GFX_DEVICE(pdev);
2125 if (!startup)
2126 return pdev->dma_mask > DMA_BIT_MASK(32);
2128 return 1;
2131 static int iommu_prepare_static_identity_mapping(void)
2133 struct pci_dev *pdev = NULL;
2134 int ret;
2136 ret = si_domain_init();
2137 if (ret)
2138 return -EFAULT;
2140 for_each_pci_dev(pdev) {
2141 if (iommu_should_identity_map(pdev, 1)) {
2142 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2143 pci_name(pdev));
2145 ret = domain_context_mapping(si_domain, pdev,
2146 CONTEXT_TT_MULTI_LEVEL);
2147 if (ret)
2148 return ret;
2149 ret = domain_add_dev_info(si_domain, pdev);
2150 if (ret)
2151 return ret;
2155 return 0;
2158 int __init init_dmars(void)
2160 struct dmar_drhd_unit *drhd;
2161 struct dmar_rmrr_unit *rmrr;
2162 struct pci_dev *pdev;
2163 struct intel_iommu *iommu;
2164 int i, ret;
2165 int pass_through = 1;
2168 * In case pass through can not be enabled, iommu tries to use identity
2169 * mapping.
2171 if (iommu_pass_through)
2172 iommu_identity_mapping = 1;
2175 * for each drhd
2176 * allocate root
2177 * initialize and program root entry to not present
2178 * endfor
2180 for_each_drhd_unit(drhd) {
2181 g_num_of_iommus++;
2183 * lock not needed as this is only incremented in the single
2184 * threaded kernel __init code path all other access are read
2185 * only
2189 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2190 GFP_KERNEL);
2191 if (!g_iommus) {
2192 printk(KERN_ERR "Allocating global iommu array failed\n");
2193 ret = -ENOMEM;
2194 goto error;
2197 deferred_flush = kzalloc(g_num_of_iommus *
2198 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2199 if (!deferred_flush) {
2200 kfree(g_iommus);
2201 ret = -ENOMEM;
2202 goto error;
2205 for_each_drhd_unit(drhd) {
2206 if (drhd->ignored)
2207 continue;
2209 iommu = drhd->iommu;
2210 g_iommus[iommu->seq_id] = iommu;
2212 ret = iommu_init_domains(iommu);
2213 if (ret)
2214 goto error;
2217 * TBD:
2218 * we could share the same root & context tables
2219 * amoung all IOMMU's. Need to Split it later.
2221 ret = iommu_alloc_root_entry(iommu);
2222 if (ret) {
2223 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2224 goto error;
2226 if (!ecap_pass_through(iommu->ecap))
2227 pass_through = 0;
2229 if (iommu_pass_through)
2230 if (!pass_through) {
2231 printk(KERN_INFO
2232 "Pass Through is not supported by hardware.\n");
2233 iommu_pass_through = 0;
2237 * Start from the sane iommu hardware state.
2239 for_each_drhd_unit(drhd) {
2240 if (drhd->ignored)
2241 continue;
2243 iommu = drhd->iommu;
2246 * If the queued invalidation is already initialized by us
2247 * (for example, while enabling interrupt-remapping) then
2248 * we got the things already rolling from a sane state.
2250 if (iommu->qi)
2251 continue;
2254 * Clear any previous faults.
2256 dmar_fault(-1, iommu);
2258 * Disable queued invalidation if supported and already enabled
2259 * before OS handover.
2261 dmar_disable_qi(iommu);
2264 for_each_drhd_unit(drhd) {
2265 if (drhd->ignored)
2266 continue;
2268 iommu = drhd->iommu;
2270 if (dmar_enable_qi(iommu)) {
2272 * Queued Invalidate not enabled, use Register Based
2273 * Invalidate
2275 iommu->flush.flush_context = __iommu_flush_context;
2276 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2277 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2278 "invalidation\n",
2279 (unsigned long long)drhd->reg_base_addr);
2280 } else {
2281 iommu->flush.flush_context = qi_flush_context;
2282 iommu->flush.flush_iotlb = qi_flush_iotlb;
2283 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2284 "invalidation\n",
2285 (unsigned long long)drhd->reg_base_addr);
2290 * If pass through is set and enabled, context entries of all pci
2291 * devices are intialized by pass through translation type.
2293 if (iommu_pass_through) {
2294 ret = init_context_pass_through();
2295 if (ret) {
2296 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2297 iommu_pass_through = 0;
2302 * If pass through is not set or not enabled, setup context entries for
2303 * identity mappings for rmrr, gfx, and isa and may fall back to static
2304 * identity mapping if iommu_identity_mapping is set.
2306 if (!iommu_pass_through) {
2307 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2308 if (!iommu_identity_mapping)
2309 iommu_identity_mapping = 2;
2310 #endif
2311 if (iommu_identity_mapping)
2312 iommu_prepare_static_identity_mapping();
2314 * For each rmrr
2315 * for each dev attached to rmrr
2316 * do
2317 * locate drhd for dev, alloc domain for dev
2318 * allocate free domain
2319 * allocate page table entries for rmrr
2320 * if context not allocated for bus
2321 * allocate and init context
2322 * set present in root table for this bus
2323 * init context with domain, translation etc
2324 * endfor
2325 * endfor
2327 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2328 for_each_rmrr_units(rmrr) {
2329 for (i = 0; i < rmrr->devices_cnt; i++) {
2330 pdev = rmrr->devices[i];
2332 * some BIOS lists non-exist devices in DMAR
2333 * table.
2335 if (!pdev)
2336 continue;
2337 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2338 if (ret)
2339 printk(KERN_ERR
2340 "IOMMU: mapping reserved region failed\n");
2344 iommu_prepare_isa();
2348 * for each drhd
2349 * enable fault log
2350 * global invalidate context cache
2351 * global invalidate iotlb
2352 * enable translation
2354 for_each_drhd_unit(drhd) {
2355 if (drhd->ignored)
2356 continue;
2357 iommu = drhd->iommu;
2359 iommu_flush_write_buffer(iommu);
2361 ret = dmar_set_interrupt(iommu);
2362 if (ret)
2363 goto error;
2365 iommu_set_root_entry(iommu);
2367 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2368 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2369 iommu_disable_protect_mem_regions(iommu);
2371 ret = iommu_enable_translation(iommu);
2372 if (ret)
2373 goto error;
2376 return 0;
2377 error:
2378 for_each_drhd_unit(drhd) {
2379 if (drhd->ignored)
2380 continue;
2381 iommu = drhd->iommu;
2382 free_iommu(iommu);
2384 kfree(g_iommus);
2385 return ret;
2388 /* Returns a number of VTD pages, but aligned to MM page size */
2389 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2390 size_t size)
2392 host_addr &= ~PAGE_MASK;
2393 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2396 /* This takes a number of _MM_ pages, not VTD pages */
2397 static struct iova *intel_alloc_iova(struct device *dev,
2398 struct dmar_domain *domain,
2399 unsigned long nrpages, uint64_t dma_mask)
2401 struct pci_dev *pdev = to_pci_dev(dev);
2402 struct iova *iova = NULL;
2404 /* Restrict dma_mask to the width that the iommu can handle */
2405 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2407 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2409 * First try to allocate an io virtual address in
2410 * DMA_BIT_MASK(32) and if that fails then try allocating
2411 * from higher range
2413 iova = alloc_iova(&domain->iovad, nrpages,
2414 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2415 if (iova)
2416 return iova;
2418 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2419 if (unlikely(!iova)) {
2420 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2421 nrpages, pci_name(pdev));
2422 return NULL;
2425 return iova;
2428 static struct dmar_domain *
2429 get_valid_domain_for_dev(struct pci_dev *pdev)
2431 struct dmar_domain *domain;
2432 int ret;
2434 domain = get_domain_for_dev(pdev,
2435 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2436 if (!domain) {
2437 printk(KERN_ERR
2438 "Allocating domain for %s failed", pci_name(pdev));
2439 return NULL;
2442 /* make sure context mapping is ok */
2443 if (unlikely(!domain_context_mapped(pdev))) {
2444 ret = domain_context_mapping(domain, pdev,
2445 CONTEXT_TT_MULTI_LEVEL);
2446 if (ret) {
2447 printk(KERN_ERR
2448 "Domain context map for %s failed",
2449 pci_name(pdev));
2450 return NULL;
2454 return domain;
2457 static int iommu_dummy(struct pci_dev *pdev)
2459 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2462 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2463 static int iommu_no_mapping(struct device *dev)
2465 struct pci_dev *pdev;
2466 int found;
2468 if (unlikely(dev->bus != &pci_bus_type))
2469 return 1;
2471 pdev = to_pci_dev(dev);
2472 if (iommu_dummy(pdev))
2473 return 1;
2475 if (!iommu_identity_mapping)
2476 return 0;
2478 found = identity_mapping(pdev);
2479 if (found) {
2480 if (iommu_should_identity_map(pdev, 0))
2481 return 1;
2482 else {
2484 * 32 bit DMA is removed from si_domain and fall back
2485 * to non-identity mapping.
2487 domain_remove_one_dev_info(si_domain, pdev);
2488 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2489 pci_name(pdev));
2490 return 0;
2492 } else {
2494 * In case of a detached 64 bit DMA device from vm, the device
2495 * is put into si_domain for identity mapping.
2497 if (iommu_should_identity_map(pdev, 0)) {
2498 int ret;
2499 ret = domain_add_dev_info(si_domain, pdev);
2500 if (ret)
2501 return 0;
2502 ret = domain_context_mapping(si_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2503 if (!ret) {
2504 printk(KERN_INFO "64bit %s uses identity mapping\n",
2505 pci_name(pdev));
2506 return 1;
2511 return 0;
2514 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2515 size_t size, int dir, u64 dma_mask)
2517 struct pci_dev *pdev = to_pci_dev(hwdev);
2518 struct dmar_domain *domain;
2519 phys_addr_t start_paddr;
2520 struct iova *iova;
2521 int prot = 0;
2522 int ret;
2523 struct intel_iommu *iommu;
2525 BUG_ON(dir == DMA_NONE);
2527 if (iommu_no_mapping(hwdev))
2528 return paddr;
2530 domain = get_valid_domain_for_dev(pdev);
2531 if (!domain)
2532 return 0;
2534 iommu = domain_get_iommu(domain);
2535 size = aligned_nrpages(paddr, size);
2537 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2538 pdev->dma_mask);
2539 if (!iova)
2540 goto error;
2543 * Check if DMAR supports zero-length reads on write only
2544 * mappings..
2546 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2547 !cap_zlr(iommu->cap))
2548 prot |= DMA_PTE_READ;
2549 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2550 prot |= DMA_PTE_WRITE;
2552 * paddr - (paddr + size) might be partial page, we should map the whole
2553 * page. Note: if two part of one page are separately mapped, we
2554 * might have two guest_addr mapping to the same host paddr, but this
2555 * is not a big problem
2557 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2558 paddr >> VTD_PAGE_SHIFT, size, prot);
2559 if (ret)
2560 goto error;
2562 /* it's a non-present to present mapping. Only flush if caching mode */
2563 if (cap_caching_mode(iommu->cap))
2564 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2565 else
2566 iommu_flush_write_buffer(iommu);
2568 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2569 start_paddr += paddr & ~PAGE_MASK;
2570 return start_paddr;
2572 error:
2573 if (iova)
2574 __free_iova(&domain->iovad, iova);
2575 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2576 pci_name(pdev), size, (unsigned long long)paddr, dir);
2577 return 0;
2580 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2581 unsigned long offset, size_t size,
2582 enum dma_data_direction dir,
2583 struct dma_attrs *attrs)
2585 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2586 dir, to_pci_dev(dev)->dma_mask);
2589 static void flush_unmaps(void)
2591 int i, j;
2593 timer_on = 0;
2595 /* just flush them all */
2596 for (i = 0; i < g_num_of_iommus; i++) {
2597 struct intel_iommu *iommu = g_iommus[i];
2598 if (!iommu)
2599 continue;
2601 if (!deferred_flush[i].next)
2602 continue;
2604 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2605 DMA_TLB_GLOBAL_FLUSH);
2606 for (j = 0; j < deferred_flush[i].next; j++) {
2607 unsigned long mask;
2608 struct iova *iova = deferred_flush[i].iova[j];
2610 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2611 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2612 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2613 iova->pfn_lo << PAGE_SHIFT, mask);
2614 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2616 deferred_flush[i].next = 0;
2619 list_size = 0;
2622 static void flush_unmaps_timeout(unsigned long data)
2624 unsigned long flags;
2626 spin_lock_irqsave(&async_umap_flush_lock, flags);
2627 flush_unmaps();
2628 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2631 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2633 unsigned long flags;
2634 int next, iommu_id;
2635 struct intel_iommu *iommu;
2637 spin_lock_irqsave(&async_umap_flush_lock, flags);
2638 if (list_size == HIGH_WATER_MARK)
2639 flush_unmaps();
2641 iommu = domain_get_iommu(dom);
2642 iommu_id = iommu->seq_id;
2644 next = deferred_flush[iommu_id].next;
2645 deferred_flush[iommu_id].domain[next] = dom;
2646 deferred_flush[iommu_id].iova[next] = iova;
2647 deferred_flush[iommu_id].next++;
2649 if (!timer_on) {
2650 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2651 timer_on = 1;
2653 list_size++;
2654 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2657 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2658 size_t size, enum dma_data_direction dir,
2659 struct dma_attrs *attrs)
2661 struct pci_dev *pdev = to_pci_dev(dev);
2662 struct dmar_domain *domain;
2663 unsigned long start_pfn, last_pfn;
2664 struct iova *iova;
2665 struct intel_iommu *iommu;
2667 if (iommu_no_mapping(dev))
2668 return;
2670 domain = find_domain(pdev);
2671 BUG_ON(!domain);
2673 iommu = domain_get_iommu(domain);
2675 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2676 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2677 (unsigned long long)dev_addr))
2678 return;
2680 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2681 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2683 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2684 pci_name(pdev), start_pfn, last_pfn);
2686 /* clear the whole page */
2687 dma_pte_clear_range(domain, start_pfn, last_pfn);
2689 /* free page tables */
2690 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2692 if (intel_iommu_strict) {
2693 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2694 last_pfn - start_pfn + 1);
2695 /* free iova */
2696 __free_iova(&domain->iovad, iova);
2697 } else {
2698 add_unmap(domain, iova);
2700 * queue up the release of the unmap to save the 1/6th of the
2701 * cpu used up by the iotlb flush operation...
2706 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2707 int dir)
2709 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2712 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2713 dma_addr_t *dma_handle, gfp_t flags)
2715 void *vaddr;
2716 int order;
2718 size = PAGE_ALIGN(size);
2719 order = get_order(size);
2720 flags &= ~(GFP_DMA | GFP_DMA32);
2722 vaddr = (void *)__get_free_pages(flags, order);
2723 if (!vaddr)
2724 return NULL;
2725 memset(vaddr, 0, size);
2727 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2728 DMA_BIDIRECTIONAL,
2729 hwdev->coherent_dma_mask);
2730 if (*dma_handle)
2731 return vaddr;
2732 free_pages((unsigned long)vaddr, order);
2733 return NULL;
2736 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2737 dma_addr_t dma_handle)
2739 int order;
2741 size = PAGE_ALIGN(size);
2742 order = get_order(size);
2744 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2745 free_pages((unsigned long)vaddr, order);
2748 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2749 int nelems, enum dma_data_direction dir,
2750 struct dma_attrs *attrs)
2752 struct pci_dev *pdev = to_pci_dev(hwdev);
2753 struct dmar_domain *domain;
2754 unsigned long start_pfn, last_pfn;
2755 struct iova *iova;
2756 struct intel_iommu *iommu;
2758 if (iommu_no_mapping(hwdev))
2759 return;
2761 domain = find_domain(pdev);
2762 BUG_ON(!domain);
2764 iommu = domain_get_iommu(domain);
2766 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2767 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2768 (unsigned long long)sglist[0].dma_address))
2769 return;
2771 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2772 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2774 /* clear the whole page */
2775 dma_pte_clear_range(domain, start_pfn, last_pfn);
2777 /* free page tables */
2778 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2780 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2781 (last_pfn - start_pfn + 1));
2783 /* free iova */
2784 __free_iova(&domain->iovad, iova);
2787 static int intel_nontranslate_map_sg(struct device *hddev,
2788 struct scatterlist *sglist, int nelems, int dir)
2790 int i;
2791 struct scatterlist *sg;
2793 for_each_sg(sglist, sg, nelems, i) {
2794 BUG_ON(!sg_page(sg));
2795 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2796 sg->dma_length = sg->length;
2798 return nelems;
2801 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2802 enum dma_data_direction dir, struct dma_attrs *attrs)
2804 int i;
2805 struct pci_dev *pdev = to_pci_dev(hwdev);
2806 struct dmar_domain *domain;
2807 size_t size = 0;
2808 int prot = 0;
2809 size_t offset_pfn = 0;
2810 struct iova *iova = NULL;
2811 int ret;
2812 struct scatterlist *sg;
2813 unsigned long start_vpfn;
2814 struct intel_iommu *iommu;
2816 BUG_ON(dir == DMA_NONE);
2817 if (iommu_no_mapping(hwdev))
2818 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2820 domain = get_valid_domain_for_dev(pdev);
2821 if (!domain)
2822 return 0;
2824 iommu = domain_get_iommu(domain);
2826 for_each_sg(sglist, sg, nelems, i)
2827 size += aligned_nrpages(sg->offset, sg->length);
2829 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2830 pdev->dma_mask);
2831 if (!iova) {
2832 sglist->dma_length = 0;
2833 return 0;
2837 * Check if DMAR supports zero-length reads on write only
2838 * mappings..
2840 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2841 !cap_zlr(iommu->cap))
2842 prot |= DMA_PTE_READ;
2843 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2844 prot |= DMA_PTE_WRITE;
2846 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2848 ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2849 if (unlikely(ret)) {
2850 /* clear the page */
2851 dma_pte_clear_range(domain, start_vpfn,
2852 start_vpfn + size - 1);
2853 /* free page tables */
2854 dma_pte_free_pagetable(domain, start_vpfn,
2855 start_vpfn + size - 1);
2856 /* free iova */
2857 __free_iova(&domain->iovad, iova);
2858 return 0;
2861 /* it's a non-present to present mapping. Only flush if caching mode */
2862 if (cap_caching_mode(iommu->cap))
2863 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2864 else
2865 iommu_flush_write_buffer(iommu);
2867 return nelems;
2870 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2872 return !dma_addr;
2875 struct dma_map_ops intel_dma_ops = {
2876 .alloc_coherent = intel_alloc_coherent,
2877 .free_coherent = intel_free_coherent,
2878 .map_sg = intel_map_sg,
2879 .unmap_sg = intel_unmap_sg,
2880 .map_page = intel_map_page,
2881 .unmap_page = intel_unmap_page,
2882 .mapping_error = intel_mapping_error,
2885 static inline int iommu_domain_cache_init(void)
2887 int ret = 0;
2889 iommu_domain_cache = kmem_cache_create("iommu_domain",
2890 sizeof(struct dmar_domain),
2892 SLAB_HWCACHE_ALIGN,
2894 NULL);
2895 if (!iommu_domain_cache) {
2896 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2897 ret = -ENOMEM;
2900 return ret;
2903 static inline int iommu_devinfo_cache_init(void)
2905 int ret = 0;
2907 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2908 sizeof(struct device_domain_info),
2910 SLAB_HWCACHE_ALIGN,
2911 NULL);
2912 if (!iommu_devinfo_cache) {
2913 printk(KERN_ERR "Couldn't create devinfo cache\n");
2914 ret = -ENOMEM;
2917 return ret;
2920 static inline int iommu_iova_cache_init(void)
2922 int ret = 0;
2924 iommu_iova_cache = kmem_cache_create("iommu_iova",
2925 sizeof(struct iova),
2927 SLAB_HWCACHE_ALIGN,
2928 NULL);
2929 if (!iommu_iova_cache) {
2930 printk(KERN_ERR "Couldn't create iova cache\n");
2931 ret = -ENOMEM;
2934 return ret;
2937 static int __init iommu_init_mempool(void)
2939 int ret;
2940 ret = iommu_iova_cache_init();
2941 if (ret)
2942 return ret;
2944 ret = iommu_domain_cache_init();
2945 if (ret)
2946 goto domain_error;
2948 ret = iommu_devinfo_cache_init();
2949 if (!ret)
2950 return ret;
2952 kmem_cache_destroy(iommu_domain_cache);
2953 domain_error:
2954 kmem_cache_destroy(iommu_iova_cache);
2956 return -ENOMEM;
2959 static void __init iommu_exit_mempool(void)
2961 kmem_cache_destroy(iommu_devinfo_cache);
2962 kmem_cache_destroy(iommu_domain_cache);
2963 kmem_cache_destroy(iommu_iova_cache);
2967 static void __init init_no_remapping_devices(void)
2969 struct dmar_drhd_unit *drhd;
2971 for_each_drhd_unit(drhd) {
2972 if (!drhd->include_all) {
2973 int i;
2974 for (i = 0; i < drhd->devices_cnt; i++)
2975 if (drhd->devices[i] != NULL)
2976 break;
2977 /* ignore DMAR unit if no pci devices exist */
2978 if (i == drhd->devices_cnt)
2979 drhd->ignored = 1;
2983 if (dmar_map_gfx)
2984 return;
2986 for_each_drhd_unit(drhd) {
2987 int i;
2988 if (drhd->ignored || drhd->include_all)
2989 continue;
2991 for (i = 0; i < drhd->devices_cnt; i++)
2992 if (drhd->devices[i] &&
2993 !IS_GFX_DEVICE(drhd->devices[i]))
2994 break;
2996 if (i < drhd->devices_cnt)
2997 continue;
2999 /* bypass IOMMU if it is just for gfx devices */
3000 drhd->ignored = 1;
3001 for (i = 0; i < drhd->devices_cnt; i++) {
3002 if (!drhd->devices[i])
3003 continue;
3004 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3009 #ifdef CONFIG_SUSPEND
3010 static int init_iommu_hw(void)
3012 struct dmar_drhd_unit *drhd;
3013 struct intel_iommu *iommu = NULL;
3015 for_each_active_iommu(iommu, drhd)
3016 if (iommu->qi)
3017 dmar_reenable_qi(iommu);
3019 for_each_active_iommu(iommu, drhd) {
3020 iommu_flush_write_buffer(iommu);
3022 iommu_set_root_entry(iommu);
3024 iommu->flush.flush_context(iommu, 0, 0, 0,
3025 DMA_CCMD_GLOBAL_INVL);
3026 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3027 DMA_TLB_GLOBAL_FLUSH);
3028 iommu_disable_protect_mem_regions(iommu);
3029 iommu_enable_translation(iommu);
3032 return 0;
3035 static void iommu_flush_all(void)
3037 struct dmar_drhd_unit *drhd;
3038 struct intel_iommu *iommu;
3040 for_each_active_iommu(iommu, drhd) {
3041 iommu->flush.flush_context(iommu, 0, 0, 0,
3042 DMA_CCMD_GLOBAL_INVL);
3043 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3044 DMA_TLB_GLOBAL_FLUSH);
3048 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3050 struct dmar_drhd_unit *drhd;
3051 struct intel_iommu *iommu = NULL;
3052 unsigned long flag;
3054 for_each_active_iommu(iommu, drhd) {
3055 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3056 GFP_ATOMIC);
3057 if (!iommu->iommu_state)
3058 goto nomem;
3061 iommu_flush_all();
3063 for_each_active_iommu(iommu, drhd) {
3064 iommu_disable_translation(iommu);
3066 spin_lock_irqsave(&iommu->register_lock, flag);
3068 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3069 readl(iommu->reg + DMAR_FECTL_REG);
3070 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3071 readl(iommu->reg + DMAR_FEDATA_REG);
3072 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3073 readl(iommu->reg + DMAR_FEADDR_REG);
3074 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3075 readl(iommu->reg + DMAR_FEUADDR_REG);
3077 spin_unlock_irqrestore(&iommu->register_lock, flag);
3079 return 0;
3081 nomem:
3082 for_each_active_iommu(iommu, drhd)
3083 kfree(iommu->iommu_state);
3085 return -ENOMEM;
3088 static int iommu_resume(struct sys_device *dev)
3090 struct dmar_drhd_unit *drhd;
3091 struct intel_iommu *iommu = NULL;
3092 unsigned long flag;
3094 if (init_iommu_hw()) {
3095 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3096 return -EIO;
3099 for_each_active_iommu(iommu, drhd) {
3101 spin_lock_irqsave(&iommu->register_lock, flag);
3103 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3104 iommu->reg + DMAR_FECTL_REG);
3105 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3106 iommu->reg + DMAR_FEDATA_REG);
3107 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3108 iommu->reg + DMAR_FEADDR_REG);
3109 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3110 iommu->reg + DMAR_FEUADDR_REG);
3112 spin_unlock_irqrestore(&iommu->register_lock, flag);
3115 for_each_active_iommu(iommu, drhd)
3116 kfree(iommu->iommu_state);
3118 return 0;
3121 static struct sysdev_class iommu_sysclass = {
3122 .name = "iommu",
3123 .resume = iommu_resume,
3124 .suspend = iommu_suspend,
3127 static struct sys_device device_iommu = {
3128 .cls = &iommu_sysclass,
3131 static int __init init_iommu_sysfs(void)
3133 int error;
3135 error = sysdev_class_register(&iommu_sysclass);
3136 if (error)
3137 return error;
3139 error = sysdev_register(&device_iommu);
3140 if (error)
3141 sysdev_class_unregister(&iommu_sysclass);
3143 return error;
3146 #else
3147 static int __init init_iommu_sysfs(void)
3149 return 0;
3151 #endif /* CONFIG_PM */
3153 int __init intel_iommu_init(void)
3155 int ret = 0;
3157 if (dmar_table_init())
3158 return -ENODEV;
3160 if (dmar_dev_scope_init())
3161 return -ENODEV;
3164 * Check the need for DMA-remapping initialization now.
3165 * Above initialization will also be used by Interrupt-remapping.
3167 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3168 return -ENODEV;
3170 iommu_init_mempool();
3171 dmar_init_reserved_ranges();
3173 init_no_remapping_devices();
3175 ret = init_dmars();
3176 if (ret) {
3177 printk(KERN_ERR "IOMMU: dmar init failed\n");
3178 put_iova_domain(&reserved_iova_list);
3179 iommu_exit_mempool();
3180 return ret;
3182 printk(KERN_INFO
3183 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3185 init_timer(&unmap_timer);
3186 force_iommu = 1;
3188 if (!iommu_pass_through) {
3189 printk(KERN_INFO
3190 "Multi-level page-table translation for DMAR.\n");
3191 dma_ops = &intel_dma_ops;
3192 } else
3193 printk(KERN_INFO
3194 "DMAR: Pass through translation for DMAR.\n");
3196 init_iommu_sysfs();
3198 register_iommu(&intel_iommu_ops);
3200 return 0;
3203 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3204 struct pci_dev *pdev)
3206 struct pci_dev *tmp, *parent;
3208 if (!iommu || !pdev)
3209 return;
3211 /* dependent device detach */
3212 tmp = pci_find_upstream_pcie_bridge(pdev);
3213 /* Secondary interface's bus number and devfn 0 */
3214 if (tmp) {
3215 parent = pdev->bus->self;
3216 while (parent != tmp) {
3217 iommu_detach_dev(iommu, parent->bus->number,
3218 parent->devfn);
3219 parent = parent->bus->self;
3221 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3222 iommu_detach_dev(iommu,
3223 tmp->subordinate->number, 0);
3224 else /* this is a legacy PCI bridge */
3225 iommu_detach_dev(iommu, tmp->bus->number,
3226 tmp->devfn);
3230 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3231 struct pci_dev *pdev)
3233 struct device_domain_info *info;
3234 struct intel_iommu *iommu;
3235 unsigned long flags;
3236 int found = 0;
3237 struct list_head *entry, *tmp;
3239 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3240 pdev->devfn);
3241 if (!iommu)
3242 return;
3244 spin_lock_irqsave(&device_domain_lock, flags);
3245 list_for_each_safe(entry, tmp, &domain->devices) {
3246 info = list_entry(entry, struct device_domain_info, link);
3247 /* No need to compare PCI domain; it has to be the same */
3248 if (info->bus == pdev->bus->number &&
3249 info->devfn == pdev->devfn) {
3250 list_del(&info->link);
3251 list_del(&info->global);
3252 if (info->dev)
3253 info->dev->dev.archdata.iommu = NULL;
3254 spin_unlock_irqrestore(&device_domain_lock, flags);
3256 iommu_disable_dev_iotlb(info);
3257 iommu_detach_dev(iommu, info->bus, info->devfn);
3258 iommu_detach_dependent_devices(iommu, pdev);
3259 free_devinfo_mem(info);
3261 spin_lock_irqsave(&device_domain_lock, flags);
3263 if (found)
3264 break;
3265 else
3266 continue;
3269 /* if there is no other devices under the same iommu
3270 * owned by this domain, clear this iommu in iommu_bmp
3271 * update iommu count and coherency
3273 if (iommu == device_to_iommu(info->segment, info->bus,
3274 info->devfn))
3275 found = 1;
3278 if (found == 0) {
3279 unsigned long tmp_flags;
3280 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3281 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3282 domain->iommu_count--;
3283 domain_update_iommu_cap(domain);
3284 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3287 spin_unlock_irqrestore(&device_domain_lock, flags);
3290 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3292 struct device_domain_info *info;
3293 struct intel_iommu *iommu;
3294 unsigned long flags1, flags2;
3296 spin_lock_irqsave(&device_domain_lock, flags1);
3297 while (!list_empty(&domain->devices)) {
3298 info = list_entry(domain->devices.next,
3299 struct device_domain_info, link);
3300 list_del(&info->link);
3301 list_del(&info->global);
3302 if (info->dev)
3303 info->dev->dev.archdata.iommu = NULL;
3305 spin_unlock_irqrestore(&device_domain_lock, flags1);
3307 iommu_disable_dev_iotlb(info);
3308 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3309 iommu_detach_dev(iommu, info->bus, info->devfn);
3310 iommu_detach_dependent_devices(iommu, info->dev);
3312 /* clear this iommu in iommu_bmp, update iommu count
3313 * and capabilities
3315 spin_lock_irqsave(&domain->iommu_lock, flags2);
3316 if (test_and_clear_bit(iommu->seq_id,
3317 &domain->iommu_bmp)) {
3318 domain->iommu_count--;
3319 domain_update_iommu_cap(domain);
3321 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3323 free_devinfo_mem(info);
3324 spin_lock_irqsave(&device_domain_lock, flags1);
3326 spin_unlock_irqrestore(&device_domain_lock, flags1);
3329 /* domain id for virtual machine, it won't be set in context */
3330 static unsigned long vm_domid;
3332 static int vm_domain_min_agaw(struct dmar_domain *domain)
3334 int i;
3335 int min_agaw = domain->agaw;
3337 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3338 for (; i < g_num_of_iommus; ) {
3339 if (min_agaw > g_iommus[i]->agaw)
3340 min_agaw = g_iommus[i]->agaw;
3342 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3345 return min_agaw;
3348 static struct dmar_domain *iommu_alloc_vm_domain(void)
3350 struct dmar_domain *domain;
3352 domain = alloc_domain_mem();
3353 if (!domain)
3354 return NULL;
3356 domain->id = vm_domid++;
3357 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3358 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3360 return domain;
3363 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3365 int adjust_width;
3367 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3368 spin_lock_init(&domain->iommu_lock);
3370 domain_reserve_special_ranges(domain);
3372 /* calculate AGAW */
3373 domain->gaw = guest_width;
3374 adjust_width = guestwidth_to_adjustwidth(guest_width);
3375 domain->agaw = width_to_agaw(adjust_width);
3377 INIT_LIST_HEAD(&domain->devices);
3379 domain->iommu_count = 0;
3380 domain->iommu_coherency = 0;
3381 domain->max_addr = 0;
3383 /* always allocate the top pgd */
3384 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3385 if (!domain->pgd)
3386 return -ENOMEM;
3387 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3388 return 0;
3391 static void iommu_free_vm_domain(struct dmar_domain *domain)
3393 unsigned long flags;
3394 struct dmar_drhd_unit *drhd;
3395 struct intel_iommu *iommu;
3396 unsigned long i;
3397 unsigned long ndomains;
3399 for_each_drhd_unit(drhd) {
3400 if (drhd->ignored)
3401 continue;
3402 iommu = drhd->iommu;
3404 ndomains = cap_ndoms(iommu->cap);
3405 i = find_first_bit(iommu->domain_ids, ndomains);
3406 for (; i < ndomains; ) {
3407 if (iommu->domains[i] == domain) {
3408 spin_lock_irqsave(&iommu->lock, flags);
3409 clear_bit(i, iommu->domain_ids);
3410 iommu->domains[i] = NULL;
3411 spin_unlock_irqrestore(&iommu->lock, flags);
3412 break;
3414 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3419 static void vm_domain_exit(struct dmar_domain *domain)
3421 /* Domain 0 is reserved, so dont process it */
3422 if (!domain)
3423 return;
3425 vm_domain_remove_all_dev_info(domain);
3426 /* destroy iovas */
3427 put_iova_domain(&domain->iovad);
3429 /* clear ptes */
3430 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3432 /* free page tables */
3433 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3435 iommu_free_vm_domain(domain);
3436 free_domain_mem(domain);
3439 static int intel_iommu_domain_init(struct iommu_domain *domain)
3441 struct dmar_domain *dmar_domain;
3443 dmar_domain = iommu_alloc_vm_domain();
3444 if (!dmar_domain) {
3445 printk(KERN_ERR
3446 "intel_iommu_domain_init: dmar_domain == NULL\n");
3447 return -ENOMEM;
3449 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3450 printk(KERN_ERR
3451 "intel_iommu_domain_init() failed\n");
3452 vm_domain_exit(dmar_domain);
3453 return -ENOMEM;
3455 domain->priv = dmar_domain;
3457 return 0;
3460 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3462 struct dmar_domain *dmar_domain = domain->priv;
3464 domain->priv = NULL;
3465 vm_domain_exit(dmar_domain);
3468 static int intel_iommu_attach_device(struct iommu_domain *domain,
3469 struct device *dev)
3471 struct dmar_domain *dmar_domain = domain->priv;
3472 struct pci_dev *pdev = to_pci_dev(dev);
3473 struct intel_iommu *iommu;
3474 int addr_width;
3475 u64 end;
3476 int ret;
3478 /* normally pdev is not mapped */
3479 if (unlikely(domain_context_mapped(pdev))) {
3480 struct dmar_domain *old_domain;
3482 old_domain = find_domain(pdev);
3483 if (old_domain) {
3484 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3485 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3486 domain_remove_one_dev_info(old_domain, pdev);
3487 else
3488 domain_remove_dev_info(old_domain);
3492 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3493 pdev->devfn);
3494 if (!iommu)
3495 return -ENODEV;
3497 /* check if this iommu agaw is sufficient for max mapped address */
3498 addr_width = agaw_to_width(iommu->agaw);
3499 end = DOMAIN_MAX_ADDR(addr_width);
3500 end = end & VTD_PAGE_MASK;
3501 if (end < dmar_domain->max_addr) {
3502 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3503 "sufficient for the mapped address (%llx)\n",
3504 __func__, iommu->agaw, dmar_domain->max_addr);
3505 return -EFAULT;
3508 ret = domain_add_dev_info(dmar_domain, pdev);
3509 if (ret)
3510 return ret;
3512 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3513 return ret;
3516 static void intel_iommu_detach_device(struct iommu_domain *domain,
3517 struct device *dev)
3519 struct dmar_domain *dmar_domain = domain->priv;
3520 struct pci_dev *pdev = to_pci_dev(dev);
3522 domain_remove_one_dev_info(dmar_domain, pdev);
3525 static int intel_iommu_map_range(struct iommu_domain *domain,
3526 unsigned long iova, phys_addr_t hpa,
3527 size_t size, int iommu_prot)
3529 struct dmar_domain *dmar_domain = domain->priv;
3530 u64 max_addr;
3531 int addr_width;
3532 int prot = 0;
3533 int ret;
3535 if (iommu_prot & IOMMU_READ)
3536 prot |= DMA_PTE_READ;
3537 if (iommu_prot & IOMMU_WRITE)
3538 prot |= DMA_PTE_WRITE;
3539 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3540 prot |= DMA_PTE_SNP;
3542 max_addr = iova + size;
3543 if (dmar_domain->max_addr < max_addr) {
3544 int min_agaw;
3545 u64 end;
3547 /* check if minimum agaw is sufficient for mapped address */
3548 min_agaw = vm_domain_min_agaw(dmar_domain);
3549 addr_width = agaw_to_width(min_agaw);
3550 end = DOMAIN_MAX_ADDR(addr_width);
3551 end = end & VTD_PAGE_MASK;
3552 if (end < max_addr) {
3553 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3554 "sufficient for the mapped address (%llx)\n",
3555 __func__, min_agaw, max_addr);
3556 return -EFAULT;
3558 dmar_domain->max_addr = max_addr;
3560 /* Round up size to next multiple of PAGE_SIZE, if it and
3561 the low bits of hpa would take us onto the next page */
3562 size = aligned_nrpages(hpa, size);
3563 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3564 hpa >> VTD_PAGE_SHIFT, size, prot);
3565 return ret;
3568 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3569 unsigned long iova, size_t size)
3571 struct dmar_domain *dmar_domain = domain->priv;
3573 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3574 (iova + size - 1) >> VTD_PAGE_SHIFT);
3576 if (dmar_domain->max_addr == iova + size)
3577 dmar_domain->max_addr = iova;
3580 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3581 unsigned long iova)
3583 struct dmar_domain *dmar_domain = domain->priv;
3584 struct dma_pte *pte;
3585 u64 phys = 0;
3587 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3588 if (pte)
3589 phys = dma_pte_addr(pte);
3591 return phys;
3594 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3595 unsigned long cap)
3597 struct dmar_domain *dmar_domain = domain->priv;
3599 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3600 return dmar_domain->iommu_snooping;
3602 return 0;
3605 static struct iommu_ops intel_iommu_ops = {
3606 .domain_init = intel_iommu_domain_init,
3607 .domain_destroy = intel_iommu_domain_destroy,
3608 .attach_dev = intel_iommu_attach_device,
3609 .detach_dev = intel_iommu_detach_device,
3610 .map = intel_iommu_map_range,
3611 .unmap = intel_iommu_unmap_range,
3612 .iova_to_phys = intel_iommu_iova_to_phys,
3613 .domain_has_cap = intel_iommu_domain_has_cap,
3616 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3619 * Mobile 4 Series Chipset neglects to set RWBF capability,
3620 * but needs it:
3622 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3623 rwbf_quirk = 1;
3626 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);