vfs: spread struct mount - shrink_submounts/select_submounts
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / pnode.c
blobefbe0c0d3f0d5f264baac9e1c0d3b32a680513d0
1 /*
2 * linux/fs/pnode.c
4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
8 */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
15 /* return the next shared peer mount of @p */
16 static inline struct vfsmount *next_peer(struct vfsmount *p)
18 return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
21 static inline struct vfsmount *first_slave(struct vfsmount *p)
23 return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
26 static inline struct vfsmount *next_slave(struct vfsmount *p)
28 return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
31 static struct vfsmount *get_peer_under_root(struct vfsmount *mnt,
32 struct mnt_namespace *ns,
33 const struct path *root)
35 struct vfsmount *m = mnt;
37 do {
38 /* Check the namespace first for optimization */
39 if (m->mnt_ns == ns && is_path_reachable(m, m->mnt_root, root))
40 return m;
42 m = next_peer(m);
43 } while (m != mnt);
45 return NULL;
49 * Get ID of closest dominating peer group having a representative
50 * under the given root.
52 * Caller must hold namespace_sem
54 int get_dominating_id(struct vfsmount *mnt, const struct path *root)
56 struct vfsmount *m;
58 for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
59 struct vfsmount *d = get_peer_under_root(m, mnt->mnt_ns, root);
60 if (d)
61 return d->mnt_group_id;
64 return 0;
67 static int do_make_slave(struct vfsmount *mnt)
69 struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
70 struct vfsmount *slave_mnt;
73 * slave 'mnt' to a peer mount that has the
74 * same root dentry. If none is available then
75 * slave it to anything that is available.
77 while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
78 peer_mnt->mnt_root != mnt->mnt_root) ;
80 if (peer_mnt == mnt) {
81 peer_mnt = next_peer(mnt);
82 if (peer_mnt == mnt)
83 peer_mnt = NULL;
85 if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
86 mnt_release_group_id(real_mount(mnt));
88 list_del_init(&mnt->mnt_share);
89 mnt->mnt_group_id = 0;
91 if (peer_mnt)
92 master = peer_mnt;
94 if (master) {
95 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
96 slave_mnt->mnt_master = master;
97 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
98 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
99 INIT_LIST_HEAD(&mnt->mnt_slave_list);
100 } else {
101 struct list_head *p = &mnt->mnt_slave_list;
102 while (!list_empty(p)) {
103 slave_mnt = list_first_entry(p,
104 struct vfsmount, mnt_slave);
105 list_del_init(&slave_mnt->mnt_slave);
106 slave_mnt->mnt_master = NULL;
109 mnt->mnt_master = master;
110 CLEAR_MNT_SHARED(mnt);
111 return 0;
115 * vfsmount lock must be held for write
117 void change_mnt_propagation(struct mount *mnt, int type)
119 if (type == MS_SHARED) {
120 set_mnt_shared(mnt);
121 return;
123 do_make_slave(&mnt->mnt);
124 if (type != MS_SLAVE) {
125 list_del_init(&mnt->mnt.mnt_slave);
126 mnt->mnt.mnt_master = NULL;
127 if (type == MS_UNBINDABLE)
128 mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
129 else
130 mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
135 * get the next mount in the propagation tree.
136 * @m: the mount seen last
137 * @origin: the original mount from where the tree walk initiated
139 * Note that peer groups form contiguous segments of slave lists.
140 * We rely on that in get_source() to be able to find out if
141 * vfsmount found while iterating with propagation_next() is
142 * a peer of one we'd found earlier.
144 static struct vfsmount *propagation_next(struct vfsmount *m,
145 struct vfsmount *origin)
147 /* are there any slaves of this mount? */
148 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
149 return first_slave(m);
151 while (1) {
152 struct vfsmount *next;
153 struct vfsmount *master = m->mnt_master;
155 if (master == origin->mnt_master) {
156 next = next_peer(m);
157 return ((next == origin) ? NULL : next);
158 } else if (m->mnt_slave.next != &master->mnt_slave_list)
159 return next_slave(m);
161 /* back at master */
162 m = master;
167 * return the source mount to be used for cloning
169 * @dest the current destination mount
170 * @last_dest the last seen destination mount
171 * @last_src the last seen source mount
172 * @type return CL_SLAVE if the new mount has to be
173 * cloned as a slave.
175 static struct vfsmount *get_source(struct vfsmount *dest,
176 struct vfsmount *last_dest,
177 struct vfsmount *last_src,
178 int *type)
180 struct vfsmount *p_last_src = NULL;
181 struct vfsmount *p_last_dest = NULL;
183 while (last_dest != dest->mnt_master) {
184 p_last_dest = last_dest;
185 p_last_src = last_src;
186 last_dest = last_dest->mnt_master;
187 last_src = last_src->mnt_master;
190 if (p_last_dest) {
191 do {
192 p_last_dest = next_peer(p_last_dest);
193 } while (IS_MNT_NEW(p_last_dest));
194 /* is that a peer of the earlier? */
195 if (dest == p_last_dest) {
196 *type = CL_MAKE_SHARED;
197 return p_last_src;
200 /* slave of the earlier, then */
201 *type = CL_SLAVE;
202 /* beginning of peer group among the slaves? */
203 if (IS_MNT_SHARED(dest))
204 *type |= CL_MAKE_SHARED;
205 return last_src;
209 * mount 'source_mnt' under the destination 'dest_mnt' at
210 * dentry 'dest_dentry'. And propagate that mount to
211 * all the peer and slave mounts of 'dest_mnt'.
212 * Link all the new mounts into a propagation tree headed at
213 * source_mnt. Also link all the new mounts using ->mnt_list
214 * headed at source_mnt's ->mnt_list
216 * @dest_mnt: destination mount.
217 * @dest_dentry: destination dentry.
218 * @source_mnt: source mount.
219 * @tree_list : list of heads of trees to be attached.
221 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
222 struct vfsmount *source_mnt, struct list_head *tree_list)
224 struct vfsmount *m;
225 struct mount *child;
226 int ret = 0;
227 struct vfsmount *prev_dest_mnt = dest_mnt;
228 struct vfsmount *prev_src_mnt = source_mnt;
229 LIST_HEAD(tmp_list);
230 LIST_HEAD(umount_list);
232 for (m = propagation_next(dest_mnt, dest_mnt); m;
233 m = propagation_next(m, dest_mnt)) {
234 int type;
235 struct vfsmount *source;
237 if (IS_MNT_NEW(m))
238 continue;
240 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type);
242 if (!(child = copy_tree(source, source->mnt_root, type))) {
243 ret = -ENOMEM;
244 list_splice(tree_list, tmp_list.prev);
245 goto out;
248 if (is_subdir(dest_dentry, m->mnt_root)) {
249 mnt_set_mountpoint(m, dest_dentry, &child->mnt);
250 list_add_tail(&child->mnt_hash, tree_list);
251 } else {
253 * This can happen if the parent mount was bind mounted
254 * on some subdirectory of a shared/slave mount.
256 list_add_tail(&child->mnt_hash, &tmp_list);
258 prev_dest_mnt = m;
259 prev_src_mnt = &child->mnt;
261 out:
262 br_write_lock(vfsmount_lock);
263 while (!list_empty(&tmp_list)) {
264 child = list_first_entry(&tmp_list, struct mount, mnt_hash);
265 umount_tree(child, 0, &umount_list);
267 br_write_unlock(vfsmount_lock);
268 release_mounts(&umount_list);
269 return ret;
273 * return true if the refcount is greater than count
275 static inline int do_refcount_check(struct vfsmount *mnt, int count)
277 int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
278 return (mycount > count);
282 * check if the mount 'mnt' can be unmounted successfully.
283 * @mnt: the mount to be checked for unmount
284 * NOTE: unmounting 'mnt' would naturally propagate to all
285 * other mounts its parent propagates to.
286 * Check if any of these mounts that **do not have submounts**
287 * have more references than 'refcnt'. If so return busy.
289 * vfsmount lock must be held for write
291 int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
293 struct vfsmount *m;
294 struct mount *child;
295 struct vfsmount *parent = mnt->mnt_parent;
296 int ret = 0;
298 if (mnt == parent)
299 return do_refcount_check(mnt, refcnt);
302 * quickly check if the current mount can be unmounted.
303 * If not, we don't have to go checking for all other
304 * mounts
306 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
307 return 1;
309 for (m = propagation_next(parent, parent); m;
310 m = propagation_next(m, parent)) {
311 child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
312 if (child && list_empty(&child->mnt.mnt_mounts) &&
313 (ret = do_refcount_check(&child->mnt, 1)))
314 break;
316 return ret;
320 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
321 * parent propagates to.
323 static void __propagate_umount(struct mount *mnt)
325 struct vfsmount *parent = mnt->mnt.mnt_parent;
326 struct vfsmount *m;
328 BUG_ON(parent == &mnt->mnt);
330 for (m = propagation_next(parent, parent); m;
331 m = propagation_next(m, parent)) {
333 struct mount *child = __lookup_mnt(m,
334 mnt->mnt.mnt_mountpoint, 0);
336 * umount the child only if the child has no
337 * other children
339 if (child && list_empty(&child->mnt.mnt_mounts))
340 list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
345 * collect all mounts that receive propagation from the mount in @list,
346 * and return these additional mounts in the same list.
347 * @list: the list of mounts to be unmounted.
349 * vfsmount lock must be held for write
351 int propagate_umount(struct list_head *list)
353 struct mount *mnt;
355 list_for_each_entry(mnt, list, mnt_hash)
356 __propagate_umount(mnt);
357 return 0;