1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/sysdev.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
16 #include <asm/fixmap.h>
20 #define HPET_MASK CLOCKSOURCE_MASK(32)
24 #define FSEC_PER_NSEC 1000000L
26 #define HPET_DEV_USED_BIT 2
27 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID 0x8
29 #define HPET_DEV_FSB_CAP 0x1000
30 #define HPET_DEV_PERI_CAP 0x2000
32 #define HPET_MIN_CYCLES 128
33 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 unsigned long hpet_address
;
39 u8 hpet_blockid
; /* OS timer block num */
43 static unsigned long hpet_num_timers
;
45 static void __iomem
*hpet_virt_address
;
48 struct clock_event_device evt
;
56 inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
58 return container_of(evtdev
, struct hpet_dev
, evt
);
61 inline unsigned int hpet_readl(unsigned int a
)
63 return readl(hpet_virt_address
+ a
);
66 static inline void hpet_writel(unsigned int d
, unsigned int a
)
68 writel(d
, hpet_virt_address
+ a
);
72 #include <asm/pgtable.h>
75 static inline void hpet_set_mapping(void)
77 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
79 __set_fixmap(VSYSCALL_HPET
, hpet_address
, PAGE_KERNEL_VVAR_NOCACHE
);
83 static inline void hpet_clear_mapping(void)
85 iounmap(hpet_virt_address
);
86 hpet_virt_address
= NULL
;
90 * HPET command line enable / disable
92 static int boot_hpet_disable
;
94 static int hpet_verbose
;
96 static int __init
hpet_setup(char *str
)
99 if (!strncmp("disable", str
, 7))
100 boot_hpet_disable
= 1;
101 if (!strncmp("force", str
, 5))
103 if (!strncmp("verbose", str
, 7))
108 __setup("hpet=", hpet_setup
);
110 static int __init
disable_hpet(char *str
)
112 boot_hpet_disable
= 1;
115 __setup("nohpet", disable_hpet
);
117 static inline int is_hpet_capable(void)
119 return !boot_hpet_disable
&& hpet_address
;
123 * HPET timer interrupt enable / disable
125 static int hpet_legacy_int_enabled
;
128 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
130 int is_hpet_enabled(void)
132 return is_hpet_capable() && hpet_legacy_int_enabled
;
134 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
136 static void _hpet_print_config(const char *function
, int line
)
139 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
140 l
= hpet_readl(HPET_ID
);
141 h
= hpet_readl(HPET_PERIOD
);
142 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
143 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
144 l
= hpet_readl(HPET_CFG
);
145 h
= hpet_readl(HPET_STATUS
);
146 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
147 l
= hpet_readl(HPET_COUNTER
);
148 h
= hpet_readl(HPET_COUNTER
+4);
149 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
151 for (i
= 0; i
< timers
; i
++) {
152 l
= hpet_readl(HPET_Tn_CFG(i
));
153 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
154 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
156 l
= hpet_readl(HPET_Tn_CMP(i
));
157 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
158 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
160 l
= hpet_readl(HPET_Tn_ROUTE(i
));
161 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
162 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
167 #define hpet_print_config() \
170 _hpet_print_config(__FUNCTION__, __LINE__); \
174 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
175 * timer 0 and timer 1 in case of RTC emulation.
179 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
181 static void hpet_reserve_platform_timers(unsigned int id
)
183 struct hpet __iomem
*hpet
= hpet_virt_address
;
184 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
185 unsigned int nrtimers
, i
;
188 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
190 memset(&hd
, 0, sizeof(hd
));
191 hd
.hd_phys_address
= hpet_address
;
192 hd
.hd_address
= hpet
;
193 hd
.hd_nirqs
= nrtimers
;
194 hpet_reserve_timer(&hd
, 0);
196 #ifdef CONFIG_HPET_EMULATE_RTC
197 hpet_reserve_timer(&hd
, 1);
201 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
202 * is wrong for i8259!) not the output IRQ. Many BIOS writers
203 * don't bother configuring *any* comparator interrupts.
205 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
206 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
208 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
209 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
210 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
213 hpet_reserve_msi_timers(&hd
);
219 static void hpet_reserve_platform_timers(unsigned int id
) { }
225 static unsigned long hpet_freq
;
227 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
228 struct clock_event_device
*evt
);
229 static int hpet_legacy_next_event(unsigned long delta
,
230 struct clock_event_device
*evt
);
233 * The hpet clock event device
235 static struct clock_event_device hpet_clockevent
= {
237 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
238 .set_mode
= hpet_legacy_set_mode
,
239 .set_next_event
= hpet_legacy_next_event
,
244 static void hpet_stop_counter(void)
246 unsigned long cfg
= hpet_readl(HPET_CFG
);
247 cfg
&= ~HPET_CFG_ENABLE
;
248 hpet_writel(cfg
, HPET_CFG
);
251 static void hpet_reset_counter(void)
253 hpet_writel(0, HPET_COUNTER
);
254 hpet_writel(0, HPET_COUNTER
+ 4);
257 static void hpet_start_counter(void)
259 unsigned int cfg
= hpet_readl(HPET_CFG
);
260 cfg
|= HPET_CFG_ENABLE
;
261 hpet_writel(cfg
, HPET_CFG
);
264 static void hpet_restart_counter(void)
267 hpet_reset_counter();
268 hpet_start_counter();
271 static void hpet_resume_device(void)
276 static void hpet_resume_counter(struct clocksource
*cs
)
278 hpet_resume_device();
279 hpet_restart_counter();
282 static void hpet_enable_legacy_int(void)
284 unsigned int cfg
= hpet_readl(HPET_CFG
);
286 cfg
|= HPET_CFG_LEGACY
;
287 hpet_writel(cfg
, HPET_CFG
);
288 hpet_legacy_int_enabled
= 1;
291 static void hpet_legacy_clockevent_register(void)
293 /* Start HPET legacy interrupts */
294 hpet_enable_legacy_int();
297 * Start hpet with the boot cpu mask and make it
298 * global after the IO_APIC has been initialized.
300 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
301 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
302 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
303 global_clock_event
= &hpet_clockevent
;
304 printk(KERN_DEBUG
"hpet clockevent registered\n");
307 static int hpet_setup_msi_irq(unsigned int irq
);
309 static void hpet_set_mode(enum clock_event_mode mode
,
310 struct clock_event_device
*evt
, int timer
)
312 unsigned int cfg
, cmp
, now
;
316 case CLOCK_EVT_MODE_PERIODIC
:
318 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
319 delta
>>= evt
->shift
;
320 now
= hpet_readl(HPET_COUNTER
);
321 cmp
= now
+ (unsigned int) delta
;
322 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
323 /* Make sure we use edge triggered interrupts */
324 cfg
&= ~HPET_TN_LEVEL
;
325 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
326 HPET_TN_SETVAL
| HPET_TN_32BIT
;
327 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
328 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
331 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
332 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
333 * bit is automatically cleared after the first write.
334 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
335 * Publication # 24674)
337 hpet_writel((unsigned int) delta
, HPET_Tn_CMP(timer
));
338 hpet_start_counter();
342 case CLOCK_EVT_MODE_ONESHOT
:
343 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
344 cfg
&= ~HPET_TN_PERIODIC
;
345 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
346 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
349 case CLOCK_EVT_MODE_UNUSED
:
350 case CLOCK_EVT_MODE_SHUTDOWN
:
351 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
352 cfg
&= ~HPET_TN_ENABLE
;
353 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
356 case CLOCK_EVT_MODE_RESUME
:
358 hpet_enable_legacy_int();
360 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
361 hpet_setup_msi_irq(hdev
->irq
);
362 disable_irq(hdev
->irq
);
363 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
364 enable_irq(hdev
->irq
);
371 static int hpet_next_event(unsigned long delta
,
372 struct clock_event_device
*evt
, int timer
)
377 cnt
= hpet_readl(HPET_COUNTER
);
379 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
382 * HPETs are a complete disaster. The compare register is
383 * based on a equal comparison and neither provides a less
384 * than or equal functionality (which would require to take
385 * the wraparound into account) nor a simple count down event
386 * mode. Further the write to the comparator register is
387 * delayed internally up to two HPET clock cycles in certain
388 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
389 * longer delays. We worked around that by reading back the
390 * compare register, but that required another workaround for
391 * ICH9,10 chips where the first readout after write can
392 * return the old stale value. We already had a minimum
393 * programming delta of 5us enforced, but a NMI or SMI hitting
394 * between the counter readout and the comparator write can
395 * move us behind that point easily. Now instead of reading
396 * the compare register back several times, we make the ETIME
397 * decision based on the following: Return ETIME if the
398 * counter value after the write is less than HPET_MIN_CYCLES
399 * away from the event or if the counter is already ahead of
400 * the event. The minimum programming delta for the generic
401 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
403 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
405 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
408 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
409 struct clock_event_device
*evt
)
411 hpet_set_mode(mode
, evt
, 0);
414 static int hpet_legacy_next_event(unsigned long delta
,
415 struct clock_event_device
*evt
)
417 return hpet_next_event(delta
, evt
, 0);
423 #ifdef CONFIG_PCI_MSI
425 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
426 static struct hpet_dev
*hpet_devs
;
428 void hpet_msi_unmask(struct irq_data
*data
)
430 struct hpet_dev
*hdev
= data
->handler_data
;
434 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
436 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
439 void hpet_msi_mask(struct irq_data
*data
)
441 struct hpet_dev
*hdev
= data
->handler_data
;
445 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
447 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
450 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
452 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
453 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
456 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
458 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
459 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
463 static void hpet_msi_set_mode(enum clock_event_mode mode
,
464 struct clock_event_device
*evt
)
466 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
467 hpet_set_mode(mode
, evt
, hdev
->num
);
470 static int hpet_msi_next_event(unsigned long delta
,
471 struct clock_event_device
*evt
)
473 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
474 return hpet_next_event(delta
, evt
, hdev
->num
);
477 static int hpet_setup_msi_irq(unsigned int irq
)
479 if (arch_setup_hpet_msi(irq
, hpet_blockid
)) {
486 static int hpet_assign_irq(struct hpet_dev
*dev
)
490 irq
= create_irq_nr(0, -1);
494 irq_set_handler_data(irq
, dev
);
496 if (hpet_setup_msi_irq(irq
))
503 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
505 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
506 struct clock_event_device
*hevt
= &dev
->evt
;
508 if (!hevt
->event_handler
) {
509 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
514 hevt
->event_handler(hevt
);
518 static int hpet_setup_irq(struct hpet_dev
*dev
)
521 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
522 IRQF_TIMER
| IRQF_DISABLED
| IRQF_NOBALANCING
,
526 disable_irq(dev
->irq
);
527 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
528 enable_irq(dev
->irq
);
530 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
531 dev
->name
, dev
->irq
);
536 /* This should be called in specific @cpu */
537 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
539 struct clock_event_device
*evt
= &hdev
->evt
;
541 WARN_ON(cpu
!= smp_processor_id());
542 if (!(hdev
->flags
& HPET_DEV_VALID
))
545 if (hpet_setup_msi_irq(hdev
->irq
))
549 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
550 evt
->name
= hdev
->name
;
551 hpet_setup_irq(hdev
);
552 evt
->irq
= hdev
->irq
;
555 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
556 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
557 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
559 evt
->set_mode
= hpet_msi_set_mode
;
560 evt
->set_next_event
= hpet_msi_next_event
;
561 evt
->cpumask
= cpumask_of(hdev
->cpu
);
563 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
568 /* Reserve at least one timer for userspace (/dev/hpet) */
569 #define RESERVE_TIMERS 1
571 #define RESERVE_TIMERS 0
574 static void hpet_msi_capability_lookup(unsigned int start_timer
)
577 unsigned int num_timers
;
578 unsigned int num_timers_used
= 0;
581 if (hpet_msi_disable
)
584 if (boot_cpu_has(X86_FEATURE_ARAT
))
586 id
= hpet_readl(HPET_ID
);
588 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
589 num_timers
++; /* Value read out starts from 0 */
592 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
596 hpet_num_timers
= num_timers
;
598 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
599 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
600 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
602 /* Only consider HPET timer with MSI support */
603 if (!(cfg
& HPET_TN_FSB_CAP
))
607 if (cfg
& HPET_TN_PERIODIC_CAP
)
608 hdev
->flags
|= HPET_DEV_PERI_CAP
;
611 sprintf(hdev
->name
, "hpet%d", i
);
612 if (hpet_assign_irq(hdev
))
615 hdev
->flags
|= HPET_DEV_FSB_CAP
;
616 hdev
->flags
|= HPET_DEV_VALID
;
618 if (num_timers_used
== num_possible_cpus())
622 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
623 num_timers
, num_timers_used
);
627 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
634 for (i
= 0; i
< hpet_num_timers
; i
++) {
635 struct hpet_dev
*hdev
= &hpet_devs
[i
];
637 if (!(hdev
->flags
& HPET_DEV_VALID
))
640 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
641 hpet_reserve_timer(hd
, hdev
->num
);
646 static struct hpet_dev
*hpet_get_unused_timer(void)
653 for (i
= 0; i
< hpet_num_timers
; i
++) {
654 struct hpet_dev
*hdev
= &hpet_devs
[i
];
656 if (!(hdev
->flags
& HPET_DEV_VALID
))
658 if (test_and_set_bit(HPET_DEV_USED_BIT
,
659 (unsigned long *)&hdev
->flags
))
666 struct hpet_work_struct
{
667 struct delayed_work work
;
668 struct completion complete
;
671 static void hpet_work(struct work_struct
*w
)
673 struct hpet_dev
*hdev
;
674 int cpu
= smp_processor_id();
675 struct hpet_work_struct
*hpet_work
;
677 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
679 hdev
= hpet_get_unused_timer();
681 init_one_hpet_msi_clockevent(hdev
, cpu
);
683 complete(&hpet_work
->complete
);
686 static int hpet_cpuhp_notify(struct notifier_block
*n
,
687 unsigned long action
, void *hcpu
)
689 unsigned long cpu
= (unsigned long)hcpu
;
690 struct hpet_work_struct work
;
691 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
693 switch (action
& 0xf) {
695 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
696 init_completion(&work
.complete
);
697 /* FIXME: add schedule_work_on() */
698 schedule_delayed_work_on(cpu
, &work
.work
, 0);
699 wait_for_completion(&work
.complete
);
700 destroy_timer_on_stack(&work
.work
.timer
);
704 free_irq(hdev
->irq
, hdev
);
705 hdev
->flags
&= ~HPET_DEV_USED
;
706 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
714 static int hpet_setup_msi_irq(unsigned int irq
)
718 static void hpet_msi_capability_lookup(unsigned int start_timer
)
724 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
730 static int hpet_cpuhp_notify(struct notifier_block
*n
,
731 unsigned long action
, void *hcpu
)
739 * Clock source related code
741 static cycle_t
read_hpet(struct clocksource
*cs
)
743 return (cycle_t
)hpet_readl(HPET_COUNTER
);
746 static struct clocksource clocksource_hpet
= {
751 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
752 .resume
= hpet_resume_counter
,
754 .archdata
= { .vclock_mode
= VCLOCK_HPET
},
758 static int hpet_clocksource_register(void)
763 /* Start the counter */
764 hpet_restart_counter();
766 /* Verify whether hpet counter works */
767 t1
= hpet_readl(HPET_COUNTER
);
771 * We don't know the TSC frequency yet, but waiting for
772 * 200000 TSC cycles is safe:
779 } while ((now
- start
) < 200000UL);
781 if (t1
== hpet_readl(HPET_COUNTER
)) {
783 "HPET counter not counting. HPET disabled\n");
787 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
792 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
794 int __init
hpet_enable(void)
796 unsigned long hpet_period
;
801 if (!is_hpet_capable())
807 * Read the period and check for a sane value:
809 hpet_period
= hpet_readl(HPET_PERIOD
);
812 * AMD SB700 based systems with spread spectrum enabled use a
813 * SMM based HPET emulation to provide proper frequency
814 * setting. The SMM code is initialized with the first HPET
815 * register access and takes some time to complete. During
816 * this time the config register reads 0xffffffff. We check
817 * for max. 1000 loops whether the config register reads a non
818 * 0xffffffff value to make sure that HPET is up and running
819 * before we go further. A counting loop is safe, as the HPET
820 * access takes thousands of CPU cycles. On non SB700 based
821 * machines this check is only done once and has no side
824 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
827 "HPET config register value = 0xFFFFFFFF. "
833 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
837 * The period is a femto seconds value. Convert it to a
841 do_div(freq
, hpet_period
);
845 * Read the HPET ID register to retrieve the IRQ routing
846 * information and the number of channels
848 id
= hpet_readl(HPET_ID
);
851 #ifdef CONFIG_HPET_EMULATE_RTC
853 * The legacy routing mode needs at least two channels, tick timer
854 * and the rtc emulation channel.
856 if (!(id
& HPET_ID_NUMBER
))
860 if (hpet_clocksource_register())
863 if (id
& HPET_ID_LEGSUP
) {
864 hpet_legacy_clockevent_register();
870 hpet_clear_mapping();
876 * Needs to be late, as the reserve_timer code calls kalloc !
878 * Not a problem on i386 as hpet_enable is called from late_time_init,
879 * but on x86_64 it is necessary !
881 static __init
int hpet_late_init(void)
885 if (boot_hpet_disable
)
889 if (!force_hpet_address
)
892 hpet_address
= force_hpet_address
;
896 if (!hpet_virt_address
)
899 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
900 hpet_msi_capability_lookup(2);
902 hpet_msi_capability_lookup(0);
904 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
907 if (hpet_msi_disable
)
910 if (boot_cpu_has(X86_FEATURE_ARAT
))
913 for_each_online_cpu(cpu
) {
914 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
917 /* This notifier should be called after workqueue is ready */
918 hotcpu_notifier(hpet_cpuhp_notify
, -20);
922 fs_initcall(hpet_late_init
);
924 void hpet_disable(void)
926 if (is_hpet_capable() && hpet_virt_address
) {
927 unsigned int cfg
= hpet_readl(HPET_CFG
);
929 if (hpet_legacy_int_enabled
) {
930 cfg
&= ~HPET_CFG_LEGACY
;
931 hpet_legacy_int_enabled
= 0;
933 cfg
&= ~HPET_CFG_ENABLE
;
934 hpet_writel(cfg
, HPET_CFG
);
938 #ifdef CONFIG_HPET_EMULATE_RTC
940 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
941 * is enabled, we support RTC interrupt functionality in software.
942 * RTC has 3 kinds of interrupts:
943 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
945 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
946 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
947 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
948 * (1) and (2) above are implemented using polling at a frequency of
949 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
950 * overhead. (DEFAULT_RTC_INT_FREQ)
951 * For (3), we use interrupts at 64Hz or user specified periodic
952 * frequency, whichever is higher.
954 #include <linux/mc146818rtc.h>
955 #include <linux/rtc.h>
958 #define DEFAULT_RTC_INT_FREQ 64
959 #define DEFAULT_RTC_SHIFT 6
960 #define RTC_NUM_INTS 1
962 static unsigned long hpet_rtc_flags
;
963 static int hpet_prev_update_sec
;
964 static struct rtc_time hpet_alarm_time
;
965 static unsigned long hpet_pie_count
;
966 static u32 hpet_t1_cmp
;
967 static u32 hpet_default_delta
;
968 static u32 hpet_pie_delta
;
969 static unsigned long hpet_pie_limit
;
971 static rtc_irq_handler irq_handler
;
974 * Check that the hpet counter c1 is ahead of the c2
976 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
978 return (s32
)(c2
- c1
) < 0;
982 * Registers a IRQ handler.
984 int hpet_register_irq_handler(rtc_irq_handler handler
)
986 if (!is_hpet_enabled())
991 irq_handler
= handler
;
995 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
998 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1001 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1003 if (!is_hpet_enabled())
1009 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1012 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1013 * is not supported by all HPET implementations for timer 1.
1015 * hpet_rtc_timer_init() is called when the rtc is initialized.
1017 int hpet_rtc_timer_init(void)
1019 unsigned int cfg
, cnt
, delta
;
1020 unsigned long flags
;
1022 if (!is_hpet_enabled())
1025 if (!hpet_default_delta
) {
1028 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1029 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1030 hpet_default_delta
= clc
;
1033 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1034 delta
= hpet_default_delta
;
1036 delta
= hpet_pie_delta
;
1038 local_irq_save(flags
);
1040 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1041 hpet_writel(cnt
, HPET_T1_CMP
);
1044 cfg
= hpet_readl(HPET_T1_CFG
);
1045 cfg
&= ~HPET_TN_PERIODIC
;
1046 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1047 hpet_writel(cfg
, HPET_T1_CFG
);
1049 local_irq_restore(flags
);
1053 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1055 static void hpet_disable_rtc_channel(void)
1058 cfg
= hpet_readl(HPET_T1_CFG
);
1059 cfg
&= ~HPET_TN_ENABLE
;
1060 hpet_writel(cfg
, HPET_T1_CFG
);
1064 * The functions below are called from rtc driver.
1065 * Return 0 if HPET is not being used.
1066 * Otherwise do the necessary changes and return 1.
1068 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1070 if (!is_hpet_enabled())
1073 hpet_rtc_flags
&= ~bit_mask
;
1074 if (unlikely(!hpet_rtc_flags
))
1075 hpet_disable_rtc_channel();
1079 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1081 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1083 unsigned long oldbits
= hpet_rtc_flags
;
1085 if (!is_hpet_enabled())
1088 hpet_rtc_flags
|= bit_mask
;
1090 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1091 hpet_prev_update_sec
= -1;
1094 hpet_rtc_timer_init();
1098 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1100 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1103 if (!is_hpet_enabled())
1106 hpet_alarm_time
.tm_hour
= hrs
;
1107 hpet_alarm_time
.tm_min
= min
;
1108 hpet_alarm_time
.tm_sec
= sec
;
1112 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1114 int hpet_set_periodic_freq(unsigned long freq
)
1118 if (!is_hpet_enabled())
1121 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1122 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1124 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1126 clc
>>= hpet_clockevent
.shift
;
1127 hpet_pie_delta
= clc
;
1132 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1134 int hpet_rtc_dropped_irq(void)
1136 return is_hpet_enabled();
1138 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1140 static void hpet_rtc_timer_reinit(void)
1145 if (unlikely(!hpet_rtc_flags
))
1146 hpet_disable_rtc_channel();
1148 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1149 delta
= hpet_default_delta
;
1151 delta
= hpet_pie_delta
;
1154 * Increment the comparator value until we are ahead of the
1158 hpet_t1_cmp
+= delta
;
1159 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1161 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1164 if (hpet_rtc_flags
& RTC_PIE
)
1165 hpet_pie_count
+= lost_ints
;
1166 if (printk_ratelimit())
1167 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1172 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1174 struct rtc_time curr_time
;
1175 unsigned long rtc_int_flag
= 0;
1177 hpet_rtc_timer_reinit();
1178 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1180 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1181 get_rtc_time(&curr_time
);
1183 if (hpet_rtc_flags
& RTC_UIE
&&
1184 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1185 if (hpet_prev_update_sec
>= 0)
1186 rtc_int_flag
= RTC_UF
;
1187 hpet_prev_update_sec
= curr_time
.tm_sec
;
1190 if (hpet_rtc_flags
& RTC_PIE
&&
1191 ++hpet_pie_count
>= hpet_pie_limit
) {
1192 rtc_int_flag
|= RTC_PF
;
1196 if (hpet_rtc_flags
& RTC_AIE
&&
1197 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1198 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1199 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1200 rtc_int_flag
|= RTC_AF
;
1203 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1205 irq_handler(rtc_int_flag
, dev_id
);
1209 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);