Input: bcm5974 - add quad-finger tapping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blob51dbb55604e847991023697267d26c9216497ce7
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 #include <asm/unistd.h>
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
50 #endif
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
53 #endif
54 #ifndef SET_FPEMU_CTL
55 # define SET_FPEMU_CTL(a,b) (-EINVAL)
56 #endif
57 #ifndef GET_FPEMU_CTL
58 # define GET_FPEMU_CTL(a,b) (-EINVAL)
59 #endif
60 #ifndef SET_FPEXC_CTL
61 # define SET_FPEXC_CTL(a,b) (-EINVAL)
62 #endif
63 #ifndef GET_FPEXC_CTL
64 # define GET_FPEXC_CTL(a,b) (-EINVAL)
65 #endif
66 #ifndef GET_ENDIAN
67 # define GET_ENDIAN(a,b) (-EINVAL)
68 #endif
69 #ifndef SET_ENDIAN
70 # define SET_ENDIAN(a,b) (-EINVAL)
71 #endif
72 #ifndef GET_TSC_CTL
73 # define GET_TSC_CTL(a) (-EINVAL)
74 #endif
75 #ifndef SET_TSC_CTL
76 # define SET_TSC_CTL(a) (-EINVAL)
77 #endif
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
84 int overflowuid = DEFAULT_OVERFLOWUID;
85 int overflowgid = DEFAULT_OVERFLOWGID;
87 #ifdef CONFIG_UID16
88 EXPORT_SYMBOL(overflowuid);
89 EXPORT_SYMBOL(overflowgid);
90 #endif
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
100 EXPORT_SYMBOL(fs_overflowuid);
101 EXPORT_SYMBOL(fs_overflowgid);
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107 int C_A_D = 1;
108 struct pid *cad_pid;
109 EXPORT_SYMBOL(cad_pid);
112 * If set, this is used for preparing the system to power off.
115 void (*pm_power_off_prepare)(void);
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
121 static int set_one_prio(struct task_struct *p, int niceval, int error)
123 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
124 int no_nice;
126 if (pcred->uid != cred->euid &&
127 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
128 error = -EPERM;
129 goto out;
131 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
132 error = -EACCES;
133 goto out;
135 no_nice = security_task_setnice(p, niceval);
136 if (no_nice) {
137 error = no_nice;
138 goto out;
140 if (error == -ESRCH)
141 error = 0;
142 set_user_nice(p, niceval);
143 out:
144 return error;
147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
149 struct task_struct *g, *p;
150 struct user_struct *user;
151 const struct cred *cred = current_cred();
152 int error = -EINVAL;
153 struct pid *pgrp;
155 if (which > PRIO_USER || which < PRIO_PROCESS)
156 goto out;
158 /* normalize: avoid signed division (rounding problems) */
159 error = -ESRCH;
160 if (niceval < -20)
161 niceval = -20;
162 if (niceval > 19)
163 niceval = 19;
165 read_lock(&tasklist_lock);
166 switch (which) {
167 case PRIO_PROCESS:
168 if (who)
169 p = find_task_by_vpid(who);
170 else
171 p = current;
172 if (p)
173 error = set_one_prio(p, niceval, error);
174 break;
175 case PRIO_PGRP:
176 if (who)
177 pgrp = find_vpid(who);
178 else
179 pgrp = task_pgrp(current);
180 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
181 error = set_one_prio(p, niceval, error);
182 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
183 break;
184 case PRIO_USER:
185 user = (struct user_struct *) cred->user;
186 if (!who)
187 who = cred->uid;
188 else if ((who != cred->uid) &&
189 !(user = find_user(who)))
190 goto out_unlock; /* No processes for this user */
192 do_each_thread(g, p)
193 if (__task_cred(p)->uid == who)
194 error = set_one_prio(p, niceval, error);
195 while_each_thread(g, p);
196 if (who != cred->uid)
197 free_uid(user); /* For find_user() */
198 break;
200 out_unlock:
201 read_unlock(&tasklist_lock);
202 out:
203 return error;
207 * Ugh. To avoid negative return values, "getpriority()" will
208 * not return the normal nice-value, but a negated value that
209 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
210 * to stay compatible.
212 SYSCALL_DEFINE2(getpriority, int, which, int, who)
214 struct task_struct *g, *p;
215 struct user_struct *user;
216 const struct cred *cred = current_cred();
217 long niceval, retval = -ESRCH;
218 struct pid *pgrp;
220 if (which > PRIO_USER || which < PRIO_PROCESS)
221 return -EINVAL;
223 read_lock(&tasklist_lock);
224 switch (which) {
225 case PRIO_PROCESS:
226 if (who)
227 p = find_task_by_vpid(who);
228 else
229 p = current;
230 if (p) {
231 niceval = 20 - task_nice(p);
232 if (niceval > retval)
233 retval = niceval;
235 break;
236 case PRIO_PGRP:
237 if (who)
238 pgrp = find_vpid(who);
239 else
240 pgrp = task_pgrp(current);
241 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
242 niceval = 20 - task_nice(p);
243 if (niceval > retval)
244 retval = niceval;
245 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
246 break;
247 case PRIO_USER:
248 user = (struct user_struct *) cred->user;
249 if (!who)
250 who = cred->uid;
251 else if ((who != cred->uid) &&
252 !(user = find_user(who)))
253 goto out_unlock; /* No processes for this user */
255 do_each_thread(g, p)
256 if (__task_cred(p)->uid == who) {
257 niceval = 20 - task_nice(p);
258 if (niceval > retval)
259 retval = niceval;
261 while_each_thread(g, p);
262 if (who != cred->uid)
263 free_uid(user); /* for find_user() */
264 break;
266 out_unlock:
267 read_unlock(&tasklist_lock);
269 return retval;
273 * emergency_restart - reboot the system
275 * Without shutting down any hardware or taking any locks
276 * reboot the system. This is called when we know we are in
277 * trouble so this is our best effort to reboot. This is
278 * safe to call in interrupt context.
280 void emergency_restart(void)
282 machine_emergency_restart();
284 EXPORT_SYMBOL_GPL(emergency_restart);
286 void kernel_restart_prepare(char *cmd)
288 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
289 system_state = SYSTEM_RESTART;
290 device_shutdown();
291 sysdev_shutdown();
295 * kernel_restart - reboot the system
296 * @cmd: pointer to buffer containing command to execute for restart
297 * or %NULL
299 * Shutdown everything and perform a clean reboot.
300 * This is not safe to call in interrupt context.
302 void kernel_restart(char *cmd)
304 kernel_restart_prepare(cmd);
305 if (!cmd)
306 printk(KERN_EMERG "Restarting system.\n");
307 else
308 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
309 machine_restart(cmd);
311 EXPORT_SYMBOL_GPL(kernel_restart);
313 static void kernel_shutdown_prepare(enum system_states state)
315 blocking_notifier_call_chain(&reboot_notifier_list,
316 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
317 system_state = state;
318 device_shutdown();
321 * kernel_halt - halt the system
323 * Shutdown everything and perform a clean system halt.
325 void kernel_halt(void)
327 kernel_shutdown_prepare(SYSTEM_HALT);
328 sysdev_shutdown();
329 printk(KERN_EMERG "System halted.\n");
330 machine_halt();
333 EXPORT_SYMBOL_GPL(kernel_halt);
336 * kernel_power_off - power_off the system
338 * Shutdown everything and perform a clean system power_off.
340 void kernel_power_off(void)
342 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
343 if (pm_power_off_prepare)
344 pm_power_off_prepare();
345 disable_nonboot_cpus();
346 sysdev_shutdown();
347 printk(KERN_EMERG "Power down.\n");
348 machine_power_off();
350 EXPORT_SYMBOL_GPL(kernel_power_off);
352 * Reboot system call: for obvious reasons only root may call it,
353 * and even root needs to set up some magic numbers in the registers
354 * so that some mistake won't make this reboot the whole machine.
355 * You can also set the meaning of the ctrl-alt-del-key here.
357 * reboot doesn't sync: do that yourself before calling this.
359 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
360 void __user *, arg)
362 char buffer[256];
364 /* We only trust the superuser with rebooting the system. */
365 if (!capable(CAP_SYS_BOOT))
366 return -EPERM;
368 /* For safety, we require "magic" arguments. */
369 if (magic1 != LINUX_REBOOT_MAGIC1 ||
370 (magic2 != LINUX_REBOOT_MAGIC2 &&
371 magic2 != LINUX_REBOOT_MAGIC2A &&
372 magic2 != LINUX_REBOOT_MAGIC2B &&
373 magic2 != LINUX_REBOOT_MAGIC2C))
374 return -EINVAL;
376 /* Instead of trying to make the power_off code look like
377 * halt when pm_power_off is not set do it the easy way.
379 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
380 cmd = LINUX_REBOOT_CMD_HALT;
382 lock_kernel();
383 switch (cmd) {
384 case LINUX_REBOOT_CMD_RESTART:
385 kernel_restart(NULL);
386 break;
388 case LINUX_REBOOT_CMD_CAD_ON:
389 C_A_D = 1;
390 break;
392 case LINUX_REBOOT_CMD_CAD_OFF:
393 C_A_D = 0;
394 break;
396 case LINUX_REBOOT_CMD_HALT:
397 kernel_halt();
398 unlock_kernel();
399 do_exit(0);
400 break;
402 case LINUX_REBOOT_CMD_POWER_OFF:
403 kernel_power_off();
404 unlock_kernel();
405 do_exit(0);
406 break;
408 case LINUX_REBOOT_CMD_RESTART2:
409 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
410 unlock_kernel();
411 return -EFAULT;
413 buffer[sizeof(buffer) - 1] = '\0';
415 kernel_restart(buffer);
416 break;
418 #ifdef CONFIG_KEXEC
419 case LINUX_REBOOT_CMD_KEXEC:
421 int ret;
422 ret = kernel_kexec();
423 unlock_kernel();
424 return ret;
426 #endif
428 #ifdef CONFIG_HIBERNATION
429 case LINUX_REBOOT_CMD_SW_SUSPEND:
431 int ret = hibernate();
432 unlock_kernel();
433 return ret;
435 #endif
437 default:
438 unlock_kernel();
439 return -EINVAL;
441 unlock_kernel();
442 return 0;
445 static void deferred_cad(struct work_struct *dummy)
447 kernel_restart(NULL);
451 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
452 * As it's called within an interrupt, it may NOT sync: the only choice
453 * is whether to reboot at once, or just ignore the ctrl-alt-del.
455 void ctrl_alt_del(void)
457 static DECLARE_WORK(cad_work, deferred_cad);
459 if (C_A_D)
460 schedule_work(&cad_work);
461 else
462 kill_cad_pid(SIGINT, 1);
466 * Unprivileged users may change the real gid to the effective gid
467 * or vice versa. (BSD-style)
469 * If you set the real gid at all, or set the effective gid to a value not
470 * equal to the real gid, then the saved gid is set to the new effective gid.
472 * This makes it possible for a setgid program to completely drop its
473 * privileges, which is often a useful assertion to make when you are doing
474 * a security audit over a program.
476 * The general idea is that a program which uses just setregid() will be
477 * 100% compatible with BSD. A program which uses just setgid() will be
478 * 100% compatible with POSIX with saved IDs.
480 * SMP: There are not races, the GIDs are checked only by filesystem
481 * operations (as far as semantic preservation is concerned).
483 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
485 const struct cred *old;
486 struct cred *new;
487 int retval;
489 new = prepare_creds();
490 if (!new)
491 return -ENOMEM;
492 old = current_cred();
494 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
495 if (retval)
496 goto error;
498 retval = -EPERM;
499 if (rgid != (gid_t) -1) {
500 if (old->gid == rgid ||
501 old->egid == rgid ||
502 capable(CAP_SETGID))
503 new->gid = rgid;
504 else
505 goto error;
507 if (egid != (gid_t) -1) {
508 if (old->gid == egid ||
509 old->egid == egid ||
510 old->sgid == egid ||
511 capable(CAP_SETGID))
512 new->egid = egid;
513 else
514 goto error;
517 if (rgid != (gid_t) -1 ||
518 (egid != (gid_t) -1 && egid != old->gid))
519 new->sgid = new->egid;
520 new->fsgid = new->egid;
522 return commit_creds(new);
524 error:
525 abort_creds(new);
526 return retval;
530 * setgid() is implemented like SysV w/ SAVED_IDS
532 * SMP: Same implicit races as above.
534 SYSCALL_DEFINE1(setgid, gid_t, gid)
536 const struct cred *old;
537 struct cred *new;
538 int retval;
540 new = prepare_creds();
541 if (!new)
542 return -ENOMEM;
543 old = current_cred();
545 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
546 if (retval)
547 goto error;
549 retval = -EPERM;
550 if (capable(CAP_SETGID))
551 new->gid = new->egid = new->sgid = new->fsgid = gid;
552 else if (gid == old->gid || gid == old->sgid)
553 new->egid = new->fsgid = gid;
554 else
555 goto error;
557 return commit_creds(new);
559 error:
560 abort_creds(new);
561 return retval;
565 * change the user struct in a credentials set to match the new UID
567 static int set_user(struct cred *new)
569 struct user_struct *new_user;
571 new_user = alloc_uid(current_user_ns(), new->uid);
572 if (!new_user)
573 return -EAGAIN;
575 if (!task_can_switch_user(new_user, current)) {
576 free_uid(new_user);
577 return -EINVAL;
580 if (atomic_read(&new_user->processes) >=
581 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
582 new_user != INIT_USER) {
583 free_uid(new_user);
584 return -EAGAIN;
587 free_uid(new->user);
588 new->user = new_user;
589 return 0;
593 * Unprivileged users may change the real uid to the effective uid
594 * or vice versa. (BSD-style)
596 * If you set the real uid at all, or set the effective uid to a value not
597 * equal to the real uid, then the saved uid is set to the new effective uid.
599 * This makes it possible for a setuid program to completely drop its
600 * privileges, which is often a useful assertion to make when you are doing
601 * a security audit over a program.
603 * The general idea is that a program which uses just setreuid() will be
604 * 100% compatible with BSD. A program which uses just setuid() will be
605 * 100% compatible with POSIX with saved IDs.
607 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
609 const struct cred *old;
610 struct cred *new;
611 int retval;
613 new = prepare_creds();
614 if (!new)
615 return -ENOMEM;
616 old = current_cred();
618 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
619 if (retval)
620 goto error;
622 retval = -EPERM;
623 if (ruid != (uid_t) -1) {
624 new->uid = ruid;
625 if (old->uid != ruid &&
626 old->euid != ruid &&
627 !capable(CAP_SETUID))
628 goto error;
631 if (euid != (uid_t) -1) {
632 new->euid = euid;
633 if (old->uid != euid &&
634 old->euid != euid &&
635 old->suid != euid &&
636 !capable(CAP_SETUID))
637 goto error;
640 if (new->uid != old->uid) {
641 retval = set_user(new);
642 if (retval < 0)
643 goto error;
645 if (ruid != (uid_t) -1 ||
646 (euid != (uid_t) -1 && euid != old->uid))
647 new->suid = new->euid;
648 new->fsuid = new->euid;
650 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
651 if (retval < 0)
652 goto error;
654 return commit_creds(new);
656 error:
657 abort_creds(new);
658 return retval;
662 * setuid() is implemented like SysV with SAVED_IDS
664 * Note that SAVED_ID's is deficient in that a setuid root program
665 * like sendmail, for example, cannot set its uid to be a normal
666 * user and then switch back, because if you're root, setuid() sets
667 * the saved uid too. If you don't like this, blame the bright people
668 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
669 * will allow a root program to temporarily drop privileges and be able to
670 * regain them by swapping the real and effective uid.
672 SYSCALL_DEFINE1(setuid, uid_t, uid)
674 const struct cred *old;
675 struct cred *new;
676 int retval;
678 new = prepare_creds();
679 if (!new)
680 return -ENOMEM;
681 old = current_cred();
683 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
684 if (retval)
685 goto error;
687 retval = -EPERM;
688 if (capable(CAP_SETUID)) {
689 new->suid = new->uid = uid;
690 if (uid != old->uid) {
691 retval = set_user(new);
692 if (retval < 0)
693 goto error;
695 } else if (uid != old->uid && uid != new->suid) {
696 goto error;
699 new->fsuid = new->euid = uid;
701 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
702 if (retval < 0)
703 goto error;
705 return commit_creds(new);
707 error:
708 abort_creds(new);
709 return retval;
714 * This function implements a generic ability to update ruid, euid,
715 * and suid. This allows you to implement the 4.4 compatible seteuid().
717 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
719 const struct cred *old;
720 struct cred *new;
721 int retval;
723 new = prepare_creds();
724 if (!new)
725 return -ENOMEM;
727 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
728 if (retval)
729 goto error;
730 old = current_cred();
732 retval = -EPERM;
733 if (!capable(CAP_SETUID)) {
734 if (ruid != (uid_t) -1 && ruid != old->uid &&
735 ruid != old->euid && ruid != old->suid)
736 goto error;
737 if (euid != (uid_t) -1 && euid != old->uid &&
738 euid != old->euid && euid != old->suid)
739 goto error;
740 if (suid != (uid_t) -1 && suid != old->uid &&
741 suid != old->euid && suid != old->suid)
742 goto error;
745 if (ruid != (uid_t) -1) {
746 new->uid = ruid;
747 if (ruid != old->uid) {
748 retval = set_user(new);
749 if (retval < 0)
750 goto error;
753 if (euid != (uid_t) -1)
754 new->euid = euid;
755 if (suid != (uid_t) -1)
756 new->suid = suid;
757 new->fsuid = new->euid;
759 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
760 if (retval < 0)
761 goto error;
763 return commit_creds(new);
765 error:
766 abort_creds(new);
767 return retval;
770 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
772 const struct cred *cred = current_cred();
773 int retval;
775 if (!(retval = put_user(cred->uid, ruid)) &&
776 !(retval = put_user(cred->euid, euid)))
777 retval = put_user(cred->suid, suid);
779 return retval;
783 * Same as above, but for rgid, egid, sgid.
785 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
787 const struct cred *old;
788 struct cred *new;
789 int retval;
791 new = prepare_creds();
792 if (!new)
793 return -ENOMEM;
794 old = current_cred();
796 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
797 if (retval)
798 goto error;
800 retval = -EPERM;
801 if (!capable(CAP_SETGID)) {
802 if (rgid != (gid_t) -1 && rgid != old->gid &&
803 rgid != old->egid && rgid != old->sgid)
804 goto error;
805 if (egid != (gid_t) -1 && egid != old->gid &&
806 egid != old->egid && egid != old->sgid)
807 goto error;
808 if (sgid != (gid_t) -1 && sgid != old->gid &&
809 sgid != old->egid && sgid != old->sgid)
810 goto error;
813 if (rgid != (gid_t) -1)
814 new->gid = rgid;
815 if (egid != (gid_t) -1)
816 new->egid = egid;
817 if (sgid != (gid_t) -1)
818 new->sgid = sgid;
819 new->fsgid = new->egid;
821 return commit_creds(new);
823 error:
824 abort_creds(new);
825 return retval;
828 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
830 const struct cred *cred = current_cred();
831 int retval;
833 if (!(retval = put_user(cred->gid, rgid)) &&
834 !(retval = put_user(cred->egid, egid)))
835 retval = put_user(cred->sgid, sgid);
837 return retval;
842 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
843 * is used for "access()" and for the NFS daemon (letting nfsd stay at
844 * whatever uid it wants to). It normally shadows "euid", except when
845 * explicitly set by setfsuid() or for access..
847 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
849 const struct cred *old;
850 struct cred *new;
851 uid_t old_fsuid;
853 new = prepare_creds();
854 if (!new)
855 return current_fsuid();
856 old = current_cred();
857 old_fsuid = old->fsuid;
859 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
860 goto error;
862 if (uid == old->uid || uid == old->euid ||
863 uid == old->suid || uid == old->fsuid ||
864 capable(CAP_SETUID)) {
865 if (uid != old_fsuid) {
866 new->fsuid = uid;
867 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
868 goto change_okay;
872 error:
873 abort_creds(new);
874 return old_fsuid;
876 change_okay:
877 commit_creds(new);
878 return old_fsuid;
882 * Samma på svenska..
884 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
886 const struct cred *old;
887 struct cred *new;
888 gid_t old_fsgid;
890 new = prepare_creds();
891 if (!new)
892 return current_fsgid();
893 old = current_cred();
894 old_fsgid = old->fsgid;
896 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
897 goto error;
899 if (gid == old->gid || gid == old->egid ||
900 gid == old->sgid || gid == old->fsgid ||
901 capable(CAP_SETGID)) {
902 if (gid != old_fsgid) {
903 new->fsgid = gid;
904 goto change_okay;
908 error:
909 abort_creds(new);
910 return old_fsgid;
912 change_okay:
913 commit_creds(new);
914 return old_fsgid;
917 void do_sys_times(struct tms *tms)
919 struct task_cputime cputime;
920 cputime_t cutime, cstime;
922 thread_group_cputime(current, &cputime);
923 spin_lock_irq(&current->sighand->siglock);
924 cutime = current->signal->cutime;
925 cstime = current->signal->cstime;
926 spin_unlock_irq(&current->sighand->siglock);
927 tms->tms_utime = cputime_to_clock_t(cputime.utime);
928 tms->tms_stime = cputime_to_clock_t(cputime.stime);
929 tms->tms_cutime = cputime_to_clock_t(cutime);
930 tms->tms_cstime = cputime_to_clock_t(cstime);
933 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
935 if (tbuf) {
936 struct tms tmp;
938 do_sys_times(&tmp);
939 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
940 return -EFAULT;
942 force_successful_syscall_return();
943 return (long) jiffies_64_to_clock_t(get_jiffies_64());
947 * This needs some heavy checking ...
948 * I just haven't the stomach for it. I also don't fully
949 * understand sessions/pgrp etc. Let somebody who does explain it.
951 * OK, I think I have the protection semantics right.... this is really
952 * only important on a multi-user system anyway, to make sure one user
953 * can't send a signal to a process owned by another. -TYT, 12/12/91
955 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
956 * LBT 04.03.94
958 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
960 struct task_struct *p;
961 struct task_struct *group_leader = current->group_leader;
962 struct pid *pgrp;
963 int err;
965 if (!pid)
966 pid = task_pid_vnr(group_leader);
967 if (!pgid)
968 pgid = pid;
969 if (pgid < 0)
970 return -EINVAL;
972 /* From this point forward we keep holding onto the tasklist lock
973 * so that our parent does not change from under us. -DaveM
975 write_lock_irq(&tasklist_lock);
977 err = -ESRCH;
978 p = find_task_by_vpid(pid);
979 if (!p)
980 goto out;
982 err = -EINVAL;
983 if (!thread_group_leader(p))
984 goto out;
986 if (same_thread_group(p->real_parent, group_leader)) {
987 err = -EPERM;
988 if (task_session(p) != task_session(group_leader))
989 goto out;
990 err = -EACCES;
991 if (p->did_exec)
992 goto out;
993 } else {
994 err = -ESRCH;
995 if (p != group_leader)
996 goto out;
999 err = -EPERM;
1000 if (p->signal->leader)
1001 goto out;
1003 pgrp = task_pid(p);
1004 if (pgid != pid) {
1005 struct task_struct *g;
1007 pgrp = find_vpid(pgid);
1008 g = pid_task(pgrp, PIDTYPE_PGID);
1009 if (!g || task_session(g) != task_session(group_leader))
1010 goto out;
1013 err = security_task_setpgid(p, pgid);
1014 if (err)
1015 goto out;
1017 if (task_pgrp(p) != pgrp)
1018 change_pid(p, PIDTYPE_PGID, pgrp);
1020 err = 0;
1021 out:
1022 /* All paths lead to here, thus we are safe. -DaveM */
1023 write_unlock_irq(&tasklist_lock);
1024 return err;
1027 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1029 struct task_struct *p;
1030 struct pid *grp;
1031 int retval;
1033 rcu_read_lock();
1034 if (!pid)
1035 grp = task_pgrp(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 grp = task_pgrp(p);
1042 if (!grp)
1043 goto out;
1045 retval = security_task_getpgid(p);
1046 if (retval)
1047 goto out;
1049 retval = pid_vnr(grp);
1050 out:
1051 rcu_read_unlock();
1052 return retval;
1055 #ifdef __ARCH_WANT_SYS_GETPGRP
1057 SYSCALL_DEFINE0(getpgrp)
1059 return sys_getpgid(0);
1062 #endif
1064 SYSCALL_DEFINE1(getsid, pid_t, pid)
1066 struct task_struct *p;
1067 struct pid *sid;
1068 int retval;
1070 rcu_read_lock();
1071 if (!pid)
1072 sid = task_session(current);
1073 else {
1074 retval = -ESRCH;
1075 p = find_task_by_vpid(pid);
1076 if (!p)
1077 goto out;
1078 sid = task_session(p);
1079 if (!sid)
1080 goto out;
1082 retval = security_task_getsid(p);
1083 if (retval)
1084 goto out;
1086 retval = pid_vnr(sid);
1087 out:
1088 rcu_read_unlock();
1089 return retval;
1092 SYSCALL_DEFINE0(setsid)
1094 struct task_struct *group_leader = current->group_leader;
1095 struct pid *sid = task_pid(group_leader);
1096 pid_t session = pid_vnr(sid);
1097 int err = -EPERM;
1099 write_lock_irq(&tasklist_lock);
1100 /* Fail if I am already a session leader */
1101 if (group_leader->signal->leader)
1102 goto out;
1104 /* Fail if a process group id already exists that equals the
1105 * proposed session id.
1107 if (pid_task(sid, PIDTYPE_PGID))
1108 goto out;
1110 group_leader->signal->leader = 1;
1111 __set_special_pids(sid);
1113 proc_clear_tty(group_leader);
1115 err = session;
1116 out:
1117 write_unlock_irq(&tasklist_lock);
1118 return err;
1122 * Supplementary group IDs
1125 /* init to 2 - one for init_task, one to ensure it is never freed */
1126 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1128 struct group_info *groups_alloc(int gidsetsize)
1130 struct group_info *group_info;
1131 int nblocks;
1132 int i;
1134 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1135 /* Make sure we always allocate at least one indirect block pointer */
1136 nblocks = nblocks ? : 1;
1137 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1138 if (!group_info)
1139 return NULL;
1140 group_info->ngroups = gidsetsize;
1141 group_info->nblocks = nblocks;
1142 atomic_set(&group_info->usage, 1);
1144 if (gidsetsize <= NGROUPS_SMALL)
1145 group_info->blocks[0] = group_info->small_block;
1146 else {
1147 for (i = 0; i < nblocks; i++) {
1148 gid_t *b;
1149 b = (void *)__get_free_page(GFP_USER);
1150 if (!b)
1151 goto out_undo_partial_alloc;
1152 group_info->blocks[i] = b;
1155 return group_info;
1157 out_undo_partial_alloc:
1158 while (--i >= 0) {
1159 free_page((unsigned long)group_info->blocks[i]);
1161 kfree(group_info);
1162 return NULL;
1165 EXPORT_SYMBOL(groups_alloc);
1167 void groups_free(struct group_info *group_info)
1169 if (group_info->blocks[0] != group_info->small_block) {
1170 int i;
1171 for (i = 0; i < group_info->nblocks; i++)
1172 free_page((unsigned long)group_info->blocks[i]);
1174 kfree(group_info);
1177 EXPORT_SYMBOL(groups_free);
1179 /* export the group_info to a user-space array */
1180 static int groups_to_user(gid_t __user *grouplist,
1181 const struct group_info *group_info)
1183 int i;
1184 unsigned int count = group_info->ngroups;
1186 for (i = 0; i < group_info->nblocks; i++) {
1187 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1188 unsigned int len = cp_count * sizeof(*grouplist);
1190 if (copy_to_user(grouplist, group_info->blocks[i], len))
1191 return -EFAULT;
1193 grouplist += NGROUPS_PER_BLOCK;
1194 count -= cp_count;
1196 return 0;
1199 /* fill a group_info from a user-space array - it must be allocated already */
1200 static int groups_from_user(struct group_info *group_info,
1201 gid_t __user *grouplist)
1203 int i;
1204 unsigned int count = group_info->ngroups;
1206 for (i = 0; i < group_info->nblocks; i++) {
1207 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1208 unsigned int len = cp_count * sizeof(*grouplist);
1210 if (copy_from_user(group_info->blocks[i], grouplist, len))
1211 return -EFAULT;
1213 grouplist += NGROUPS_PER_BLOCK;
1214 count -= cp_count;
1216 return 0;
1219 /* a simple Shell sort */
1220 static void groups_sort(struct group_info *group_info)
1222 int base, max, stride;
1223 int gidsetsize = group_info->ngroups;
1225 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1226 ; /* nothing */
1227 stride /= 3;
1229 while (stride) {
1230 max = gidsetsize - stride;
1231 for (base = 0; base < max; base++) {
1232 int left = base;
1233 int right = left + stride;
1234 gid_t tmp = GROUP_AT(group_info, right);
1236 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1237 GROUP_AT(group_info, right) =
1238 GROUP_AT(group_info, left);
1239 right = left;
1240 left -= stride;
1242 GROUP_AT(group_info, right) = tmp;
1244 stride /= 3;
1248 /* a simple bsearch */
1249 int groups_search(const struct group_info *group_info, gid_t grp)
1251 unsigned int left, right;
1253 if (!group_info)
1254 return 0;
1256 left = 0;
1257 right = group_info->ngroups;
1258 while (left < right) {
1259 unsigned int mid = (left+right)/2;
1260 int cmp = grp - GROUP_AT(group_info, mid);
1261 if (cmp > 0)
1262 left = mid + 1;
1263 else if (cmp < 0)
1264 right = mid;
1265 else
1266 return 1;
1268 return 0;
1272 * set_groups - Change a group subscription in a set of credentials
1273 * @new: The newly prepared set of credentials to alter
1274 * @group_info: The group list to install
1276 * Validate a group subscription and, if valid, insert it into a set
1277 * of credentials.
1279 int set_groups(struct cred *new, struct group_info *group_info)
1281 int retval;
1283 retval = security_task_setgroups(group_info);
1284 if (retval)
1285 return retval;
1287 put_group_info(new->group_info);
1288 groups_sort(group_info);
1289 get_group_info(group_info);
1290 new->group_info = group_info;
1291 return 0;
1294 EXPORT_SYMBOL(set_groups);
1297 * set_current_groups - Change current's group subscription
1298 * @group_info: The group list to impose
1300 * Validate a group subscription and, if valid, impose it upon current's task
1301 * security record.
1303 int set_current_groups(struct group_info *group_info)
1305 struct cred *new;
1306 int ret;
1308 new = prepare_creds();
1309 if (!new)
1310 return -ENOMEM;
1312 ret = set_groups(new, group_info);
1313 if (ret < 0) {
1314 abort_creds(new);
1315 return ret;
1318 return commit_creds(new);
1321 EXPORT_SYMBOL(set_current_groups);
1323 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1325 const struct cred *cred = current_cred();
1326 int i;
1328 if (gidsetsize < 0)
1329 return -EINVAL;
1331 /* no need to grab task_lock here; it cannot change */
1332 i = cred->group_info->ngroups;
1333 if (gidsetsize) {
1334 if (i > gidsetsize) {
1335 i = -EINVAL;
1336 goto out;
1338 if (groups_to_user(grouplist, cred->group_info)) {
1339 i = -EFAULT;
1340 goto out;
1343 out:
1344 return i;
1348 * SMP: Our groups are copy-on-write. We can set them safely
1349 * without another task interfering.
1352 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1354 struct group_info *group_info;
1355 int retval;
1357 if (!capable(CAP_SETGID))
1358 return -EPERM;
1359 if ((unsigned)gidsetsize > NGROUPS_MAX)
1360 return -EINVAL;
1362 group_info = groups_alloc(gidsetsize);
1363 if (!group_info)
1364 return -ENOMEM;
1365 retval = groups_from_user(group_info, grouplist);
1366 if (retval) {
1367 put_group_info(group_info);
1368 return retval;
1371 retval = set_current_groups(group_info);
1372 put_group_info(group_info);
1374 return retval;
1378 * Check whether we're fsgid/egid or in the supplemental group..
1380 int in_group_p(gid_t grp)
1382 const struct cred *cred = current_cred();
1383 int retval = 1;
1385 if (grp != cred->fsgid)
1386 retval = groups_search(cred->group_info, grp);
1387 return retval;
1390 EXPORT_SYMBOL(in_group_p);
1392 int in_egroup_p(gid_t grp)
1394 const struct cred *cred = current_cred();
1395 int retval = 1;
1397 if (grp != cred->egid)
1398 retval = groups_search(cred->group_info, grp);
1399 return retval;
1402 EXPORT_SYMBOL(in_egroup_p);
1404 DECLARE_RWSEM(uts_sem);
1406 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1408 int errno = 0;
1410 down_read(&uts_sem);
1411 if (copy_to_user(name, utsname(), sizeof *name))
1412 errno = -EFAULT;
1413 up_read(&uts_sem);
1414 return errno;
1417 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1419 int errno;
1420 char tmp[__NEW_UTS_LEN];
1422 if (!capable(CAP_SYS_ADMIN))
1423 return -EPERM;
1424 if (len < 0 || len > __NEW_UTS_LEN)
1425 return -EINVAL;
1426 down_write(&uts_sem);
1427 errno = -EFAULT;
1428 if (!copy_from_user(tmp, name, len)) {
1429 struct new_utsname *u = utsname();
1431 memcpy(u->nodename, tmp, len);
1432 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1433 errno = 0;
1435 up_write(&uts_sem);
1436 return errno;
1439 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1441 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1443 int i, errno;
1444 struct new_utsname *u;
1446 if (len < 0)
1447 return -EINVAL;
1448 down_read(&uts_sem);
1449 u = utsname();
1450 i = 1 + strlen(u->nodename);
1451 if (i > len)
1452 i = len;
1453 errno = 0;
1454 if (copy_to_user(name, u->nodename, i))
1455 errno = -EFAULT;
1456 up_read(&uts_sem);
1457 return errno;
1460 #endif
1463 * Only setdomainname; getdomainname can be implemented by calling
1464 * uname()
1466 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1468 int errno;
1469 char tmp[__NEW_UTS_LEN];
1471 if (!capable(CAP_SYS_ADMIN))
1472 return -EPERM;
1473 if (len < 0 || len > __NEW_UTS_LEN)
1474 return -EINVAL;
1476 down_write(&uts_sem);
1477 errno = -EFAULT;
1478 if (!copy_from_user(tmp, name, len)) {
1479 struct new_utsname *u = utsname();
1481 memcpy(u->domainname, tmp, len);
1482 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1483 errno = 0;
1485 up_write(&uts_sem);
1486 return errno;
1489 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491 if (resource >= RLIM_NLIMITS)
1492 return -EINVAL;
1493 else {
1494 struct rlimit value;
1495 task_lock(current->group_leader);
1496 value = current->signal->rlim[resource];
1497 task_unlock(current->group_leader);
1498 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1502 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1505 * Back compatibility for getrlimit. Needed for some apps.
1508 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1509 struct rlimit __user *, rlim)
1511 struct rlimit x;
1512 if (resource >= RLIM_NLIMITS)
1513 return -EINVAL;
1515 task_lock(current->group_leader);
1516 x = current->signal->rlim[resource];
1517 task_unlock(current->group_leader);
1518 if (x.rlim_cur > 0x7FFFFFFF)
1519 x.rlim_cur = 0x7FFFFFFF;
1520 if (x.rlim_max > 0x7FFFFFFF)
1521 x.rlim_max = 0x7FFFFFFF;
1522 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1525 #endif
1527 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1529 struct rlimit new_rlim, *old_rlim;
1530 int retval;
1532 if (resource >= RLIM_NLIMITS)
1533 return -EINVAL;
1534 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1535 return -EFAULT;
1536 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1537 return -EINVAL;
1538 old_rlim = current->signal->rlim + resource;
1539 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1540 !capable(CAP_SYS_RESOURCE))
1541 return -EPERM;
1542 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1543 return -EPERM;
1545 retval = security_task_setrlimit(resource, &new_rlim);
1546 if (retval)
1547 return retval;
1549 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1551 * The caller is asking for an immediate RLIMIT_CPU
1552 * expiry. But we use the zero value to mean "it was
1553 * never set". So let's cheat and make it one second
1554 * instead
1556 new_rlim.rlim_cur = 1;
1559 task_lock(current->group_leader);
1560 *old_rlim = new_rlim;
1561 task_unlock(current->group_leader);
1563 if (resource != RLIMIT_CPU)
1564 goto out;
1567 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1568 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1569 * very long-standing error, and fixing it now risks breakage of
1570 * applications, so we live with it
1572 if (new_rlim.rlim_cur == RLIM_INFINITY)
1573 goto out;
1575 update_rlimit_cpu(new_rlim.rlim_cur);
1576 out:
1577 return 0;
1581 * It would make sense to put struct rusage in the task_struct,
1582 * except that would make the task_struct be *really big*. After
1583 * task_struct gets moved into malloc'ed memory, it would
1584 * make sense to do this. It will make moving the rest of the information
1585 * a lot simpler! (Which we're not doing right now because we're not
1586 * measuring them yet).
1588 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1589 * races with threads incrementing their own counters. But since word
1590 * reads are atomic, we either get new values or old values and we don't
1591 * care which for the sums. We always take the siglock to protect reading
1592 * the c* fields from p->signal from races with exit.c updating those
1593 * fields when reaping, so a sample either gets all the additions of a
1594 * given child after it's reaped, or none so this sample is before reaping.
1596 * Locking:
1597 * We need to take the siglock for CHILDEREN, SELF and BOTH
1598 * for the cases current multithreaded, non-current single threaded
1599 * non-current multithreaded. Thread traversal is now safe with
1600 * the siglock held.
1601 * Strictly speaking, we donot need to take the siglock if we are current and
1602 * single threaded, as no one else can take our signal_struct away, no one
1603 * else can reap the children to update signal->c* counters, and no one else
1604 * can race with the signal-> fields. If we do not take any lock, the
1605 * signal-> fields could be read out of order while another thread was just
1606 * exiting. So we should place a read memory barrier when we avoid the lock.
1607 * On the writer side, write memory barrier is implied in __exit_signal
1608 * as __exit_signal releases the siglock spinlock after updating the signal->
1609 * fields. But we don't do this yet to keep things simple.
1613 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1615 r->ru_nvcsw += t->nvcsw;
1616 r->ru_nivcsw += t->nivcsw;
1617 r->ru_minflt += t->min_flt;
1618 r->ru_majflt += t->maj_flt;
1619 r->ru_inblock += task_io_get_inblock(t);
1620 r->ru_oublock += task_io_get_oublock(t);
1623 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1625 struct task_struct *t;
1626 unsigned long flags;
1627 cputime_t utime, stime;
1628 struct task_cputime cputime;
1630 memset((char *) r, 0, sizeof *r);
1631 utime = stime = cputime_zero;
1633 if (who == RUSAGE_THREAD) {
1634 utime = task_utime(current);
1635 stime = task_stime(current);
1636 accumulate_thread_rusage(p, r);
1637 goto out;
1640 if (!lock_task_sighand(p, &flags))
1641 return;
1643 switch (who) {
1644 case RUSAGE_BOTH:
1645 case RUSAGE_CHILDREN:
1646 utime = p->signal->cutime;
1647 stime = p->signal->cstime;
1648 r->ru_nvcsw = p->signal->cnvcsw;
1649 r->ru_nivcsw = p->signal->cnivcsw;
1650 r->ru_minflt = p->signal->cmin_flt;
1651 r->ru_majflt = p->signal->cmaj_flt;
1652 r->ru_inblock = p->signal->cinblock;
1653 r->ru_oublock = p->signal->coublock;
1655 if (who == RUSAGE_CHILDREN)
1656 break;
1658 case RUSAGE_SELF:
1659 thread_group_cputime(p, &cputime);
1660 utime = cputime_add(utime, cputime.utime);
1661 stime = cputime_add(stime, cputime.stime);
1662 r->ru_nvcsw += p->signal->nvcsw;
1663 r->ru_nivcsw += p->signal->nivcsw;
1664 r->ru_minflt += p->signal->min_flt;
1665 r->ru_majflt += p->signal->maj_flt;
1666 r->ru_inblock += p->signal->inblock;
1667 r->ru_oublock += p->signal->oublock;
1668 t = p;
1669 do {
1670 accumulate_thread_rusage(t, r);
1671 t = next_thread(t);
1672 } while (t != p);
1673 break;
1675 default:
1676 BUG();
1678 unlock_task_sighand(p, &flags);
1680 out:
1681 cputime_to_timeval(utime, &r->ru_utime);
1682 cputime_to_timeval(stime, &r->ru_stime);
1685 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1687 struct rusage r;
1688 k_getrusage(p, who, &r);
1689 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1692 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1694 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1695 who != RUSAGE_THREAD)
1696 return -EINVAL;
1697 return getrusage(current, who, ru);
1700 SYSCALL_DEFINE1(umask, int, mask)
1702 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1703 return mask;
1706 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1707 unsigned long, arg4, unsigned long, arg5)
1709 struct task_struct *me = current;
1710 unsigned char comm[sizeof(me->comm)];
1711 long error;
1713 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1714 if (error != -ENOSYS)
1715 return error;
1717 error = 0;
1718 switch (option) {
1719 case PR_SET_PDEATHSIG:
1720 if (!valid_signal(arg2)) {
1721 error = -EINVAL;
1722 break;
1724 me->pdeath_signal = arg2;
1725 error = 0;
1726 break;
1727 case PR_GET_PDEATHSIG:
1728 error = put_user(me->pdeath_signal, (int __user *)arg2);
1729 break;
1730 case PR_GET_DUMPABLE:
1731 error = get_dumpable(me->mm);
1732 break;
1733 case PR_SET_DUMPABLE:
1734 if (arg2 < 0 || arg2 > 1) {
1735 error = -EINVAL;
1736 break;
1738 set_dumpable(me->mm, arg2);
1739 error = 0;
1740 break;
1742 case PR_SET_UNALIGN:
1743 error = SET_UNALIGN_CTL(me, arg2);
1744 break;
1745 case PR_GET_UNALIGN:
1746 error = GET_UNALIGN_CTL(me, arg2);
1747 break;
1748 case PR_SET_FPEMU:
1749 error = SET_FPEMU_CTL(me, arg2);
1750 break;
1751 case PR_GET_FPEMU:
1752 error = GET_FPEMU_CTL(me, arg2);
1753 break;
1754 case PR_SET_FPEXC:
1755 error = SET_FPEXC_CTL(me, arg2);
1756 break;
1757 case PR_GET_FPEXC:
1758 error = GET_FPEXC_CTL(me, arg2);
1759 break;
1760 case PR_GET_TIMING:
1761 error = PR_TIMING_STATISTICAL;
1762 break;
1763 case PR_SET_TIMING:
1764 if (arg2 != PR_TIMING_STATISTICAL)
1765 error = -EINVAL;
1766 else
1767 error = 0;
1768 break;
1770 case PR_SET_NAME:
1771 comm[sizeof(me->comm)-1] = 0;
1772 if (strncpy_from_user(comm, (char __user *)arg2,
1773 sizeof(me->comm) - 1) < 0)
1774 return -EFAULT;
1775 set_task_comm(me, comm);
1776 return 0;
1777 case PR_GET_NAME:
1778 get_task_comm(comm, me);
1779 if (copy_to_user((char __user *)arg2, comm,
1780 sizeof(comm)))
1781 return -EFAULT;
1782 return 0;
1783 case PR_GET_ENDIAN:
1784 error = GET_ENDIAN(me, arg2);
1785 break;
1786 case PR_SET_ENDIAN:
1787 error = SET_ENDIAN(me, arg2);
1788 break;
1790 case PR_GET_SECCOMP:
1791 error = prctl_get_seccomp();
1792 break;
1793 case PR_SET_SECCOMP:
1794 error = prctl_set_seccomp(arg2);
1795 break;
1796 case PR_GET_TSC:
1797 error = GET_TSC_CTL(arg2);
1798 break;
1799 case PR_SET_TSC:
1800 error = SET_TSC_CTL(arg2);
1801 break;
1802 case PR_GET_TIMERSLACK:
1803 error = current->timer_slack_ns;
1804 break;
1805 case PR_SET_TIMERSLACK:
1806 if (arg2 <= 0)
1807 current->timer_slack_ns =
1808 current->default_timer_slack_ns;
1809 else
1810 current->timer_slack_ns = arg2;
1811 error = 0;
1812 break;
1813 default:
1814 error = -EINVAL;
1815 break;
1817 return error;
1820 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1821 struct getcpu_cache __user *, unused)
1823 int err = 0;
1824 int cpu = raw_smp_processor_id();
1825 if (cpup)
1826 err |= put_user(cpu, cpup);
1827 if (nodep)
1828 err |= put_user(cpu_to_node(cpu), nodep);
1829 return err ? -EFAULT : 0;
1832 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1834 static void argv_cleanup(char **argv, char **envp)
1836 argv_free(argv);
1840 * orderly_poweroff - Trigger an orderly system poweroff
1841 * @force: force poweroff if command execution fails
1843 * This may be called from any context to trigger a system shutdown.
1844 * If the orderly shutdown fails, it will force an immediate shutdown.
1846 int orderly_poweroff(bool force)
1848 int argc;
1849 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1850 static char *envp[] = {
1851 "HOME=/",
1852 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1853 NULL
1855 int ret = -ENOMEM;
1856 struct subprocess_info *info;
1858 if (argv == NULL) {
1859 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1860 __func__, poweroff_cmd);
1861 goto out;
1864 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1865 if (info == NULL) {
1866 argv_free(argv);
1867 goto out;
1870 call_usermodehelper_setcleanup(info, argv_cleanup);
1872 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1874 out:
1875 if (ret && force) {
1876 printk(KERN_WARNING "Failed to start orderly shutdown: "
1877 "forcing the issue\n");
1879 /* I guess this should try to kick off some daemon to
1880 sync and poweroff asap. Or not even bother syncing
1881 if we're doing an emergency shutdown? */
1882 emergency_sync();
1883 kernel_power_off();
1886 return ret;
1888 EXPORT_SYMBOL_GPL(orderly_poweroff);